当前位置: 首页 精选范文 化学工程和技术

化学工程和技术范文

发布时间:2023-09-18 16:31:16

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇化学工程和技术范例,将为您的写作提供有力的支持和灵感!

化学工程和技术

篇1

所谓化学工业,主要是通过化学反应或物理操作将自然资源转变为人类所需要的产品的工业类型,在上世纪迅速发展,至今为人类提供了丰富的产品。随着人类对自然资源的逐渐深入利用,化学工业也发生了巨大的变化,个性化、多品种、小批量的专用化学品成为发展的主要方向。随着传统化学工业的饱和,化学工程转向产品,研究向微观层次深入,也专注于专用化学品的研究。

一、化学产品工程的理论体系

1.化学产品工程

随着市场的发展,专用化学品也面临着新的挑战,如产品的设计、功能、投入市场时间、通用设备选择等等。传统的单元操作也转向配方产品生产相关的操作。也足以看出化学产品工程的理论正在朝着以产品导向为开发的方向,寻找适合的方法继续拧产品设计及生产,为其提供理论与技术支持。化学产品工程主要回答的是生产何种产品,或者是该产品如何满足市场、环境及性能等方面内的要求。化学产品工程研究的核心内容是产品的性质与结构之间的关系,要从微观上定量和模拟分析。对产品的质量要进行设计与控制,化学工程师所面临的问题已经远远超出了化学工程领域的挑战。

2.产品设计特征

传统的过程设计主要是根据产品的数量、开发成本、利润及效率等方面进行考虑,实现经济效益这一基本目标,同时兼顾环境、安全等因素。在设计过程中,对分离与反映过程的不同方案进行对比,最终通过对公用工程、设备、材料及产品进行评估,进行经济性评价,过程设计综合了传递过程、热力学及单元操作等技术。与之不同的是,产品工程不但注重过程与单元的效率,更以用户需求作为产品功能的实现目标,注重小规模生产,新产品要快速进入市场,对市场的反应也比较敏捷。引起规模比较小,消耗的资源也比较少。

二、化学产品工程中的关键技术

1.分子产品工程

根据产品的分子机构、性能及加工行为间的规律,设计出市场需要的化学品,是现代化学产品工程的发展趋势。试验固然重要,但是作为产品工程人员要具备分子结构对产品性能产生何种影响的预测能力,从而设计出满足其性质需求的化学产品。在分子产品工程中,对分子结构与性能的关系研究非常重要,分析其关系主要通过计算化学领域的理论与方法以及半经验的分析方法来完成。采用计算机辅助分子设计方法,能够有效的降低产品的开发周期以及能源的消耗,计算机辅助分子设计的目的是为了满足特殊性质要求的分子及分子混合物,是基于大量候选分子中,通过合理的时间筛选出最符合要求的产品,通常通过正反两个方面来完成,首先,建立关系模型,反映出分子节后及分子交互作用和性质间的关系;其次,在关系模型建立的基础上,对分子结构进行优化,使之满足性质要求,这是一个数学规划寻优的问题。在分子产品工程中,分子模拟技术是一项关键的技术,产生于上世纪八十年代,是将模拟计算工具与计算机图形处理技术相结合,对现实世界的化学与物理过程进行分子模拟进行描述,目前该技术已经成为产品设计中的主要方法。该技术通过对分子力学、量子力学、数据库技术、分子动力学、数值算法及三维结构匹配等领域内的研究成果进行综合运用,实现对化合物宏观性能的解释。采用该技术能够直观的了解分子静态结构,还能给出分子宏观性能与结构间的定量结果。尤其是对试验手段很难观察到的物理过程及现象,能够通过分子模拟进行再现。目前,分子模拟研究的领域主要涉及到传递性质、流体流动、化学反应机理、高分子结构、复杂流体、相平衡、临界现象、晶体构造、膜及界面现象等。

2.配方产品工程

目前,化学产品工程更倾向于消费者所需求的产品性能的开发,如颜色、光泽、悬浮液的稳定性、催化剂的性能等方面,化学品市场对具有特殊工艺性质的复合配方的需求越来越多。如化妆品、表面活性剂、药物、洗涤剂、农用化学品等等。为满足其性能,这些产品被设计成结构颗粒固液分散体系、结构化固体、凝胶、溶胶、水溶性聚合体、泡沫纸品等,和基础化学品对比,此类产品的结构非常复杂,性质与质量与分离操作中的纯度和浓度有直接的关系。在配方产品中,分子聚集成的微相区介于宏观和微观之间,称为介观体系。该体系将宏观与微观联系起来,在合成与加工中,介观分离的时间非常短,如果仅仅从试验上进行把握,几乎是不可能的。因此介观模拟技术出现,该技术能够对真实的试验条件进行模拟胶体溶液及聚合物的微观形貌、化学形态、流动性等,对于高分子科学、化学工程及配方化学中涉及到的复杂问题能够很好的进行解决。基于介观尺度,计算机模拟有了飞快的发展,成为现阶段计算化学研究的前沿,目前,相对成熟的模拟方法主要有耗散颗粒动力学及介观动力学,这两种方法都是基于平均场密度泛函理论而存在。在实际应用中,已经成功的用于共聚物相分离、高分子混合增溶剂、逆变胶束、油-水-表面活性剂体系及乳胶种子形成等领域。

化学工业是国民经济重要的支柱产业和基础产业,资源、资金、技术密集,产业关联度高,经济总量大,产品应用范围广,在国民经济中占有十分重要的地位。“十二五”是国民经济发展的重要战略机遇期,也是化学工业发展的关键时期。为适应国内外形势新变化,深入贯彻落实科学发展观,加快转变发展方式,促进石化和化学工业转型升级,提高行业整体质量和效益,增强国际竞争力和可持续发展能力,特编制本规划。规划期为2011-2015年。本规划内容包括石油化工、天然气化工、煤化工、盐化工和生物化工等。

三、结束语

化学产品工程所研究的方向来源于化学工业的新挑战与需求,通过新的理论体系的构建,强力的推动化学工程的发展。其研究主要是以产品为导向来发展的,包含产品的设计、专业技术及知识等,其目的是为了降低产品的开发周期,提高设计水平,提升产品的质量。在研究中,化学产品工程需要解决两个实际问题:产品的物理参数与期望性能指标间的关系;如何将该关系转化为生产技术。也因此,对于优秀的化学工程师来说,化学界的需求非常大,与以往的过程工程师不同,化学工程师需要具备更为丰富的知识背景,此外,市场人员、科学院及工程师之间的配合也非常重要。由此可见,化学产品工程结合了不同领域的研究成果,并以产品为导向发展的知识体系,必然成为化学工程的重要研究方向。

参考文献

[1]李伯耿,罗英武.产品工程学--化学反应工程的新拓展[J].化工进展,2009(4).

篇2

在实际教学中,数形结合是应用比较广泛的数学思想方法。著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微。”在传统的教学中,多教师手工绘图,精确度低,速度慢,而运用几何画板作图,快速精确,直观性强,突出了数学教学的严谨性。以解析几何中椭圆的画法为例:

原理:由于椭圆的标准方程为:,可得表达式y=?;需确定变量x和参数a、b的值即可。步骤如下:

①建立直角坐标系;

②在x轴上取一点C,度量其坐标并分离出它的横坐标改名为a,类似地,在y轴上取一点D,度量出它的坐标并分离出它的纵坐标改名为b;a、b分别是椭圆在x轴、y轴上的截距;

③在x轴上取一点E,度量出点E的坐标并分离出它的横坐标改名为x;

④计算y的值,通过“度量―计算”,得到的值;

⑤绘出x、y的坐标点F;

⑥选择点E、F,执行“作图――轨迹”,得到上半椭圆;

⑦最后通过“变换――反射”得到下半椭圆。

(2)几何画板能直观动态呈现教学内容,突破教学的重难点,激发学生的学习兴趣, 揭示出数学知识之间的联系与区别。

几何画板能将一些原本难以在黑板上呈现的内容用形象、动态的画面呈现出来,并揭示出知识发生、发展的过程,帮助学生更容易地理解和掌握数学知识。 静态的图像往往会人为地割裂数学知识之间的内在联系,阻碍学生思维的发展。而让图像动起来,不仅可以揭示出知识之间的联系,还可以从中发现知识之间的区别。很多学生对数学产生厌倦的心理就在于数学本身具有抽象性,单凭老师的讲解还是未能清晰。运用几何画板可以令学生在动画演示或者对比分析中得到很直观的教育,易于学生理解。在“二次函数y=ax2+bx+c的图像”一节中,如何向学生说明y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k等函数图像的相互关系一直是传统教学中的重点和难点,学生难以理解,教师也难以用文字语言说明。通过《几何画板》只需用鼠标上下移动点a、h、k,y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k等函数图像便可一目了然,难题也就迎刃而解,学生也在a、h、k的变化过程中加深对二次函数的理解。利用《几何画板》反复动态演示y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k等函数图像的相互变换,学生便可比较顺利地掌握二次函数的图像上下左右平移的知识难点。

(3)几何画板为学生提供了进行自主学习、发现学习和研究性学习的有效工具,也为数学教学方式的转变提供了有利的技术支持。

篇3

作者简介:李向宾(1975-),男,河南洛阳人,华北电力大学核科学与工程学院,院长助理,讲师;陆道纲(1965-),男,

江苏扬州人,华北电力大学核科学与工程学院,院长,教授,博士生导师。(北京?102206)

基金项目:本文系核工程与核技术专业国家级“特色专业”建设项目(TS10671)、国家级核电“工程实践教育中心”建设项目、国家级“专业综合改革试点”建设项目、北京市教育委员会共建项目、华北电力大学教改项目(X10073)的研究成果。

中图分类号:G642?????文献标识码:A?????文章编号:1007-0079(2012)21-0028-02

为适应高新技术的飞速发展,社会信息化程度不断加深的世界新格局,高等学校需以崭新的方式为社会培养新型人才,支撑整个社会的发展与技术变革。为顺应这一历史潮流,世界各国都对其高等工程的教育体系进行了调整。[1]

2005年,美国工程院发表了《培养2020的工程师:为新世纪变革工程教育》,其中描述了对未来工程师的期望与其关键特征,为工程教育的改革发展作出了一项战略设计,提供了顺应未来需求的变革途径和具体措施。[2]美国高等工程教育的一大发展趋势是向工程实践的回归,并以麻省理工学院为首发动了“回归工程运动”,特别强调实践训练在工程教育中的作用,通过开发“以问题为中心”,融合“理论教学”和“研究型教学”的实践性课程来培养学生的创造性能力,尤其强调对学生工程设计能力的培养。其另一大发展趋势是更加强调通识化。通过吸引更多更广泛的学生普及工程教育以及保持工程实践的活力,通过宽泛工程教育扩大学生职业选择范围并满足社会的需要,通过工程教育更加通识化来提高学生终身学习能力。[3]欧盟和欧洲各国同样也在大力推进工程教育改革。1999年,欧洲29个国家的教育部长签署了“博洛尼亚宣言”,其高等工程教育已基本采用了“学士—硕士—博士”的学位体系,同时它也成为今后若干年内欧洲高等工程教育改革的一个目标。如德国高等工程教育体系划分为理工科大学(TU/TH)和应用技术大学(FH)两类。TU/TH属于研究型大学,培养对象为偏重理论的大学文凭工程师,学制一般5年左右,培养过程偏重于科学与研究方法,理论教学占较大比重,毕业生有较强的理论基础和科研开发能力,大学文凭工程师毕业后可攻读工学博士学位;FH属于应用技术类高校培养的重点放在实际生产与运用上,以培养中层及以下的技术应用人员为目标,学习期满合格者(含6个月实习)颁发应用技术大学文凭工程师学位,毕业生具有较强的实践能力和运用能力,能够很快适应就业市场的需要。这种理论与应用分明的做法,不仅适应了人的个别差异性,为学生提供了不同类型的选择机会,同时也能够根据工业技术的发展和市场的变化及时调整培养重心,使工程教育能灵活地适应社会的变化。[4]此外,欧洲也对高等工程教育的教学进行了改革,强调课程教学模块化,理论课程与实践课程一体化,产学研密切结合,使得毕业生能够更好地适应企业的需求。

改革开放以来,我国的高等工程教育取得了巨大成就。统计资料显示,目前我国开设工科专业的本科高已达1000多所,占本科高校总数的90%;高等工程教育的本科在校生达到371万人、研究生47万人;全国的工程科技人员总保有量也超过1400多万,高等工程教育规模位居世界第一,也形成了比较合理的高等工程教育结构和体系,[5]但还远不是教育强国。我国已故著名科学家钱学森曾多次指出,“为什么我们的学校总是培养不出杰出人才”?此即著名的钱学森之问,也是我国要成为教育强国和创新大国所必须直面和解决的重要问题。基于此,教育部在其后于2009年制订的《国家中长期教育改革和发展规划纲要(2010-2020年)》中明确提出,要把改革创新作为教育发展的强大动力,改革人才培养体制、探索并创新人才培养模式。在此背景下,教育部于2010年启动了“卓越工程师教育培养计划”,旨在培养造就一大批创新能力强、适应经济社会发展需要的高质量各类型工程技术人才,为国家走新型工业化发展道路、建设创新型国家和人才强国战略服务。清华大学、华北电力大学等61所高校成为“卓越计划”的首批成员,此后又有133所高校加入,参与“卓越计划”的高校大致可分为“985”大学、行业背景的大学、“211”大学和地方一般院校四类。预计到2020年,参与“卓越计划”的高校数为本科高校总数的20%左右,参与的全日制工科本科学生约10万人/年,参与全日制工科研究生约7万人/年。[6]

华北电力大学核科学与工程学院(学院)自成立以来,扎根于学校强大的行业优势,一直致力于打造具备鲜明特色的核学科品牌。其所属的核工程与核技术专业成立伊始,即带有深深的工程烙印,此次作为我校首批进入“工程实践型”卓越计划的三个实施专业之一,必将在学科发展和人才培养方面揭开新的篇章。

一、华北电力大学核工程与核技术专业特色

篇4

作者简介:曹博(1981-),男,甘肃平凉人,华北电力大学核科学与工程学院,讲师;陆道纲(1965-),男,江苏扬州人,华北电力大学核科学与工程学院,院长,教授,博士生导师。(北京?102206)

基金项目:本文系核工程与核技术专业国家级“特色专业”建设项目(TS10671)、国家级核电“工程实践教育中心”建设项目、国家级“专业综合改革试点”建设项目、北京市教育委员会共建项目、华北电力大学教改项目(X10073)的研究成果。

中图分类号:G642?????文献标识码:A?????文章编号:1007-0079(2012)21-0032-03

实践教学是高等教育中一个必不可少的教学内容,是培养高素质的具有创新精神和实践能力的应用型本科人才的重要环节。[1]正确地认识实践教学的作用,科学地构建实践教学体系,合理地拓展实践教学的形式是保证整体教学质量的前提。[2]教育部近日公布了《教育部等部门关于进一步加强高校实践育人工作的若干意见》,[3]其中明确提出要强化高校实践教学环节,增加实践教学比重,加强实践教学管理。华北电力大学是一所以电力行业为特色的高校,历来重视实践教学。国家“十一五”发展规划把核电由“稳步发展”提升为“加快发展”,面对这样的形势和国家对核电人才的需求,很多高校新开设了核专业。核工程专业人才培养质量与实践教学息息相关,然而由于核行业特殊性等原因,目前实践教学已成为核工程与核技术专业教学工作中较为薄弱的环节,已成为影响我国核科学与技术高等教育质量提高的瓶颈。[4-6]

作为教育部直属高校中唯一的一所电力类“211工程”重点大学,华北电力大学着力构建“大电力”学科体系,在保持传统火电学科优势的前提下,面对国家能源发展趋势和战略需求,2004年经教育部批准,设置了核工程与核技术专业,成为继清华大学、西安交通大学、上海交通大学和哈尔滨工程大学之后,国内第五所培养核工程人才的大学。华北电力大学核工程与核技术专业是在华北电力大学电气、动力等优势学科的基础上设置的,秉承了华北电力大学重基础、重实践教学思想,强调人才培养要“重实践,强能力”的特色,专业设置之初就高度重视实践教学,狠抓实验实践环节和过程的教学设计和实验室建设,形成了一套具有华北电力大学特色的实践教学体系。

一、核工程与核技术专业实践教学体系

面对核电行业对创新型人才的需求以及其他各种挑战,构建科学合理的实践教学体系对核电人才培养具有重要意义。华北电力大学核科学与工程学院为培养高素质的具有创新精神和实践能力的核工程与核技术专业人才,建立了以校内实验、校外实习以及创新实践三方面为主的本科实践教学体系,如图1所示。

该体系覆盖了从课内实验、开放性实验、金工实习、认识实习、毕业实习、到最终毕业设计的系统化的实践教学环节,使“理论+实验+设计”的课程体系得到进一步完善,强化了实践环节和创新素质培养环节,使学生实现了从第1学期到第8学期实验、实习不间断的系统训练。

1. 校内实验

华北电力大学核工程与核技术专业从基础理论课、专业基础课到专业课都涉及到一系列的实验教学环节,基础课及专业基础课涉及到的实验包括物理实验、电子技术综合实验、工程热力学实验、工程流体力学实验、理论力学实验、材料力学实验、传热学实验等。核工程专业课已初步建成了8个实验室,如图2所示。为相关课程的课程设计、毕业设计以及大学生本科创新计划项目提供实验平台支持。

2.校外实习

华北电力大学核工程与核技术专业的校外实习分为认识实习和毕业实习。核科学与工程学院非常重视这两个实习环节。为了更好地开展校外实习,先后与中国原子能科学研究院、中国核动力研究设计院、清华大学核能与新能源技术研究院、唐山陡河电厂、中国电力投资集团公司等多家单位建立了密切的战略合作关系,形成了固定的校外实习基地。其中,2011年与中国电力投资集团公司联合申报的国家级“核电工程实践教育中心”建设项目已获教育部批准。

二、实践教学具体内容

篇5

一、社会需求的高涨凸显了人才培养的紧迫性

随着我国经济的飞速发展,智能建筑如雨后春笋般在全国各大城市普及,但是即使从全国范围来看也只是在最近10年才开始有高校建立智能楼宇方面的专业,人才培养远远跟不上形势发展的需要。

二、“工学结合”的解读

(一)工学结合的由来

工学结合是一种将学习与工作相结合的教育模式,形式多种多样。无论是什么形式,共同点都是学生在校期间不仅学习而且工作,也就是半工半读。

这种教育模式之所以能持续100年经久不衰,主要归功于它切合实际的理念,那就是以职业为导向,以提高学生就业竞争能力为目的,以市场需求为运作平台。美国曾于1961年在福特基金会的支持下进行了一次对工学结合教育模式的调查。该调查认为,工学结合的教育模式可以给学生带来如下几方面的收益:(1)使学生能够将理论学习与实践经验相结合,从而加深对自己所学专业的认识;(2)使学生看到了自己在学校所学习的理论与工作之间的联系,提高学生理论学习的主动性和积极性;(3)使学生跳出自身的小天地,与成年人尤其是工人接触,加深了其对社会和人类的认识,体会到与同事建立合作关系的重要性;(4)为学生提供了通过参加实际工作来考察自己能力的机会,也为学生提供了提高自身环境适应能力的机会:(5)为许多由于经济原因不能进入大专院校学习的贫穷学生提供了经济来源和接受高等教育的机会;(6)使学生经受实际工作的锻炼,大大提高了学生的责任lf,和自我判断能力,使其变得更加成熟;(7)有助于学生就业的选择,使学生有优先被雇主录取的机会,其就业率高于未参加合作教育的学生。

(二)工学结合的主体是学生

工学结合是将学习与工作结合在一起的教育模式,主体是学生。即以职业为导向,充分利用校内外不同的教育环境和资源,把以课堂教学为主的学校教育和直接获取实际经验的校外工作有机结合,贯穿于学生培养的整个过程之中。在此期间,学生在校内以受教育者的身份,根据专业教学的要求参与各种以理论知识为主要内容的学习活动,在校外根据市场的需求以“职业人”的身份参加与所学专业相关联的实际工作。这种教育模式的主要目的是提高学生的综合素质和就业竞争能力,同时提高学校教育对社会需求的适应能力。

三、将“工学结合”的理念贯穿到课程体系建设与专业教学标准研制中

(一)转变人才培养模式,力争初步形成“教学工厂”的模式

要紧扣“工学结合、校企合作”这个核心,结合本专业及相关行业企业的特点,以职业岗位的能力要求为依据、以职业岗位的真实工作为基础,对人才培养模式进行改革,在人才培养方案的设计中突出“三个融合”。一是主干课程设置与职业岗位真实工作内容相融合,突出核心职业能力培养。对专业的核心课程和主干课程进行项目型课程改造,压缩理论课学时,减少课程门数,提高课程实践性知识与经验性知识的“含金量”;二是实践教学标准与现行的职业资格标准特别是高级职业资格标准相融合,适度超前,充分体现高标准、严要求、强训练的特色;三是人才培养过程与实际工作过程相融合,充分体现专业人才培养与实际生产过程的高度相关,实现校内实训、顶岗实习与综合性的毕业设计的有机结合,提高校内生产性实训的比例,落实半年以上顶岗实习的要求,健全顶岗实习的管理制度,确保顶岗实习的质量。力争经过一到两年的努力,初步形成一种可以称之为“教学工厂”的模式。

(二)强化以就业导向为核心,引领课程体系建设和专业教学标准研制

课程是将宏观的教育理念与微观的教育实践联系起来的一座桥梁,是一切教学活动的核心,是实现人才培养目标的重要手段。无论是何种教育理论、教育观念抑或是培养目标,最终都必须借助这座桥梁才能实现。教育层次和教育类别的区分,集中体现在课程观、课程模式、课程内容等的区别上。用于区分高职教育与普通高等教育的类别特征差异、用于区别高职教育与中等职业教育的层次界限,也集中体现在课程体系与课程内容之中。推进工学结合的人才培养模式改革,就势必要求我们在专业建设和课程建设的各个层面上积极探索适应中国国情的、符合工学结合要求的课程结构、课程内容和课程实施与评价的方法。

1.课程体系建设:以能力本位为依托,以工作任务为导向,以开放性、服务性为原则,以“三贴近”为内容,形成“课证一体化”的课程体系。

(1)以能力为本位。即以能力培养为核心、以职业岗位(群)能力分析为依据、以职业资格或行业标准为参照来设置专业课程,确定课程目标,以能力本位作为课程建设的指导思想。

(2)以工作任务为导向。其基本要点是:以与专业紧密相关的职业活动、职业情景为参照系,对职业活动的行动领域进行分析归纳从而导出学习领域,并通过设计适合于教学的学习情景使其具体化,形成课程内容,包括工作任务分析、行动领域归纳、学习领域转换、学习情景设计等四个关键步骤。

(3)以开放性和服务性为原则。高职课程开发只有体现开放性和服务性的原则,才能使工学结合的教育理念在更宽广的视野和背景下得以实现。

(4)以“三贴近”为内容。在“能力本位课程观”的指导下,高职课程内容的选择主要是根据课程开发中的职业工作分析获得的能力要求和标准来组织课程内容的。

(5)形成“课证一体化”课程体系。构建楼宇智能化工程技术专业课程体系的基本思路是,引入职业资格标准或企业认证标准,按照不同岗位不同等级职业资格证书及企业认证标准的技能培养要求,对应设置专业主干课程。

友情链接