发布时间:2023-10-11 15:54:22
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇生态风险评价方法范例,将为您的写作提供有力的支持和灵感!
Abstract:Aimed to deepen the study on the financial ecology,we set definition of the regionally financial ecological risk according to the ecology theory about ecological risk assessment (ERA)for the first time,analyze the distinction between it and the traditional financial risk and also the financial ecology assessment,and discuss its assessment principle and methods. With the hope of decrease in its description difficulty,we further establish the simplified assessment framework and corresponding regionally financial ecological risk assessment indices and employ advanced emergy analysis theory from the ecology to depict total development quality of the regionally financial ecology and to boost its application in the financial practice.
Key Words:financial ecology,ecological risk assessment (ERA),the regionally financial ecological risk,assessment indices,emergy analysis
中图分类号:F830.2文献标识码:A文章编号:1674-2265(2010)03-0018-05
开展区域金融生态风险评价研究,是对区域金融生态乃至金融生态的深化研究,是金融生态观念在金融发展实践应用层面的必然要求。解决了金融生态风险评价问题,才能更好地指导人们如何理解、使用和评价金融生态思维模式与管理模式。本文提出区域金融生态风险概念,并借助生态风险评价(Ecological Risk Assessment,ERA)理论,通过对区域金融生态风险的界定,探讨其评价方法。
一、文献综述
从白钦先2001年首先提出“金融生态环境”,到周小川2004年提出“金融生态”,国内金融理论界和金融实业界普遍开展了金融生态本质、金融生态环境评价、金融生态环境建设等诸多方面的研究和实践,极大地推动了以金融生态为理念的金融发展模式。其中,徐诺金(2005),苏宁(2005),林永军(2005),谢太峰(2006),曾建中(2007)等分别多角度阐述了独到的观点,综合起来可以认为,金融生态是影响金融发展的、由金融内外环境共同构成又相互作用、具有生态特征(依存性、竞争性、进化性、动态平衡性)的大金融环境,从而形成了金融生态的广义概念。
不难发现,金融生态具有宏观层面的涵义,有利于金融业的宏观调控、整体进步以及与经济社会的协调发展。但是,毕竟各地区、各领域发展千差万别,这时,如果笼统提及金融生态,难免空洞、缺乏可操作性。为此,区域金融生态概念应运而生,它在继承金融生态总体特征的基础上,较多地突出了区域发展的特殊性。张智峰、陈鑫(2005)阐述了区域金融生态环境建设的理论基础,证明金融系统与环境之间存在密切的联系,环境金融的协调发展是金融业可持续发展的关键。汪祖杰、吴江区(2006)提出了区域金融安全指标体系及其计量模型的构建方法。刘煜辉(2007),李扬、王国刚、刘煜辉(2005)等根据城市的经济基础、企业诚信、金融发展、司法环境、政府诚信、金融部门独立性、社会诚信文化、中介服务发展、社会保障等多个方面构成一个城市的金融生态环境。以这些方面为投入,以城市金融生态现实表征为产出,通过数据包络分析,得到了对50个大中城市的金融生态环境的综合评价。人民银行洛阳市中心支行课题组(2006)、人民银行成都分行营业管理部课题组(2006)等也各自根据特定区域的实际提出了评价区域金融生态环境的方法。
然而,还要看到,与金融生态有关的风险即区域金融生态风险还没有进入人们研究的重点范围,它和传统的金融风险以及金融生态评价有何联系,以及如何评价,相应的研究较少。有鉴于此,本文的研究目标将主要针对这些问题进行展开。
二、区域金融生态风险的界定
(一)区域生态风险及其评估
1. 生态风险(Ecological Risk,ER)指一个种群、生态系统或整个景观的正常功能受外界胁迫,从而在目前和将来减小该系统健康、生产力、遗传结构、经济价值和美学价值的一种状况。二十世纪90年代初,美国科学家Joshua Lipton等提出了一套规范化的生态评估框架,被普遍接受。因为它把生态风险的最终受体不仅定义为人类自己,而且包括生命系统的各个组建水平(个体、种群、群落、生态系统乃至景观),并且考虑了生物之间的相互作用以及不同组建水平的生态风险之间的相互关系(即风险级联)。
同样,可比照生态风险与生态风险评估的定义来描述区域生态风险与区域生态风险评估,只不过要注意区域生态风险评价所涉及的风险源以及评价受体等都在区域内具有空间异质性(即参与评价的风险源和其危害的作用结果在区域内的不同地点可能是不同的),因而比一般生态风险评价更复杂。
2. 生态风险评估(Ecological Risk Assessment,ERA)指受一个或多个胁迫因素影响后,对不利的生态后果出现的可能性进行的评估。美国环保局(EPA)在1992年对生态风险评价作了定义,即生态风险评价是评估由于一种或多种外界因素导致可能发生或正在发生的不利生态影响的过程。其目的是帮助环境管理部门了解和预测外界生态影响因素和生态后果之间的关系,有利于环境决策的制定。生态风险评价被认为能够用来预测未来的生态不利影响或评估因过去某种因素导致生态变化的可能性。生态风险评价基于两种因素:后果特征以及暴露特征。主要进行三个阶段的风险评价:问题的提出、问题分析和风险表征。
(二)区域金融生态风险
根据生态学对生态风险的界定,可将区域金融生态风险定义如下:
区域金融生态风险是考虑区域范围内,由于外部干扰或内部变化而导致的金融生态平衡被破坏所带来的金融机构、金融头寸的损失以及与此相关的金融环境的恶性变化。它同传统意义上的金融风险以及金融生态评价有着联系和区别。
同传统意义上的金融风险相比有如下共同特征:
1. 不确定性,即人们事先难以准确预料危害性事件是否会发生以及发生的时间、地点、强度和范围,最多具有这些事件先前发生的概率信息,从而根据这些信息去推断和预测区域金融生态系统所具有的风险类型和大小。
2. 危害性,即区域金融生态风险评价所关注的事件是灾害性事件,而危害性是指这些事件发生后的作用效果对风险承受者(这里指生态系统及其组分)具有的负面影响。这些影响将有可能导致区域金融生态系统结构和功能的损伤,区域金融生态系统内个体多样性的减少、个体之间相互作用和相互影响关系及其机制的改变等。
3. 客观性,即区域金融生态系统不是封闭的和静止不变的,它必然会受诸多具有不确定性和危害性因素的影响,也就必然存在风险。
(三)区域金融生态风险的独特性
区域金融生态风险与传统意义的金融风险也存在不同点。金融风险只强调某个金融机构或某个金融头寸的未来收益的不确定性,而生态风险则通盘考虑了各个组建水平(个体、种群、群落、生态系统乃至景观),并且考虑了生物之间的相互作用以及不同组建水平的生态风险之间的相互关系,是对整个生态系统受到危害或损失的衡量。具体体现为:
首先,区域金融生态风险强调区域金融生态平衡被破坏所带来的影响,这种影响是宽泛的,既包括金融机构的运营安全甚至区域金融体系的安全和金融头寸的损失,又包括与金融生态平衡相比较而显现出来的金融环境的恶性变化,如信用环境恶化、金融法律制度弱化、金融市场体制和机制出现短期不适应、所在区域经济和社会发展环境由此表现出来的非良性变化,等等。总之,和传统意义上的金融风险相比,区域金融生态风险既考虑了可直接货币化的价值损失,又考虑了与金融生态平衡相关的一切方面。这就要求理解区域金融生态风险,既要了解通常“风险”所具有的不确定性和危害性,又要了解其所具有的内在价值性,即区域金融生态风险评价的目的是评价具有危害和不确定性事件对生态系统及其组分可能造成的影响,在分析和表征区域金融生态风险时应体现区域金融生态系统的整体价值变化和功能移位。
这一点与通常经济学意义上的风险评价不同。在经济学意义上,通常将风险用经济损失来表示,但针对区域金融生态系统所作的风险评价是不可以将风险值用简单的物质或经济损失来表示的。由于金融环境的恶化而带来了具有某种功能的金融机构、金融市场甚至是社会信用水平的缺失,由此造成的损失也是难以用经济价值来衡量的。因此,分析和表征区域金融生态风险一定要与生态系统自身的结构和功能相结合,以区域金融生态系统的整体价值变化为主要依据。这也就决定了区域金融生态风险不可能完全实现定量化分析。
其次,区域金融生态风险发生的因素即风险源来自与外部和内部,或者兼而有之。外部因素主要有宏观经济环境与政策、法律法规、区域经济社会发展的外力等方面的变化,内部因素主要有金融体系突发事件、所在区域经济社会发展环境的自身变化等。
最后,区域金融生态风险的受体即风险承受者不一定是区域内的金融体系。比如,由于区域内信用环境恶化,导致金融机构不良资产增多,进而又影响金融机构对区域经济和社会发展的支持力度,最终结果很可能是区域经济社会发展遭受重创。显然,区域金融生态风险能够从整体上把握金融生态系统所受到的影响以及内部之间的相互关系。因此,从风险衡量和控制角度来看,存在系统筹划和优化问题,即为了降低区域金融生态风险总量,要在系统内部之间进行收益和损失的权衡,所以,借助一些科学的分析方法,如区域生态经济学理论和方法、金融生态的系统论方法,并可进一步利用生态学处理生态风险时的线性规划。
(四)同金融生态评价的比较
现有金融生态评价大多数采用层次分析方法来研究金融生态的结构与质量,得到的结论主要体现为表征金融生态质量的系数或分值,是对金融生态环境的层级评价,从而判断金融生态环境的优劣。但是,这种评价方法只是定性分析,并没有指出金融生态环境的风险值或者损失。而在这里提出的区域金融生态风险是一个定量指标,是从价值角度来考虑的。它从理论上提出了一种定量分析区域金融生态价值损失的思路和估计方法,因而具有较高的适用性。
三、区域金融生态风险的评价
(一)区域金融生态风险的评价原则
由于同传统金融风险相比,区域金融生态风险无论从内涵还是从度量范围和方法上都发生了较大变化,因此,区域金融生态风险的评价方法也将发生相应变动。概括起来,这些变动将表现在以下几个方面:
1. 在强调量化分析的基础上,定性分析也是非常重要的。由于金融生态涉及金融运营的内外各方面,单纯用数据是不能直接和完全来描述这些方面的变化的。比如,不像经济总量可用数据直观表示那样,金融生态的内部调节机制、外部适应机制等质量就不能完全靠数据来表示其好坏的程度。
2. 除了继续使用概率论、随机过程等描述方法外,还要借助于其它技术和方法来完善。在衡量传统金融风险时,概率论、随机过程知识较好地描述了未来收益不确定性和动态变化过程,但从金融生态的复杂性来看,仍需要其它学科知识来补充和完善。这时,系统论可以很好地揭示金融生态内部各子系统及其之间的运动规律和相互作用与联系,从而从深层次衡量整个金融生态系统的质量优劣和价值损益;规划理论则在要求金融生态系统、某子系统、某组分满足一定约束的情况下,寻求达到金融生态发展的最优目标,充分体现出运筹学的优势。
3. 考虑到在区域尺度内,金融生态的风险源以及评价受体具有空间异质性,因而增加了系统的复杂性和风险评价的难度。这时,应该采取一定方法来克服这种复杂性。
(二)区域金融生态风险的评价方法
可参照区域生态风险评价的方法论基础,对区域金融生态风险进行相应的刻画。
一般地,区域生态风险评价的方法基于风险度量的基本公式:
(1)式中,R为灾难或事故的风险,P为灾难或事故发生的概率,D为灾难或事故可能造成的损失。
因此,对于一个特定的灾害或事故x,它的风险可以表示为:
对于一组灾害或事故,风险可表示为:
在有些情况下,灾害或事故可能被认为是连续的作用,它的概率和影响都随x而变化,则这种风险是一种积分形式,可表示为:
在(2)―(4)式中,x为一定类型的灾害或事故,P(x)为灾害或事故发生的概率,D(x)为灾害或事故造成的损失。
在这里,考虑到区域金融生态的结构复杂性和空间异质性,需要对公式(4)进行修正,以使区域金融生态风险能够充分反映这些特性,这时有:
(5)式中,系数表示区域金融生态的结构复杂性,显然,不会小于1,具体取值情况可依据实践经验决定,这时需要尽可能地利用一切有关的信息和数据资料,掌握各种干扰对风险受体的作用机理,提高评价的准确性,同时,也要考虑综合效应,即不同的干扰及其影响之间的相关性,有时这些干扰及其影响之间会呈现出不同的作用关系,或者相互抵消,或者相互增强; 表示区域金融生态风险的空间异质性,其取值应具体分析所在区域金融生态环境的结构及其特殊性,依对风险的抗冲击强度而定。一般来讲,若某地区对风险的抗冲击强度越大,则取值就越小。
就理论而言,利用公式(5)就可较完整地刻画和衡量区域金融生态风险的大小。但是,也要注意到,在公式(5)中,往往不知道未来将有多少金融灾害或事故发生,并且,其发生的概率也不容易确定,因此,直接利用公式(5)计算区域金融生态风险就非常困难,有时甚至不可能,尤其是在金融体系不健全、金融市场不完善、经济社会发展不稳定、前景不明朗、社会信用环境较差等情况下。
鉴于此,需要简化区域金融生态风险的评价方法并建立相应的框架与评价指标体系,以便降低评价难度。
(三)区域金融生态风险评价的简化框架―指标体系
主要从区域金融生态的构成角度来分析,并针对金融体系内部风险、金融体系与外部相互作用关系以及区域金融生态整体发展质量三个方面进行探讨。
1. 金融体系内部风险评价指标。可参照传统金融风险的衡量方法,采用波动率、系统风险、非系统风险、VaR(Value at Risk)等分析某个金融头寸或某个金融机构所面临的未来收益的不确定性,并且这几种衡量方法各自存在发挥优势的场合。如,VaR的出现不仅被各种金融机构总裁、公司财务主管和基金经理们广泛地应用,而且,来自金融监管机构的要求也促使VaR得到更进一步地推广。
2. 金融体系与外部相互作用关系―均衡发展状态的风险评价指标。由于金融体系的健康发展不仅受到内部各子系统及其相互之间作用关系的影响,而且来自外部诸如社会、经济及其部门(政府、企业、个人)等其它方面的变化也将十分重要地影响金融体系的发展,这也是金融生态的本质要求。
对于这部分评价指标,应着重体现金融体系与外部之间相互作用、相互影响、彼此促进的均衡关系及其动态变化,并反映这种变化的程度和状态。可用以参考的指标应选择相互关系、依存度与和谐性、稳定性、适应性等两方面的可量化或可定性分析的指标,以及相应的评判原则和方法。甚至,还可以利用目前比较流行的连接函数(copula)技术来分析金融体系与外部的相互作用关系及其变化形态。
3.区域金融生态整体发展质量的风险评价指标。可借助于生态学中的能值分析理论。能值(Emergy)是研究生态系统自组织过程的重要目标函数,通过对生态系统能量―价值过程的分析,为生态经济学的研究提供了新的理论和方法,在应用上从不同的角度表现生态系统功能,两者的互补关系受到了生态学家的关注,并在实际应用中取得了有益的研究成果。
能值分析法认为,地球上的各种能量都直接或间接地来源于太阳能,任何资源都包含着一定的太阳能,因此可将一个区域(如国家、地区、企业等)内不同种类、不同量纲的资源统一转换为太阳能值进行比较分析。这需要以太阳能值转换率为中介,计算区域内各种资源的能值及总能值。计算公式为:
(6)式中, 、分别为第i种资源的总能量和能值, 为第i种资源的太阳能值转换率(以单位资源的能量中所含的太阳能值确定),为区域内各种资源的总能值。
基于上面能值分析理论,金融生态的能值分析就是以能值为基准,把金融生态系统中不同种类、不可比较的能量转换成同一标准的能值来衡量和分析,从中评价其在系统中的作用和地位;综合分析系统中各种金融生态流(能物流、货币流、信息流等),得出一系列能值综合指标(Emergy Indices),定量分析系统的结构功能特征与生态经济效益。那么,进一步基于金融生态系统能值的变化(如波动率),可设计出金融生态整体发展质量的风险评价指标。
四、结论
本文借鉴生态学关于生态风险的评价理论,提出了区域金融生态风险的定义,探讨了评价原则和方法,并建立了简化的评价框架和相应的评价指标体系;同时,进一步利用生态学前沿研究成果―能值分析理论,评估区域金融生态整体发展质量。区域金融生态风险方法主要侧重基于价值损失的定量分析,并同传统的金融风险概念以及金融生态评价方法存在着联系和区别。但是,这种方法仍存在着一定局限性,如基于自然学和经济学的实质区别,以能值分析为基础的评价方法存在较多问题,需要在完善区域金融生态风险评价的能值理论和各种反映区域金融生态环境质量指标的能值计算技术方面下功夫。尽管如此,该方法的提出仍具有理论意义,并且上述问题的突破性解决,将进一步促进该评价方法的深入研究,并将成为下步研究的方向和领域。
参考文献:
[1]白钦先等. 金融可持续发展导论[M] .中国金融出版社,2001.
[2]周小川. 完善法律环境,打造金融生态[N]. 金融时报,2004 -12 -07.
[3]徐诺金. 论我国的金融生态问题[J]. 金融研究,2005,(2).
[4]苏宁. 金融生态环境的基本内涵[J]. 金融信息参考,2005,(10).
[5]林永军. 金融生态建设:一个基于系统论的分析[J]. 金融研究,2005,(8).
[6]谢太峰. 关于金融生态内涵与评价标准的思考[J]. 金融理论与实践,2006,(4).
[7]曾建中. 论金融生态系统提出的理论渊源及其假设条件[J]. 金融理论与实践,2007,(7).
[8]张智峰, 陈鑫. 区域金融生态环境建设的理论基础研究[J]. 江苏工业学院学报(社会科学版)2005,(4).
[9]汪祖杰,吴江.区域金融安全指标体系及其计量模型的构建[J]. 经济理论与经济管理,2006,(3).
[10]刘煜辉. 中国地区金融生态环境评价(2006―2007)[M]. 中国金融出版社,2007.
[11]李扬, 王国刚, 刘煜辉. 中国城市金融生态环境评价[M]. 人民出版社,2005,(11).
[12]人民银行洛阳市中心支行课题组. 区域金融生态环境评价指标体系研究[J]. 金融研究,2006,(1).
[13]人民银行成都分行营业管理部课题组. 区域金融生态环境测评研究――对成都市县域金融生态环境的测评[J]. 西南金融,2006,(7).
[14]付在毅,许学工. 区域生态风险评价[J]. 地球科学进展,2001,(2).
[15]李国旗,安树青, 陈兴龙. 生态风险研究述评[J]. 生态学杂志,1999,(4).
[16]Travis,C. et al. The emergence of ecological risk assessment. Risk Anal.,1992,12(2).
[17]伍艳. 我国区域金融生态的差异性研究[J]. 海南金融,2007,(4).
[18]胡宝清. 区域生态经济学理论、方法与实践[M]. 中国环境科学出版社,2005.
[19]Nath B,et al. Environmental Management[M]. Beijing:Chinese Environmental Sciences Publishing House, 1996.
[20]赖斯等著. 环境管理[M]. 吕永龙主译. 北京:中国环境科学出版社,1996.
[21]舒建平,应松宝,黄建宏. 证券风险度量理论方法的评述[J]. 系统工程理论方法应用,2006,(4).
[22]姜青舫,陈方正.风险度量管理[M]. 同济大学出版社,2000.
[23]王爱民,何信. 金融风险统计度量标准研究[J]. 统计研究,2005,(2).
[24]胡章宏.论金融可持续发展能力的评价与建设[J]. 财贸经济,1997,(12).
[25]张尧庭. 连接函数(copula)技术与金融风险分析[J].统计研究,2002,(4).
由此可见,原先的风险评价主要限于人体健康风险评价,许多有害废物管理也是着眼于人体健康风险进行的。近几年来,生态风险评价业已被人们所重视,已处在同人体健康风险评价的同等地位。但是到目前为止,生态风险评价还没有一套方法指南。尽管有人将NAS模式加以改变后用于讨论生态风险问题,生态风险评价原则上也可按其四个方面进行,但由于生态风险评价不完全等同于人体健康风险评价,用于人体健康风险评价的一系列方法指南并不完全适用于生态风险评价。因此美国EPA从1989年以来一直致力于生态风险评价指南的制订工作,1992年确定了一个生态风险评价指南制订工作大纲[11],原则上给出了生态风险评价的框架。从研究内容上看,大致上与NAS提出的“四步法”相同,但每一方面的重点和方法又有不同的内容。该大纲将生态风险评价过程分为三步:第一步为问题阐述(Problemformulation),描述目标污染物特性和有风险生态系统,进行终点选择和有关评价中假设的提出。问题阐述是确定评价范围和制定计划的过程;第二步为分析阶段(analysisphase),主要从暴露表征和生态效应表征两个方面进行;第三步为风险表征。
显然,目前国外环境风险评价主要包括人体健康风险评价和生态风险评价两方面,风险评价的科学体系已基本形成。相对来说,人体健康风险评价的方法基本定型,生态风险评价正处在总结、完善阶段。总的来说,目前国外环境风险评价具有如下的特点和趋势:
·研究热点已由人体健康风险评价转移到生态风险评价;
·从污染物数量来说,已由单一污染物作用进一步考虑到多种污染物的复合作用;
·从环境风险类型来说,不仅考虑化学污染物,特别是有毒有害化学物,而且还要考虑到非化学因子对环境的不利影响;
·从评价范围方面来说,由局部环境风险发展到区域性环境风险,乃至全球环境风险;
·生态风险不仅仅只考虑到生物个体和群体,而且考虑到群落、甚至整个生态系统;
·技术处理上由定性向半定量、定量方向发展。
环境风险评价技术,特别是生态风险评价,还有许多问题有待研究,其中主要的有以下几方面:
1.评价终点的选择人体健康风险评价的终点,只有一个物种(受体为人),而生态风险评价的终点却不止一个,终点选择就成了生态风险评价过程的关键。对任何不同组织等级都有终点选择问题,终点选择原则上根据所关注的生态系统和污染物特性来进行,对生态系统和污染物特性了解得愈深刻,终点选择就愈准确。由于生态系统复杂性,不同评价人员可以选择不同的终点,因此目前迫切需要有一个统一的方法来确定生态风险评价的终点。
2.模型优化模型在风险评价中的重要性是显而易见的,因为风险评价是研究人为活动引起环境不利影响的可能性,是根据有限的已知资料预测未知后果的过程,这就需要应用大量的数学模型才能完成。模型的优劣直接关系到整个风险评价结果的准确性。风险评价涉及的模型很多,主要有污染物环境转归模型、污染物时空分布模型、暴露模型、生物体分布模型、外推模型、风险计算模型等。风险评价就是由这些模型的组合,借助于计算机来连串在一体的。随着风险评价越来越复杂,准确性要求越来越高,发展和完善各种数学模型始终是风险评价研究的重要方面。
由此可见,原先的风险评价主要限于人体健康风险评价,许多有害废物管理也是着眼于人体健康风险进行的。近几年来,生态风险评价业已被人们所重视,已处在同人体健康风险评价的同等地位。但是到目前为止,生态风险评价还没有一套方法指南。尽管有人将NAS模式加以改变后用于讨论生态风险问题,生态风险评价原则上也可按其四个方面进行,但由于生态风险评价不完全等同于人体健康风险评价,用于人体健康风险评价的一系列方法指南并不完全适用于生态风险评价。因此美国EPA从1989年以来一直致力于生态风险评价指南的制订工作,1992年确定了一个生态风险评价指南制订工作大纲[11],原则上给出了生态风险评价的框架。从研究内容上看,大致上与NAS提出的“四步法”相同,但每一方面的重点和方法又有不同的内容。该大纲将生态风险评价过程分为三步:第一步为问题阐述(Problem formulation),描述目标污染物特性和有风险生态系统,进行终点选择和有关评价中假设的提出。问题阐述是确定评价范围和制定计划的过程;第二步为分析阶段(analysis phase),主要从暴露表征和生态效应表征两个方面进行;第三步为风险表征。
显然,目前国外环境风险评价主要包括人体健康风险评价和生态风险评价两方面,风险评价的科学体系已基本形成。相对来说,人体健康风险评价的方法基本定型,生态风险评价正处在总结、完善阶段。总的来说,目前国外环境风险评价具有如下的特点和趋势:
·研究热点已由人体健康风险评价转移到生态风险评价;
·从污染物数量来说,已由单一污染物作用进一步考虑到多种污染物的复合作用;
·从环境风险类型来说,不仅考虑化学污染物,特别是有毒有害化学物,而且还要考虑到非化学因子对环境的不利影响;
·从评价范围方面来说,由局部环境风险发展到区域性环境风险,乃至全球环境风险;
·生态风险不仅仅只考虑到生物个体和群体,而且考虑到群落、甚至整个生态系统;
·技术处理上由定性向半定量、定量方向发展。
环境风险评价技术,特别是生态风险评价,还有许多问题有待研究,其中主要的有以下几方面:
1.评价终点的选择 人体健康风险评价的终点,只有一个物种(受体为人),而生态风险评价的终点却不止一个,终点选择就成了生态风险评价过程的关键。对任何不同组织等级都有终点选择问题,终点选择原则上根据所关注的生态系统和污染物特性来进行,对生态系统和污染物特性了解得愈深刻,终点选择就愈准确。由于生态系统复杂性,不同评价人员可以选择不同的终点,因此目前迫切需要有一个统一的方法来确定生态风险评价的终点。
2.模型优化 模型在风险评价中的重要性是显而易见的,因为风险评价是研究人为活动引起环境不利影响的可能性,是根据有限的已知资料预测未知后果的过程,这就需要应用大量的数学模型才能完成。模型的优劣直接关系到整个风险评价结果的准确性。风险评价涉及的模型很多,主要有污染物环境转归模型、污染物时空分布模型、暴露模型、生物体分布模型、外推模型、风险计算模型等。风险评价就是由这些模型的组合,借助于计算机来连串在一体的。随着风险评价越来越复杂,准确性要求越来越高,发展和完善各种数学模型始终是风险评价研究的重要方面。
转贴于 3.生态暴露评价 在人体健康风险评价中,暴露评价是测定人体暴露值大小、频率、途径和暴露时间,表征受暴露的人群。在生态风险评价中、暴露评价相对人体健康暴露评价来说是特别困难的,尤其对暴露群体的表征,针对不同物种,它们栖息地环境差异很大,如水生环境、陆生环境和其他特定环境等。目前对生态暴露评价的定义还没有完全统一,一般认为生态暴露评价是测定污染物的空间和时间分布、存在形态、生物有效性以及与所关注的生态组分的接触状况。生态暴露评价是生态风险评价过程中最基本的组成部分,由于暴露系统的复杂性,目前还没有一个暴露的描述能适用所有的生态风险评价。由于对存在风险的种群认识不完全、污染物有效性的因子了解不够、单一、特别是多种混合物暴露的剂量一响应规律认识不深入,以及将实验室结果外推到野外的不同时空范围的困难等,暴露评价中的许多因子都存在不确定性。显然,生态暴露评价远比人体暴露评价复杂,关键必须考虑污染物与生物体以及生态系统、污染物与环境间的相互作用、相互影响。因此,必须加强这方面评价方法和技术的研究。
4.不确定性处理 不确定性处理一直是风险评价中的主要问题。不确定性来源于各种外推过程,例如:物种间外推、不同等级生物组织间外推、由实验室向野外情况外推,由高剂量向低剂量外推等。因此对不确定性的定量化处理是风险评价必须解决的关键技术问题。要发展各种外推理论,建立合适的外推模型。 总之,随着环境保护进入一个新的时代,可以预见,环境风险评价研究必将对人类生存及自然环境的保护和改善作出新的贡献,并将对环境科学理论研究有新的推进。
参考文献
[1] NAS(1983):Risk Assessment in the Federal Government:Managing the Process.NationalAcademy Press,Washington,DC
[2] USEPA(1986):Guidelines for carcinogen risK assessment.Fed.Regist,51:33992?4003.
[3] USEPA(1986):Guidelines for mutagenicity risk assessment.Fed.Regist.51:34006?4021、
[4].USEPA(1986):Guidelines for the Health risk assessment of chemical mixturse.Fed.Regist51:34014?4025.
[5].USEPA(1986):Guidelines for developmental toxicity risk assessment.Fed.Regist.51:34028?4040.
[6] USEPA(1986):Guidellnes for exposure assessment.Fed.Regits.51:34042?4054.
[7] USEPA(1986):Superfund Health Assessment Manual.EPA 540/1?6/060.
[8] USEPA(1988):Guidelines for health assessment of systemic toxicants.Fed Regist.(in draft).
[9] USEPA(1988):Proposed guidelines for assessing femaelreproductive risk.Fed.Regist.53:24834-24847.
中图分类号:FX820.4 文献标志码:A 文章编号:1673-291X(2015)02-0078-04
生态风险是指生态系统及其组分所承受的风险。是一个种群、生态系统或整个景观的正常功能受外界胁迫,从而在目前和将来减少该系统内部某些要素或其本身的健康、生产力、遗传结构、经济价值和美学价值的可能性[1,2]。生态风险评价在20世纪80年代由安全风险和健康风险评价发展而来,在美国、欧盟等发达国家得到广泛应用[3-5],被视为环境决策的重要基础[6]。我国目前的环境风险研究主要集中在危险化学品的突发事故上,对生态风险评价还没有明确的法律规定[6-8]。生态风险评价的研究也多侧重于重金属污染、难降解有机毒物方面[9-11 ]。对区域生态风险评价的危害分析和综合评价都建立在生态脆弱性和生态损失度的基础上,对城市水源地生态风险评价的研究关注较少[12-14]。
水源地是一个城市生存和发展的必要条件,目前随着城市化进程的加快,城市供水遇到前所未有的压力,引入环境风险管理,对城市水源地进行生态风险评价成为城市水源地保护研究的重点内容之一[6]。本文参考依据美国环境保护署(US EPA)分布的生态风险评价导则提出的城市水源地生态风险评价的基本框架对兰州市水源地――黄河兰州新城桥段进行生态风险评价,以期为当地政府选择城市水源地或加强水源地的保护提供相关依据。
一、城市水源地生态风险评价方法
US EPA将生态风险评价的基本内容分为问题的形成、分析过程、风险表征及风险管理等部分。国内学者按照该原则提出为以研究区的界定与分析、受体分析、风险源分析、暴露与危害分析及生态风险综合评价为主要步骤的城市水源地生态风险评价的基本框架[6]。
(一)研究区的界定与分析
进行生态风险评价首先要确定拟评价的区域,即评价的范围,同时要对拟评价的区域有充分的了解和认识。根据水源地类型的不同,研究区域的界定方法也有差别:地下水水源地以地下水的补给范围来界定,以水文地质单元来划分,重点考虑地面环境因素(如固体废物和生活垃圾堆场等)对地下水的影响;湖泊以湖泊主体及小流域来确定;河流以流域范围来确定[15]。
(二)受体分析
1.受体
“受体”即风险承担着,在风险评价中指生态系统中可能受到来自险源的不利作用的组成部分,它可能是生物体,也可能是非生物体;通常是生态系统中对外部风险压力最敏感的因子[10]。
2.评价终点
区域生态风险评价中的评价终点是指在具有不确定性风险源的作用下,风险受体可能受到的损害,以及由此发生的区域生态系统结构与功能的损伤。评价终点的选择主要基于生态相关性,对胁迫因子(污染物)的易感性,以及管理目标的相关性[16]。
(三)风险源分析
“风险源分析”是指对区域中可能对生态系统或其组分产生不利作用的干扰进行识别、分析和度量[6]。这一过程又可分为风险识别和风险源描述两部分。根据评价目的找出具有风险的因素,即进行风险识别。水源地区域的基本风险源见表1。风险源描述是对研究区域内各种风险源进行定性、定量分析,确定风险发生的概率、强度、时间和空间的变化。
(四)暴露与危害分析
“暴露分析”是研究各风险源在评价区域中的分布、流动及其与风险受体之间的接触暴露关系[10]。各风险源对水源地的胁迫作用都通过一定的形式表现出来,如通过水量及水质的变化趋势、富营养化状态等进行分析[6]。
危害分析是确定风险源对生态系统及其风险受体的损害程度。风险源产生的压力会影响或降低生态环境因子的质量和功能,危及经济的正常发展。水源地的风险危害主要是造成供水企业的经济损失、城市居民生活缺水、当地经济发展受限以及饮用不合格水而带来的人体健康危害等[17]。“危害分析”是区域生态风险评价的重要部分,其目的是确定风险源对生态系统及其风险受体的损害程度。
(五)生态风险综合评价
风险评价是前述各评价部分的综合阶段,它将暴露分析和危害分析的结果结合起来,并考虑综合效应,将区域生态风险评价的其他组分有机结合起来,得出区域范围内的综合生态风险值[18]。
二、结果与分析
(一)研究区的界定与分析
兰州市水源地类型为河流,因此以流域范围来进行界定。黄河兰州新城桥段是兰州市主要的水源地,穿行于峡谷与川地之间,由于深居内陆,海洋暖湿气流不易到达,所以成雨机会较少,大部分地区十年九旱,气候干燥,多年平均降水量在200~400mm之间,水量很不稳定,91%的降水集中在夏秋雨季(5~10月),11月至次年4月为枯水季节。
(二)受体分析
1.受体
新城桥水源地属于黄河兰州段的一部分,在对新城桥进行生态风险评价时,选择水生生态系统作为生态风险评价的受体。
2.评价终点
评价终点可以在任意组织水平上被确认,包括个体水平、种群水平、群落水平,以及生态系统水平与景观层次上确认[19]。新城桥水域目前最重要的功能为城市水源地功能,因此以水质变化作为评价终点。
(三)风险源分析
1.风险识别
兰州新城桥段分布着大量工厂,而大多数工厂直接将废水排入河水中,造成点源污染。同时,上游的大面积农田以渠道灌溉为主,大量的残留农药、化肥随河水流入水源地造成直接的面源污染。综合表1分析后,确定新城桥水域的主要生态风险源为:点源污染、面源污染和内污染。
2.风险源描述
(1)点源污染
点源污染是指工业废水与城市生活污水在小范围内的大量集中排放。甘肃兰州市自来水厂的安全直接受其上游甘肃刘化集团、兰州新西部维尼纶有限责任公司排污的影响,国家和甘肃省环保局都非常重视,已将其列为治理的重点。
(2)面源污染
面源污染是指分散的小企业和分散的居民在大面积上的少量分散排放,如夹带着化肥、农药的农田径流,无序排放的农村废弃物,水土流失等;另外,还包括大量乡镇企业就地无序排放的废水,畜禽养殖业排放的废水、废物以及农户生活污水等。
流域内大量的化肥、农药随雨水或灌溉流入排水沟后汇入黄河,成为重要的面源污染。此外,畜禽粪便的还田率只有30%多,大部分未被利用或处理就直接通过排水沟汇入黄河。流域内土壤疏松,水土流失严重,随暴雨径流进入河流的泥沙,往往携带大量氮、磷元素,影响河流水质。在农业方面,不合理的大量使用农药、化肥,畜禽养殖、秸秆腐烂等污染随水土流失和农田退水进入水体,增加了水体中COD和TN、TP的污染物总量,成为影响水质的重要因素。
(3)内污染
内污染又称二次污染,是指江河湖库水体内部由于长期污染的积累产生的污染再次排放,黄河干支流与水库中的沉积物以及水库的养殖场,是主要的内污染源。
(四)暴露分析
从新城桥水域的水质变化方面对其进行暴露分析。根据黄河兰州段污染物监测中的22项主要指标的统计结果[20]分析,各暴露因子的权重层次排序中挥发酚和石油类在前两位,粪大肠杆菌群和总大肠杆菌群所占权重居第二,重金属汞居第三,pH指标在层次总排序中较为靠后,总硬度和水温所占权重最小。
(五)危害分析
兰州黄河上游流域内排放的点源污染和面源污染等不利风险因素对黄河的累积作用,可能会引发大的污染事件,水质下降,导致完全丧失其特有功能,如饮用水源地功能;更为重要的是,一旦黄河水源地遭到严重污染,则兰州市上百万居民的生活用水无法保障,兰州市的经济将会迅速衰退,城市的发展将会遇到瓶颈,经济的发展会受到制约,带来严重的社会影响。保证黄河的水源地功能,就要控制分析黄河水各污染物指标,提早做出预防和处理,防止水质进一步恶化。
(六)生态风险综合评价
通过以上分析,确定理化指标、营养盐及有机污染综合指标、无机阴离子、金属及其化合物、有机污染物和生物指标6大类指标作为兰州黄河新桥段城市水源地生态风险评价的指标。
由于各主要风险源对风险受体的作用强度是不同的,对形成区域性生态风险的作用大小也有差异,因此,我们采取层次分析法对新城桥段水域进行生态风险综合评价,确定各风险指数的权重[21],据此进行综合评价。
将新城桥段主要生态风险源两两相互比较,按比较重要性大小根据表2进行仿数量化,得到的数量值构成一个判断矩阵,并且通过一致性检验。从而获得黄河兰州新城桥段水源地生态风险的权重分别为理化指标0.054、营养盐及有机污染0.217、无机阴离子0.078、金属及其化合物0.217、有机污染物0.246、生物指标0.187(表3)。
三、讨论
暴露分析结果显示各暴露因子权重大小为挥发酚和石油类>粪大肠杆菌群和总大肠杆菌群>重金属汞居第三>pH指标>总硬度和水温所。说明其上游甘肃刘化集团、兰州新西部维尼纶有限责任公司等化工企业排污引起的点源污染主要的风险暴露因子,其次是农业和畜牧业养殖引起的生物性及化学性面源污染。
生态风险综合评价结果显示水质综合评价6类大指标所占权重有机污染物>营养盐及有机污染综合指标和金属及其化合物>生物指标>无机阴离子>理化指标,说明有机污染物对水质影响最大,也就是说有机污染物对水源地生态风险的贡献率最大,营养盐及有机污染综合指标和重金属污染物指次之,而只是影响感官的理化指标贡献率最小。说明各种点源污染、面源污染及内污染是兰州市水源地主要的生态风险因子。而由化工企业排污及农业施肥、污灌等引起的有机物污染及重金属污染是重点控制对象。
四、结论
1.识别出新城桥水源地的主要生态风险源为:电源污染、面源污染和内污染。
2.位于该水域上游的化工企业排污引起的点源污染和由农业和畜牧业养殖引起的生物性及化学性面源污染是主要的生态风险暴露因子。
3.在地表水水质综合评价体系6类大的指标中,有机污染物对兰州市水源地生态风险的贡献率最大,其次是营养盐及有机物然综合指标和重金属污染物指标,是风险管理的重点控制对象。
4.兰州黄河新城桥段处于污染和水土流失严重的的黄河流域,多种污染源及不同污染物的复合污染的胁迫下,水质恶化不断加剧,对居民的用水安全造成极大威胁。为保障兰州市居民用水安全,必须将生态风险评价及管理引入到对水源地的保护中,加强对水源地复合风险、多种污染的协同作用、累积作用的研究,制定出针对各种污染源及污染物的综合、宏观的水源地管理和保护模式。
参考文献:
[1] Kelly J R,Levin SA.A comparison of aquatic and terrestrial nutrient cycling and production processes in natural ecosystems,with
reference to ecological concepts of relevance to some waste disposal issues In:Kullenberg G,ed[J].The Role of the Oceans as a Waste
Disposal Option.Hingham :Reidel publish ComPany,MA,1986.
[2] 卢宏玮,曾光明,谢更新,等.洞庭湖流域区域生态风险评价[J].生态学报2003,23(12):2520-2530.
[3] 陈辉,刘劲松,曹宇,李双成,欧阳华.生态风险评价研究进展[J].生态学报,2006,26(5):1558-1566.
[4] 李谢辉,李景宜.我国生态风险评价研究[J].干旱区资源与环境,2008,22(3):70-74.
[5] US EPA.Guidelines for Ecological Risk Assessment.EPA 630-R-95-002F,Washington,DC:U.S.Environmental Protection Agency,1998.
[6] 郭先华,崔胜辉,赵千钧.城市水源地生态风险评价[J].环境科学研究,2009,22(6):688-694.
[7] 王军,陈振楼,王初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,28(3):647-653.
[8] 孙洪波,杨桂山,苏伟忠,万荣荣.生态风险评价研究进展[J].生态学杂志,2009,28(2):335-341.
[9] 张曼胤,崔丽娟,盛连喜,等.衡水湖湿地底泥重金属污染及潜在生态风险评价[J].湿地科学,2007,12:362-369.
[10] 智昕,牛军峰,唐阵武,等.长江水系武汉段典型有机氯农药的生态风险评价[J].环境科学学报,2008,28(1):168-173.
[11] 马婷婷,刘立,嵇文涛.生态风险评价内涵及方法研究[J].甘肃科技,2010,26(13):63-65.
[12] 王雪梅,刘静玲,马牧源,等.流域水生态风险评价及管理对策[J].环境科学学报,2010,30(2):237-245.
[13] 陈春丽,吕永龙,王铁宇,等.区域生态风险评价的关键问题与展望[J].生态学报,2010,30(3):808-816.
[14] 黄先飞,秦樊鑫,胡继伟,等.红枫湖沉积物中重金属污染特征与生态危害风险评价[J].环境科学研究,2008,21(2):18-23.
[15] 吴学丽,杨永亮,汤奇峰,等.沈阳河水、地下水及沉积物中重金属的生态风险评价及来源辨析[J].生态学杂志,2011,30(3):438- 447.
[16] USEPA.Guidelines for Ecological Risk Assessment[S].Published on May 14,1998,Federal Register 63(93):26846-26924.
[17] 史贵涛,陈振楼,张翠,等.上海市饮用水源地周边环境中的重金属[J].环境科学,2008,29(7):1797-1805.
[18] 张晓晶,李畅游,张生,等.呼伦湖沉积物重金属分布特征及生态风险评价[J].农业环境科学学报,2010,29(1):157-162.
[19] 蒙吉军,赵春红.区域生态风险评价指标体系[J].应用生态学报,2009,20(4):983- 990.
[20] 闻常玲,王莉红,贺徐蜜,等.水库型饮用水水源地生态安全评价及应用[J].水资源保护,2008,24(3):91-94.
中图分类号:X53 文献标识码:A 文章编号:0439-8114(2014)13-3010-04
Assessing the Potential Ecological Risks of Heavy Metals in Farmland Soils in Shandong Province
YU Lei,LU Cheng-xiu,LIU Yu-zhen,LIU Fu,CHENG Jie-min
(College of Population Resources and Environment, Shandong Normal University, Jinan 250014, China)
Abstract: Using the basic farmland of Shandong Province served as object, the potential ecological risks of Cu and Zn, Pb, Cd in the soil was evaluated by using the index of potential ecological risk and the index of geoaccumulation.Results based on the index of potential ecological risk showed that the potential ecological risk of moisture soil was at B level, indicating that the ecological damage was moderate. The potential ecological risk of brunisolic soil were at A level, indicating that the ecological damage was not serious; while the potential ecological risk of brown earth was at B level, indicating that the ecological damage was moderate. The potential ecological risk degrees of heavy metals were ranked in order of Cd>Pb>Cu>Zn. Results based on index of geoaccumulation showed that the potential ecological risks of heavy metals were ranked in order of Pb>Cu>Zn>Cd.
Key words: soil; heavy metals; pollution assessment; index of geoaccumulation; index of potential ecologicalrisk
近年来,我国农业生产在快速发展的同时,农业生态环境也遭受着严重的污染和破坏[1]。调查表明,我国污灌区被重金属所污染的土地面积已达污灌区面积的64.8%,所以农村生态被称为“中国环保的短板”[2],分析土壤重金属元素含量对研究人为活动对土壤质量的影响以及合理开发和利用土地资源具有重要意义[3]。根据农业部对全国污灌区进行的调查表明,在我国大约140万hm2的污水灌溉区中,已经遭受重金属污染的土地面积占到污水灌区面积的64.8%,具体为轻度污染的占46.7%,中度污染的占9.7%,而严重污染的占8.4%[4]。由农田土壤及作物的重金属污染所引起的潜在健康风险引起了国内外学者的广泛关注[5-7]。对重金属进行生态风险评价的方法很多,其中常用的有地积累指数法及潜在生态风险指数法等。地积累指数法主要对沉积物或土壤中的重金属污染程度及其分级情况进行定量评价[8,9]。潜在生态风险指数法可以将生物毒性、生态危害与污染物浓度有机结合起来,从而综合反映重金属对生态环境的影响潜力[10]。本研究以山东省典型农田土壤为对象,于2009-2010年对山东省90%以上的棕壤、褐土、潮土等主要土壤类型进行调查,并在此基础上采用地累积指数法和潜在生态风险指数法对山东省典型农田土壤重金属的生态风险进行评价,从而为采用何种方法对污染土壤进行科学管理、修复、治理并防止污染进一步发展提供科学依据。
1 材料与方法
1.1 研究区概况
山东省地处黄河下游,位于东径114°36′-122°43′,北纬34°22′-38°33′之间,土地总面积15.7万km2,其中耕地面积为733.5万hm2。
山东省主要土壤类型有棕壤、褐土、潮土和盐土等土壤类型。其中褐土占全省土壤总面积的18.16%、潮土占41.10%、棕壤占30.66%,总计约90%。棕壤、褐土、潮土为山东省主要土壤类型[11],同时也是本研究农田土壤的3种类型。
1.2 样品采集与测定
按照土壤类型和作物种植品种分布及土壤肥力高、中、低分别采样,采用全球定位系统进行全省范围内的精确布设代表性采样点60个(其中褐土25个,潮土16个,棕壤19个)(图1),采集农田耕层土壤(0~20 cm),风干,磨细,过筛,备用。土壤中Cu、Zn的测定采用火焰原子吸收分光光度法[12];土壤中Pb、Cd的测定采用KI-MIBK萃取火焰原子吸收分光光度法[13]。
1.3 数据处理
1.3.1 地累积指数法 地积累指数(Index of geo-accumulation)又称Mull指数,地积累指数法考虑了元素相对于自然本底值的富集性,主要侧重于从自然角度对土壤进行评价[10] 。
计算公式如下:Igeo=log2Cn/(K・Bn)
式中,Cn为实测重金属元素的含量,mg/kg;Bn为当地沉积物中重金属元素含量的地球化学背景值,mg/kg;K为考虑到各地成岩作用不同引起背景值波动所设定的常数,K=1.5。地累积指数法分级标准见表1。
1.3.2 潜在生态风险指数法 潜在生态风险指数 (The potential ecologicalrisk index) 法则考虑了各重金属元素的毒性,更侧重于从生物和人的角度对土壤进行评价[14]。计算公式如下:
式中, RI为多种重金属元素的潜在生态风险指数; Eir为第i种重金属元素的潜在生态风险指数; Cif为第i种重金属元素的污染系数;Ci为所测样品中第i种重金属元素含量的实测值,mg/kg;Cin为第i种重金属元素含量的背景值,mg/kg;Tir为第i种重金属元素的毒性响应参数[14]。潜在生态风险指数法分级标准见表2。
2 结果与分析
2.1 地累积指数法评价结果
山东省农田土壤60个采样点的重金属污染地累积指数不同风险级别的频数及比例如表3所示。
根据地累积指数法分级标准可知,山东省典型土壤中Zn、Cu、Pb、Cd等元素多数样点在无污染至中等―强污染范围内。其中,Pb的污染最重,其中污染程度达到强―极严重污染和强污染的采样点各有1个,风险级别分别为5级和4级。另外有21.7%的采样点达中等―强污染的程度,值得重视。其次是Cu元素,有5.0%的采样点达中等―强污染的污染程度,3级风险,28.3%的采样点达中等污染程度。Cd、Zn的污染程度相对较轻,分别有40.0%和26.7%的采样点土壤达到中等污染程度,其余为无污染或轻度―中等污染程度,风险级别较低。
就不同的土壤类型来看(表4),褐土中Cu、Zn风险级别为1级,Cd、Pb为2级,各元素的风险程度依次为Pb>Cd>Cu>Zn;潮土中Cu、Cd、Zn为1级风险,Pb为2级,各元素的风险程度依次为Pb>Cu>Cd>Zn;棕壤中Cd、Zn为0级风险,Pb为1级风险,Cu的风险级别为2级,各元素的风险程度依次为Cu>Pb>Zn>Cd。
2.2 潜在生态风险指数法评价结果
研究区农田表层土壤中各元素的单项潜在生态风险指数和综合潜在生态风险指数(表5)显示,所有采样点的Cu和Zn元素的潜生态风险指数均小于40,风险级别为A,潜在生态危害程度轻微;对于Pb元素,占总数3.30%的采样点其潜在生态风险指数大于80但小于160,风险级别为C,生态危害程度强,占总数10%的采样点,其潜在生态风险指数大于40小于或等于80,潜在生态风险级别为B,潜在生态危害程度中等,其余监测点的潜在生态风险指数均小于或等于40,属A级风险级别,对生态有轻微危害,全省所有监测点平均潜在生态风险级别为A级;对于Cd元素,占总数3.30%的采样点,其潜在生态风险指数大于160,风险级别D级,潜在生态危害程度极强,A、B、C三个级别采样点所占比例分别为20.00%、36.70%和40.00%,全省平均潜在生态风险指数为82.78,大于80,属于C级,对生态具有强污染。由此可看出,Cd污染较为严重,各元素的潜在生态危害程度为Cd>Pb>Cu>Zn。
综合多元素,从综合潜在生态风险指数(表6)来看,山东省基本农田土壤中褐土和棕壤潜在生态风险级别为B级,潜在生态危害程度中等,潮土的潜在生态风险级别为A级,潜在生态危害程度轻微。
3 结论与讨论
从地累积指数可以看出,Pb的污染最重;其次是Cu元素,有5.0%的采样点达中等―强污染的程度,3级风险,28.3%的采样点达中等污染程度。Cd、Zn的污染程度相对较轻,分别有40%和26.7%的采样点土壤达到中等污染程度,其余为无污染或轻度―中等污染,风险等级较低。
根据地累积指数法,就不同的土壤类型来看,褐土中各元素的风险程度为Pb>Cd>Cu>Zn;潮土中各元素的风险程度为Pb>Cu>Cd>Zn;棕壤中各元素的风险程度为Cu>Pb>Zn>Cd。
研究区农田表层土壤中各元素的单项潜在生态风险指数和综合潜在生态风险指数显示,所有采样点的Cu和Zn元素的潜在生态风险指数均小于40,潜在风险级别为A级,潜在生态危害程度轻微,其中Zn元素的潜在生态风险指数范围为0.23~4.70,Cu元素的潜在生态风险指数范围为2.31~36.84;对于Pb元素,潜在生态风险指数范围为3.03~136.23;对于Cd元素,潜在生态风险指数范围为9.88~173.43。由此可看出,Cd元素的潜在生态危害最大,各元素的潜在生态危害程度为Cd>Pb>Cu>Zn。
两种方法都得出Zn元素的污染程度最低,但是对于其他3种元素的结果均不相同,这是各方法的要求不同造成的,具体采用何种方法应根据研究目的而定。根据潜在生态风险指数法的评价结果,Cd元素的潜在生态危害最大,但是根据地累积指数法的评价结果,只有40%的采样点土壤Cd达到中等污染程度,其余属无污染或轻度―中等污染程度,风险等级较低。在成杰民等[15]对Cu、Cd、Pb、Zn的积累速率的计算中发现,4种重金属元素中虽然Cd的积累速率非常低,但由于其本身原始含量就较低,其年变化速率却高于Cu、Zn,仅次于Pb,这从另一方面说明了Cd存在较大潜在风险。贾琳等[1]在对山东禹城农田土壤的研究中同样发现其土壤中Hg和Cd潜在生态危害指数较大,存在较大的潜在生态风险。因为禹城为典型施肥区,其畜禽养殖和污灌以及城市化进程是造成土壤中Cd含量超过原有背景值的主要因素。
农田土壤的质量与人类的生产活动密切相关,因此对于农田土壤重金属污染的危害应多从人类和生物的角度考虑,对毒性的研究要多加注意。潜在生态风险指数法不仅可以反映在一定环境中的全部污染物的影响,并且通过潜在生态危害指数的计算指出了其中应该特别注意的物质,所以对于污染的控制非常重要[16]。由此来看,采用潜在生态风险指数法对农田土壤重金属污染进行评价更适合此次的研究目的。
参考文献:
[1] 贾 琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.
[2] 农村生态:中国环保的短板[EB/OL].http:///action/Topic/ti_an/ViewNews.aspx?id=1025,2007-03-14.
[3] 罗真富,谭德军,谢洪斌,等.重庆长寿湖周边地区土壤重金属污染评价[J].湖北农业科学,2012,51(1):30-34.
[4] 陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.
[5] BERNHARD A Z, CHE F I, MIKE J M, et al. Heavy metals in soils and crops in southeast Asia. l. Peninsular Malaysia[J].Environmental Geochemistry and Health,2004,26:343-357.
[6] MAPANDA F, MANGWAYANA E N, GILLER K E, et al. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe[J].Physics Chemistry of the Earth,2007,32:1399-1405.
[7] 丛 源,郑 萍,陈岳龙,等.北京市农田生态系统土壤重金属元素的生态风险评价[J].地质通报,2008,27(5):681-688.
[8] 卢 瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160.
[9] 贾振邦,周 华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.
[10] HAKANSON L. An ecological risk index for aquatic pollution control. A sediment logical approach[J]. Water Research,1980,14:975-1001.
[11] 山东省土壤肥料工作站.山东土壤[M].北京:中国农业出版社,1994.
[12] GB/T17138-1997,土壤质量铜、锌的测定 火焰原子吸收分光光度法[S].
[13] GB/T 17140-1997,土壤质量铅、镉的测定 KI-MIBK萃取火焰原子吸收分光光度法[S].