发布时间:2023-10-11 17:33:47
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇物联网技术认识范例,将为您的写作提供有力的支持和灵感!
然而,由于校企合作模式和物联网应用技术总体起步较晚,基于校企合作的高职物联网应用技术专业人才培养模式的发育尚不成熟。
针对国内外校企合作专业人才培养模式的分析可知,国内基于校企合作的高职物联网应用技术专业人才的培养模式在校企合作保障机制、合作模式推广力度及人才培养模式理论的研究方面存在诸多问题,亟待解决。为此,在高职物联网应用技术专业人才的培养中,需要全面落实基于校企合作的专业人才培养模式的实施,以实现基于校企合作的高职物联网应用技术专业人才培养模式的深入改革,促进国家社会经济的高速发展。
一、基于校企合作的高职院校专业人才培养模式的发展
1.1国外基于校企合作的职业院校专业人才培养模式
国外高职教育校企合作人才培养模式最早起源于1903年英国桑德兰特技术学院推行的“三明治”人才培养模式,美国辛辛那提大学随后在1906年推行“工学交替”这一典型校企合作人才培养模式,后来美国安提亚克大学又在1921年全面提出合作教育模式,高职教育校企合作人才培养模式逐渐呈现全球发展趋势,受到各大高职院校的欢迎[2]。
当前形势下,国外主要存在企业访问模式、与企业合作创办新型的职业学校模式、“双元制”模式以及企业―职业教育契约模式四种典型的职业教育专业人才校企合作培养模式。
企业访问模式是指学生借由对相关企业的走访,掌握企业生产及业务的实际情况,最终确定将来的就业机构和岗位。企业访问模式多见于日本,许多职业学校配备有专门的企业信息室和专业指导老师,帮助学生进行企业信息的采集、被访企业的选择、被访企业的联络、企业访问计划的制定、企业现场访问的记录以及访问结果的反馈等各项企业访问活动,加强学生的职业意识和责任感。与企业合作创办新型的职业学校模式是指通过政府的发动号召,企业主动参与职业院校专业人才的培养,与学校联合举办职业培训学校和机构,进行专业技术人才的培养,为企业和社会源源不断地输入专业技术型人才,该类人才培养模式于1988年在英国城市技术学院开始实施,发展至今已在英国大多数职业学校中取得卓越成就。
“双元制”模式是指学生在职业学校和企业两元之间同步进行专业理论知识的学习和职业技能的培训,进行理论知识和专业技能的有机结合,“双元制”主要应用于德国、印度等国家,要求学生在职业培训学校学习两年,随后在企业实训一年,保证学生理论知识和职业经验的双重收获。企业―职业教育契约模式是指政府教育主管部门、学校、企业、工商协会等组织经协商签订契约,约定学校与企业之间建立互惠互利的合作关系,此类专业人才培养模式多见于美国,主要有波士顿教育协定和底特律契约两种形式,教学质量和学习质量经由专业全面的考核制度得以确保。
国外四种职业教育校企合作人才培养模式的比较如下表1所示。
从上表可知,高等职业教育专业人才的培养需要注重与企业的紧密合作,才能确保专业人才的培养规格和培养目标满足企业和社会需求。对于国内基于校企合作的高职物联网应用技术专业人才培养模式的改革而言,需要立足于我国当前的基本国情,认识到我国与国外在政治经济制度、传统职业教育、经济发展水平等方面的差异,参考借鉴国外职业技术教育培养模式的优势,取长补短,深入进行国内基于校企合作的高职物联网应用技术专业人才培养模式的改革,创建符合我国当前基本国情的高职物联网应用技术专业人才校企合作培养模式,为国家经济建设提供高质量的物联网应用技术专业人才。
1.2国内基于校企合作的高职物联网应用技术专业人才培养模式
相对来说,国内基于校企合作的高职院校专业人才培养模式的发展改革起步较晚,直到上世纪末国务院才开始在《关于大力发展职业技术教育的决定》[3]中明确提出进行“产教结合、工学结合”的高职专业人才培养模式的改革方向,目前职业院校人才培养模式改革已取得初步成效,主要有订单式、校企联合式、工学交替式、产学合作式以及校企互动式等五种高职专业人才校企合作培养模式。
1、订单式模式
在基于校企合作的专业人才培养模式中,“订单式”培养模式是指用人单位根据企业的发展规划,制定对不同规格的人才需求,提出符合自身发展的人才订单,随后高职院校依照用人单位提出的规格、数量进行物联网应用技术专业人才的特殊培养,保证培养出的物联网应用技术专业人才达到用人单位的人才需求。
其中,教学计划由校企双方共同参与制订,以岗位知识结构、能力结构和素质方面的实际要求确定培养方案,构建理论和实践教学体系。
2、校企联合模式
在基于校企合作的高职物联网应用技术专业人才培养模式中,“校企联合”培养模式,通常是指学校与用人单位共同办班的一种办学形式。在这种培养模式下,企业与学校成为物联网应用技术专业人才培养的共同的责任承担方和利益共享方,双方共同出资、共同建设。
学校获得企业办学经费及师资支持,同时企业获得符合自身人才规格需求的高素质技能人才,校企双方成为利益共同体。
3、工学交替模式
在基于校企合作的高职物联网应用技术专业人才培养模式中,“工学交替”培养模式,是指校企双方在长期的合作过程中优势互补、扬长避短逐步形成的一种人才培养模式。
由于学校的每一个专业不可能都建立良好的校内学生实践基地,而企业又迫切需要这方面的人才,校企双方就牵手订立协议,把企业作为学生的实习基地,学生在校接受理论知识与初步的技能培养,更高一些的实践技能培养由企业来承担。
4、产学合作模式
在基于校企合作的高职物联网应用技术专业人才培养模式中,“产学合作”培养模式,是由企业直接进驻学校,通过企业的生产让学生在学校零距离接触生产过程的一种人才培养方式。
通过“产学合作式”培养模式,学校获得企业资助是次要的,重要的是师生可以通过观摩生产过程和接受技术人员的指导,接触并学习企业生产最前沿的知识与技能。
5、校企互动模式
在基于校企合作的高职物联网应用技术专业人才培养模式中,“校企互动”培养模式,是指学校主动为企业培训员工,参与企业技术革新,企业主动接受学校师生实践、学习的一种职业教育合作模式,借由校企双方主动参与物联网应用技术专业人才培养的意识,保证学校专业人才培养的资源得到满足的同时,符合企业对专业技术型人才的需求。
在目前的高职院校物联网应用技术专业的校企合作人才培养模式的选择中,不同的院校依据自身发展的传统、优势和需求,都在探索合适的合作模式,有的院校在实践中并不局限于一种合作模式,而是多种合作模式的组合融汇,以期实现最大的社会效益。
二、基于校企合作的高职物联网应用技术专业人才培养现状
2.1高职校企合作物联网专业人才培养模式实践性有待提升
在基于校企合作的高职物联网应用技术专业人才的培养中,由于校企合作人才培养模式的起步较晚,企业并不愿意全面主动地参与人才培养的过程,其主要目的在于企业技工人才的补充。同时,高职学校由于自身办学水平有限,企业基础服务能力不够,企业和职业学校双赢的合作目标难以实现。
2.2高职校企合作物联网专业人才培养模式长久性有待加强
在基于校企合作的高职物联网应用技术专业人才的培养中,高职教育校企合作的保障机制通常借由政府、学校和企业(包括行业)的综合实情考虑进行相关制度的建设,进行自身和彼此间结构的完善和调整,强化各参与方的合作意图,确保合作能力的提升、合作过程的规范、合作结果的监督,进而保证高职物联网应用技术专业人才校企合作培养模式的稳定、有序、高效和可持续发展。
然而,由于高职物联网应用技术专业人才校企合作培养模式相关制度建设的保障和约束得不到满足,校企合作体系构建中的非制度因素过多,合作关系十分脆弱,难以承受市场经济浪潮的冲击,任何一方都有可能因为不愿承担太大的代价而随意退出合作,给对方造成损失,人才培养模式难以持续有效开展[4]。
2.3高职校企合作人才培养模式深入性有待强化
实践是检验真理的唯一标准,同时理论是指导实践的重要基础。虽然我国高职物联网应用技术专业人才校企合作培养模式已进行了一系列探索并取得一定的成就,但对成功实践经验总结推广和校企合作人才培养模式的理论研究仍然没有及时跟进,对于校企合作的管理制度研究、发展趋势研究、动力机制研究以及人才培养模式的教学改革研究都有待进一步加强。
三、基于校企合作的高职物联网应用技术专业人才培养模式的实施
3.1建立校企合作的保障机制
企业是校企合作的主体,高职院校与企业在新技术专业建设中能否长期合作,合作能否达到预期的效果,取决于合作中建立的各种保障机制。建立校企合作的法律保障机制、激励导向机制和科学评价机制,是当前校企合作中最需要解决的核心问题。
建立法律保障机制,才可使校企合作双方做到有法可依、依法治教,使双方在法律的约束下履行各自的责任和义务;建立激励导向机制,可以激发和调动校企双方的积极性,推进校企合作向深层次发展;建立科学完善的评价机制,可以衡量校企合作的成效,对校企合作中的各环节进行反馈和改进[5]。
3.2科学制定人才培养方案
为确保基于校企合作的高职物联网应用技术专业人才培养模式效益的全面发挥,专业建设负责人需要进行企业专业人才职业岗位的专业分析,根据物联网专业的实践特性要求,在综合考虑感知、传输、网络、应用等专业基础知识的同时,适当添加专业拓展类课程,根据物联网应用技术专业覆盖知识面广、应用产业链长、技术发展迅速的特点,人才培养方案要尽可能树立“大职业”教育观,尽可能扩大学生的专业视野和国际视野,尽可能消除与关联专业之间的障碍,消除与国际物联网技术之间的差距,以此进行专业技术型人才培养方案的科学制定,保证人才培养方案的合理性、全面性、科学性和有效性[6]。
3.3统筹建设人才培养团队
基于校企合作的高职物联网应用技术专业人才培养模式效益的发挥,主要在于人才培养团队的统筹建设,要求相关工作者注重物联网高端人才的引入,构建高技术、高含量的人才培养师资队伍,同时及时更新人才培养的现代化教学方法和手段,全面强化人才培养教学团队的建设,科学优化人才培养教学资源的配备建设,建立健全考核评价机制,以专业人才综合能力的提升为重点,实行教学质量和学习效果的多元化评价,保证校企合作人才培养模式的综合效益[7]。
3.4加大实训平台建设力度
基于校企合作的高职物联网应用技术专业人才培养模式效益的发挥,还在于企业实训平台建设力度的加强,确保校企合作中企业与学校的主体地位,深入促进企业和职业学校的合作力度,强化高职物联网专业人才培养模式的实践力度,要求企业全程参与专业人才培养的同时,从技术和资金两方面加大人才实训平台的建设力度,配备优质的培训技能教师以促进学校师资队伍的建设,以资金和设备等形式的支持优化学校培训资源的配置,确保专业人才培养模式的全面顺利开展[8]。
3.5全面开展职业规划和就业指导
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)34-0250-02
随着科技的不断发展与进步,新的技术也不断融合到教育领域中,先进的技术和丰富的资源为自主学习提供了保障。物联网技术环境下的教学方法及模式在现今愈发显得突出,物联网环境下任务驱动教学模式则集建构主义理论与现代教育技术于一体,能有效提高基于网络教学的教学质量。
一、物联网及任务驱动式教学概述
1.物联网技术。物联网在欧美被称为theInternetofThings(IOT),强调anythings connection。中国科学院姚建铨院士指出:凡是由传感器、传感技术及利用某种物体相互作用而感知物体的特征,按约定的协议,来实现任何时刻、任何地点、任何物体、任何人,实现所有人与人,物与物,人与物之间互联、互通,进行信息交换和通讯,实现智能化的识别、定位、跟踪、监控和管理的一种网络,即可称为物联网。物联网技术的基本特征表现在可靠与完整传递特征和海量与多视角处理特征和智能服务特征等方面。
2.任务驱动教学模式。任务驱动式教学模式是一种建立在建构主义学习理论基础上的教学方法,是在教学过程中以完成具体任务为线索,把教学内容巧妙地隐含在每个任务中,并在完成任务的同时培养学生的创新能力及自主学习的习惯,引导其在学习中发现问题、思考问题、寻找解决问题的方法,任务驱动教学法在教学过程中,给予若干具体问题,借助他人(包括教师和学习同伴)的帮助,学习者进行自主探索和互动协作,最终达到既定教学目标的一种教学方法。它是以任务为主线、以教师为主导、以学生为主体。
二、物联网环境下任务驱动教学的理论基础
将先进的物联网技术与现代教学理念相结合,运用到科学教学活动中,也能够对协作和协同教学模式起到很好的支撑作用。
1.建构主义学习理论。该理论认为学习是学习者与环境交互作用的过程中主动建构内部表征的过程,学习者在一定的环境下,借助其他辅助手段,利用学习资源,通过意义建构获得知识,所以建构主义学习理论强调以学习者为中心,情景、协同、会话及意义建构是学习环境中的基本要素。其具体的指导意义表现在注重学生主体作用的发挥,在设计学习任务中提供充分的学习资源,引导学生进行自主学习,注重在实际情景中进行教学,考虑学生的学习背景,积极创建与现实环境有关的情景,提高学生解决实际问题的能力。同时要注重协作学习,通过设计学习任务,确定学习团队,通过团队合作加深对知识的全面理解。
2.学习动机理论。学习动机是学生学习的驱动力,是激发和维持学习活动的心理状态。学习动机通常有内因和外因,就任务驱动教学法而言内因中的成就动机是其核心。成就动机是学生在完成任务中对自己感兴趣和重要的部分去重点关注并努力达到完美的一种内部推力,任务驱动教学的的特点就是学习任务环环相扣,通过对各任务的完成体验成功,由成功激发完成新的学习任务的动力。学习动机理论在驱动式教学环境下具体表现在让学生获得成功的体验,使学生的求知欲、自信心、等心理品质得到提高和发展,成功的体验激发学习兴趣,从而产生学习动机。在实施中往往任务处于中等难度时,成就动机值最大。阿特金森认为,任务的选择是判断成就动机的核心,他提出任务处于中等难度水平时成就动机值最大。所以在学习动机理论中任务设计的方法和内容的难易程度是其主要的方面。
3.最近发展区理论。维果斯基认为学习者的发展有两种水平,一是现有发展水平,二是在外界的帮助和指导下可达到的解决问题的水平。二者之间的差距就为最近发展区。根据该理论在教学任务设计中从学生现有实际知识水平出发。既可以完成基础知识的教学任务又可以实施定量的探究式学习,任务合理适中,极具挑战又符合实际,使认知结构发展到较高水平。
4.发展性教育评价观。发展性教育评价观认为教学评价是与教学过程同样重要的部分,评价主要着重于了解学习者身体、学习、情感及价值观等诸多状况,主要体现在既尊重个体、淡化比较,又注重激励和帮助促进学生的全面发展,这种评价始终贯穿于教育与教学全过程,通过合理的评价激励和促进学习者的发展,是学习的动力和源泉。
5.情景认知理论。它认为所有知识都和语言一样是活动、背景和文化的一部分,是对世界的索引,来源于真实的活动和情景,是将个人认知依托于更大的物质和社会情景背景中,强调真实行为发生的社会网络和活动系统,认为情景是学习和认知的基础,是实践教学和感知教育的必要条件。
三、物联网环境下任务驱动式教学理念
物联网环境下的学习模式的基本要素有主体(学生),客体(学习资源),群体(学习共同体——教师、其他学生),基础平台(网络环境),其教学理念主要有:
1.教师为主导,学生为主体的双主教学理念。在教学过程中学生是学习的主体,教师是学习的组织者、引导者和合作者。要重视学生学习的过程与方法,关注学生学习过程中表现出的情感与态度。任务驱动式的教学活动是以任务为引导以任务的完成过程贯穿始终。学生在接受并解决问题前,需要教师呈现任务的要求,对解决问题的难点给予指导性提示,这就充分体现出了教师的主导的理念,而任务驱动教学最终是要把学习的主动性归于学生,使其产生责任感和压力,教学环节中设计师生、生生双向互动环节,实现信息共享和和反馈,也使教师能及时掌握教学活动作出教学调整。
2.以人为本教学理念。它体现出人是教育的基础和中心,是教育的出发点和根本,其理念的核心就是素质教育,因此以人为本的教育理念,要求在教育教学过程中,做到理解人、尊重人、发展人和提高人,充分发挥人的主体作用
3.以解决问题、表达情感完成任务为主的多维、互动式教学理念。任务驱动式教学可把以传授知识为主的传统教学理念,转变为以解决问题、表达情感、完成任务为主的多维、互动式的教学理念。
四、物联网环境下任务驱动式教学模式结构
物联网环境下驱动式教学模式结构体现了以学生为主体,以教师为主导的教学思想,教师通过分析学生、学习资源,制定任务,利用建构主义学习理论创设情景,监控整个任务完成的过程,实时地给予指导和帮助。同时通过测试及时反馈任务完成情况的信息,在与师生、生生之间交流经验的过程中,达到自主、探究式学习和最终主动意义建构的学习目的。AECT04定义中指出教育技术的目标是“促进学习”,也可以具体分析为是对学习环境的营造与设计,对学习资源的组织和对学习工具的提供。随着物联网技术的不断发展和成熟,将实际学习生活导入研究性课堂成为可能,在建构研究性学习环境中发挥巨大的作用,势必在教育理念、模式和方法上产生变革,把教育推向新的台阶。
参考文献:
[1]郭光勇.网络环境下任务驱动式自主型学习[J].教育信息化,2005,(3).
[2]吕慧芳.任务驱动式教学法探析[J].军事经济学院学报,2005,(10).
中图分类号:TP393文献标识码:A文章编号:1009-3044(2012)05-1197-02
Discussion on Talent Cultivation Pattern of IOT Technology Specialty for Higher Vocational Education
FENG Gao-feng, WEI Nan ,YUAN Pei-jian
(Jiyuan Vocational and Technical College, Jiyuan 454650, China)
Abstract: Based on analysis on hierarchy of IOT system , the talent demand of IOT specialty in higher vocation can has four types: elec? tronic equipment and transducer technology ,mobile communication and computer network ,service-oriented software technology ,em? bedded software design. The talent cultivation of IOT technology can be implemented in four directions: design and installation of sensing equipment , transmission and network, embedded application software ,IOT management .Curriculum hierarchy that meets IOT technical characteristics and industry needs is constructed.
Key words: IOT hierarchy; talent cultivation pattern; curriculum hierarchy
物联网(Internet Of Things,缩写为IOT)可以描述为由传感网络获取环境物理信息,通过通信网络行传输,通过云计算平台进行信息处理的复杂系统。物联网已成为当前世界新一轮经济和科技发展的战略制高点之一,发展物联网对于促进经济发展和社会进步具有重要的现实意义。为抓住机遇,满足日益增强的物联网人才需求,各高职院校逐渐开始设置物联网技术专业,由于培养目标和学生基础与本科院校不同,因此高职物联网技术专业人才培养模式和课程体系值得深入探讨。
1物联网层次架构
物联网技术专业人才培养模式与物联网层次架构密切相关,在物联网的不同层次上有不同的人才培养模式。物联网和计算机网络一样具有复杂的体系结构。物联网通常可以分为四层架构:感知识别层、网络构建层、管理服务层和创新应用层。
1)感知识别层主要完成数据采集,物联网中任何一个物体都要通过感知设备获取相关信息以及传递感应到的信息给所有需要的设备或系统。传感器除了传统的传感功能外,还要具备一些基本的本地处理能力,使得所传递的信息是系统最需要的,从而使传递网络的使用更加优化。为了使传感器之间可以互联互通以及传递感应信息,传感器之间会形成网络,这些网络有可能根据公开协议,比如IP地址,也有可能基于一些私有协议。
2)网络构建层通过现有的计算机互联网、移动通信网实现传感数据的转换、传输与计算。由于物联网世界里的对象是各种各样的设备,因此感知到的信息量将会是巨大的,各式各样的,因此需要通过某种程度的网关将传感器获得的信息行过滤,协议转换,信息压缩与加密等,使得信息可以更优化和更安全地在公共网络上传递。为了将感知层的信息传递到需要信息处理或者业务应用的系统中,网络构建层可以采用IPv4或者IPv6协议。
3)管理服务层负责整理网络层提供的信息,提供给应用层。管理服务层设置有应用网关,在信息传输过程中为了更好地利用网络资源以及优化信息处理过程,设置局部或者区域性的应用网关,一是信息汇总与分发;二是进行一些简单信息处理与业务应用的执行,最大限度的利用IT与通讯资源,提高信息的传输和处理能力,提高可靠性和持续性。管理服务层设置有服务平台,可以使不同的服务提供模式得以实施,同时把物联网世界中的信息处理方面的共集中优化的进行,使应用系统无需因为物联网的出现而作大的修改,能够更充分的利用已有业务应用系统,支持物联网的应用。
4)创新应用层利用现有的手机、平板电脑、PDA和PC等终端运行特定的应用程序,实现具体物联网应用。应用层包括各种不同业务或服务所需要的应用处理系统。这些系统利用传感的信息行处理、分析、执行不同的业务,并把处理的信息再反馈给传感器行更新,使得整个物联网的每个环节都更加连续和智能。物联网世界中,信息来源很广阔,是海量的,基于传统的商业智能和数据分析是进进不够的,因此需要更智能化的分析能力,基于数学和统计学的模型进行分析、模拟和预测。应用层需要性能优良的应用程序来支持。
2人才培养模式
2.1物联网人才需求及就业岗位分析
物联网行业需要多种技术人才,根据物联网的四层架构,可对应为四类技术人才。感知识别层涉及到物联网的硬件设备,主要为实体设备和传感器,这个层次需要电子设备开发人员和传感器设计与制造人员;网络构建层完成感知信息的传输,需要移动通信和计算机网络人员;管理服务层涉及到整合网络层传递过来的信息,并以服务形式提供给应用层,需要软件技术人员,特别是Web Service方向人员;创新应用层完成信息的处理和显示,以运行在手持设备中的应用软件为核心,需要嵌入式软件设计与开发人员。根据以上分析物联网人才需求可以概括为四类:电子设备和传感器技术人才;移动通信和计算机网络人才;面向服务的软件技术人才;嵌入式软件设计人才。
根据物联网人才需求分析及高职人才培养目标,高职物联网专业应培养具有物联网行业必备的理论知识和专业技能,具有较强的物联网应用系统操作能力,一定的系统设计和开发能力,能从事物联网硬件系统安装与调试、物联网系统管理及嵌入式软件开发的高技术应用型专业人才。根据对物联网企业的调研,其面向的职业岗位主要有感知设备设计与安装、系统集成与调试、嵌入式软件设计、物联网管理与应用等岗位。
2.2物联网专业培养方向和能力需求分析
物联网专业一个综合性学科,涉及电子技术、计算机技术和软件技术等相关专业,所以物联网专业的人才培养可以根据不同的岗位目标,分四个方向来培养。感知设备设计与安装方向,包括各种传感器的设计与安装,如温度和适度传感器、烟雾和粉尘传感器噪声传感器等,以及一定的芯片设计技术,如RFID感应器、RFID标签等,要求学生掌握模拟和数字电路知识、嵌入式硬件开发知识等。传输与网络方向,主要解决感知信息的传输问题,要求学生掌握移动通信2G及3G技术、计算机网络技术相关知识,具有物联网通信系统的安装、调试、管理及故障排除能力。嵌入式应用软件方向,物联网的人机接口通常为运行物联网系统软件的手持设备和PC等,需要学生具备在常用嵌入式操作系统上进行软件设计与开发能力。物联网管理方向,物联网是一个应用管理系统,可以实现物流监控、污染监控、智能检索、进程医疗、智能交通、智能家居等管理和服务功能,需要学生掌握物联网知识和信息管理知识,具备物联网信息系统运行、操作、管理和维护能力。
物联网专业的四个培养方向,对学生的能力要求有所不同。从以上四个培养方向上来分析,物联网专业学生应该具有以下几方面的知识和能力:掌握物联网系统基本理论;具备构建、调试、运行和管理物联网应用系统的能力;具备开发物联网终端软件的基本能力;具备物联网应用系统故障排除能力;了解物联网技术发展动态。
3课程体系设计
实现人才培养目标,必须要具备合理的课程体系。围绕学生职业核心能力的培养,以良好的职业素养、够用的理论知识、扎实的专业技能为出发点,来构建课程体系。根据就业岗位和培养方向的不同,课程体系由基础课程、职业核心课程、职业综合能力训练三个层次构成,如图1所示。
图1物联网专业课程体系
4结束语
物联网专业是为适应新兴产业发展,满足行业对高素质专门人才的需求而申报的新专业,在深入分析物联网系统层次架构的基础上,探讨了物联网专业的人才需求和就业岗位,剖析了联网专业人才培养方向,构建了符合物联网行业特征的课程体系。
参考文献:
[1]郭丽.高职院校物联网应用技术方向课程体系的探索与构建[J].安徽电子信息职业技术学院学报2011(4).
[2]谢秋丽,黄刚.基于物联网人才培养与教学实践的研究[J].软件导刊(教育技术),2011(3).
DOIDOI:10.11907/rjdk.171812
中图分类号:TP319
文献标识码:A 文章编号:1672-7800(2017)006-0056-03
0 引言
无人船是一种集智能化、网络化、集成化、机动化、无人化于一体的新型小型水面自主航行交通工具,具有机动灵活、易操控、携带使用方便、易于开展实验、成本低、效率高、对监控环境要求低等特点,已被广泛应用于湖泊和群铀质监测[1]、湿地环境监测[2]、海洋环境监测[3]、水产养殖环境监控[4]、水下环境测量[5]等各种水域环境下民用和军用的诸多领域,具有广泛的应用前景。
无人船应用的关键是如何实现无人船在各种水域环境下的无人自主航行,其核心技术是远程运动控制技术[6]和无线通信技术。在无人船控制系统方面,国内已有不少高校和学者进行了相关技术研究。河北大学赵晓军等[7]基于DSP和GPRS技术设计了用于白洋淀湿地监测的无人船运动控制系统;山东大学李峰等[8]设计了用于湖泊水域监测的无人船水样采集系统,采用WiFi技术实现无人船与地面控制中心之间的通信;中国海洋大学的孙东平[9]及浙江大学的王魏等[10]设计了用于海洋监测的无人船远程控制系统,采用GPRS技术实现无人船与地面控制中心之间的通信。由此可见,当前无人船与地面控制中心的通信技术仍然以第二代移动通信技术――GPRS技术为主,虽然能够满足长距离作业需求,但只能传输简单数据,而无法满足无人船实时视频监控等较复杂应用场合对实时传输多媒体数据的需求,不利于地面控制中心对无人船的管理和调度。
相比于GPRS网络,高速率4G网络能更好地支持多媒体数据传输。采用4G技术作为无人船与地面控制中心间的通信技术,不但能极大拓展无人船的工作距离,而且能实现对无人船的远程实时视频监控。目前虽然已有学者设计了基于3G/4G的无人船远程控制系统[11-12],但只是给出了系统设计框架,对视频监控系统设计及测试阐述较少。
因此,针对当前无人船控制系统由于以GPRS通信技术为主,导致控制系统实时性较差及无法适用于较复杂应用场合的问题,本文研究设计了一套基于4G物联网技术的无人船云控制系统,采用4G通信技术、流媒体技术和云转发技术实现对无人船的远程实时视频监控。通过本系统,操作人员只需在控制中心即可实现对无人船的远程控制。在无人船作业过程中,监控人员也可随时随地获取无人船作业状态的实时画面,了解作业进度和完成情况。
1 系统总体框架
本系统由无人船端、云服务器端和地面控制中心3部分组成,总体框架如图1所示。无人船首先通过GPS定位后,地面控制中心根据接收到的位置信息计算航线,并通过云服务器转发至无人船端。无人船接收到航线信息后进行自主航行作业。在自主航行过程中,无人船将当前的航向、航速、位置等信息通过云服务器转发至地面控制中心。同时,无人船的4G视频系统通过RTMP协议将实时作业视频发送至云服务器,地面控制中心访问云服务器获取无人船实时作业视频。
(1)无人船端。无人船通过GPS获取自身位置信息,采用4G通信技术将位置信息发送至云服务器端,经由云服务器端转发至地面控制中心。此后,无人船接收云服务器端转发的来自地面控制中心的航线信息进行自主航行,并在航行过程中通过云服务器将实时的航向、航速、位置等数据转发至地面控制中心。同时,无人船的4G视频系统通过RTMP协议将实时作业视频发送至云服务器端,供地面控制中心查看。
(2)云服务器端。本文基于阿里云提供的ECS云服务器设计了无人船云控制系统的云服务器端。弹性云服务器ECS(Elastic Cloud Server)是一种简单高效、可随时自主获取、处理能力可弹性伸缩的云服务器,具有可动态调整CPU、内存、硬盘和带宽等优点,为开发者提供了极大便利。
云服务器端主要用于转发实时控制数据和作业视频。采用云服务器转发模式,能够减少无人船端需要处理的数据量,降低能耗,延长电池工作时间。
(3)地面控制中心。地面站控制中心通过云服务器与无人船建立连接,将航线信息发送至无人船端,接收来自无人船的实时航向、航速、位置等信息,并可实时监控无人船的电量信息、作业状态及所在水域环境情况。
2 关键技术实现
2.1 无人船控制信息传输系统架构
无人船控制信息传输系统主要使用USR-LTE-7S4透传模块将地面控制中心的控制信息传输至无人船端,如图2所示。USR-LTE-7S4可以实现无人船端与云服务器端的双向透明数据传输,功能丰富,体积小巧,适合作为无人船的船载通信设备。使用网络透传模式收发数据,使用者无需关注无人船串口数据与网络数据包之间的转换过程,只需设置相关参数,即可实现无人船端与云服务器端之间的透明通信。
如图2所示,无人船上电运行后,GPS定位模块获取当前位置信息,通过USR-LTE-7S4以MavLink协议数据格式发送至云服务器,经由云服务器转发至地面控制中心。地面站控制中心根据无人船位置信息计算航线,通过云服务器以MavLink协议数据格式转发至无人船端。
2.2 无人船远程实时视频监控系统架构
无人船远程实时视频监控系统架构如图3所示。系统采用Hi3518E模块采集无人船实时作业视频,通过4G通信模块Quectel EC20上传至云服务器端,地面控制中心登录云服务器端即可实现对无人船的远程实时视频监控。
视频采集采用Hi3518E模块,支持H.264和MJPEG/JPEG编码,以RTMP协议格式将无人船作业视频上传至云服务器端。4G通信模块采用Quectel EC20模块,该模块支持多输入多输出技术(MIMO),具有较高的通信可靠性和良好的通信质量。云服务器端采用nginx-rtmp-module模块实现视频数据接收与转发功能。
3 系统测试与数据分析
对无人船控制系统的测试主要分为静态测试和动态测试。静态测试是在室内环境下测试视频监控功能及传输时延等通信性能;动态测试是在实地水域中测试整个系统的功能,包括无人船接收航线控制信息及自动航行任务、无人船远程实时视频监控任务以及在实际水域中的传输时延等通信性能。
3.1 静态测试
系统静态测试监控界面如图4所示。其中,左上角为云服务器数据转发过程,左下角为无人船传回的实时监控画面,右边为控制系统主界面。
在静态测试环境下,控制系统传输时延最低为248ms,最高334ms,如图5所示。由静态测试结果可以看出,基于4G通信技术的无人船控制系统的传输时延较低,能够完成对无人船远程实时监控的任务。
3.2 实地水域测试
测试水域为连云港市海州区西盐河,地面控制中心在连云港瑞云智能科技有限公司。地面控制中心上传航线并无人船自动执行此航线,控制界面如图6所示。
在此次实地水域测试作业中,控制系统的平均传输时延为0.5s,视频系统传输时延为1.5s,再次验证了本系统能够满足对无人船远程实时视频监控的要求。
4 结语
本文基于云服务器架构设计了无人船云控制系统,并采用4G物联网通信技术实现了地面控制中心与无人船之间的通信,通过4G透传模块将无人船航线等控制信息由地面控制中心传输至无人船接收端,同时采用4G视频传输模块和RTMP音视频传输协议将无人船实时作业视频传送至云服务器,以供地面控制中心查看及监控。由测试结果可以看出,本系统能够实现对无人船的远程实时控制及视频监控,从而极大地提高无人船的工作效率,并确保无人船航行安全,再结合传感器数据采集技术即可应用于水质监测、城市内河监测、海洋环境监测、湿地监测等各种水域环境下的应用场合,具有一定推广价值。
参考文献:
[1]罗刚,张然.无人监测船在城市内河水质监测中的应用[J].环境监控与预警,2017(1): 18-20,31.
[2]绳丹.湿地无人船运动信息系统设计 [D].保定:河北大学,2016.
[3]金久才,张杰,邵峰,等.一种海洋环境监测无人船系统及其海洋应用[J].海岸工程,2015(3): 87-92.
[4]孟祥宝,黄家怿,谢秋波,等.基于自动巡航无人驾驶船的水产养殖在线监控技术[J].农业机械学报,2015(3): 276-281,260.
[5]陈立波,罗正龙,汪嵩.无人船水下测量系统及水下测量实验分析[J].城市勘测,2016(5): 151-154.
[6]张浩昱,刘涛.一种微小型无人船控制系统设计及航向控制方法研究[J].计算机测量与控制,2017 (1): 88-90,93.
[7]李瑞.基于DSP和GPRS的无人船运动控制系统设计 [D].保定:河北大学,2016.
[8]李峰.无人驾驶水样采集船关键技术研究 [D].济南:山东大学,2016.
[9]孙东平.无人船控制系统设计与实现 [D].青岛:中国海洋大学,2015.
“物联网”概念是在1999年提出的。物联网就是“物物相连的互联网”其英文名Internet of Things。这里包含了两层含义:一,物联网核心及基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;二,用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。物联网的使用要充分体现物物相联,人物相联,在实际的教学过程中,考虑到课堂实际条件及尽量做到高性价比等情况,笔者大部分选用了小米设备,本课程教学前期准备内容如下:(1)蓝牙智能手表一块500元;(2)小米路由配套小米智能灯泡一个300元;(3)小蚁摄像头一个160元;(4)小米盒子及乐视盒子(家用自购);(5)高拍仪一台(学校原有资产),这样在不到千元以内,简单配置了一套教学用具。
在实际的教学过程中,考虑到初中学生活泼性格,在教学设计中使用了故事导入法,并在课前拍摄好对应的视频,为各类产品创设一个对应的情境,让学生以故事主题人物的方式代入,大大提高了课堂效率。
课例一:“上学途中”,在视频中我们拍摄了一位父亲早晨送学生到学校的途中,开车时遇到了紧急求助电话,视频分A版B版,A版中父亲直接接听了电话并继续开车,B版中蓝牙手表自动接听,并使用免提模式,请同学们分析哪版更安全更合理,随着讨论中的答案揭晓,使用高拍仪展示蓝牙手表的各项功能,让同学们尝试用它测运动能力,用它控制安卓手机拍照,尝试QQ视频聊天,结束前展示APPLEWATCH使用视频,本课结束后学生普遍喜欢这样的课堂。
课例二:“大魔术师”,这节课我们准备了一块大的遮挡物,告诉学生老师学了门新技术,让他们躲在遮挡物后面用手比划数字,然后老师猜猜他们做的数字是多少,由学生自告奋勇地尝试,结果次次都对,再拿出灯泡,说老师还有会门新技巧,他们想让灯泡变什么色就变什么样,由学生说颜色,灯泡开始变幻,这时我们引入主题,“老师是大魔术师吗?”学生们都很活跃给出各种猜测,最后谜底揭晓,遮挡物后面藏着小蚁摄像头,老师的手机上安装了配套的APP,所以同学们比划的数字尽收眼底,而灯泡是小米智能灯泡由小米路由链接,并通过IPAD调色,所以现实虽然老师不是魔术师,可是新技术越来越魔术,这节课的体验部分是由同学分组使用IPAD控制摄像头及灯泡,因为设备数量有限有时会有冲突,所以IPAD总数不宜超过10台,课前布置对应组长带设备。让同学们根据已有设备,考虑可以在哪些场景中应用,也可以请他们小组合作模拟故事情境,在这个环节中,不少学生考虑到了家庭防盗及照顾宠物,一些同学想到利用摄像头的双向语音功能护理病人,也有同学设想了舞台上彩光辉映制造梦幻效果,在结束前,选取了部分未来办公室及家居视频,展望未来,发挥自己的想象,同时布置课后实践作业《发现生活中的物联网》以小组为单位发到教师邮箱。
课例三:“张驰有度”,播放一段视频,学生A放学回家后因为发现正在播放自己喜爱的节目,立刻驻足观看,第二天到学校抄了同学答案匆匆交作业;同学B,利用智能电视盒,预先设定好录播功能,等周末空闲的时候轻松回播。视频结束后请学生谈谈自己的感想,同样是为了放松学习压力,小A同学和小B同学的方式带来的效果迥然有别,学习和生活要合理安排时间才能发挥高效率,这节课上我们展示了几款电视盒,邀请一些同学在课堂上点播了自己想观看的网易公开课,也有同学发现了云相册的优势可以将班级活动的照片视频使用公用账号存放,全班一起欣赏。在小组活动环节由学生自己操作,将发现的新功能互相展示,教师准备了一个关于安卓系统的产品介绍微视频,部分同学对其中的手机及移动设备通过WIFI投影到电视上功能非常感兴趣,也有同学发现可以在IPAD上安装对应的电视盒遥控器,由此我们可以总结出安卓的开放性使它灵活且容易链接各种设备,同时因为它的播放对象是家庭里最常见的电视机,这样媒体网络加家用电器构成了强大的实用工具,我们利用它休闲放松,过着张弛有度的生活,更好发挥效率。
物联网在我们国家的发展已经出现了多元化,各行各业都投入了研发,除了能够准备的这些简单素材提供给学生了解及学习外,在课间我们也查找了很多相关资料,提供参考,类似于台湾地区开始风靡的GOGORO电动车,使用NFC控制;还有康宁玻璃,微软的新科技研发等等都在不断地改变未来的趋势,这些都以视频和文献的资料放在学校的云盘中,提供给学生参考欣赏。
我们每个人都属于未来,所以也许现在的简单的实践或欣p课能改变学生对自己的规划或者在将来他们的职业中占据小小的推动力,这是做教师设计课程的真正的成就,如果物联网时代来临,我们每个人的生活会发生翻天覆地的变化,这个过程多久没有人可以预测,我们在努力地让新技术改变生活,用好它们,让未来更美好。
【参考文献】
[1]《物联网:技术、应用、标准、安全与商业模式》,电子工业出版社.