发布时间:2023-10-11 17:33:37
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇养鸡物联网技术范例,将为您的写作提供有力的支持和灵感!
在名贵水产品育种和养殖中,除了饵料的准确投放外,对水质的要求也很高,水的温度、溶氧量、氨氮浓度、浑浊度、PH值等参数的实时测量[1]和控制是一个十分关键的问题。有的参数容易获得,比如水位高低[2]、浑浊程度肉眼就可以看到,有的参数,比如溶氧量、氨氮浓度、PH值,单凭经验很难精确和实时的估摸,需要借助仪器才能测知。现在的做法是,养殖户购买单独的仪表分别测量某个参数,市售的仪表有手持式的PH计、溶氧计、氨氮计,虽然也出现了在线式的测量仪器,但是这些设备在使用上还是存在一些问题。手持式仪表虽然携带方便,但是不能长时间在线测量,只有用户觉得水质异常时才主动监测,所以测量不及时。而现有的在线测量的仪表功能又比较单一,比如只能测量溶氧量或者氨氮量,用户必须购买所有这些不同厂家生产的测量仪器然后分别得到测量的结果,不能实现长时间多参素的连续测控,并且需要人的频繁的参与,不能满足生产的自动化管理需求。为此,我们提出了物联网技术为核心的水温、溶解氧浓度等水体多环境因子自动监控系统[3],能连续在线测量多个水体参数,并根据用户对测量阈值的设定自动开启或关闭水阀、增氧机等相关设备或报警。在测控单元还进行各参数的补偿和数据处理,有效地提高了测量准确度和控制的时效性,另外根据用户的要求增加了存放历史数据的上位机。
一、ZigBee技术与物联网
水产养殖户需要随时了解水池的物理状况,也就是水塘各参数通过互联网或者移动通信网呈现在用户面前,其实就是物联网技术的水产养殖应用。物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,通过各种有线通信、无线通信技术或者移动通信网络与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制,在这种互连中,物联网需要解决的是最后100米的问题,ZigBee[4]技术是目前公认的最后100米主要技术解决方案,它比现有的WiFi、蓝牙等无线技术更加安全、可靠,同时由于其组网能力强、具备网络自愈能力并且功耗更低,ZigBee无线技术的这些特点非常适合物联网的发展要求。
ZigBee协议是在IEEE 802.15.4标准的物理层和媒介层基础上增加网络层和应用层组成的,网络中的所有设备都拥有一个64位的IEEE地址,在多个微小的末端设备之间相互协调实现通信。这些末端设备只需要很少的能量,以接力的方式通过无线电波将数据从一个节点发送到另一个节点,以达到更大的测控范围和更高的通信效率。作为物联网主要支撑技术之一,ZigBee技术的主要应用领域包括智慧城市、工业自动化、数字家庭、医疗设备和农业应用等,在水环境参数监测中,对数据量和通信速度的要求并不高,采用ZigBee技术既发挥了该技术的优点,又满足了测控需要,节省系统成本。
二、基于物联网技术的水产养殖测控系统
(一)系统的网络结构
水产养殖测控系统结构如图1所示,由ZigBee无线网络、有线以太网络、GPRS移动通信网络组成。ZigBee网络采用星形拓扑结构[5],由一个负责协调管理的汇聚节点和可扩展的若干个测控子节点组成,其中汇聚节点是无线网络的控制核心,负责ZigBee网络的建立、维护、路由等功能,它除具有ZigBee全功能设备(FFD)的电路和协议栈之外,还具有RS232串行通信电路,可以提供ARM的访问和控制功能。测控子节点是一个包含单片机的ZigBee协议应用终端设备(RFD),它用来测量水体的各个参数或执行水塘维护设备的运行控制,它通过ZigBee无线网络和汇聚节点通信,并经过汇聚节点和以太网络或GPRS网络间接接受用户的远程控制。
(二)网关的设计
网关包括ARM处理器、人机交互模块、ZigBee通信模块、GSM通信模块、以太网通信模块五部分构成。ARM处理器采用SAMSUNG公司的S3C2440A[6],S3C2440A为用户提供了面向移动终端应用的丰富外设、低功耗管理和低成本的配置。S3C2440A内嵌ARM920T 32位ARM内核,运行在200MHz,集成了支持640*480真彩色LCD控制器;支持低成本的NAND Flash并可从其直接启动,支持SDRAM等存储器件,四通道的定时器和三通道的PWM,三个UART控制器满足了GSM模块、ZigBee模块的扩展以及开发过程中的串口调试的需求。
如图2所示,主节点以S3C2440A为核心,通过片内存储控制器外扩32MB的NAND Flash和64MB SDRAM构成存储子系统,通过片内的LCD控制器和GPIO外扩640×480的TFT LCD和4个按键构成人机交互界面,通过片内UART外扩RS485通信电路,通过片内SPI接口外扩ZigBee模块。ZigBee模块以TI/Chipcon的CC2420单片ZigBee 无线收发电路构成,GSM模块采用西门子TC35成品,保证了稳定性和可靠性,也降低了系统成本。
(三)测控节点的设计
测控节点以TI/Chipcon的CC2530单片ZigBee无线收发电路和各传感器电路构成。CC2530是在CC2420的基础上增加微控制器、A/D、DMA、AES协处理器、USART、RAM、Flash等电路组成的,它是完整的ZigBee片上系统,只需外接简单的射频匹配电路和天线即可实现一个ZigBee的FFD或RFD节点,并可外扩常规的传感器电路和I/O量。本设计中,测控节点外扩了温度传感器、溶氧传感器、PH值传感器测量电路,控制节点外扩了水阀继电器、加热炉、增氧机等功率设备的启停控制电路,其中水体测量和调控用的温度传感器、溶氧传感器、PH值传感器、加热炉、增氧机等均采用水产养殖专用设备。
(四)软件设计
网关主要负责ZigBee网络的维护和管理,接受远程PC机的调度和控制,并且可以响应测控室内用户的按键操作,执行现场查询控制任务,需要进行复杂的多任务处理,因此主节点的软件采用基于uCLinux嵌入式操作系统[7]开发。在S3C2440处理器上移植uCLinux后,根据网关的功能需求,构建uCLinux驱动程序和应用任务、ZigBee组网任务、主节点与测控节点通信交互任务、远程端口监听任务、文件管理任务、按键任务等一系列应用,实现主控协调器软件的全部应用功能。
测控子节点加电初始化后,先后关闭传感器模块、射频模块、内部时钟进入休眠模式,由休眠模式定时器产生定时中断信号来控制节点的测量工作,当设定的数据发送间隔时间达到后,定时器发送一个中断信号唤醒测控节点,微处理器脱离休眠状态进入工作状态,恢复时钟并打开传感器和射频模块的功能,整个节点微处理器采集传感器检测到的数据进行A/D转换及一些初步处理,按照设定的数据格式送入射频模块调制成射频信号发送出去,汇聚节点接收这个信号再还原成数字量送给远程监控计算机。
(五)系统的应用
受目前技术的限制,溶氧量传感器价格昂贵,又需要定期维护,使用较为麻烦,PH值传感器虽然相对便宜,但是也需要定期维护,只有温度传感器便宜并且很少需要维护,所以建议溶氧传感器数量少些,只放置在鱼群集中的地方、PH值传感器和温度传感器的数量可以适当多一些。具体应用时,上位机放置在用户方便操作的地方,网关安置在水池附近的测控室内,上位机和网关之间通过有线以太网通信,测控子节点根据养殖现场规模的大小安置在水体适当的位置,网关也通过GSM网络和用户的手机通信。测控节点定时测量并通过网关向上位机和手机发送一次传感器数值,当测量到水温或溶氧量偏低时,自动启动相应设备进行补偿,当水体PH值不正常时发出报警声,手机会收到是否更换水质的提示,用户只需要回复短信即可打开相应设备,借助本系统的再现测控功能,用户可以及时处理险情,减少损失。
本系统采用物联网技术和嵌入式系统控制技术,实现了水产养殖多个水体环境参数的实时测控,不仅避免了传统的手工测定存在的耗时费力、数据不及时等弊端,还可以随时了解数据的变化情况,并对环境参数进行自动控制,降低了水产养殖的投入成本和劳动强度,提高了生产效率,加快水产养殖业的商业化进程。产品在满足水塘环境因子测控需求的同时,还可以用于其他工农业控制和通信产品中,具有明显的技术优势和市场推广前景。
参考文献:
[1]刘丽.基于Zigbee技术的无线传感器网络在水质监测系统中的应用[J]. 安徽职业技术学院学报,2009,8(1):14-17.
[2]袁国良,钟飞.基于Zigbee技术的无线传感器网络在水位检测监控系统中的应用[J].水利技术监督,2008,(3):31-33.
[3]朱祥贤, 卢素锋. ZigBee技术在水产养殖业中的应用[J]. 现代电子技术,2009,(23):168-170.
[4]朱祥贤,葛素娟,卢素锋. 基于ZigBee技术的无线传感器网络应用方案[J]. 科技信息,2009,(35):66-67.
[5]武永胜,王伟,沈昱明. 基于ZigBee技术的无线传感器网络组网设计[J]. 电子测量技术,2009,32(11):121-124.
中图分类号:C961 文献标志码:A 文章编号:1000-8772(2013)09-0167-02
一、引言
物联网被称为继计算机、互联网之后的世界信息产业的第三次浪潮,已经成为万众瞩目的焦点。所谓的物联网,是在全球统一标识系统和计算机互联网的基础上,利用RFID技术和物品电子编码技术,给每一个实体对象一个唯一的代码,构造的一个覆盖世界上万事万物的实物互联网。“物联网”已被写进政府工作报告,得到我国政府部门的高度重视。本文正是在国家和政府政策倾斜物联网技术的广泛应用及高质量物流人才培养的背景下提出的。提出在示范性区域,利用物联网技术实施物流人才“三位一体”的创新型培养模式的研究。
二、基于物联网应用技术的物流人才培养的国内外现状
高校双语教学作为一个独具特色的课程领域,必然要求关注和加强高校双语教学的环境建设。高校双语教学应注重微观的学校内部环境建设,同时也需要,需要社会各方面的共同努力,创造良好的宏观环境。
(一)国外研究现状
2009年6月,欧盟执委会发表了“Intemet of things-an ac-tion plan for Europe”,在世界范围内首次系统地提出了物联网发展和管理设想,并提出了12项行动保障物联网的加速发展。在交通领域,通过智能交通系统行动计划积极促进部署和发展物联网。如在医药物流中使用物联网,促使各成员国在药品中使用专用序列码,确保了药品在到达病人前均可得到认证,减少了制假、赔偿、欺诈和分发中的错误,也可方便地追踪到用户端的产品,大大提高了欧洲在对抗不安全药品和打击制假方面措施的能力。欧洲已形成的以冷链物流为核心的冷藏食品专营超市和专营物联网产品的智能超市,英、法、德等国也分别在机场货品分检、集装箱海关通关等环节开展RFID应用的实验。
(二)国内研究现状
我国对于将物联网技术应用到物流人才培养的研究尚处于起步阶段。只有高宇在《物联网创新实训室建设思考》中提到研发供教师教学适用的物联网教学管理平台,以及学生实训适用的停车管理平台等;陆晓东在《基于物联网的五年制高职IT类专业结构调整与课程设置优化策略》中提出,将物联网技术结合计算机专业的课程改造,嵌入物联网技术课程,优化课程建设;杨海英在《物联网技术在高校实验室管理中的研究》中提出:利用物联网技术实现对高校实验室的有效管理。从国内学者的研究中不难看出,目前,高校对于物联网技术的应用多数在于对于实验室的建设、相近专业计算机技术专业的改造,以及纯粹的物联网工程专业的建设,还鲜有将物联网技术引入物流人才培养模式中的研究。
三、基于物联网应用技术的物流人才培养模式研究的思路
(一)提出物流人才培养战略
1 明确物流人才的学历教育体系及教育目标。物流操作型人才由主要由高职、中职院校培养,培养的重点是专业知识和操作能力。本科教育主要培养中高级管理人才,要求具有扎实的理论基础、比较宽的知识面和理论应用能力。研究生教育旨在培养刚层次的管理人才、科研人员及高校教师,要求具有扎实的理论基础、系统的专业知识和渊博的知识结构。
2 积极推动高校联合、组织专家研讨会、政府间互派人才学习、委托高校定向培养,加快物流人才体系的建设。由政府部门牵头,组织有关科研教育单位的专业力量,研究制订物流科学的具体计划,分别对企业物流、社会物流的技术、经济、管理等问题展开系统的研究工作,研究和规划我国的物流发展战略,增强政府、高校、企业之间的合作,形成产学研合作的良性循环。
3 推动职业培训教育,强化物流人才再教育。职业培训机构是职业培训的主力军,因此在先导区内重点扶持几个专业的物流职业培训机构,以培训物流人才为主,形成以点带面的局面,为先导区物流业的发展提供高质量的人才库。
(二)引入“物联网”理念,构建创新型物流人才培养模式
建立物流人才培养的新模式,培养适应时代要求的新型物流人才。根据我国物流人才培养的制约瓶颈,我们提出要建立政府、教育基地和企业“三位一体”的物流人才培养模式。如下图所示。
1 在经济战略实施初期,企业实现物流可能导致成本提高,因此对物流人才的需求增长势头并不强劲。政府要通过加强社会宣传,引导国际合作,加快物流人才市场规范及网络体系建设,地方政府可引导社会力量建立物流人才培养协调委员会,协调教育基地及企业之间的关系。
2 教育基地是“三位一体”培养模式的主体力量。教育基地包括高校、高职院校和培训机构三种部门,根据物流人才类型和市场需求,三部门各自发挥优势,有针对性地进行培养。高校应率先开展有关物流人才培养的专业研究,进行物流人才培养模式创新并为其他教育部门提供有价值的参考。
3 企业是物流人才的主要需求者和实践基地,是决定物流人才培养规模和程度的关键。当企业认识到建立型的物流运作体系从长期来看有利于降低企业成本时,就会自觉在企业内营造物流发展的氛围,引导企业员工自觉参与到开展物流的工作中来,在客观上直接起到推动物流人才培养的作用。
(三)引人物联网系统解决方案
通过在物流管理教学实训场所采用设备GSM模块、设备无线模块、地区GSM模块、中央GSM模块、智能化管理系统等“物联网”技术实现对教学及实训过程的智能化和科学化管理,将高职院校的实训设备、学生、教师团队、学校管理层协调为一个有机的整体,可以避免出现高等院校普遍存在的教学体系与执行教学体系不相匹配、校内外实训场地利用不充分、教师教学质量不稳定、教学质量测评方法落后等问题。建立基础数据管理、实训基地管理、实验室管理、日常教学管理、监督管理、与第三方接口六个模块。其中,基础数据管理包括:组织结构、职位、用户、功能模块、课程库、师资及文档库;实训基地管理包括:场地、设备、制度、实训申请、实训安排、成绩查询、企业需求查询、设备异常处理和GSM管理;实验室管理包括:时间及设备、实验安排、成绩查询、设备年检安排;日常教学管理包括:学生日常管理、设备检修监督、教学管理监督、缺课监督、实验质量监督和实训质量监督及教辅人员监督;第三方接口包括:上级主管部门、企业需求、数据导出和导入。
参考文献:
[1]饶增仁,郭明超,RFID及识别技术在开放实验室中的应用[J],兰州大学学报:自然科学版,2009,(F06)
2中央空调物联网系统硬件选型
PLC或基于PLC技术的专用控制器是中央空调物联网系统的核心基础部件,控制器的选择决定了中央空调物联网系统的性能和档次。从产品性能、稳定性和开放性等方面考虑,本方案设计的中央空调物联网系统的硬件平台选择RPC2000系列PLC。RPC2000系列PLC是笔者开发的新一代PLC产品。RPC2000系列PLC为模块式结构,包括CPU,DI,DO,AI,AO和热电偶、热电阻、热敏电阻、交流信号采集等模块,以及GPRS和Profibus等通讯模块,具有如下优点:1)CPU性能优越,单指令处理时间为0.1s,CPU本体自带RS232和RS485串口各一个,单CPU可扩展10个模块。2)可直接采集交流信号,并实现电气保护功能。3)编程语言符合IEC61131-3国际标准,具有ST,LD,IL,FBD和SFC五种语言。4)支持各类标准软硬件接口,可与各类组态软件和人机界面无缝集成。5)支持Modbus,GPRS和Profibus等通讯协议,可与各类设备互联互通。6)接线端子可插拔,方便系统实施和售后维护。7)具有良好的环境适应性,电磁兼容性好,抗干扰能力强。
3中央空调物联网系统功能实现
中央空调物联网系统以中央监控系统为中心,对各类现场设备的运行参数和状态进行监视,并对各类数据进行处理和管理。中央监控系统采用全中文界面,可实现多任务调度。遵循国际标准,采用开放接口以连接第三方系统。高效数据库能提供方便、快捷和经济、海量的过程数据采集和存储,实现过程数据与管理系统的集成。基于Web的实时信息门户软件,提供通用的、基于Web的客户端环境。中央监控系统实现的主要功能有:1)采集并记录各类运行数据,包括实时数据、历史数据、工作记录、故障记录等。2)通过监控画面、趋势图、棒图等方式显示各类设备运行状态和运行参数,根据权限修改各类设定参数。3)根据采集到的运行参数和设备状态,以及生产要求,对各设备发出调度指令。4)为其他管理系统提供实时运行数据,助力企业管理水平的提升。在上位机的调度和管理下,PLC或基于PLC技术的专用控制器可实现如下功能:1)具有多种开关机方式,系统可以采用本地、远程控制以及定时开关机。2)二阶模糊温度控制算法:系统采用二阶模糊控制算法进行系统加减载控制,在指定的周期比较反馈温度与设定温度的差值,以及温度的变换趋势,综合判断机组压缩机应该执行的动作。3)压缩机保护及均衡运行:系统会对压缩机进行频繁启停的保护,并且会根据压缩机运行时间优先启动运行时间短的压缩机,优先停止运行时间长的压缩机的原则保证压缩机均衡运行。4)压缩机协同控制及非满载保护:压缩机协同控制避免压缩机频繁启动,非满载保护避免压缩机长时间在不利于压缩机的低负荷下运行。5)机组防冻功能:在冬季机组会自动启动防冻功能,防冻功能包括冷凝器的三级防冻以及蒸发器的防冻功能。6)水泵巡检功能:在过渡季,避免水泵长时间不用而生锈,系统会自动启用水泵巡检功能,空调泵、井水泵在设定的时间周期会运行指定的时间。7)定时开机功能:可选择一周7天,每天4个时段的定时启动。8)机组故障保护功能:系统有完善的机组故障保护功能,包括缺相、压缩机故障、水泵故障、排气温度过高等,除此之外还有传感器短路、断线检测。9)多级权限设置:设置用户权限以及厂家权限,拥有特定权限可设置相应系统参数。10)人机界面:PLC通过RS232与触摸屏连接,能够在屏上显示系统运行工况、更改系统参数,如目标设定温度、机组工艺参数、时间参数、机组功能参数等。
4典型应用案例
本文以北京密云某度假村水源热泵中央空调系统为例,介绍中央空调物联网系统的应用情况。图2所示为通过物联网所获得的中央空调机组运行状态,画面直观地显示了相关设备的运行参数。如果需要查看更多的工况参数信息,可以点击相关的按钮进行查看,如图3所示。
中国是世界第一水产养殖大国,投饵机、增氧机等水产养殖机械在日常的渔业生产中得到了较为普遍的推广与使用。近年来,随着农业机械现代化的快速发展,物联网技术也逐步实现了与水产养殖技术的融合。2015-2017年,江苏省农机化服务站在组织实施省农机三新工程“基于物联网技术的自动投饲增氧一体化系统试验示范”项目的过程中,对当前物联网技术在江苏水产养殖机械上的研究情况进行摸底调研,并对未来技术的发展和应用前景进行分析。
1发展现状
物联网是新一代电子信息技术的重要组成部分,是利用互联网或局域网等通讯技术把感知设备、控制设备、操作设备等联在一起,实现远程化、信息化、智能化控制的网络,简单理解就是人与人、人与物、物与物相连的网络,是一种集计算机软硬件技术、传感器技术、集成电路技术、电子应用技术和无线通讯技术等为一体的复杂技术。当前,在机械化水产养殖领域,物联网技术的典型应用主要体现在以下几个方面:
1.1养殖水体的水质监测
主要是利用不同类型的水质传感器,现场实时检测pH值、溶解氧、氨氮、盐度、亚硝酸盐、硫化氢和水温等影响水产品生长与发育的水质参数,并通过有线或无线等方式传送到手持设备和服务器终端,供养殖人员进行参考,以便及时对水体进行管护,改善水质环境,提高养殖效率。
1.2水产养殖机械的自动化或远程化控制
主要是利用自动控制理论按照养殖人员的设定,定时定量启动和关闭投饵机、曝气增氧机等设备,或是根据水质监测的数据按需控制增氧机、换水泵及补水泵的启停,也有的是利用zigbee或6Lowpan等技术搭建无线网络,由主控计算机集中对监测数据进行分析处理后,人工或自动发送远程指令,对各类水产养殖机械的运行进行精确控制。
1.3水质水情的实时预警
主要是按照设定的具体数值构建预警模型,实时跟踪监测养殖水体的水质水情变化与养殖设备的运行情况。当发生意外灾害、水情骤变或渔机设备故障时,及时向主控计算机发送预警信号,并利用GSM/GPRS/CDMA等模块向养殖人员发送提醒短信,确保各项应急措施能够迅速启动,从而保障渔业生产安全。
1.4水产养殖的决策指导和追踪溯源
主要是利用高精度摄像等设备实时监控水产养殖的整个过程,并配合水质监测等系统,依托主控计算机和服务器,构建水质数据库、饲料数据库、种苗数据库、气象数据库、养殖数据库、鱼病数据库等,按照模糊推理和统计决策的理论对多源信息进行融合,形成不同需求的养殖方案和智能化管理决策系统;还可以在互联网上对外进行,为远程专家指导和产品安全监管及溯源提供技术平台。
2存在问题
综上所述,随着农业现代化的发展,物联网技术已经逐步实现了与机械化水产养殖的融合。但是,在实际的生产实践中,大多数的水产养殖户,特别是中小型养殖户,对这些技术的应用积极性并不高,究其原因,主要有以下几点:
2.1技术工程体量较大,示范效应难以体现
从走访调研的情况看,目前江苏水产养殖机械物联网技术的示范应用主要集中在规模化水产养殖中心,依托省、市科技项目支持,联合相关科研院所和高校完成。养殖系统通常由主控计算机进行控制,功能囊括水质水情监测、自动化精确投饲、智能水体增氧、远程控制、实时预警和专家决策等多个模块,整体工程体量较大,现代化程度较高。对于普通的中小型养殖户而言,门槛过高,学习、复制难度较大,示范辐射效应不明显。
2.2过于追求“私人订制”,设备投资成本过高
目前,各地使用的物联网水产养殖系统,大多是以项目形式,根据自身情况重新设计或在传统水产养殖机械的基础上改造完成,属于订制产品,无法规模化批量生成,也无法享受农机购置补贴政策。因此,设备制造成本和工程预算较高,超出了普通养殖户的预期。
2.3缺乏统一的标准,产品定型和推广难
众所周知,在计算机技术和互联网技术的发展初期,曾由于技术封锁造成推广困难,随着一系列标准化协议的签订和友好接口的开放,市场才逐步走向繁荣。同样,目前物联网水产养殖技术尚处于起步阶段,缺乏统一的行业标准,各研究院所和企业开发的物联网装备尚不能实现友好互通,很难定型推广。如果对系统进行拆分,其中大多数装备又属于通用性电子设备,很难享受农机补贴政策。因此,目前除了溶解氧智能监控设备等水质监测仪外,基本上没有其他成熟的物联网渔业机械通过农机推广鉴定。
2.4技术本身存在一定瓶颈,设备维护相对繁琐
水产养殖机械物联网技术和其他领域的物联网技术一样,核心技术主要包括感知技术、传输技术、处理技术和控制技术四大模块。其中传输技术因通信工程的迅速发展相对成熟,加上农业物联网中无线局域网的范围相对较小,传输速率等要求也不高,基本上能够满足应用要求。而其他三项核心技术在实际使用和推广中均存在一定问题。感知技术和控制技术的最大问题在于高灵敏度、智能化、小型化传感器十分缺乏,这也是整个中国物联网产业发展的瓶颈。目前,进口传感器价格昂贵。国产传感器产品制造工艺技术相对落后,品种少,质量较差,需要定期进行维护保养,还很容易损坏和出现检测误差,给养殖户的日常使用带来了很大麻烦。处理技术方面,随着云计算和大数据的日益完善,技术本身已不存在大的问题,主要是缺乏相应的水产养殖研究人员,缺少数据积累和稳定的算法模型,智能决策尚不能对渔业生产形成科学有效的指导。
3思考与建议
虽然该技术在应用领域仍然存在一定的困难,但是在当前农业现代化高速发展的时期,高效化、智能化、节约化、精准化仍是农业机械化的发展方向。近年来,水产养殖业人力成本逐年增加,养殖效益下滑,集约化、规模化、现代化、科学化水产养殖经营逐渐成为发展趋势,物联网技术依靠其多技术融合的巨大优势,理应在提高渔业生产效率、提升水产养殖管理水平、加强水产品质量监管力度等方面发挥出更重要的作用。为此,水产养殖机械生产企业和渔业物联网研究机构应多从推广应用的角度思考未来产业发展,逐步培养用户群体,使物联网技术在水产养殖领域创造更大的经济效益和社会效益。
3.1丰富产品序列,控制销售价格
农业机械的发展历程是一个从简到繁,从功能单一到复式作业的渐变过程,水产养殖机械物联网技术发展也应如此。在跟踪科技前沿的同时,也要丰富自身的产品序列,既要研究完善水产养殖智能化管理信息系统,也要加快对普通物联网渔机的开发。如能够定时定量投饲的投饵机、能够检测溶氧量不足并自动开启的增氧机、能够追踪灾害天气并发送短信的预警器等。这些功能单一的水产养殖机械,能够有效控制物联网技术的运用成本,更符合普通养殖户的实际需要,同时也更方便推广鉴定,便于农机部门示范宣传,逐步培养物联网渔机的市场用户。
3.2简化操作模式,提高设备质量
目前的物联网技术在水产养殖机械上的运用,绝大多数以主控计算机为中心构建管理系统,大多数的操作控制和信息、资料查询都需要在计算机上完成,而传感器等设备设施还需要定期进行清洗、养护,这对于当前科技意识差、文化素质低、接受新事物能力不强的农村劳动者和水产养殖户而言,接受起来存在一定难度。因此,开发操作更加便捷的人机界面,研制精确度更高、灵敏度更强、可靠性更好、成本更低、安装维护更加方便的传感设备,解决自组织网络和感知节点合理部署等共性问题,也成为物联网行业必须解决的主要问题。
3.3加强产学研结合,搭建合作平台
积极引进水产养殖、自动控制、农业机械、物联网和信息化等方面专业人才,鼓励企业与高等院校、科研机构通过委托研发、联合研发、购买技术等多种方式进行合作交流,充分发挥各自的优势作用,形成更加完善的水产养殖物联网研究体系,建立更加紧密的产业技术联盟和技术创新平台,加快高新技术成果的转化,为物联网技术产品的批量生产、大规模应用提供技术支持,为更加科学、系统、高效的指导渔业生产提供支撑。
中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2013)05-0073-02
1 引言
我国的水产养殖业近些年发生了巨大变化,其养殖模式不再是传统的人工巡守、人工投饵及检测方式,而是出现了不同程度的自动化,可以实现自动控制以及数字化监控。[1]将物联网应用于水产养殖,具有低成本、数据采集范围广等特点。采用自组织的物联网,其特点是节点可移动,无需铺设线路,容易维护,组网成本低,非常适合于自动化水产养殖监测系统。[2]将移动Agent技术引入物联网系统,可以通过电脑或手机对养殖池水的温度、pH值、溶氧量、电导率及氨氮等环境因素做出实时、动态的调整。同时,还能够从根据这些因素分析、加工和处理出有意义的数据,以适应不同用户的不同需求,为水产养殖增产增收提供科学的依据。
2 系统模型总体设计
系统模型由数据采集层和监控层构成(图1)。
数据采集层分为定点数据采集模块和不定点数据采集模块。每个模块内部由一个现场监控节点控制,每个模块中的传感器节点主要包含温度传感器、pH值传感器、溶氧量传感器、电导率传感器和氨氮传感器等。传感器节点将采集到的环境信息数据送到现场监控节点进行分类汇总。最后,由移动Agent完成各采集模块的选择、传感信息收集和数据融合等任务。
控制层由控制系统和监控中心构成。它负责将移动Agent传送的信息进行整合。监控中心向用户反馈信息,包括水产品的生长状态、环境因素对水产品的影响以及数据挖掘结果显示等内容。依据这些信息,监控中心对控制系统发出指令,指挥各控制子系统主要包括增氧泵控制,自动给排水控制,光照控制,温度控制系统的工作,从而实现对养殖环境控制的功能。
3 移动Agent中的数据挖掘
3.1 传感器数据的特点
传感器的数据与互联网的数据不同,有自己的特色。[3]
第一、传感器的数据总是大规模的、分布式的、时间相关的和位置相关的。同时,数据的来源是各异的,节点的资源是有限的。大量的传感器数据储存在不同的节点。通过集中式的管理很难让挖掘到分布式数据。
第二、传感器数据很庞大需要实时处理。如果采用集中式管理,中心节点的要求非常高。中心节点的能量消耗也非常大。
第三、节点的资源是有限的。将数据放在中心节点的策略没有优化昂贵资源传输。在大多数情况下,中心节点不需要所有的数据。
3.2 分布式移动Agent数据挖掘
根据无线传感器的数据特点,提出分布式移动Agent数据挖掘模式。
首先从传感器中收集到的数据信息进行实时聚类[4],划分出正常行为库和异常行为库,再对划分出的正常行为库进行关联模式挖掘[5],从中提炼出传感器数据模式,进而构建成模式库,利用其对控制系统实时控制,进而提供给应用,提高决策和控制的智能化。
分布式移动Agent数据挖掘工作原理如图所示(图2),左边是监控中心,右边是现场监控节点。传感器节点任意的分布在某一监测区域内,节点以自组织的形式构成网络,将数据传送到现场监控节点。现场监控节点对数据进行预处理,存入本地规则数据库。同时还通过通信Agent把处理过的数据传送到监控中心节点,以便进行综合的分析。而本地规则数据库也能收到中心监控节点的一些更新信息。现场监控节点根据本地规则库的规则形成控制信息,实时对设备进行控制。监控中心节点负责对数据收集与分析,并显示结果,实现智能化的决策。
这种体系结构的优点是,现场监控节点把收集到的原始数据,通过数据过滤、数据抽象和压缩进行预处理。现场监控节点把处理过的数据,发送给监控中心节点,将较大的负载的数据集中到监控中心节点处理,而本地数据就近处理,避免了内部网络中繁重的数据交流。
3.3 分布式移动Agent数据挖掘的性能特点
移动Agent数据挖掘方法与传统的统计方法相比,优势在于它能从数据中发现人们未知的知识和规律,并且具有分析过程自动、快速等优点。
(1)减少了手工分析和编码的需要,提高了流量收集的精确性。数据挖掘方法可以从大量数据中挖掘出不易被明显看出的重要特征和规则,能分析大量数据并提取对网络行为的最具概括性的描述,使得构造出的特征能够更加精确。
(2)适应数据量增大的趋势。在传感器数据收集中,收集到的数据越多,分析结果就越准确。
(3)具有较强的可扩展性。同样的数据挖掘工具能用于多个数据源,具有较强的可扩展性。
4 结语
根据水产养殖传感器数据的特点,本文结合移动Agent技术与物联网技术,构建了基于移动Agent技术的水产养殖物联网系统模型。把数据挖掘下放到移动Agent中,在很大程度上减少了数量庞大的传感器节点发送数据时造成的通信阻碍与能源消耗。
物联网数据有很多特征,例如分布式存储,大量时间相关和地点相关数据以及有限节点资源等。这些都使物联网数据挖掘成为一项极具挑战性的任务。下一步,将深入研究数据挖掘的诸多方面,进一步提高数据挖掘算法的效率。
参考文献
[1]邹振涛,杨宏,李宏.水产养殖实时监控系统设计[J].农机化研究,2011(9):124-127.
[2]赵亮,杜尚丰,张峰.无线传感器网络在水产养殖系统中的应用[C].第24届全国高校电力系统及其自 动化专业学术年会.北京:中国农业大学,2008.