发布时间:2023-10-11 17:33:36
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇移动通信概述范例,将为您的写作提供有力的支持和灵感!
近二十年移动通信技术经历了巨大的发展,从第一代的大哥大,第二代的GSM,第三代的3G网络,到现在第四代LTE网络;技术的发展带来了更高的通信质量,更好的用户体验,以及更多更完善的通信服务;
我国从3G标准开始,大力推动技术的发展,首次提出中国标准的3G标准TD-SCDMA,并在4G标准上争取了TDD-LTE标准,本文概述了移动通信的发展,以及展望未来的发展前景。
一、1G和2G技术标准
1.1 1G和2G技术
第一代1G移动通信采用模拟制式技术,网络容量非常小,只能少数人有机会使用手机,因此手机成了身份的象征,1G手机有了“大哥大”的称谓。目前1G移动通信网络已经淘汰,“大哥大”也成为历史。
第二代2G移动通信的典型代表是GSM技术,由欧洲电信标准组织制订,采用数字技术和蜂窝技术,具有通话语言清晰、安全性好,频谱效率高,网络容量大等特点.非常适合语音通话。目前GSM仍然是广泛应用,全球超过200个国家和地区超过10亿人使用GSM电话。
1.2 2G技术的不足
然而随着互联网的发展和人们对移动通信的新需求,GSM的一些不足的地方也渐渐显露,难以满足手机高速上网等数据业务需要。从技术原理上看,GSM将通信信道划为200Kphs的带宽,并且再划分8个时隙,因此每个时隙带宽为200/8=25kbps,虽然满足12.2kpbs的语音通话,但GSM只能达到9.6kphs的数据域网络速度(指标准GPRS速度)。后来GSM的增强数据技术EDGE,采用了多时隙技术和高阶调制技术,网络速度大幅提升,但仍然难以满足手机高速上网等数据业务需要:
二、3G技术和主要标准
2.1 3G技术的含义
3G全称为第三代移动通信技术,顾名思义是相对于前两代信息技术标准而言的,是指支持高速数据传输的蜂窝移动通讯技术。与前两代技术相比,在数据上网速度优势提升明显,在室内、室外和行车的环境中能够分别支持至少2Mbps(兆比特/每秒)、384kbps(千比特/每秒)以及144kbps(千比特/每秒)的传输速度。提供包括网页浏览、电话会议、电子商务等多种信息服务。
2.2 3G技术标准
日前的3G技术,主要有三种技术标准:WCDMA.CDMA2000及TD-ScDMA。
1、WCDMA
WCDMA,由欧洲的宽带CDMA技术而来,是无线接口的第三代通信系统。与另两种技术标准相比,WCDMA冈具备较高的扩频增益,漫游能力最优,技术成熟度最高。
2、CDMA2000
CDMA2000发展于窄带CDMAIS95技术,由美国公司提出,包含CDMA2000lx到CDMA20003x的演进衍生,主要是载波技术的演变,CDMA2000可以从CDMA20001。直接升级为3G,建设成本较低廉,但支持者少于WCDMA。
3、TD-SCDMA
TD-SCDMA由我国提出,采用时分双工多址频带,并运用了智能天线技术,以提高频谱利用效率。TD-SCDMA在频谱的灵活有效利用,成本构成方面优势明显。
三、我国3G发展概况
3.1 3G牌照发放
工信部于2009年向我国三大运营商发放了3G牌照,标志着我国通信业进行进入3G时代。其中中国移动公司采用具备自主知识产权的TD-SCDMA标准,中国联通公司采用WCDMA标准,中国电信公司采用CDMA2000标准。
3.2 3G网络覆盖情况
获得3G牌照后,三大运营商都对移动网络进行了大规模升级建设,3G网络覆盖率呈现几何增长,基本覆盖到了全国主要城市。
3.3 3G服务情况
3G服务相比传统语音收入来讲,在增值服务收入上占比更高,依靠消费水平更高的通信用户,3G服务能够直接拉动商业利润。3G服务除了传统语音通话及互联网上网服务外,还增加了诸如手机支付,手机定位,手机炒股,手机办公,信息共享,流媒体播放等多样化的应用服务功能,3G服务向着更加专业化,人性化的方向发展。
四、4G的兴起和未来发展趋势
4.1 4G标准
继3G标准的成功后,3GPP组织制定的UMTS(通用移动通信系统)技术标准的长期演进LTE(Longg Term Evolution),也就是通称的4C网络于2004年12月在3GPP多伦多会议上正式立项并启动。
LTE系统引入了正交频分复用(OFDM)、多输入多输出(MIMO)、IP化网络等关键技术,显著增加了频谱效率和数据传输速率,LTE标准一般认为下行峰值速率为lOOMhps,上行为50Mbps。
根据双工方式不同LTE系统分为FDD-LTE和TDD-LTE,其中FDD系统上下行采用成对的频段接收和发送数据,而TDD系统上下行则使用相同的频段在不同的时隙上传输,较FDD双工方式,TDD有着较高的频谱利用率。我国的TD-SCDMA标准对应的演进方案是TDD-LTE;
五、我国4G发展概况
5.1 我国4G网络规划和4G牌照发放
我国大力推动4G标准化和产业化发展,对4G网络规划以及4G频段划分给予了重点考虑和优先发展,目前中国移动获得130MHz频谱,中国联通获得40MHz频谱,中国电信获得40MHz频谱;
2013年12月4日,工信部向三大运营商颁发了TD-LTE牌照;2015年2月27日,工信部向中国电信、中国联通发放了FDD-LTE牌照。
5.2 我国4G网络建设情况
尽管我国4G牌照发放时间不长,三大运营商开始大力建设4G网络,其中中国移动的4G建设最快,根据计划,2015年年底,仅在广东就将建成6.5万个基站。中国移动2014年预算在4G上的投资为417亿元,2015年预算4G的投资占总资本开支约33%,公司目标于年内增加so万个基站,足以表现其对4G业务的重视和期待。
2014年12月17日,中国电信和中国联通公告,宣布TD-LTE/LTE FDD混合组网试验城市分别增加15个,累计达56个;2015年获得FDD-LTE牌照后,中国电信和中国联通将开展新的4G网络建设规划。
六、移动通信的未来发展趋势
6.1 长期演进发展趋势
移动通信技术不断发展,LTE-Advanced(简称LTE-A)是LTE的下一个演进版本,其目的是为满足未来几年内无线通信市场的更高需求和更多应用,技术参数为峰值速率:下行1Gbps,上行500Mbps;
6.2 未来的多网融合发展趋势
二. 关键字
三. 第一部分 CDMA 系统概述
四. 第二部分 CDMA 信道编码
五. 后记
六. 参考文献
前言
移动通信是当代通信领域发展最快,前景最好的部分,移动通信以其特有的灵活,便捷的优点符合了现代社会人们对通信技术的要求,成为20世纪80年代中期以来发展最为迅速的通信方式。中国的移动通信自从1987年投入运营以来,经过十余年的快速发展,现已形成数网并存的局面,并逐渐为GSM让出频率,第二代数字网络有GSM和CDMA两种.我国现已形成世界上最大的GSM网络,移动用户占世界第二位,CDMA将作为下一世纪的无线接入技术,而WCDMA则将成为目前各种第二代移动通信系统,(GSM、IS-95、PDC等)的交汇点,发展成第三代系统。CDMA技术将在未来的通信中起越来越重要的作用,这种高效的新型通信模式将随同其宽带衍生技术--WCDMA快速发展,满足用户对个人通信系统的要求,并成为全球无线本地环路的必然选择.
本文综合论述了CDMA系统基本原理结构功能操作特性、容量分析、iS-95标准,重点分析了信道鳊码部分及CDMA系统几种常用编码.
关键字
CDMA 香农定理
IMT-2000 WCDMA MAP算法 TURBO码 卷积码
0 引言
第三代移动通信(3G)在20 世纪80 年代末提出时倍受关注,近年来却遭遇降温。究其原因,单从技术角度考虑,3G系统就有很多需要改进的地方,如采用电路交换,而不是纯IP方式;所能提供的最高速率只有384kbit/s(标称最高速率为2Mbit/s)不能满足用户对移动通信系统的速率要求;不能充分满足移动流媒体通信(视频)的完全需求;没有达成全球统一的标准等。
正是由于3G的诸多不足,使得在3G还没有大规模投入商用、距离完全实用化还有一段时间的情况下,国内外移动通信领域的专家就已经在进行第四代移动通信系统(4G)的研究和开发工作。
1 什么是第四代移动通信技术
严格说来,现在还不能对第四代移动通信作出确切地定义,但可以肯定,4G通信将是一个比3G通信更完美的无线世界,它可以创造出许多难以想象的应用。
关于4G的一般描述为:“第四代移动通信的概念可称为广带接入和分布网络,具有非对称的和超过2Mbit/s的数据传输能力。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统)。此外,第四代移动通信系统将是由多功能集成的宽带移动通信系统,也是宽带接入IP系统”。
实际上,世界各国在对4G的设想上存在着巨大的差异。
欧洲国家一般认为4G是一种可以有效使用频谱的数据通信技术,并且以IPv6为基础!网络上的所有单位都有自己的IP地址。通过在移动通信网络中引入IPv6 就可以把现有的各种不同的网络融合在一起,如4G网络将会融合卫星和平流层通信系统、数字广播电视系统、各种蜂窝和准蜂窝系统#无线本地环路和无线局域网,并且可以和2G、3G兼容。
与欧洲关于4G的观点正相反。日本热衷于建立一个单一的4G全球标准。
美国则希望把WLAN 技术进行扩展,从而演进为4G的基础。
2 第四代移动通信的目标要求和特点
2.1目前业界人士对第四代移动通信已达成的共识
a)与已有的数字移动通信系统相比,4G系统应具有更高的数据速率和传输质量。更好的业务质量(QoS)更高的频谱利用率,更高的安全性\智能性和灵活性;
b) 可以容纳更多的用户,应能支持包括非对称性业务在内的多种业务;
c) 4G系统应体现移动与无线接入网和IP网络不断融合的发展趋势,将在不同的固定和无线平台以及跨越不同频带的网络运行中提供无线服务;
d) 能实现全球范围内多个移动网络和无线网络间的无缝漫游,包括网络无缝\终端无缝和内容无缝;
e) 将是多功能集成的宽带移动通信系统,不仅联系人与人,更将联系人与机器、环境,人们将能够随时随地的接入需要的多媒体信息,并可远端控制其他设备。
2.2第四代移动通信系统的一些具体特点
2.2.1传输速率更快
4G系统的目标速率为:
a)对于大范围高速移动用户(250km/h)数据速率为2Mbit/s;
b) 对于中速移动用户(60km/h)数据速率为20Mbit/s;
c) 对于低速移动用户(室内或步行者),数据速率为100Mbit/s。
2.2.2带宽更宽
据研究,每个4G信道将占有100MHz或更多带宽,而3G网络的带宽则在5~20MHz之间。
2.2.3容量更大
将采用新的网络技术(如空分多址技术等)来极大地提高系统的容量,以满足未来大信息量的需求。
2.2.4智能性更高
4G系统的智能性更高"它将能自适应地进行资源分配,处理变化的业务流和适应不同的信道环境。
4G网络中的智能处理器将能够处理节点故障或基站超载,4G通信终端设备的设计和操作也将智能化。
2.2.5实现更高质量的多媒体通信
4G通信能提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频信道传送出去,让用户可以在任何时间、任何地点接入到系统中,因此4G也是一种实时的&宽带的以及无缝覆盖的多媒体移动通信。
2.2.6兼容性能更平滑
要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度看,4G通信系统应当具备真正意义上的全球漫游(包括与3G、WLAN和固定网络之间无缝隙漫游)接口开放、能跟多种网络互联、终端多样化以及能从2G平稳过渡等特点。
2.2.7业务的多样性
在未来的全球通信中,人们所需的是多媒体通信,因此个人通信、信息系统、广播和娱乐等各行业将会结合成一个整体,提供给用户比以往更广泛的服务与应用。系统的使用也会更加安全、方便,更加照顾用户的个性。
2.2.8灵活性较强
4G系统将能够自适应地进行资源分配,调整系统根据通信过程中变化的业务流大小进行相应处理。对信道条件不同的各种复杂环境都能进行信号的正常发送与接收,具有很强的智能性、适应性和灵活性。
用户将使用各式各样的移动设备接入到4G系统中来。设备与人之间的交流不再是简单的听、说、看,还可以通过其他途径与用户进行交流。4G移动设备的功能已不能简单地划归到“电话机”的范畴,而且从外观和式样上也将会有更惊人的突破,也许眼镜、手表、旅游鞋等都有可能成为4G终端。
2.2.9用户共存性
4G中的移动通信技术能够根据网络的状况和变化的信道条件进行自适应处理,使低速与高速用户以及各种各样的用户设备能够并存与互通,从而满足系统多类型用户的需求。
2.2.10通信费用更加便宜
4G通信能解决与3G的兼容性问题,让更多的现有通信用户轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,相对其他技术来说,4G通信部署起来就容易、迅速得多。
2.2.11灵活的网络结构
4G系统的网络将是一个完全自治、自适应的网络,它可以自动管理、动态改变自己的结构以满足系统变化和发展的要求。4G系统具有不同的网络结构,可能存在与1G、2G、3G完全不同的、没有基站的网络结构,包括Ad hoc网_自组织网络。
2.2.12将能实现不同QoS的业务
4G系统通过动态带宽分配和调节发射功率来提供不同级别的QoS
34G系统中可能的关键技术
近年来人们对实现B3G/4G的关键技术进行了大量的研究,并取得了初步的成果。归纳起来可分为以下一些方面。
3.1未来移动通信系统需要研究的课题
a)与系统相关的技术:IP 语音技术,软件无线电技术,广带无线收发信机,移动服务的系统平台,高可靠性的网络结构,全IP 无线,安全性、加密、计费、身份认证及移动电子商务Ad hoc 网技术。
b) 与应用相关的技术:下一代编码/压缩技术,动态可变码率编码技术,移动技术,人_机接口(包括“智能”移动终端),流数据通信技术,内容描述语言,应用发展环境技术。
c) 先进的无线接入技术:动态QoS控制,差错控制及超高速小区搜索,多播技术,IP 移动性控制,无缝IP 包传输,链路自适应,光纤无线电。
d) 频率的有效利用:微波频带的开拓,频带的共用与频率的共享,自适应动态信道分配,抗干扰与抗衰落技术,高密度三维蜂窝结构,自适应阵列无线及多输入多输出(MIMO)天线系统,自适应高效多电平调制,正交频率复用(OFDM)技术。
e) 先进的移动终端:新的功率管理技术,可包装终端技术,高功能显示器件技术,语声识别技术,下一代半导体器件技术,灵敏度的增强,移动终端的系统平台,移动终端安全性增强技术。
3.2 4G系统中可能用到的一些关键技术
3.2.1无线接入方式与多址方案
a) 在FDMA、TDMA、CDMA和OFDM 等多址方式中,OFDM 是4G系统最为合适的多址方案,从目前的研究进展来看,OFDM 也是将来4G系统最有可能采用的多址方式。
OFDM 是无线环境下的一种特殊的多载波传送方案。无线信道的频率响应曲线大多是非平坦的,即具有频率选择性,而OFDM 技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输,这样,尽管总的信道是非平坦的,但每个子信道是相对平坦的,并且在每个子信道上进行窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。另外,OFDM 弃用了传统的使用带通滤波器来分隔子载波频谱的方式,改用跳频方式来选用那些即便频谱混叠也能够保持正交的波形,而且OFDM 系统的各个载波可以根据频谱利用率和误码率的最佳平衡原则来为子载波选择不同的调制方式,如BPSK、QPSK、8PSK、16QAM、64QAM 等。
OFDM 的主要优点是对多径衰落和多普勒频移不敏感,能对抗频率选择性衰落或窄带干扰,能够克服高速率数据传输时符号间干扰增大的问题;各个子信道的载波相互正交,在减小子载波间的相互干扰的同时又提高了频谱利用率;硬件实施简单等。
OFDM 的主要缺点是功率效率不高,对载频的偏置较敏感。OFDM 系统对载频的偏置比较敏感的主要原因是在频率选择性深衰落情况下,OFDM 系统在相应子载波上的数据可能被破坏。为此,众多学者把OFDM 与直接序列扩频相结合,使得信号可以在多个载波上扩展,这样一来就能有效地利用未被破坏的子载波上的信息恢复出原始数据,实现频率的分集。
OFDM技术的主要技术难点是系统中的频率和时间同步、基于导频符号辅助的信道估计、峰平比问题、多普勒频偏引起的互载频干扰(ICI)降低系统性能的问题以及基于OFDM 、多载波技术的新一代蜂窝移动通信系统的多址方案的研究。
b)日本NTTDoCoMo提出的4G移动系统方案的无线接入方式为VSF(variable speding factor)-OFCDM(orthogonal frequency and code pision mul-tiplexing)。VSF-OFCDM在采用多载波的同时,进行与CDMA 相同的扩散处理来增大容量。
其最大特点在于,可以根据具体的通信服务来改变时间方向与频率方向上的扩散率,从而在类似热点的孤立区域,通过降低扩散率来优先增大传输速率;而在用户众多的环境下,提高扩散率,增加系统容量。这种接入方式可以提高频谱利用率,并且不受多径干扰的影响,可通过改变扩频因子,应用于高密度业务区和一般业务区。
转贴于 3.2.2调制与编码
a) 多载波调制(MCM)技术的基本原理是将所要传输的数据流分解成若干个子数据流,每个子数据流具有低得多的数据传输比特速率,用这些数据流去并行调制若干个载波,然后合成输出。其主要优点是可以有效抑制在单载波系统接收机中由于线形均衡所引起的噪声及干扰的提高,较长的信元周期对噪声和快衰落有更大的抵抗性。
时间弥散是无线信道传输速率受限的一个主要原因,而在多载波调制的子信道中,数据传输速率相对较低,码元周期长,只要时延扩展与码元周期之比小于一定的值就不会产生码间干扰,即MCM 对新到的时延弥散不敏感,具有抗时延弥散的特性。
MCM通常可以通过多载波码分多址(MC-CD-MA)、正交频分复用时分多址(OFDM-TDMA)和多音实现几种技术途径来实现。
b) 自适应调制与编码(AMC)是目前研究的又一热点技术。AMC 的原理是根据信道条件(基于从接收机反馈信息来估计)瞬时的变化改变调制与编码格式,对每个用户的链路参数优化$以达到最大化系统容量。
具有AMC的系统,接收机将收集一系列信道的统计数值,提供给发射机和接收机去优化系统参数(如调制及编码、信号带宽、信号功率、训练周期、信道估值滤波器、以及自动增益控制等),允许按照信道条件分配给不同的用户不同的数据率。对于靠近小区基站的用户分配给较高码率的较高阶的调制(如64QAM,R=3/4Turbo),对于靠近小区边界的,则分配给具有较低码率的较低阶调制(如QP-SK,R=1/2Turbo码)。AMC扩展了系统自适应良好信道条件的能力。
预计4G系统将会采用多载波调制技术#
3.2.3无线链路增强技术
能够提高容量和覆盖的无线链路增强技术有分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法可获得最好的分集性能;多天线技术,如采用2 或4天线可实现发射分集,或者采用MIMO 技术可实现发射和接收分集。
对4G广带无线移动通信高性能的要求,促使其在基站及用户终端采用多天线系统。
广带信道是一个典型的非视线信道,并包含不匹配性,如时间选择性及频率选择性衰落。传统无线通信理论一直将多径传播视为造成无线信号衰落的干扰之一,而采用多天线则产生了多个空间信道,所有的信道不会同时产生衰落,因此MIMO天线系统恰恰利用了传播环境的多径特性,极大地提高了前向和反向链路的容量,并增加通信范围与可靠性。
3.2.4高效的频谱使用方案
频谱资源是一种有限的资源,在4G系统中,一方面要采用有效的措施提高频谱利用率,另一方面要开发新的频谱资源。因此,研究高频段宽带信号传输特性就变得非常重要。
3.2.5基于IP 的核心网
综观当前的发展趋势,IP 被认为是下一代移动通信最适合的网络层技术。统一的IP核心网络独立于具体的接入方案,使不同的无线和有线接入技术实现互联与融合,无线接入点可以是蜂窝系统的基站、无线局域网(WLAN)或者是Ad hoc自组织网等。对于公用电话网、2G以及未实现全IP 的3G网络等则通过特定的网关连接。
目前移动OK 急待解决的问题有三角路由问题&漫游和切换问题&安全问题等#
3.2.6软件无线电(SDR)技术
在4G系统中,由于移动用户在不同的系统间漫游,系统之间以及系统内部需要无缝切换,而且随着4G系统的发展,会不断出现新的业务和新的需求,这些都需要对终端和网络节点进行重新配置。
软件无线电在4G中的可能应用为:
a)采用软件无线电实现的基站可同时为多个网络服务;
b) 当终端移动时可重新配置。如当移动终端移动到一个采用不同标准的移动通信系统中时,终端可按照该系统的标准重新自动配置该终端,从而使该终端获得服务。
采用软件无线电技术实现的移动终端或基站将采用模块化结构,主要由天线模块、LNA 模块、ADC/DAC功率放大器模块、DSP 模块和多媒体模块等组成。软件无线电技术主要涉及数字信号处理硬件(DSPH)、现场可编程器件(FPGA)、数字信号处理(DSP)等。
3.2.7高性能的接收机
按照Shannon定理,对于3G系统如果信道带宽为5MHz,数据速率为2Mbit/s,则所需的SNR为1.2dB;而对于4G系统,要在5MHz的带宽上传输20Mbit/s的数据,则所需要的SNR为12dB。
可见由于4G系统的速率很高,因此对接收机的性能要求也要高很多。
3.2.8智能天线技术
智能天线原名自适应天线阵列,它具有抑制干扰、自动跟踪信号以及采用空时处理算法形成数字波束等智能功能,可以跟踪强信号,减少或抵消干扰信号,实现空间分集,提高信噪比,提升系统通信质量,缓解无线通信日益发展与频谱资源不足的矛盾,降低系统整体造价。
目前,智能天线被认为是未来移动通信的关键技术之一,其工作方式主要有全自适应方式和基于预多波束的波束切换方式两种。
全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大,信道模型简单,收敛速度较慢,在某些情况下甚至可能出现错误收敛等缺点;实际信道条件下当干扰较多、多径严重,特别是信道快速时变时,很难对某一用户进行实时跟踪。而对于预多波束的切换波束工作方式,全空域(各种可能的入射角)被一些预先计算好的波束分割覆盖,各组权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠#接收时的主要任务是挑选一个#也有可能是几个’但需合并后再输出(作为工作模式。与自适应方式相比它显然更容易实现,实际上可将其看作是介于扇形天线与全自适应天线间的一种技术,也是未来智能天线技术发展的方向。
3.2.9多用户检测技术
多用户检测器可以提高系统的容量,因此将是
4G系统必然采用的技术.
随着多用户检测器研究的不断深入,各种高性能但算法又不特别复杂的多用户检测器算法不断被提出来,因此在实际系统中采用多用户检测技术将是切实可行的。
3.2.10系统资源管理
在第四代移动通信系统中,移动商务和对QoS有较高要求的各类业务将持续增长。网络将处理前所未有的多媒体业务量、多运营商配置、无需授权频段和Ad hoc网络拓扑等#各类结构的存在也使得具有不同QoS方案的不同域之间具有移动性和互相作用,从而显著增加了系统的全局复杂度.
这需要一个具有丰富连接性和智能的QoS 无线分组网络的支撑#系统的\先进的无线资源管理策略也成为必需。该策略的关键单元包括协调业务连接处理的业务管理部分,维护所有网络实体已分配的和可用的资源许可控制管理部分,以及按照QoS需求和业务条件在共享同一资源的业务之间分配可用资源的资源管理部分。
采用一些能够使网络有效满足不同业务请求的政策或机制#包括接入控制、资源调度、缓冲区管理和流量控制等。系统检测可用的资源以及信号的质量,然后根据不同用户、不同业务质量要求动态地分配频率资源和信号发射功率,从而大大提高系统的性能。
3.2.11 Ad hoc网络技术
未来移动通信网络除了以低成本达到高数据速率外,还要求在无专用通信基础设施下,网络具有适应和生存能力。
Ad hoc 网络或称为分组无线网络作为非集中控制网络结构,因灵活性将在未来网络中扮演重要角色。用户和路由器能在网络中随机移动的Ad ho网络正成为主要研究领域,它准许袖珍终端扩展接入和改进应急通信质量。
现今蜂窝通信系统依靠集中控制和管理,而下一代移动通信系统标准转向固定与移动网络相结合,无隙缝和全方位通信Ad hoc 模式。
Ad hoc 网络没有事先确定的基础设施和网络链路的时间特性,给分组无线网络设计和实施带来一些基本的挑战,它们是:
a) 必须优化设计安全和路由功能,保证分布式结构有效运行;
b) 在网络动态时,降低路由表更新频数和开销来保证链路连接;
c) 在多跳网络中,改进路由协议设计来减少链路容量和等待时间的波动;
d) 全面权衡网络连接(覆盖)、时延、容量和功率预算等指标;
e) 以优化功率管理和MAC设计来减少先进技术的负面效应。
3.2.12网络设计
OSI 网络分层设计已经为通信系统服务多年,随着无线网络的发展和网络功能发生变化,对网络特性的要求也发生了变化,如时延、吞吐量、支持各种QoS多媒体业务动态流量\差错率、频谱带宽、节点连续不断进出网络引起的网络拓扑变化等,这些都对网络设计提出了新的挑战。
4 结束语
以上对4G的目标和关键技术进行了一些探讨,具体的实现还会面临着许多问题。但是4G的曙光已经出现,可以预见,随着技术的进步和网络的发展,下一代的移动通信世界必将会更加灿烂辉煌。 参考文献
1 吴伟陵.移动通信中的关键技术.北京;北京邮电大学出版社,2002。
2 李世鹤.第三代移动通信技术的改进及三代后技术.第三代移动通信TD-SCDMA 技术论文集。
3 雷春娟,李承恕.关于第四代移动通信若干问题的探讨.移动通信2002(06)。
4 樊自甫.3G后移动数据通信的发展探讨.移动通信2002(10)。
中图分类号:TN92 文献标识码:A文章编号:1673-0992(2010)11-0000-01
一、GT800发展简史:
进入九十年代以来,形成了欧洲的TETRA、北美的iDEN等数字集群标准体制,同时在一些公用移动通信标准体制(如GSM)中也增加了专用移动通信的一些特性。
1993年,欧洲UIC(欧洲铁路联盟)决定将GSM作为欧洲未来铁路移动通信业务的基本平台,ETSI SMG在GSM phase 2+标准中引入了先进话音呼叫ASCI,具体包括优先级业务(eMLPP)、话音广播呼叫业务(VBS)、话音组呼业务(VGCS)和FOLLOW ME 等专用移动通信的基本功能。
GT800(GSM TRUNK 800M),是华为公司800M GSM集群通讯系统,它是基于GSM 平台,拥有独立知识产权的数字集群系统,GT800系统除了具备上述ASCI基本功能外,还提供了集群共网运营的能力,适应今后建设集群共网的发展需要。GT800系统在共网基础上可以进行类专网调度,授权部门可进行应急联动跨部门专网的调度。
二、GT800主要技术
1、多址技术:
多址技术使众多的用户共用公共的通信线路而相互不干扰。常用的方法基本上有三种:频分多址FDMA、时分多址TDMA、码分多址CDMA
GT800系统频率资源:
GT800系统采用了FDMA、TDMA混合方式:FDD-TDMA
Gt800系统频点配置:
基站收:f1(n)=806+0.2*(n-350) MHz
基站发:f2(n)=f1(n)+45 MHz
n: 350――425
2、频率复用技术
1.频率复用:处在不同位置(不同小区)上的用户可以同时使用相同频率的信道
2.可以极大地提高频谱利用率
3.如果系统设计得不好,将产生严重的干扰
Gt800最基本的频率复用模式为4×3频率复用
三、GT800主要业务功能:
1.增强的点对点呼叫:
呼叫快速建立,呼叫建立时间小于900毫秒;PTT点对点呼叫;
2.组呼
任何一个组成员都可以发起组呼,也可以由调度员发起组呼,其他属于该组呼的手机将被通知组呼已经建立,可以加入组呼监听;组呼用户如果想要讲话,需要按PTT键,在网络授权后,会得到允许讲话的提示,这个时候组内所有用户都能听到该手机的话音;除调度员以外,一次只能最多有一个组呼用户讲话,当有组呼用户在讲话时,其他用户按PTT键将会被拒绝,如果同时有多个用户按PTT键,则只有一个会被允许讲话;网络可以判断按PTT键的用户是否有讲话的权限,如果没有权限,网络将会拒绝该请求; 所有组呼用户的手机将显示正在讲话手机的号码;
调度员可以中断正在进行的讲话; 如果讲话的用户走出组呼所对应的区域,则在超时后网络自动释放该组呼,在超时前如果该讲话用户回到组呼区域并继续讲话或者其他组呼用户开始讲话,则组呼不结束;如果监听的组呼用户走出组呼所对应的区域,则手机回到空闲状态,如果再回到组呼区域,则手机会振铃,用户可以选择重新加入组呼;当同时有多个组呼进行时,同时属于多个组呼的手机振铃的同时会出现所有正在进行的组呼ID列表,用户可以选择自己希望加入的组呼,用户也可以在组呼进行过程中,在各个组呼之间来回切换 ;
3.多优先级控制
系统可为用户提供5种不同优先级的服务,可以根据不同用户的需要提供不同的服务质量
用户在使用网络服务时可以在运营商提供的最高许可范围内选择不同的服务优先级
运营商可以为不同优先级的呼叫定义不同的服务质量
(1)高优先级呼叫可以快速建立
(2)在资源拥塞的情况下,高优先级的呼叫不会释放,可以优先排队,甚至可以强占低优先级的呼叫的资源
紧急呼叫具有最高的优先级,在资源不足的时候可以抢占其他呼叫对应的资源,并简化信令流程,加快接续速度;
手机进行点对点呼叫时,如果有相关的更高优先级的组呼,则手机会振铃提示或者自动接入组呼;
手机进行组呼时,如果有更高优先级的点对点呼叫,并且手机作为被叫,则手机将收到寻呼,振铃提示或者自动接入点对点呼叫;
手机进行组呼时,如果有相关的更高优先级的组呼,则手机会振铃提示或者自动接入新的组呼;
当系统资源不够时,如果手机对应的优先级允许排队,则可以等待系统资源释放后立即占用;
组呼上行占用时可以根据优先级进行排队和抢占;
4、动态重组
集群用户管理员创建、撤销一个动态的群组;管理员根据临时作业的人员需求、地域范围需求创建一个临时组,并通知组成员动态组可用;管理员在组中添加、删除组成员;
5. 虚拟专网
该业务允许集群用户自行管理集群内部成员的内部编号(短号编号、功能编号),集群用户内部成员之间可以通过短号或功能号拨打,网外用户仍通过MSISDN拨打;
6. 环境监听
环境监听功能允许通过授权的话务台发起环境监听呼叫,MSC识别这是一个环境监听呼叫并对话务台的号码进行鉴权,做为监听对象的手机在收到环境监听呼叫之后无振铃自动应答,应答之后不显示任何呼叫信息,打开麦克风。MSC在环境监听呼叫建立之后屏蔽手机的下行信道。
四、GT800集群在重庆应用概况和发展:
1、网络及技术情况:
主要采用华为公司GT800技术的数字集群通讯系统,该系统由以下主要设备构成:1个用户容量为30000线的集群移动交换中心、1套集群调度系统、1套网管系统、1套计费系统、1套短消息系统、1套定位系统、1套智能网系统和1套分组数据网系统。
在重庆共计建设了室外宏蜂窝基站39个、直放站5个、室内分布系统25套,可满足95%室外覆盖和75%的室内覆盖。
2、主要用户情况:
自2007年7月份GT800数字集群在重庆发展以来,截止到2010年8月31日共计在网用户数达到:3372户,其中
1.政府机关和强力保障(准强力)部门:513户
2.公共事业和社会服务行业:240户
3.交通运输行业:309户
4.科教文化和医药卫生:151户
5.企业单位:434户
6.其他类:1725户(主要为集群商务座机终端用户)
网内群组数量达329组,平均每组成员数6.4个,月平均总话务量:4738.89Erl,其中:调度通话1539.47 Erl,普通语音:3199.42 Erl,忙时话务量:12.65 Erl,重庆主要忙时时段为:10:00-11:00。
3.应用项目举例:
重庆GT800数字集群系统陆续参加了2007年12月渝遂高速公路通车(暨重庆高速公路突破1000公里开通)仪式、2008东亚足球锦标赛、2008北京奥运重庆火炬传递活动、2009中国科学技术年会等众多活动,并顺利完成任务。
现将GT800数字集群在2009科学技术年会上的应用举例说明如下:
a组织体系编组:
1)第一层:中国科协年会办有关负责人,市委办公厅、市政府办公厅有关负责人,市科协领导,年会办综合组负责人等,10人,组号为
可以优先、任意呼叫群内任一成员。
2)第二层:年会办各组负责人、主要联系人,20人
可以优先、任意呼叫本组内任一成员。
3)第三层:年会办各组成员(市科协驻各主要宾馆联络员,交通协调员,有关大车、专车司机等),70人
b、信号保障范围
本次年会数字集群通信保障范围为“机场、重庆人民大礼堂及广场、大礼堂宾馆全楼、广场宾馆大厅、君豪宾馆大厅及宴会厅”。铁通公司组织人员对相应地点进行数字集群信号覆盖情况进行现场测试。
信号覆盖测试情况表
Review on Key Technologies in 5G Mobile Communication System
YANG Jing, CHEN Lei, LIU Qi, WANG Hong-yan, XU Cai-hong
For cognitive relay network, in which cooperative relay and cognitive radio technologies are integrated, the adoption of massive MIMO is able to constitute massive MIMO multi-user cognitive relay network. It is beneficial for deep development of spatial dimensional radio resources to greatly enhance spectral efficiency, energy efficiency and transmission reliability. In this paper, several key and representative technologies in 5G mobile communication system were reviewed, including massive MIMO, cooperative relay and cognitive radio, as well as their important significance was analyzed in depth.
massive MIMO cognitive relay network spectral efficiency energy efficiency 5G
1 引言
随着移动互联网的迅猛发展,人们对无线传输速率要求越来越高,通信系统能源消耗所占的比例不断增加,绿色通信也越来越受到人们的关注。因此,如何在4G基础上,进一步提升无线移动通信的频谱效率和能量效率,是4G/5G移动通信的核心所在[1-2]。为了提高无线资源利用率、改善系统覆盖性能、提升通信的能量效率,多用户多输入多输出(MIMO,Multiple-Input Multiple-Output)技术、协作中继技术以及干扰对齐技术得到了业界的广泛关注。然而,这些技术并不能从根本上带来系统容量的飞跃提升,也无法满足用户的需求。为此,研究者们提出大规模MIMO技术,在基站设以大规模阵列天线代替目前所采用的多天线,由此形成大规模MIMO通信系统,大规模MIMO系统具有无可比拟的技术优势:空前的频谱效率,更高的能量效率,精准的空间区分度,相对廉价的硬件实现等[3-4]。另一方面,无线中继技术和认知无线电(CR,Cognitive Radio)技术分别被认为是提高系统传输可靠性和频谱利用率的核心技术。无线中继技术具有潜在能力扩展通信业务覆盖区域,实现分集增益以抵抗大小尺度衰落[5]等优点;认知无线电技术允许非授权用户或认知用户(SU,Secondary User)在不影响授权用户(PU,Primary User)的服务质量(QoS,Quality of Service)的前提下,灵活、动态地进行频谱接入,共享分配给PU的频谱资源[6],从而提高频谱效率。
综上所述,大规模MIMO技术、协作中继技术、认知无线电技术在提升频谱效率、能量效率、传输可靠性等方面具有较强的技术优势,是第五代移动通信系统中最具潜力的技术。
2 大规模MIMO技术
大规模MIMO技术通过在基站端架设数百根低功率天线,使得天线数较4G系统中的4(或8)根增加了一个数量级,天线数目远远超过在同一时频资源上同时调度的单天线用户数量,模型框图如图1所示。大规模天线阵列所带来的分集增益、阵列增益以及干扰抑制增益,使得每个用户与基站之间通信的功率效率和频谱效率得到极大提升。由于大规模MIMO技术的研究都才刚刚起步,有大量的未知空间待探索,比如信道建模、导频污染、最优波束成型等。