发布时间:2023-10-11 17:47:12
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇电磁辐射选频分析仪范例,将为您的写作提供有力的支持和灵感!
随着人们对移动通信技术要求的提高和移动通信技术的快速发展,移动通信技术已进入4G时代。所谓4G,是第四代移动通信技术的英文缩写,是集3G和WLAN与一体,能够快速传输数据、高质量音频、视频和图像等的技术。其拥有以往技术无法比拟的优势:通信速度更快、网络频谱更宽、通信更加灵活、智能性能更高、兼容性能更平滑、实现更高质量的多媒体通信、频率使用效率更高等。因此,为满足人们对4G服务覆盖的要求,4G移动通信基站建设也如火如荼地进行。然而,4G移动通信基站的建设无疑会带来辐射环境的变化,公众对辐射环境的关注度也越来越高。4G移动通信基站的环境影响评价工作以及处理基站的投诉日渐增加。电磁辐射环境监测是环境影响评价的重要环节,贯穿环境影响评价整个过程,其作为一门综合性学科,运用科学的监测手段对移动基站周围电磁辐射水平进行监测,通过对电磁辐射环境现状定量和系统的分析与评价,为环境影响评价或相关的技术问题提供有力的数据支撑。因此,正确的监测方法和科学、客观的评价是环境影响评价文件结论是否正确的重要保障。
一、电磁辐射环境监测
1监测目的
了解基站周围电磁环境现状,为基站选址的环境合理性及环境影响预测提供数据支撑。
(1)对于拟建基站站址,现场监测基站周围电磁环境现状值,确定该站址是否具有电磁环境容量;
(2)对于已运行基站,现场监测基站周围电磁环境现状值,确定基站周围公众活动区域的电磁辐射环境是否满足国家标准。
2监测依据
根据《电磁环境控制限值》(GB8702-2014)、《辐射环境保护管理导则―电磁辐射监测仪器和方法》(HJ/T 10.2-1996)、《移动通信基站电磁辐射环境监测方法》(试行)制定本项目现场监测实施细则。
3监测对象的选取原则
监测中选取以人口集中区域为重点的环境敏感程度高、与周围公众活动区域水平距离小、与其他运营商共站址、架设形式对环境影响较大的美化天线和桅杆等典型基站,且各抽测基站监测点位的布设应涵盖发射天线所在天面、周围环境敏感点等公众活动区域。所选基站应具有代表性和包络性。
4监测条件
4.1 监测天气情况
无雪、无雨的良好天气。
4.2监测设备
电磁辐射监测仪器设备有:射频电磁辐射分析仪、电磁辐射选频分析仪等。各种测量仪器均应经过国家计量认证部门检定、校准合格,并都在合格证的有效期内,性能满足工作要求。
5质量保证
(1)测量仪器和装置每年经国家计量认证部门检定/校准,检定/校准合格后方可使用;每次测量前、后均检查仪器的工作状态是否正常;几台仪器间进行比对测试。
(2)监测所用仪器与所测对象在频率、量程、响应时间等方面相符合,并保证获得真实的测量结果。
(3)监测布点和监测方法均严格按照《移动通信基站电磁辐射环境监测方法》(试行)的要求进行。监测点位置的选取考虑使监测结果具有代表性,合理布设监测点位,保证各监测点位布设的科学性和可比性。
(4)监测中异常数据的取舍以及监测结果的数据按照统计学原理处理。
(5)建立完整的文件资料。仪器的校准证书、监测布点图、测量原始数据等全部保留,以备复查。
(6)严格实行三级审核制度,经过校对、校核,最后由质量负责人审定。
6 测量方法
6.1基本要求
(1)工作开始前,收集被测基站的基本信息,包括:基站名称、编号、地理位置、基站各项基础参数、天线架设方式、天线架设高度、天线方向角、天线下倾角、半功率角等参数。
(2)测量仪器与所测基站频率、量程、响应时间等方面相符合,以保证监测的准确。
(3)探头(天线)尖端与操作人员之间距离不少于0.5m。
6.2测量点位的选择
测量布点参照《电磁环境控制限值》与《辐射环境管理导则―电磁辐射监测仪器和方法》,并根据《移动通信基站电磁辐射环境监测方法》(试行)的要求进行。
监测点位布设在以发射天线为中心半径50m的范围内可能受到影响的环境敏感区域公众可到达的距离天线最近处,环境敏感区主要包括:居民区、学校、幼儿园、医院和党政机关等,根据现场环境情况可对点位进行适当调整。
监测点位的布设原则上设在定向天线在辐射主瓣的半功率角内。
对于发射天线架设在楼顶的基站,在楼顶公众可活动范围内布设监测点位。
测量室内电磁辐射环境时,一般选取房间中央位置,点位与家用电器等设备之间距离不少于1m。在窗口或阳台等位置监测时,探头(天线)尖端在窗框或阳台界面以内。
6.3测量时间和读数
测量时间:根据《移动通信基站电磁辐射环境监测方法》(试行)“4.4监测时间 在移动通信基站正常工作时间内进行监测,建议在8:00-20:00时段进行”,本项目取每日8:00~20:00为测量时段。
测量读数:测量过程中,每个测量点连续读数5次,每次测量时间不小于15s,并读取稳定状态下的最大值。若读数起伏较大时,适当延长测量时间。
结果记录:根据仪器灵敏度的不同和有效数字的选取原则,射频电磁辐射分析仪测量值均取小数点后两位记录。
6.4测量高度
测量仪器探头距或立足点1.5m。根据不同目的,可调整测量高度。
6.5记录
监测记录中包括基站的位置信息记录、基本参数记录、测量时的天气状况记录、监测仪器记录以及测量结果的记录(以基站发射天线为中心,50m范围内的四至图以及测点布置示意图、测量点位具体名称和测量数据、测量点位与基站发射天线的水平距离和高差)。
二、电磁辐射环境评价
1 项目概况
新疆区域管制中心(下文简称新疆中心)主要任务是提供航行情报,空中交通管制服务和航空器的告警服务及搜寻救援等服务,保证空中交通安全、有序、快捷。新疆中心由乌鲁木齐、吐鲁番、和田等16个民用机场以及20余个台站。现有发射设备包括VHF台、VOR、DME导航台及卫星地面站四类(遥控台)组成。
新疆中心空管设施大多数是在“八五”、“九五”时期配置的,设备先进程度不高,自动化处理能力低,扩容能力差。难以实现信息的全国性联网。存在的主要问题是:⑴空域分布不合理,管制手段较落后。⑵现有空管设施技术标准不统一,难以实现大区域信息联网。⑶管制区内VHF覆盖存在盲区。
总之,现有空域的划分方式、管理模式不合理及空管设施落后等问题直接影响了飞行流量的增加,不利于提高空域利用率和管制工作的效率,对保证飞行安全极为不利。为此,国家有关部门决定在“十一五”期间对该中心进行大规模技术改造。
2 电磁污染源分析与电磁辐射环境质量评价
2.1 电磁污染源分析
项目建成后,新疆中心范围内的电磁辐射源主要由雷达、微波通信、遥控台和卫星地面站等组成,各电磁辐射源的基本参数见表1.3-表1.9。
2.2 电磁辐射环境质量评价
(1)监测仪器
对新疆中心范围内的雷达站、遥控台等电磁环境进行了监测,采用的仪器设备是EMR300高频电磁辐射分析仪。
(2)新疆中心
新疆中心拟选厂址区域电磁辐射环境背景监测布点见表1.4-表1.16。
3 监测结果及分析
为了解不同条件下电磁辐射水平,选取有代表性的台站开展监测,其结果见表1.10~1表1.19。
3.1 乌鲁木齐区域管制中心拟选场址
【1】注:“L”表示监测结果低于仪器灵敏度,监测结果低于0.6V/m,未检出,用0.6L表示,根据电场强度计算功率密度的灵敏度为0.1μW/cm2(以下同)。
根据区管中心电磁环境监测结果统计,各点位综合场强值均低于仪器灵敏度,符合国家公众限值40μW/cm2和影响限值20μW/cm2。该区域电磁环境良好。
3.2 库尔勒VHF台
库尔勒VHF台环境敏感点监测结果和典型辐射体环境监测结果分别见表1.11和表1.19。
根据库尔勒VHF台电磁环境监测结果统计,各点位综合场强值均低于仪器灵敏度,符合国家公众限值40μW/cm2和影响限值20μW/cm2。
库尔勒VHF台位于城市远郊机场内。场址东侧为机场跑道,南、北两侧均有环境保护目标,西侧为进站道路,因此选择以卫星地面站为中心,沿西方位作等值线监测,根据监测结果的统计,其最大值出现在卫星地面站的表面,为11.07μW/cm2,符合国家公众限值40μW/cm2和影响限值20μW/cm2。
随着监测距离的增加,距卫星地面站表面1m开始,功率密度的大小随着距离的增大呈明显衰减趋势。但是总体看来,监测结果很低,这因为卫星地面站以仰角49.2°面向机场跑道向天空发射电磁波,功率较低,这类设备电磁波传播方向上一般不会有居民区等敏感目标。
3.3 库车VHF台
库车VHF台电磁环境监测结果见表1.13。
3.4 塔中VHF台
塔中VHF台电磁环境监测结果见表1.14
3.5 且末VHF台
且末VHF台电磁环境监测结果见表1.15。
3.6 若羌VHF台
若羌VHF台电磁环境监测结果见表1.16。
根据表上述库车、塔中、且末和若羌等4个VHF台电磁环境监测结果统计,各点位综合场强值均低于仪器灵敏度,符合国家公众限值40μW/cm2和影响限值20μW/cm2。这些区域电磁环境良好。
4 电磁辐射防护措施
本着可合理达到尽量低的原则,做好新疆中心的电磁辐射防护措施,主要的措施是:
4.1 合理选址、优化布局
本工程区管中心拟建场址选在空旷、偏远以及地广人稀地段,电磁环境良好,利于管控,工作环境适宜,具备长远发展的潜力。各台站选址符合机场、航路的发展规划,大部分在交通方便,靠近水源、电源的地点,有人值守的台站具备台站值班人员所需的工作和生活条件,也有利于自身工作性能的充分发挥。
4.2 合理避让、搬迁措施
本项目在设计和选址阶段避开了乡镇规划区及密集村庄,对周围地方规划、设施的影响甚微,同时避开了风景名胜区、自然保护区、电台、水源地、军事设施、文物保护单位等,对居民生活影响较小。
4.3 管理措施
新疆中心在整个航空系统中的管理制度是比较完善的。投入运行后,对通信维护人员、气象情报等其他专业人员需求,将通过对空管局相关专业人员进行调剂使用,并辅以少量接收相关专业毕业生等手段,基本满足中心运行后的人员需求,在此基础上,引进中心管制员,进一步加强管理。
参考文献
[1]高水生,蔡意等,饶丹. 成都区域管制中心电磁辐射环境影响分析与防护措施. 环境科学与管理,2010,35(10),190~194
[2]环境保护部环境工程评估中心编. 交通运输类环境影响评价(下). 北京:中国环境科学出版社,2010
在除颤器测试分析仪的研制过程中,针对出现的干扰现象,分析了干扰现象,分析了干扰产生的原因及干扰的特点,采取了一些抗干扰措施,通过应用EMI(电磁干扰)滤波器,去除了放电脉冲在仪器内部所产生的强烈干扰,使除颤器测试分析仪工作稳定可靠,具有良好的电磁兼容性。
图1 仪器电路原理框图
1 系统的基本原理及干扰特点
本仪器以飞利浦单片机80C52为控制核心,完成对除颤器各项功能的测试分析,并通过接口电路对分析结果分析显示和传输,原理框图如图1所示。除颤器测试分析仪主要完成两部分功能:(1)完成对除颤器放电能量的准确测量;(2)准确、稳定地输出各种心电波形及测试波形。为检验除颤器的自动除颤功能及其特性参数要求分析仪能输出多种波形,包括具有多种导联输出的ECG(心电图)波且幅值可调,同时输出高幅值ECG信号、直流脉冲、方波、三角波、复合波、多种频率的正弦滤以及多种心律的标准R波。各种波形的输出通过数字合成,由程序产生的波形经D/A转换器输出,然后通过模拟电路变换成要求的输出模式。放电能量的检测是基于除颤器的高压放电脉冲通过模拟人体阻抗的模拟电阻(典型阻值为50Ω)放电,经衰减后送入可变增益放大器,变为A/D转换器的输入信号,然后进行处理和显示。
根据对仪器的要求,除完成各项功能外,在对除颤器的放电进行测试时,必须能够承受由放电脉冲带来的强烈干扰,不死机、不复位,在不采用干扰避开法、系统智能复位法等措施时,程序仍能正常执行。同时,由于仪器必须具有恢复放电脉冲波形的功能,测量模拟通道不能对放电信号采用滤波、浪涌阻尼等措施。这就对仪器的抗干扰性能提出了更高的要求。
系统的干扰源一部分是仪器内部数字电路、供电电源所产生的干扰以及仪器外部空间辐射电磁波干扰;另一部分干扰来自除颤器的放电脉冲。其干扰具如下特点:
(1)电压峰值高、能量大,最高电压可达5000V,最大放电能量可达360J;
(2)放电时间短,除颤器放电脉冲时间仅为10ms左右,脉冲前沿时间约为2ms;
(3)放电波形复杂,对不同型号的除颤器,放电脉冲的形状不同,有单向指数衰减型、双向指数衰减型、单向截止型及双向截止型等;
(4)干扰直接进入仪器内部。由于本仪器是便携式仪器,模拟人体的50Ω电阻置入仪器内,因此干扰产生于仪器内部;
(5)干扰复杂。由于模拟人体的50Ω电阻所需功率大(该电阻一般为绕线电阻),此电阻存在较大的分布电感及分布电容,放电脉冲经该电阻必然产生较强的复杂干扰。
2 抗干扰设计及EMI滤波器的选用
干扰源产生的电磁干扰信号一般通过电容的静电耦合、电感的磁耦合、公共阻扰的地电源耦合、电磁辐射感应耦合等途径传播到扰的对象。由于强烈干扰源与测量控制电路置于同一机箱内,彼此相距很近,故电磁干扰传播要为近场感应,即电容耦合、磁耦合。此外,公共阻抗耦合也是传递干扰的重要途径,因此除了采用常用的软件抗干扰措施(如空指令的使用、数字滤波等)外,还从以下几方面进行整机的电磁兼容设计,以解决干扰问题。
2.1 抑制干扰源
为有效降低干扰源的干扰,模拟人体的50Ω大功率电阻采用无感电阻,在布线时充分注意减少由引线带来的寄生电抗参数、合理分配放电采样电阻的空间位置等,特别注意大电流通路的焊接质量,以防接触不良引起火花放电造成更强干扰;选用低频率电路芯片可有效地降低噪声,提高系统的抗干扰能力。
2.2 关于屏蔽层的设计
采用屏蔽的目的是为了在干扰的环境条件下保证系统信号传输性能。这种抗干扰措施可屏屏外来干扰,也可减少本身向外辐射能量。衡量器件传输性能的指标是ACR值(衰减/串扰比)。非屏蔽线在ACR值符合要求的条件下,其传输带宽和传输速率可以大大高于标准带宽和标准传输速率。但是当信号以很高的速率在线路中传输时,由于受到外界的电磁干扰以及自身内部的串扰,容易出现数据传输错误,降低系统的性能。所以系统中采用较低的速率传输数据,以增加系统的可靠性和安全性。
为了有效减少外界的电磁干扰,可以采用屏蔽措施。屏蔽分静电屏蔽和磁场屏蔽,静电屏蔽要求可靠地接地。实际的屏蔽系统存在着一些必须注意的问题,如接地方式、接地导线以及屏蔽的完整等。应慎重选用屏蔽电缆,因为屏蔽不但会导致信号传输的不平衡,而且会改变电缆的电容耦合,从而衰减增加,降低信号输出端的平衡性。同时考虑到干扰源与测量控制电路在同一仪器内,距离很近,若内部用屏蔽层,且屏蔽未良好地连接时,增加的电容效应将非常明显。在于以上考虑,在系统内部放电电阻与线路板及连接电缆之间,不采用屏蔽措施。但是对于塑料机壳的屏蔽必须仔细考虑,为降低外界电磁干扰,采用喷涂金属屏蔽层,同时要求涂层达到一定的厚度且对缝隙、孔洞进行泄露处理,特别注意可靠地接地。
2.3 抑制干扰的耦合通道及提高敏感电路的抗干扰措施
为了便于仪器安装及简化结构,结合上述关于屏蔽与非屏蔽的分析,仪器内部不采用屏蔽措施。为了解决干扰问题,除了采取软件及常用硬件抗干扰措施外,还采用多层线路板及EMI滤波器来增加仪器的抗干扰能力。
(1)基于电路原理,放电能量检测电路采用差分有源衰减电路,使放电脉冲取样电阻浮置,减少通过公共阻抗的电耦合传递的干扰。衰减电阻网络采用多个精密金属膜电阻,以提高衰减比例精度及减少电抗分布参数。
(2)线路板设计采用多层线路板,减小电磁干扰。合理安排器件分布,将信号采集及预处理部分、波形产生部分等与数字信号部分(如单片机控制单元、存储器、扩展I/O口等)从空间上隔离开。此外,将电源产生部分集中在一个区域,使线路板平面尽量靠近仪器底板(底板为仪器外壳屏蔽),起到多层板作用;合理布线,尽量减小回路面积,以减小射频干扰;印制板上走线方向尽量避免突发,否则会导致阻抗的不连续和产生辐射,造成射频干扰。由于仪器为便携式仪器,必须采用低功耗CMOS电路。但由于CMOS电路输入阻抗高,会引起很严重的信号反射畸变,从而增加系统的噪声,因此布线尽可能短,尽量减少过孔数目。
2.4 EMI滤波器的应用
EMI电子元件品种很多,如电感尖、电容类、压敏电阻类、LC组合件类、常规EMI滤波器类等。各类又包含许多品种类型,如带铁氧体磁珠的三引线圆片电容器、叠层片式浪涌吸收器、铁氧体扼流图等。
由于干扰属近场干扰,干扰强烈且复杂。为此,滤波器必须安装在线路板上,不但要对信号线采用EMI滤波器,在电源通常也采用EMI滤波器。为节省空间,采用焊接式安装,同时为保证滤波性能,特别注意焊接工作。
选作滤波器时主要是确定滤波器的截止频率。截止频率的选择必须保证滤波器的通带能够覆盖有用信号的带宽,保证设备的正常工作,同时最大限度地滤除不必要的干扰。为防止电磁辐射引起数字信号传输错误、造成死机和复位等,在数字信号通道上接入抗高频干扰的EMI滤波器。采用日本村田公司生产的带铁氧体磁珠的三引线圆片电容器DSS310系列EMI滤波器,其等效电路如图2示,插入损耗与频率的关系曲线见图3。
针对模拟信号的抗干扰,也采用同类EMI滤波器,只是在选择截止频率时保证大于信号的带宽。考虑由近场对公共线路所带来的冲击浪涌干扰,选用带铁氧体磁珠的三引线圆片压敏一电容器型EMI滤波器DSS710系列,图4为其对电源干扰的抑制特片和压缩特性。压敏电压22V,电容量可达22000pF,加上铁氧体磁珠的作用,其对电磁干扰的抑制频率可以降低到3MHz以上,衰减大于20dB,且抑制频率范围明显展宽。此类滤波器用于系统各种电源通道中。
以惠普的CodeMaster除颤器为测试对象进行多次测试,并同时与瑞典METRON公司生产的除颤器分析仪QA-45进行比对,其测试数据如表1(QA-45在给定的测试范围内,精度为±2%)所示。仅以除颤器放电能量的性能指标进行分析,在低能量测试中(<50J),误差远小于2%;高能量测试中,误差也能控制在2%之内。经连续多次的高能量的放电测试,证明系统具有良好的重复性及稳定性,完全满足设计的性能要求。
表1 测试数据表
CodeMaster除颤器除颤器测试分析仪QA-45放电能量(J)能量测试平均值(J)最大电压平均值(V)延迟时间(ms)能量测试平均值(J)最大电压(V)延迟时间(ms)5
10
30
70
100
150
200
300
3605.07
10.08
30.25
70.25
100.7
151.0
202.0
304.5
365.4331.04
468.2
812.08
1337.8
1482.4
1810.4
2093.7
2570.5
2815.824
24
24
25
25
24
25
26
265.1
10.1
30.1
70.8
101.7
151.8
202.5
303.6
364.7331.5
468.5
808.5
1338.5
1485.0
1814.5
2096.0
2566.5
2813.524
24
25
24
25
24