你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 电磁感应效应

电磁感应效应范文

发布时间:2023-10-12 17:41:34

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇电磁感应效应范例,将为您的写作提供有力的支持和灵感!

电磁感应效应

篇1

 

【关键词】电磁感应;高温空气;升温特性;加热件

1.引言

感应加热技术应广泛应用于金属熔炼、热处理和焊接等过程,己成为冶金、国防、机械加工等部门不可缺少的技术。中频感应加热技术因其具有加热速度快、热效率高、无污染易于实现机械化等优点[3、4],因此这项技术已经在许多行业中得到应用[5﹑6]。在常规的电磁感应加热炉中,利用感应热对金属进行热处理,不同金属会呈现出不同的升温特性。本文在加热装置上进行试验研究,以探求这种高温空气发生装置的可行性以及加热功率、加热体表面积、加热体形状等因素对空气加热特性的影响。

 

2.原理设计计算

(1)电磁感应定理:法拉第电磁感应定律说明:在一个电路围绕的区域内存在交变磁场时,电路两端就会产生感应电动势,当电路闭合时则产生电流。这个定律是感应加热的理论基础。

 

当感应线圈上通交变的电流i时,线圈内部会产生相同频率的交变磁通φ,交变磁通φ又会在金属工件中产生感应电势e。根据麦克斯韦电磁方程式,感应电动势的大小为:

由式(1-5)可以看出,感应电势和发热功率与磁场强弱有关。感应线圈中流过的电流越大,其产生的磁通也就越大,因此提高感应线圈中的感应电流可以使工件中产生的涡流增大,从而增加加热效果,使工件升温更快。

 

3.实验方案及结果

3.1 实验流程

在实验开始前第一步是打开装置的水冷却系统,对设备内及感应器通水冷却;接着打开空气压缩机,使通气设备储存一定的空气量;第三步则是打开中频感应设备对金属导体进行加热,同时通气进行热交换加热空气;最后用热电偶对出口空气温度进行测量,记录数据。实验装备流程如图3所示。

 

3.2 实验方案及实验结果

3.2.1 加热体表面积﹑形状对空气温度的影响

实验条件如下:通入恒定空气流量为1m3/h,开始加热金属导体的同时即通入空气;在感应设备输出电流为800A的情况下加热5分钟,然后每隔30秒记录一次出口空气温度;每隔3分钟改变一次输出电流,分别为:800A,900A,1000A,1100A,1200A,1300A,1400A。

 

方案一:通风管道内感应加热体为两个螺旋形钢丝,空气与之进行热交换后出口空气温度记录如表3.1。

方案二:为了与方案一形成对比,探讨热交换面积的大小对出口空气温度的影响,在与方案一实验条件相同的情况下,只把双螺旋形钢丝变成单螺旋形钢丝,出口空气温度见表3.2。

 

方案三:为了探讨加热体形状对出口空气温度的影响,在与方案一实验条件相同的情况下,用小钢管作为空气加热的热源,与空气热交换后出口空气温度见表3.3。 

3.2.2 加热功率对空气温度影响

在此实验方案中,空气流量为一恒定值1m3/h,通过改变中频感应设备的输出功率来探求加热功率对出口处空气温度的影响。中频感应输出电流分别为800A、1000A、1200A,每加热1min记录一次出口空气温度,总加热时间为30分钟。在此条件下空气温度如表3.4所示。

 

由表3.4可知:改变中频感应设备的输出功率,随着加热功率的增加,出口处空气温度增加。

4.实验结果分析与讨论

加热体形状﹑表面积对空气温度的影响:

(1)小钢管为加热体条件下空气加热效果

从图4.1可以看出,小钢管为加热体时,空气温度经过初期快速升温后,升温幅度略微减小,近似为直线关系。随着加热时间的延长,出口空气温度也随之增加。这是因为通入的冷空气不能及时带走小钢管的热量,小钢管的热含量越来越多,表面温度升高,有利于热量从小钢管传递给空气,因此随着加热时间的延长,出口空气温度升高。

 

(2)双螺旋钢丝为加热体条件下空气加热效果

由图4.2可知:双螺旋钢丝为加热体,出口空气在经过初期的快速升温后,升温幅度迅速减小,升温曲线近似水平,说明冷空气带走的热量与双螺旋钢丝感应产生的热量近似平衡,加热效果不理想。

 

(3)螺旋形钢丝与钢管的感应加热效果对比

从图4.1和图4.2对比可知:在相同的条件下,螺旋形钢丝与小钢管相比较,螺旋形钢丝在感应加热过程中感应加热效果不明显,加热效果的效果较差。

(4)单螺旋及双螺旋形钢丝条件下空气温度的对比

由图4.3可知:当用双螺旋形钢丝作为感应加热体与空气进行热交换时,出口空气温度大约是单螺旋形钢丝条件下的两倍。因此,增大加热体表面积可以提高出口空气温度。

参考文献

[1]Sun W Q,Cai J J,Xie G W. Application research on energy-saving of continuous heating furnaces based on thermal value theory[A].In:Proceedings of first international conference on applied energy[C].Hong Kong:2009:614-620.

 

[2]蔡九菊,孙文强,谢国威.热价值理论及其在加热炉节能中的应用[J].东北大学学报(自然科学版),2009(10).

[3]赵长汉,姜土林.感应加热原理与应用[M].天津:天津科技翻译出版公司,1993:10-11.

[4]俞勇祥.感应加热技术的应用与发展[J].今日科技,1999(9):4-5.

[5]赵清林.邬伟扬.张纯江.感应加热在液体加热中的应用[J].燕山大学学报,2002,26(2):173-175.

篇2

中图分类号:C93文献标识码: A

弱电流传感器在很多领域中有比较普遍的运用,随着这些行业的不断进步,对传感器的准确度的要求也越来越高,比如在电机调速,绝缘在线检测等仪器中,对传感器的灵敏度,抗干扰能力,分辨力有了更高的要求。为了迎合需求,人们对某些新材料,常规能源又有了更多的探索。近年来,迎合市场的需求磁电方面的研究也逐渐火热起来,经过许多仁人志士的探索研究,在非晶,纳米晶材料等的基础上,人们发现了巨磁阻抗效应,这就为新型非晶磁芯巨磁阻抗效应弱电流传感器的研制奠定了基础。

1.巨磁阻抗效应原理的相关知识及其优点

外加磁场的改变可以显著影响软磁合金材料的交流阻抗的现象成为巨磁阻抗效应(giant magneto-impedance, GMI)。具体点说,巨磁阻抗效应就是高频电流引发的趋肤效应。这种现象是kmh等人在一次偶然的实验中发现的。经过多次的实验,发现巨磁阻抗效应在室温的条件下对弱磁场非常的灵敏,具有灵敏度高,线性高,无磁滞现象等优点。具备这样的优势,巨磁阻抗效应的应用有远大的前景,所以引起了各国的学者广泛关注,并积极做了诸多研究。

比如有学者做过比较,在室温的条件下做实验,得出巨磁阻抗效应对弱磁场的灵敏度比巨磁电阻对弱磁场的灵敏度多了一个数量级以及磁通门传感器效率更好的结论。除此之外,可得知,巨磁阻抗效应结构比较简单,工作效率好,温度稳定性也较高,有这很多传感器都无法超越的优越性。当下,由于很多新型复合材料都可见巨磁阻抗效应,所以对其的深入研究也正在进行中。

2.巨磁阻抗效应的基本特征和敏感原件制备

2.1巨磁阻抗效应的显著优势

和其他事物一样,巨磁阻抗效应也有物极必反的道理。在弱磁场的条件下,软磁材料在高频电流作用下,与阻抗磁场呈正相关关系,非线性误差比较小,弱磁场灵敏度较高。然而在高磁场的前提下,阻抗与磁场有着负相关的关系,也就是阻抗会随着磁场的增大而逐渐减小。除此之外,热处理感生磁各向异性场有利于加强此种效应。除此之外,与其他磁效应相比较,利用巨磁阻抗效应制成的传感器其装置简单,但是对速度和频率不敏感。而且这种效应广泛应用于制造磁记录磁头,磁盘检测器,和磁膜储存器的读出器等等,应用十分广泛。

2.2非晶磁芯的相关知识

非晶磁芯是非晶材料加工而来的磁性元件,根据材料的形状可以分为带材型磁芯和粉末性磁芯,笔者主要论述的是经过卷曲后的环形磁芯。非晶磁芯饱和磁密比较高,但是会随着频率升高,磁导率会急速下降,一般用于普通的频带。在实验室当中,经常使用非晶薄带制成敏感原件,具有低耗能,高精度,好灵敏度的特点。其中电流,温度都比较低,电阻率也较小。在具体制备过程当中,非晶薄带要等厚约5cm,沿着规定的方向截取长宽。然后再卷成环形的磁芯,再用脉冲电流退火,这样,敏感原件基本制备完毕。

3新型非晶磁芯巨磁阻抗效应弱电流传感器的结构和工作原理

3.1新型非晶磁芯巨磁阻抗效应弱电流传感器的电路结构

此种传感器有由多谐振荡器,微分电路,非晶磁芯,峰值检波,以及低通滤波差分放大等部分组成的。是由MOS问电路构成的多谐振荡器产生高频方波信号,进过微分电路后产生脉冲电流信号,刺激非晶磁芯。让待测的电流穿过磁芯轴线,这样,环形磁场形成,同时也改变了磁芯阻抗,进而改变峰值电压。在通过峰值检波装置检测峰值的大小,在通过低通滤波与基准电压比较得出差值,输出电压。

3.2脉冲电流电路

脉冲电流通过刺激非晶磁芯,使得阻抗变化率有所改变。某种意义上说也就是提高传感器的灵敏度。原因是非晶磁芯的特性决定的。只有在高频电流的刺激下,非晶磁芯才可以出现巨磁阻抗效应,随着磁场增加,阻抗也急剧增加。通过傅立叶变换可以知道,非晶磁芯的频谱是周期脉冲序列,同时含有丰富的谐波信号,所以脉冲电流可以提高传感器的灵敏度。在具体使用过程中,使用非门芯片产生高频方波,经过微分电路又得到脉冲电流,脉冲电流中的负脉冲又通过飞门去除,仅剩下正向脉冲电流。为了使脉冲电流正常工作,应保证线路不同部位中的电阻的大小合理。比如反向器输入端的补偿电阻远远大于微分电路中的电阻,这样不仅仅可以避免振荡频率不稳定的缺点,还可以提高振荡频率的稳定性。

3.3新型非晶磁芯巨磁阻抗效应弱电流传感器的信号处理电路

传感器信号处理电路大概有五个部分组成,磁芯两端的脉冲电流差值较大,容易使得二极管的阈值电压和临界导通的非线性关系放大,为了避免这种现象,在线路中又设置了峰值检波电路。阈值电压变得很小时可以忽略不计,这时,可以采取滤波措施,减少不需要的散在信号,使得传感器的信噪比增加。检波电路测到的是磁芯两端的峰值电压,有一定的误差,也就是说同一时间段内,两者的初始值不一样,针对这个问题,才装置了差动放大电路,使得可以准确读出差值。在实际电路中,存在这样一片区域,就是磁芯阻抗值越来越慢,这个区域不利于电路的运行,所以为了绕过这片区域,我们就在磁芯附近增加了偏置磁场。如此一来,弱直流电流传感器就有了双重功效,既可以确定电流的去向,还可以被检测电流的大小,真是一举双得。

3.4工作电压对新型非晶磁芯巨磁阻抗效应弱电流的影响

新型非晶磁芯对工作的电压有一定的要求。要在规定的范围内,否则容易出现效率低下的现象,又或者直接造成不能运转的后果。新型非晶磁芯的芯片在此合理范围内工作效率较高,多谐振荡装置几乎都可以保证输出方波的稳定性。但在实际工作中,电压的大小很大程度上决定了方波的幅值,从而也直接影响到脉冲电流峰值的大小。这种现象也刚好印证了在一定条件下,输出的电压值的波动与脉冲电流峰值的大小有线性关系的原理。也由此可知,在相同阻抗变化率的条件下,输出电压的大小可以影响传感器的测量灵敏度,线性度,分辨力。所以保证工作电压在合理范围内是至关重要的。由上文可知,弱电流传感器的灵敏度与工作电压有线性关系,所以有稳定的直流工作电源,是提高电流传感器的精确度和灵敏度的重要基础。

4.结论

笔者提出了一种由非晶薄带为敏感原件的新型巨磁阻抗效应弱电流传感器。提出了传感器的电路设想。这种传感器有无可比拟的优越性,比如:线性强,灵敏度高,设备简单,成本减少等等特点,在相关领域中有较大的应用价值。近年来,不少国外的文章也曾论述过此类研究,但是与之相比,有一定的差距,但是随着多次的实验,磨合,总结,此次所设计的信号处理电路在各方面都有了显著的提高,比如在精确度和测量范围上等等。巨磁阻抗效应自身就具有温度稳定性好,灵敏度高的优势,所以在弱电流检测中应用前景广泛。但是外磁场对其有干扰作用,所以在制作过程中使用了外部磁场的屏蔽壳,提高了其工作效率。

【参考文献】

篇3

因磁通量的变化产生感应电动势的现象(闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中会产生感应电流,这种现象叫电磁感应)。电磁感应现象的发现是电磁学发展史上的一个重要的成就,它进一步揭示了自然界中电现象和磁现象之间的内在本质联系。促进了电磁理论的发展,证实了自然科学中统一的哲学观点。同时由于电磁感应定律的确立,使得电能得以广泛的应用,引发了第二次科技革命。使得现代的电力工业和电工以及电子技术得以建立和发展。

在物理学的发展史上有很长一段时期内未找到电与磁的联系。丹麦物理学家奥斯特一直相信电与磁之间一定有着某种联系,并且开始了电磁统一性的试验研究。直到1820年,他发现了电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题。

1831年8月,法拉第在软铁环两侧分别绕两个线圈,其一为闭合回路,在导线下端附行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。法拉第立即意识到,这是一种非恒定的暂态效应。紧接着他做了几十个实验,把产生感应电流的情形概括为5 类:变化的电流 ,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正比,他由此认识到,感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。法拉第发现电磁感应现象不是偶然的,同他的坚持不懈是分不开的。从实验的一次次失败到失败,最终发现了电磁感应现象。

篇4

中图分类号:TM862 文献标识码:A 文章编号:1672-3791(2014)10(c)-0098-01

架空输电线路向同杆双回、多回路并架发展已成为一种必然趋势,且由于负荷密度高、输送容量大,因此也具有采用大截面导线的特点。该文以佛山某电厂至变电站的220千伏同杆架设双回输电线路为例,分析其中的电磁感应问题,为此类同杆架设双回输电线路的安全作业提供依据。

1 线路的基本情况

线路全长31km,两回线路导线均采用LGJ-630/45。根据发电厂装机容量及接入系统情况,单回导线经济输送容量为376 MW,极限输送容量为1128 MW。对应的经济输送电流为1161A,极限输送电流为3483A。两回线路导线均采用垂直布线,左侧线路甲从上到下分别为A1、B1、C1,右侧线路乙从上到下分别为C2、B2、A2,主要杆塔及其布线方式如图1。

2 感应电压的产生

当线路甲运行,线路乙停电检修时,将会在线路乙上产生感应电压。感应电压分静电感应电压和电磁感应电压,静电感应电压是由于两线路间存在的电容耦合效应而产生,电磁感应电压是由于运行线路流过的交流电流产生的交变磁场,在停电线路上感应出来的纵电动势。静电感应电压的大小与附近运行线路的电压等级有关,运行线路电压越高,静电感应电压值越大。电磁感应电压与邻近运行线路流过的电流大小有关,运行线路流过的电流越大、同杆架设的线路越长,则电磁感应电压越高。

根据有关研究数据,对于220kV同杆架设的线路,在停电线路不接地的情况下,静电感应电压将达到千伏级,在停电线路接地的情况下,感应电压则以电磁感应电压起主要作用。由于在通常的停电检修作业中,停电线路不可能不接地,因此,该文着重对电磁感应电压进行探讨。

3 电磁感应电压的计算

当线路甲运行,线路乙停电检修时,在A2相上的电磁感应电压计算公式如下:

U A2=I・(XA2C1-1/2・XA2A1-1/2・XA2B1)

XA2C1=0.628・10-4[Ln(2L/D)-1]

式中 U A2是A2相导线的电磁感应电压(V/m);

I是线路甲中的三相工作电流或三相短路电流(A);

XA2C1是线路乙中A2相对线路甲中C1相单位长度的平均互感抗(Ω/m),XA2A1、XA2B1的意义以此类推;

L是线路长度(m);

D是线路甲C1相与线路乙A2相之间的平均间距。

根据以上条件,可以分别算出在经济输送电流和极限输送电流两种情况下,停电线路各相的电磁感应电压值如表1。

按照以上的计算结果,当某作业点距离接地点在500m左右时,就有可能存在超过安全电压的感应电压了。对于220kV线路,一些有跨越的档距,超过500米是较为普遍的。在这些跨越档的杆塔上作业,若仅有前、后档杆塔的接地点,仍然是不足的,需要在作业现场设一接地点,才能对作业人员的安全有更好的保障。

4 结论

对于输送容量大且较长的双回或多回同杆并架输电线路,当其中一会停电检修时,若仅在线路两端的变电站侧接地,则线路中可能会存在危及作业人员安全的感应电压。因此,在作业现场或附近增设接地点是十分必要的。

篇5

电磁铁

一、知识点

1.

电磁铁的来源:通电螺线管有磁性,如果在一个通电螺线管中插入一根软铁棒,螺线管的磁性会更强。

2.

定义:插入了软铁棒的通电螺线管叫电磁铁。

这根软铁棒称为电磁铁的铁芯,螺线管成为电磁铁的线圈。

注意:电磁铁的铁棒(铁芯)是由软铁制成的,被磁化时显磁性,但失去外部磁场时,其磁性又立即消失。

3.

电磁铁中加铁芯的原因

通电螺线管通电后产生磁场,该磁场使其内的铁棒被磁化,铁棒磁化后的磁场极性与通电螺线管的机型完全一致,使得电磁铁的磁性比螺线管的磁性大大地增强。

4.

影响电磁铁磁性强弱的因素

(1)

电磁铁通电时产生磁性,断电时失去磁性。

(2)

电磁铁中的电流越大则电磁铁的磁性越强。

(3)

电流一定时,外形相同的螺线管,线圈的匝数越多,它的磁性越强。

(4)

电磁铁中有铁芯比无铁芯时的磁性强。

5.

电磁铁的特点

(1)

可以通过电流的通断,来控制其磁性的有无。

(2)

可以通过改变电流的方向改变磁场方向。

(3)

可以通过改变电流大小、铁芯的材质来控制磁性的强弱。

6.

电磁铁的应用

电磁起重机、电磁选矿机、电磁继电器、电铃等。

7.

电磁继电器

(1)

电磁继电器的工作电路

(2)

电磁继电器的组成

一般由电磁铁、衔铁、弹簧片、触点等组成。

(3)

电磁继电器的原理

利用电磁铁在通断电的情况下有无磁性来间接控制工作电路通断的开关。

(4)

电磁继电器的应用

①利用低电压、弱电流控制高电压、强电流。

②实现远距离操作。

8.

电磁阀车门

现在的公共汽车使用的都是利用压缩空气开关的自动门。其中空置压缩空气是开门还是关门的滑阀就是你用两个电磁铁来控制的。司机通过单刀双掷开关S来使线圈或通电产生磁场吸引衔铁或,从而推动滑阀使空气压缩来推开或关闭车门。其结构如下:

二、例题精讲

【例1】

通电螺线管的磁性强弱跟通过它的

的多少有关,另外,将

________插入通电螺线管中.它的磁性也会大大增强.

考点:

影响电磁铁磁性强弱的因素.

解析:

据上面的分析可知,通电螺线管的磁性强弱跟通过它的电流及线圈匝数的多少有关,另外,将铁芯插入通电螺线管中.它的磁性也会大大增强.

答案:

电流;线圈匝数;铁芯.

【测试题】

如图所示,若闭合电键S,则电磁铁的磁性将(

)

A.

增强

B.

减弱

C.

不变

D.

无法判断

闭合电键S1后,电路由单个的R1变为R1与R2并联,并联后的总电阻小于R1的阻值,由欧姆定律I=

可知,使得通过电磁铁线圈中的电流增大.根据影响电磁铁磁性大小的因素可知,通过线圈电流增大,电磁铁的磁性增强.

故选A

【例2】

如图所示的电磁铁,要想磁性最强,正确的方法是(

)

A.S接D,P滑至B端

B.

S接C,P滑至A端

C.

S接C,P滑至B端

D.

S接D,P滑至A端

考点:

影响电磁铁磁性强弱的因素.

解析:

滑动变阻器S接C电磁铁线圈匝数最多,滑片在A端电路电流最大,并且有铁芯,所以此时电磁铁磁性最强.

答案:

B

【测试题】

如图所示,当滑动变阻器的滑片P向右移动时,悬挂磁铁的弹簧的长度(

)

A.

将变长

B.

将变短

C.

先变长后变短

D.

先变短后变长

利用安培定则可以判定电磁铁的下端为N极,上端为S极,故电磁铁与其上面的条形磁体相互吸引.当滑片P向右滑动时,滑动变阻器接入电路的阻值变小,根据欧姆定律可知,电路中的电流增大,所以电磁铁的磁性增强.电磁铁对条形磁体的吸引力增大,条形磁体对弹簧的拉力增大,所以弹簧伸长的长度变长.

故选A

【例3】

下列设备中利用电磁感应现象制成的是(

)

A.

电磁继电器

B.

发电机

C.

电磁铁

D.

电动机

考点:

电磁感应.

解析:

A、电磁继电器是利用电流的磁效应的原理制成的,故该选项不符合题意;

B、发电机是利用电磁感应现象的原理制成的,故该选项符合题意;

C、电磁铁是利用电流的磁效应原理工作的,故该选项不符合题意;

D、电动机是利用通电导线在磁场中受力的作用的原理制成的,故该选项不符合题意.

答案:

B

【测试题】

首先发现电磁感应现象的科学家是(

)

A.

法拉第

B.

安培

C.

焦耳

D.

奥斯特

A、英国物理学家法拉第最早发现了电磁感应现象.故A正确;

B、安培发现了安培定则.故B错误;

C、焦耳发现了焦耳定律.故C错误;

D、奥斯特首先发现电流的磁效应.故D错误.

故选A

【例4】

某同学在做“研究电磁铁”实验时,连接了如图所示的电路,试判断电磁铁有无磁性或磁性强弱的变化.

(1)只闭合S1时,电磁铁

磁性.

(2)闭合S1、S2接a时,滑动变阻器的滑片向右滑动,电磁铁磁性

(3)S1闭合,S2由接a改为接b,调节滑动变阻器滑片P,使电流表示数不发生变化.这时电磁铁的磁性

(4)电磁铁在我们的日常生活中被广泛的用到,如:

考点:

探究影响电磁铁磁性强弱的因素的实验.

解析:

(1)只闭合S1时,电路中没有电流通过,电磁铁不会产生磁性,故电磁铁没有磁性;

(2)闭合S1、S2接a时,电路中有电流,电磁铁有磁性;当滑动变阻器的滑片向右滑动时,滑动变阻器接入电路中的电阻丝变长,电路中电阻变大,电流变小,即:在匝数一定的情况下,电流减小,电磁铁磁性减小;

(3)S1闭合,S2由接a改为接b,匝数变少,又调节滑动变阻器滑片P,使电流表示数不发生变化,即:在电流一定的情况下,减小匝数,电磁铁磁性减小;

(4)电磁起重机、电磁继电器、电铃都用到了电磁铁;

答案:

(1)没有;(2)减小;(3)减小;(4)电磁起重机.

【测试题】

如图所示,A为螺线管,B为悬挂在弹簧测力计下的条形磁铁,当开关S断开时,弹簧测力计的示数将

(填变大或变小),电流表的示数将

(填变大或变小).

开关S断开时,电路中的电流变小,电流表示数变小,电磁铁磁性减弱.

根据右手定则判断电螺线管的上端为N极,对条形磁铁的排斥力减小,所以弹簧测力计的示数将变大.

故答案为:变大、变小.

【例5】

如所示,闭合开关S,烧杯中水面上浮着一个空心小铁球,将盛水的容器放在电磁铁上方,此时电磁铁A端为

极,将滑片P向右滑动,空心小铁球将

.(填“上浮”“下沉”“静止”)

考点:

影响电磁铁磁性强弱的因素.

解析:

①电流由A流向B,则由右手螺旋定则可知螺线管B端为N极,则A端为S极(南极);

②当滑片向右移动时,滑动变阻器接入电阻增大,则由欧姆定律可知电路中电流减小,则螺线管中的磁性减弱,故小③铁球所受磁力减小,使得铁球上浮一些,排开水的体积变小,而且由有阿基米德原理可知受到的浮力将减小.

答案:

S;上浮.

【测试题】

小利同学观察到学校楼道里的消防应急灯,平时灯是熄的,一旦停电,两盏标有“36V”灯泡就会正常发光.图所示是小利设计的四个电路,其中可以起到消防应急灯作用的电路是(

)

A.

B.

C.

D.

根据题意,分析各图可知,当照明电路正常工作时,电磁铁具有磁性,吸引衔铁,使消防应急灯所在电路断开,而当停电后,电磁铁失去磁性,衔铁在弹簧的作用下向上弹起,与触点接触,两灯泡连接,且为并联.因此,对照各图发现,只有图C符合这一要求.

故选C

【例6】

如图所示,当开关S闭合后,电磁铁A端磁极为

极,当电路中滑动变阻器的滑片P逐渐向右移动时,电磁铁的磁性将

(选填“增大”、“减小”或“不变”).

考点:

通电螺线管的磁场;影响电磁铁磁性强弱的因素.

解析:

(1)伸出右手,弯曲的四指与电流的方向相同,大拇指所指的方向即螺线管的左端为通电螺线管的N极,则螺线管的右端即A端是S极.

(2)滑动变阻器滑片向右移动时,滑动变阻器接入电路的电阻变小,电流变大,电磁铁磁性将增大.

答案:

S;增大.

【测试题】

如图所示,下列说法正确的是(

)

A.

当S1断开S2闭合时,红灯亮

B.

当S1断开S2闭合时,绿灯亮

C.

当S1闭合S2断开时,绿灯亮

D.

当S1、S2均闭合时,绿灯亮

读图可知:

(1)当S1断开、S2断开时,左侧的控制电路无电流,电磁铁无磁性,右侧的工作电路也是断开的,所以两灯均不能工作;

(2)当S1断开、S2闭合时,左侧的控制电路无电流,电磁铁无磁性,由于弹簧的原因,动触点与绿灯的触电接触,同时由于右边的工作电路也是闭合的,所以此时的绿灯亮;故A错误、B正确;

(3)当S1、S2闭合时,左侧的控制电路有电流,电磁铁有磁性,由于弹簧的原因,动触点与红灯的触电接触,同时由于右边的工作电路也是闭合的,所以此时的红灯亮;故D错误;

(4)当S1闭合S2断开时,左侧的控制电路断开,电磁铁无磁性,同时右侧的工作电路断开,因此工作电路无电流,所以两灯都不亮,故C错误.

故选B

模块二

磁场对通电导线的作用与电动机

一、知识点

1.

当把通电导体放在磁场中时

(1)

如果通电导体中的电流方向与磁场方向平行,则通电导体不受磁场的作用力。

(2)

如果通电导体中的电流方向与磁场方向不平行,则通电导体受磁场力的作用,当通电导体中的电流方向与磁场方向垂直时,通电导体在磁场中受到的磁场力最大。

2.

影响通电导体在磁场中受到的磁场力大小的决定因素

(1)

磁场强弱:磁场越强,则通电导体在磁场中受到的磁场力越大。

(2)

电流大小:电流越大,则通电导体在磁场中受到的磁场力越大。

3.

通电导体在磁场中受到的磁场力方向决定于磁场方向、电流的方向

(1)

保持磁场方向不改变,只改变电流方向,则通电导体受到的磁场力方向反向。

(2)

保持电流方向不改变,只改变磁场方向,则通电导体受到的磁场力方向反向。

(3)

若磁场的方向、电流的方向二者同时反向,则通电导体受到的磁场力方向不变。

4.

左手定则

当通电导体与磁感线垂直时,通电导体受力方向、磁感线方向、电流方向之间的关系可用左手定则判断:伸开左手,使大拇指与四指在同一平面内并跟四指垂直,让磁感线垂直传入手心,使四指指向电流方向,则大拇指所指的方向就是通电导体在磁场中所受磁场力的方向,如下图所示。

5.

动圈式扬声器

(1)

结构:由固定的永磁体、作为银圈的线圈和锥形纸盒盆构成,如下图所示。

(2)

工作原理:当线圈通过上图中所示的电流时,线圈受到的磁体的吸引向左运动;当线圈中通过相反方向的电流时,线圈受到磁体的排斥而向右运动,由于通过线圈的电流是交变电流,它的大小和方向不断变化,线圈就不断地来回振动,带动纸盆也来回振动,于是扬声器就发出了声音。

6.

直流电动机

(1)

工作原理

直流电动机的工作原理如下图所示,其线圈两端各连一个铜制半环E和F,它们彼此绝缘,并随线圈一起转动,A和B是电刷,它们跟半环接触,使电源与线圈组成闭合电路。E和F叫做换向器,其作用是每当线圈转过平衡位置时,换向器就能自动改变线圈中电流的方向。

图甲是开始通电的状态,换向器与电刷接触,换向器与电刷接触。线圈的电流如图所示,左边受到向上的磁场力,右边受到向下的磁场力,于是线圈开始沿顺时针方向转动。

转过90°就到了如图乙所示的状态,这是平衡位置。线圈的惯性使它冲过平衡位置,于是换向器就改变了所接触的电刷,与接触、与接触,如图丙所示。

图丙中,线圈的电流方向如图所示,左边的受力方向变成向下,右边的受力方向变成向上。于是线圈就继续沿顺时针方向转动90°。

转到图丁中所示的位置时,又靠惯性冲过去,就回到了图甲的状态。

(2)

换向器作用:

①线圈在平衡位置时,停止对其供电。

②线圈转过平衡位置时,改变线圈中的电流方向。

(3)

转动方向和转速:转动方向与线圈中的电流方向和磁场的方向有关;转速与电流的大小和磁场强弱有关。

7.

实用电动机

(1)

基本结构:电动机是由转子和定子两大部分组成的,能够转动的部分叫转子,固定不动的部分叫定子。

(2)

原理:电动机是利用通电线圈在磁场中受力而转动的现象制成的,它在工作时将电能转化为机械能。

(3)

种类:直流电动机和交流电动机

二、例题精讲

【例7】

1.如图是火警自动报警原理图.发生火警时,将会发生下列变化,其变化顺序是

①温度升高使铜铁双层金属片向下弯曲,从而接通电磁铁电路.

②接通触点使报警电路中有电流通过.

③电磁铁具有磁性.

④衔铁被吸下.

⑤红灯亮、电铃响,发出警报.

A.①②③④⑤;

B.①③④②⑤

C.①②④③⑤;

D.①④③②⑤

2.小李利用电磁铁设计了一种微机室防盗报警器(如图).在微机室房门处安装开关S,电铃安在传达室.当房门被推开时,开关S闭合,电流通过电磁铁,电磁铁

(填“有”或“无”)磁性,并且B端为

极,跟金属弹性片上的磁铁相互

(填“吸引”或“排斥”),电铃电路

(填“接通”或“断开”),电铃报警.

考点:

电磁继电器的组成、原理和特点;电磁铁的其他应用.

解析:

(1)读图可知,当铜铁片弯曲使控制电路接通时,电磁铁获得磁性,吸引衔铁,使触点向下,与工作电路连通,电灯与电铃同时工作,故选项B符合题意.

(2)读图可知,左侧为控制电路,当开关闭合时,电磁铁获得磁性,利用安培定则判断可知,B端为N极,因为弹簧片左侧也是N极,同名磁极相互排斥,故两触点接通,使右侧工作电路开始工作,电铃报警.

答案:

(1)B.(2)有,N,排斥,接通.

【测试题】

如图所示的A,B,C,D四个实验装置中,用来研究电磁感应现象的是

;用来研究影响电磁铁磁性强弱因素的是

;用来研究电磁继电器构造的是

;用来研究电动机原理的是

A装置是一个电磁继电器,即是电磁继电器应用实验;

B装置让通电导体放在磁场中,它会受到力的作用,这是用来研究磁场对电流的作用(或通电导体在磁场中受力)的实验,即电动机的原理实验;

C装置中,若开关闭合,金属棒左右切割磁感线运动,此时电路中就会产生电流,故是电磁感应实验装置.

D开关闭合后,电磁铁吸引铁钉,移动滑片的位置,可以得到电磁铁磁性强弱与电流大小的关系.

如图所示的四个实验装置中,用来研究电磁感应现象的是C;用来研究影响电磁铁磁性强弱因素的是D;用来研究电磁继电器构造的是A;用来研究电动机原理的是B.

故答案为:C;D;A;B.

【例8】

如图所示是直流电动机的模型,闭合开关后线圈顺时针转动.现要线圈逆时针转动,下列方法中可行的是(

)

A.

只改变电流方向

B.

只改变电流大小

C.

换用磁性更强的磁铁

D.

对换磁极同时改变电流方向

考点:

直流电动机的构造和工作过程.

解析:

直流电动机的转动方向与线圈中的电流方向和磁场方向有关,若使通入直流电动机的电流方向改变或磁场的方向改变,它的转动方向将改变.但是如果同时改变电流的方向和磁场的方向,线圈的转动方向将不变.

答案:

A

【测试题】

如图所示,用棉线将铜棒ab悬挂于磁铁N、S极之间.闭合开关,当ab做切割磁感线运动时,观察到电流表的指针发生偏转.利用这一现象所揭示的原理,可制成的设备是(

)

A.

电动机

B.

发电机

C.

电磁继电器

D.

电饭煲

如图所示,用棉线将铜棒ab悬挂于磁铁N、S极之间.闭合开关,当ab做切割磁感线运动时,观察到电流表的指针发生偏转.这一现象所揭示的原理﹣﹣电磁感应现象,发电机就是根据这一原理制成的,故B正确;

电动机是根据通电导体在磁场中受到力的作用这一原理制成的,不符合题意;

电磁继电器是利用电流的磁效应来工作的,不符合题意;

电饭煲是根据电流的热效应来工作的,不符合题意.

故选B

【例9】

磁悬浮列车是现代高科技的应用,下列说法不正确的是(

)

A.

通过列车底部与上方轨道间的同名磁极相互排斥,使列车悬浮

B.

为产生极强的磁性使列车悬浮,制作电磁铁的线圈宜选择超导材料

C.

由于列车在悬浮状态下行驶,因而一定做匀速直线运动

D.

列车悬浮行驶时,车体与轨道间无阻力、无震动,运动平稳

考点:

磁浮列车的工作原理和特点.

解析:

磁悬浮列车是现代高科技的应用,它的工作原理是同名磁极相互排斥;列车悬浮行驶时,车体与轨道间有空隙,所以无阻力、无震动,运动平稳;产生极强的磁性使列车悬浮,制作电磁铁的线圈宜选择超导材料,因为超导材料无电阻,不会产生电流的热效应.故A、B、D不符合题意.

答案:

C

【测试题】

我国第一条磁悬浮列车已在上海建成,它利用磁极间的相互作用,将列车悬浮于轨道之上几厘米,从而大大减小摩擦,提高了行驶的速度.这里利用的“磁极间的相互作用”是指(

)

A.

同名磁极互相吸引

B.

同名磁极互相排斥

C.

异名磁极互相排斥

D.

异名磁极互相吸引

磁悬浮列车的车体和轨道是同名磁极,同名磁极互相排斥,使列车实现悬浮,从而减小列车所受的摩擦力,提高行驶速度.

故选B

模块三

电磁感应与发电机

一、知识点

1.

电磁感应

(1)

闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。

(2)

发现及意义:英国物理学家法拉第发现了电磁感应现象,并进一步解释了电和磁的联系,导致了发电机的发明。

(3)

感应电流的产生条件

①电路是闭合的;

②导体要在磁场中做切割磁感线的运动;

③切割磁感线运动的导体只能是闭合电路的一部分。

(4)

能量转化:机械能转化为电能。

(5)

影响因素:

①导体中感应电流的方向决定于导体的运动方向、磁感线方向。两者中其一发生方向改变,感应电流方向发生改变。两者都发生改变,感应电流方向不发生改变。

②导体中感应电流的大小取决于磁场的强弱、导体切割磁感线的速度大小。磁场越强、切割磁感线的速度越大,则感应电流越大。

2.

动圈式话筒

(1)

结构图

(2)

作用:把声音转换成电流。

(3)

原理:电磁感应

(4)

工作过程:当对着话筒讲话时膜片带动线圈在磁场里振动,使得线圈切割磁感线而产生感应电流,这种感应电流再通过扬声器被还原成声音播放。

3.

发电机

(1)

工作原理:利用电磁感应现象将机械能转化为电能。

(2)

交流发电机:电流大小和方向都周期性发生变化的发电机。

(3)

交流电频率:电流在每秒内周期性变化的次数叫做频率。

频率的单位是赫兹,简称赫,符号位Hz。

我国使用的交流电频率是50Hz,其意义是发电机的线圈1秒内转50周,而转动一周电流方向改变两次,故频率为50Hz的交流电1秒钟内电流方向改变100次。

【例10】

如图所示,用棉线将铜棒ab悬挂于磁铁N、S极之间.闭合开关,当ab做切割磁感线运动时,观察到电流表的指针发生偏转.利用这一现象所揭示的原理,可制成的设备是(

)

A.

电动机

B.

发电机

C.

电磁继电器

D.

电饭煲

考点:

发电机的构造和原理.

解析:

如图所示,用棉线将铜棒ab悬挂于磁铁N、S极之间.闭合开关,当ab做切割磁感线运动时,观察到电流表的指针发生偏转.这一现象所揭示的原理﹣﹣电磁感应现象,发电机就是根据这一原理制成的,故B正确;

电动机是根据通电导体在磁场中受到力的作用这一原理制成的,不符合题意;

电磁继电器是利用电流的磁效应来工作的,不符合题意;

电饭煲是根据电流的热效应来工作的,不符合题意.

答案:

B

【测试题】

如下面左图,导体a向右运动时可以产生感应电流,若要使产生的感应电流方向与左图的方向相反,则下列哪种选项可行(

)

A.

B.

C.

D.

A、导体没有切割磁感线运动,导体中没有感应电流.不符合题意;

B、磁感线方向相反、导体运动方向相反,感应电流方向不变.不符合题意;

C、导体没有切割磁感线运动,导体中没有感应电流.不符合题意;

D、在导体运动方向不变时,磁感线方向相反,感应电流方向相反.符合题意.

故选D

【例11】

在如图所示的实验装置中,用棉线将铜棒ab悬挂于磁铁N、S极之间,铜棒的两端通过导线连接到电流表上.下列说法正确的是(

)

A.

ab棒在图中位置水平左右运动时,应观察到电流表的指针发生偏转

B.

ab棒在图中位置竖直上下运动时,应观察到电流表的指针发生偏转

C.

该装置是研究磁场对通电导体的作用力方向与磁场方向的关系

D.

该装置在实验中通过磁场对电流的作用,使电能转化为机械能

考点:

电磁感应.

解析:

AB、产生感应电流的条件:闭合电路的一部分导体在磁场中做切割磁感线运动,电路中产生感应电流.当ab棒在图中位置水平左右运动时,符合产生感应电流的条件,电路中有感应电流产生,灵敏电流计的指针发生偏转;当ab棒在图中位置竖直上下运动时,没有切割磁感线,因此不会产生感应电流,电流表指针不会发生偏转;故A正确,B错误;

C、该装置是研究电磁感应现象;故C错误;

D、ab棒运动时,具有机械能,产出感应电流时,电路中具有电能,产生感应电流的过程是机械能转化为电能的过程.故D错误.

答案:

A

【测试题】

如图所示是小明探究在“什么情况下磁可以生电”的实验装置,其中能够使电流计指针发生偏转的是(

)

A.

ab不动,磁体上下移动

B.

ab不动,磁体左右移动

C.

磁体不动,ab上下移动

D.

磁体与ab一起向右移动

本题图中蹄形磁体的磁感线方向是竖直方向.

A、ab不动,磁体上下移动,导体ab不切割磁感线,指针不发生偏转;

B、ab不动,磁体左右移动,导体ab切割磁感线,指针发生偏转;

C、磁体不动,ab上下移动,导体ab不切割磁感线,指针不发生偏转;

D、磁体与ab一起向右运动,ab与磁体保持相对静止,ab不切割磁感线,指针不发生偏转.

故选B

【例12】

关于电磁感应现象,下列说法正确的是(

)

A.

电磁感应现象中机械能转化为电能

B.

感应电流的方向只跟导体运动方向有关

C.

感应电流的方向只跟磁场方向有关

D.

导体在磁场中运动,能够产生感应电流

考点:

电磁感应.

解析:

A、电磁感应现象的条件是导体在运动,结果是产生了电流,所以是机械能转化为电能,故A正确;

B、感应电流的方向与导体运动方向、磁场方向都有关,故B错误;

C、与B同理,故C错误;

D、产生感应电流要具备三个条件,即“闭合的电路”、“一部分导体”、“切割磁感线运动”,只做运动,不一定产生感应电流,故D错误.

答案:

A

【测试题】

如图所示,将同一根磁棒静置于甲、乙、丙三位置10秒后,比较三处的感应电流,下列叙述何者正确(

)

A.

在甲位置感应电流最大

B.

在乙位置感应电流最大

C.

在丙位置感应电流最大

D.

在三个位置都没有感应电流

得到感应电流需要同时满足两个条件:①电路是闭合的;②导体要做切割磁感线运动.在此题中磁棒放在甲乙丙三个位置都是静止,所以都不满足切割磁感线这个条件,故都不产生感应电流.

故选D

【例13】

下列说法中正确的是(

)

A.

电磁铁的磁性强弱与电流大小、电流方向和线圈匝数都有关

B.

法拉第最先发现电磁感应现象,电动机就是根据电磁感应现象制成的

C.

通电导线在磁场中受力的方向与导体运动的方向和磁场的方向有关

D.

在电磁感应现象中,机械能转化为电能

考点:

电磁感应;影响电磁铁磁性强弱的因素.

解析:

A、电磁铁磁性强弱与电流大小、线圈匝数多少有关,与电流方向无关,故A错误;

B、法拉第发现电磁感应现象是正确的,利用这一现象制成的发电机,不是电动机,故B错误;

C、通电导线在磁场中受力方向与电流方向和磁场方向有关,故C错误;

D、电磁感应现象中机械能转化为电能,通电导体在磁场中受力时电能转化为机械能,故D正确.

答案:

D

【测试题】

如图所示是探究“感应电流产生条件”的实验装置.图中a、b接线柱应连接(

)

A.

电源

B.

灵敏电流表

C.

电压表

D.

电流表

用如图所示的装置探究感应电流产生的条件时,产生的电流较小,所以电路中应串联一只灵敏电流计,通过观察灵敏电流计的指针是否偏转来反映是否有电流产生.

故选B

【例14】

在下图中,a表示垂直于纸面的一根导体的横截面,导体是闭合电路中的一部分,它在磁场中按如图所示的方向运动,其中不能产生感应电流的是(

)

A.

B.

C.

D.

考点:

产生感应电流的条件.

解析:

题中磁感线都是沿着竖直方向的,A、B、D三图中,导体运动的方向都能够切割到磁感线,都能够产生感应电流,只有C图中导体沿着竖直方向,它运动的方向和磁感线的方向一致,没有切割磁感线,不能产生感应电流.

答案:

C

【测试题】

如图是闭合电路的一部分导体在磁场中运动的示意图,导体中产生感应电流的是(

)

A.

B.

C.

D.

A、导体顺着磁感线的方向运动,不会产生感应电流.不符合题意;

B、导体在磁感线之间运动不会产生感应电流.不符合题意;

C、导体斜向上运动,切割磁感线运动,产生感应电流.符合题意;

D、导体顺着磁感线方向运动不会产生感应电流.不符合题意.

故选C

【例15】

下面关于电路中是否会产生感应电流的说法中正确的是(

)

A.

只要导体在磁场中作切割磁感线运动,导体中就一定会有感应电流产生

B.

只要闭合电路在磁场中作切割磁感线运动,导体中就一定会有感应电流产生

C.

只要闭合电路的一部分导体在磁场中作切割磁感线运动,电路中就一定会有感应电流产生

D.

只要闭合电路的一部分导体在磁场中运动,电路中就一定会有感应电流产生

考点:

产生感应电流的条件.

解析:

由产生感应电流的两个条件知,只有选项C符合.故选C.

答案:

C

【测试题】

下列说法中正确的是(

)

A.

电动机是利用电磁感应现象制成的

B.

发电机是利用通电线圈在磁场中受力转动的原理制成的

C.

动圈式话筒是利用电磁感应现象制成的

D.

汽油机的做功冲程是将内能转化成机械能

A、发电机是利用电磁感应现象制成的,故A错误;

B、电动机是利用通电线圈在磁场中受力转动的原理制成的,故B错误;

C、动圈式话筒是利用电磁感应现象制成的,故C正确;

D、汽油机的做功冲程是将内能转化成机械能,故D正确.

故选CD

【例16】

如图所示,要使流过灵敏电流计的电流反向,下列措施中可行的是(

)

①只将磁场反向;

②只将线圈的运动方向反向;

③同时将磁场和线圈的运动方向反向;

④增加磁铁的磁性或线圈匝数.

A.

①②

B.

②③

C.

①③

D.

①④

考点:

探究电磁感应现象的实验;电磁感应.

解析:

要使流过灵敏电流计的电流反向,就是要改变感应电流的方向;

①只将磁场反向,就可以改变感应电流的方向,从而使灵敏电流计的电流反向;

②只将线圈的运动方向改变,就会改变感应电流的方向,从而使灵敏电流计的电流反向;

③同时改变磁场方向和线圈的运动方向,感应电流的方向时不变的;

④增加磁铁的磁性或线圈匝数,只能是电流的大小,不能改变感应电流的方向.

答案:

A

【测试题】

如图所示的装置中,所有部件都静止时,小磁针亦静止于如图所示的位置.在下述四种情况下,小磁针发生偏转的是(

)

A.

磁铁不动,导线ab向左运动

B.

导线ab不动,磁铁向下运动

C.

磁铁与导线以相同的速度同时下落

D.

磁铁与导线以相同的速度同时上升

A、磁铁不动,ab向左运动,其运动方向跟磁感线方向平行,不切割磁感线,不产生感应电流.不符合题意;

篇6

1.前言

在物理学的发展史上,曾有相当长的时期一直未找到电与磁的联系,电现象与磁现象是被分别进行研究的,许多科学家都认为电与磁没有什么联系,直到丹麦物理学家奥斯特1820年发现电流的磁效应以后,人们才逐渐认识到自然界各种基本力是可以相互转化的,电和磁有某种内在联系,从而开始了对电磁统一性的研究.

2.法拉第电磁感应定律

对于磁通量变化与感应电动势的关系,法拉第通过实验总结出了一条非常重要的定律。假设在磁场B中有一闭合回路L,以它为边界的任一曲面记为S,规定S的法线方向与回路L的绕行方向成右手关系。设穿过S的磁通量为中,则回路中的感应电动势为:

(1)式即为法拉第电磁感应定律。其中的方向与L的绕向一致,的正方向与S的法向一致。这个定律表明导体回路中感应电动势的大小与穿过回路的磁通量对时间的变化率成正比,负号代表感应电动势的方向。设回路的电阻为R,则回路中会有电流i产生,称之为感应电流,感应电流的大小为i=/R。

3.矩形线圈在无限长直线电流磁场中的加速运动

3.1 矩形线圈在恒定电流磁场中的加速运动

如图1所示,一矩形线圈ABCD放在无限长直线电流I产生的磁场中(与I共面),初速度为,线圈边长分别为h,。现以加速度a向右运动,某一时刻t边AD距导线距离为x,分析t时刻矩形线圈内产生的感应电动势、感应电流及所受的安培力。

以下我们分别利用动生电动势的计算公式和法拉第电磁感应定律两种方法计算感应电动势。

方法一:矩形线圈做加速运动时,矩形线圈的AD和BC两条边切割磁感应线,因此产生动生电动势。t时刻线圈的速度为:

3.2 矩形线圈在交变电流磁场中的加速运动

在图5中,若无限长的直导线中产生的是交变电流I=,则周围产生的磁场将随时间而发生变化,设线圈仍以加速度a向右运动,初速度为线圈边长分别为h,。某一时刻t边AD距导线距离为x,分析t时刻矩形线圈的感应电动势、感应电流及所受的安培力。

无限长直线电流随时间变化,因此产生的磁场也随时间变化,当矩形线圈做加速运动时会产生动生电动势和感生电动势,根据磁通量的变化可求出t时刻的电动势。

4.结论

本文主要介绍了电磁感应现象及法拉第电磁感应定律,并重点对矩形线圈在无限长直线电流磁场中的加速运动情况作了深入讨论,结果表明当电流为恒定电流时,线圈中只有动生电动势产生,用法拉第电磁感应定律和用动生电动势的计算公式求得的结果一致,进而验证了法拉第电磁感应定律。而当电流为交变电流时,线圈中即产生动生电动势又产生感生电动势,这种情况只能用法拉第电磁感应定律计算总的感应电动势。

参考文献

[1]周奇.法拉第的科学成就——纪念法拉第诞辰200周年[J].大学物理,1991:18-19.

[2]宋德生,李国栋.电磁学发展历史[M].广西人民出版社,19960:9-10.

[3]谭树杰,王华.物理上的重大实验[M].北京:科学技术文献出版社,1987:29-35.

[4]李椿,夏学江.大学物理(电磁学)[M].北京:高等教育出版社,1999:100-105.

[5]梁寿山.电工基础[M].天津:天津科学技术出版社,1983:38-42.

篇7

引言

电磁感应雷击是感应雷击的一种表现形式。雷雨云放电时,在雷电流的周围空间里,还会产生强大的变化电磁场和电磁干扰。电磁干扰是任何可能引起设备或系统性能降低或对有生命及无生命物质产生损害作用的电磁现象。在实际工作中,我们发现,目前在电磁感应的防护方面存在一定的误区。本文就这方面的问题进行探讨。

1、存在的误区

1.1在屏蔽的作用和使用上的误区。

屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。屏蔽是减少电磁干扰的基本措施,在实施过程中宜在建筑物和房间的外部设屏蔽,并以合适的路径敷设,屏蔽线路。目前人们对如何使用屏蔽来防护电磁感应这个问题的认识上存在误区,例如:屏蔽不接地;者屏蔽接地了,但只有一个接地点等等。

1.2在浪涌保护器设置上的误区。

浪涌保护器用于防止雷电过电压和瞬态过电压对直流电源系统和用电设备造成的损坏,浪涌保护器的作用是把窜入电力线、信号传输线的瞬时过高电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。目前,在浪涌保护设置问题上,存在着盲目设置的误区。对于设置信息系统的建筑物,是否需要防雷击电磁脉冲,应在完成直接、间接损失评估和建设、维护投资预测后认真分析和综合考虑,做到安全、适用、经济。因为浪涌保护器较其他开关电器相对昂贵,要尽量减少开发商的经济负担,就不能不讲投资而盲目设置。在设计中要考虑现有的保护装置的有效利用,要与供电系统的型式、暴露程度,所有线缆的架设,设备自身的耐压水平,选用防雷装置的特性及其有机配合,以及装设后对设备的正常工作是否产生不允许的影响,雷击发生后的反应和自复能力等等复杂的因素进行综合考虑,当然,还应考虑投资与效益的关系。

1.3对电磁感应易发多发区段上认识模糊。

由于直击雷电流有极大幅值和陡度,在它周围的空间将有强大的、变化的电磁场,处在这电磁场中的导体会感应出较大的电动势。能够引起较大感应的就是直击雷电流,但是电磁感应的多发区是在直击雷电流运行的哪个方向上?人们对这个问题的看法目前还存在误区。

2、电磁感应雷击的形成及其防护

被雷电击中的装置的电位升高,产生电磁辐射干扰,伴随着急剧的电流、电压的瞬时变化。当雷云对地放电时,在雷击点主放电过程中,在雷击点附近的架空线路、电气设备或架空管道上,由于电磁感应产生电磁感应过电压。过电压幅值可达到几十万伏,当线路或网络附近发生了电磁场的变化时,如发生了直击雷,因电磁效应,在线路上就会产生感应电动势;如果存在回路,感应电动势就会在回路中形成电流。感应雷击有二种现象:一是带电云层由于静电感应,使地面某一范围带上异种电荷形成的,当直击雷发生以后,云层带电迅速消失,地面某些范围由于散流电阻大,以致出现局部雷击后产生的短时高压而形成的;二是由于直击雷放电过程中,强大的电磁脉冲电流对周围的导线或金属物产生电磁感应而形成的。

电磁感应的防护手段,主要包括屏蔽和设置浪涌保护器。不过,由于对电磁感应的认识上的不足或错误,导致在对屏蔽和浪涌保护器上的使用出现许多错误,出现防护效果不佳甚至失败。结合本人多年经验,下面就这几个方面作一些探讨。

3、关于屏蔽的作用及正确的使用方法

屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。电磁屏蔽采用低电阻的金属材料,利用电磁场在屏蔽金属内部产生涡流起屏蔽作用的。一般所谓的屏蔽,多半是指电磁屏蔽。如果将屏蔽板接地,则同时也兼有静电屏蔽的作用。屏蔽无疑防护电磁感应的好方法,问题主要出在使用上。接地的一大前提,就是可将地球视作一个巨大的导体球,其电势永远为零。则任一导体接地后,由于电势差的关系,其表面的第三种电荷总是会流入大地,以达到内部的平衡。所以,当接地时,会有电荷流入大地,造成原本不带电的导体总体上反而带电了。在屏蔽的使用上存在三种错误。第一个错误是屏蔽不接地,这使屏蔽形同虚设;第二个错误是屏蔽接地了,但只有一个接地点,这同样对电磁感应的防护无意义;第三个错误是虽然屏蔽层上有两个以上的接地点,但接地方法和位置选择错误也导致屏蔽的作用大打折扣。正确使用屏蔽的方法是:在一段屏蔽层上,至少应选择两个点接地;而且屏蔽层的两个端点必须接地;而每一个接地都应遵从独立和就近接地的原则。

4、关于浪涌保护器的设置

浪涌指线路上电压的瞬时变得很大,如雷击、其他感应、谐波等,高电压进如用电器会发生击穿现象,所以在线路的输入端都会设置浪用吸收器来保护下游的用电器。浪涌保护器的工作原理,两个电极分别与L(或者N)和PE线相联,两个电极之间形成一个电气间隙。电网在不超过最大持续运行电压的情况下运行时,两个电极之间呈高阻状态。如果电网因雷击或者操作过电压使两个电极之间的电压超过点火电压时,间隙被击穿,通过弧光放电将过电压能量释放。

浪涌保护器也是可以用于防护电磁感应的,尽管其效果并不理想,至少,他没有正确设置的屏蔽体的防护效果好。问题主要出在设置上。在许多的地方,一条线路上只设置了一级浪涌保护,而一级浪涌保护,而一级流涌保护至少还需要一条用户终端才能与之构成一个感应电流的消耗回路。固而同样存在雷击设备的威胁。另外,浪涌保护器本身有自己的先天不足,如需要启动电压,反应需要时间等,再加上如果位置不当或感应区段距浪涌保护器距离太大,都加大了浪涌保护器失效的机会。正确的方法是准确判定感应区段,并在感应区段的首尾之间至少设置两级独立的浪涌保护器,且每级浪涌保护器也要各自独立地主近接地,这样才能起到一定的防护作用。

5、关于电磁感应的易发多发区段

这个问题其实是一个常识,只是未能引起人们的充分的重视。我们知道,能够引起较大感应的就是直击雷电流,而直击雷电流的运行主要就是在竖直方向上的,因而,从理论上讲,它只能在线路的竖直分布的区段上产生感应,而在水平分布的区段上感应为零。所以,在任何一条线路上,电磁感应的易发多发区段就是那些竖在分布的区段,而防护的重点,就是这个区段,在这个区段上,无论采用屏蔽,还是设置浪涌保护器都是可以实现有效防护的。而只要确定了这个重点区段,其实没有必要在全线路上大撒网,不仅可以节省成本,也能大大提高防护效果。

6、结束语

现代防雷技术是一系统工程,系统结构愈合理,相互之间的作用就越协调,才能使整个系统在总体上达到最佳的运行状态。电磁感应的防护,是防雷的一个重要方面。也是一个值得继续探讨的永恒的课题,只要多实践,一定会找到更好的防护方法。

参考文献

篇8

目前,广泛应用的无线鼠标多是以干电池提供能量,因鼠标功耗较大,需频繁更换电池,不仅给消费者带来不便,增加了使用成本,更造成严重的资源浪费,并且废弃电池中含有大量的铅、汞等重金属有害物质,如果回收处理不妥当的话,会加重环境污染。而选用锂电池或镍氢可充电电池的无线鼠标往往需要频繁充电,如长时间不用或忘记充电,将给使用带来不便。本文目的旨在开发研制一种可自充电的无线电磁感应鼠标,积极响应节能减排的可持续发展的主题,利用电磁感应原理生成电能,储存在可充电电池中,同时可为鼠标正常工作提供持续能量。

1 电磁感应技术

闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流,这种现象叫做电磁感应现象。因此产生的电流称为感应电流。将这种电磁感应技术应用于无线鼠标,可实现为鼠标工作提供能量,摆脱更换电池或频繁充电的烦恼。

2 设计与实施

区别于普通干电池供电的无线鼠标,我们研发的可自充电的无线电磁感应鼠标主要由以下几个部分构成:网格状磁场分布的鼠标垫、电磁感应线圈、整流电路、可充电电池以及鼠标的工作电路板。

2.1 网格状磁场分布鼠标垫

实施方案:将具有强磁场的正方形磁铁按图1左图中所示的排布方式粘结在硬质薄板上,使最近邻区域内磁场磁性相反。然后粘合鼠标垫表层,压紧保证工作面平整。

工作原理:相邻的小区域内有相反磁性的磁场分布,是为了保证鼠标沿各个方向移动时,磁场的变化能达到最大,线圈内通过的磁通量变化,从而在相同移动距离下可最大程度产生感应电流,感应电流进一步由整流电路整合后输出,为鼠标工作供能。

创新设计:已有的鼠标垫设计,多使用单片或整块的磁铁,移动鼠标时磁场改变较小,无法满足产生较大的感应电流为鼠标供电的需要,此外还会增加自身重量,造成携带不便。我们设计的网格状磁场分布鼠标垫,通过最近邻区域内磁场磁性相反排布,增强了磁场的变化,增加了输出电流,并且通过网格状分布,仅需在鼠标垫表面50%的面积上排布磁铁,减轻了50%的重量,克服了已有设计的不足,而且降低了成本,符合资源节约,环境友好的设计理念。

图1 网格状磁场分布鼠标垫(左图),电磁感应线圈(右图)

2.2 电磁感应线圈

实施方案:选用横截面直径Φ=0.15mm的漆包铜线,绕成平均直径35mm,高15mm,匝数6000匝的感应线圈。如图1右图所示。

试验测试:研发过程中,我们在相同线圈体积下,分别选用横截面直径为Φ=0.25mm、Φ=0.35mm、Φ=0.15mm的漆包铜线绕成感应线圈进行实验,比较了输出电压的瞬时值。

考虑到鼠标内部空间的限制,以及鼠标重量控制的因素,所缠绕的感应线圈要保证在一定体积内(直径,高度)能输出最大的瞬时电压。漆包铜线横截面直径较大,在相同体积下缠绕匝数就会较少,而漆包铜线横截面直径较小,在相同体积下缠绕匝数就会较多。通过实验对比,我们发现,漆包铜线横截面直径较小,缠绕匝数较多的情况下,输出电压较大,因此横截面直径Φ=0.15mm的漆包铜线,缠绕匝数为6000匝被选为我们的实施方案。

2.3 整流电路

工作原理:电磁感应产生的电动势,经整流器整合后储存到可充电电池中。整流器是一个整流装置,简单的说就是将交流电(AC)转化为直流电(DC)的装置。本设计的整流器有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;第二,给可充电电池提供充电电压。因此,它同时既起到一个充电器的作用,也起到一个电池的作用。经典的桥式整流器设计利用二极管的单向导通作用,允许电流单方向输入,实现整流。

实施方案:我们选用了集成桥式整流模块,用来实现整流输出。

2.4 铁芯设计

工作原理:经典电磁学研究表明,在电磁线圈内部增加铁磁材料,可有效增强输出磁场。故我们在电磁感应线圈内部增加铁芯,以进一步增强磁场变化,增加输出电流。

实施方案:在图1右图中的电磁感应线圈中心插入铁磁性柱体。

试验测试:我们比较了不同移动速率下电磁感应线圈输出的瞬时电压值,如表2所示。

实验数据表明,在增加铁芯后,感应线圈输出的电动势完全可以满足鼠标的工作需要与充电电池的充电需求。对于鼠标的不同运动方式下电磁感应现象我们对比分析发现:近距离快速移动产生的电势优于远距离慢速移动感应得到的电动势。

创新设计:铁芯往往被用于电磁线圈中以增强磁场输出,我们的设计将铁芯集成到感应线圈内,达到了增强接收变化磁场的目的。

2.5 可充电电池

实施方案:选用充电限制电压4.2V,容量3000mAh的工业锂电池为可充电电池。

工作原理:锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合,即通过锂离子的移动产生了电流。锂离子电池具有更高的重量能量比,自放电小,无记忆效应,寿命长,可以快速充电的优点,被广泛应用于电子设备中。

2.6 组装与测试

实施方案:电磁感应线圈、整流电路、可充电电池以及鼠标的工作电路板组装示意图与成品如图2所示。

3 本设计的特色与优势

第一,我们设计的网格状磁场分布鼠标垫,通过最近邻区域内磁场磁性相反排布,增强了磁场的变化,增加了输出电流,并且通过网格状分布,仅需在鼠标垫表面50%的面积上排布磁铁,减轻了50%的重量。第二,铁芯往往被用于电磁线圈中以增强磁场输出,而我们的设计将铁芯集成到感应线圈内,达到了增强磁场变化的目的。

4 结语

随着人们对生活舒适度的要求不断提高,方便快捷成为社会的主题。便携式的无线鼠标必然是消费者的优先选择。传统的干电池供电会给用户带来诸多不便,办公时忘记带电池就会影响工作进度,其次,一次性电池一般只能使用两三个月,不仅会提高消费成本,还造成了大量的能源浪费,产生不可回收利用的垃圾,污染环境。本项目设计了无线电磁感应鼠标,可自身提供能源,不仅克服了传统鼠标的诸多不便,也降低了使用成本。

【参考文献】

[1]郭巍.电磁感应定律试验新探[J].物理实验,2008,7:23-24.

[2]陈晓春.基于电磁共振耦合无线供电的无线鼠标研究[J].宁波职业技术学院学报,2012,16(2):1-3.

篇9

一、明确教学重点和流程

第一,学情分析。本课题是大学物理中电磁感应部分的一个重要内容,是学习后续内容的前提和基础,也是统领第八章的纲要。学生已学习了《静电场》与《稳恒磁场》的内容,为本课题的学习奠定了理论基础。中学楞次定律的学习,便于学生理解电磁感应定律数学表达式中“一”的具体物理意义。

第二,教学目标。知识目标:理解产生电磁感应现象的条件;掌握电磁感应定律的内容;了解电磁感应定律的应用。能力目标:增强学生的探究兴趣,培养学生严谨的物理思维方法,提高学生运用电磁感应定律分析问题解决实际问题的能力。情感目标:通过三峡水电站的介绍,增强学生们的民族自信心和自豪感。

第三,要采用有新意的教学引入,为本课题开一个好头。如1820年奥斯特发现电流磁效应;1831年8月,法拉第通过一系列的实验发现了“磁生电”现象;1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化着的电流、变化着的磁场、运动的稳恒电流、运动的磁铁、在磁场中运动的导体。这样的设计意图在于,通过物理学史,介绍科学家探索磁生电的过程,使学生体会科学发现的不易,进入本节课教学。并设疑:在现在我们看来,法拉第总结的这五种类型都是引起了某一个物理量的变化,具体是哪个物理量呢?下面就来研究一下电磁感应现象,探究一下磁生电的条件。

二、教授重要考点

(一)法拉第电磁感应定律

这是本课题最核心的知识和考点。需要通过经典例题引导学生正确理解知识、掌握解题方法。如某学习小组设计了一种发电装置如图2甲所示,图乙为其俯视图。将8块外形相同的磁铁交错放置组合成一个高h=0.5m、半径r=0.2m的圆柱体,其可绕固定轴OO′逆时针(俯视)转动,角速度ω=100rad/s。设圆柱外侧附近每个磁场区域的磁感应强度大小均为B=0.2T、方向都垂直于圆柱体侧表面。紧靠圆柱体外侧固定一根与其等高、电阻R1=0.5Ω的细金属杆ab,杆与轴OO′平行。图丙中阻值R=1.5Ω的电阻与理想电流表A串联后接在杆a、b两端。下列说法正确的是( )

A. 电流表A的示数约为1.41A

B. 杆ab移产生的感应电动势的有效值E=2V

C. 电阻R消耗的电功率为2W

D. 在圆柱体转过一周的时间内,流过电流表A的总电荷量为零

导线切割磁感线运动产生感应电动势的即时值用公式E=BLv计算,杆ab移产生的感应电动势的有效值E=2V,B正确;电流表A的示数I===1A,A错误;电阻R消耗的电功率为P=I2R=1.5W,C错误;电量q=It=

t===,在圆柱体转过一周的时间内,流过电流表A的总电荷量为零。D正确。故答案为BD。

讲解例题时,老师还要做好方法总结:E=是求整个回路的总电动势,并且求出的是t时间内的平均感应电动势,而公式E=BLV求出的只是切割磁感线的那部分导体中的感应电动势,不一定是回路中的总感应电动势,并且它一般用于求某一时刻的瞬时感应电动势。

(二)电磁感应中的电路问题

这是本课题中较难的知识,需要老师通过例题引导学生做知识迁移,掌握相关解题方法。例如:两根足够长的光滑平行直导轨MN、PQ与水平面成θ角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计。现让ab杆由静止开始沿导轨下滑。

(1)求ab杆下滑的最大速度vm;

(2)ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x及通过电阻R的电量q。

根据法拉第电磁感应定律、欧姆定律、安培力公式和牛顿第二定律,有:E=BLv,I=,FA=BIL,mgsinθ-FA=ma,即mgsinθ-=ma,当加速度a为零时,速度v达最大,速度最大值vm=

(2)根据能量守恒定律有mgxsinθ=mv+Q,得x =+

(3)根据电磁感应定律有=

根据闭合电路欧姆定律有=

感应电量q=Δt==

得q=+

对于电磁感应中的能量转化问题,应弄清在过程中有哪些能量参与了转化,什么能量减少了,什么能量增加了,由能的转化和守恒定律即可求出转化的能量。能量的转化和守恒是通过做功来实现的,安培力做功是联系电能与其他形式的能相互转化的桥梁。因此,也可由功能关系(或动能定理)计算安培力的功,从而确定电能与其他形式的能相互转化的量。

(三)电磁现象中的功能关系

功能关系在近几年高考中常考,需要学生引起高度重视,尤其在新高考实施之后,老师更应该引导学生掌握。可举例题如:

如图所示,在与水平面成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计。空间存在着匀强磁场,磁感应强度B=0.20T,方向垂直轨道平面向上。导体棒ab、cd垂直于轨道放置,且与金属轨道接触良好构成闭合回路,每根导体棒的质量m=2.0×10-2kg,回路中每根导体棒电阻r=5.0×10-2Ω,金属轨道宽度l=0.50m。现对导体棒ab施加平行于轨道向上的拉力,使之匀速向上运动.在导体棒ab匀速向上运动的过程中,导体棒cd始终能静止在轨道上。g取10m/s2。

老师可做如下设问:(1)导体棒cd受到的安培力大小;(2)导体棒cd运动的速度大小;(3)拉力对导体棒ab做功的功率。并为学生解答:

(1)导体棒cd静止时受力平衡,设所受安培力为F安,则F安=mgsinθ=0.10N。

(2)设导体棒ab的速度为v,产生的感应电动势为E,通过导体棒cd的感应电流为I,则E=Blv,I=,F安=BIl,解得v==1.0m/s。

(3)设对导体棒ab的拉力为F,导体棒ab受力平衡,则F=F安+mgsinθ=0.20N,拉力的功率P=Fv=0.20W。

方法总结:导轨上双金属棒运动切割磁感线产生感应电动势的模型的处理方法一般用动量守恒和能量守恒处理。

三、善于为课堂做总结

通过对物理教材和高中物理课程教材的分析,本次课题的设计使得教学内容更紧密联系实际。除了有精心的课程设置,也有与考试密切相关的考点分析,更有解题思维和方法的指导。

教师一方面采用传统实验演示,另一方面充分利用各种现代教学技术手段,全面整合文本形式、图片、试题等教学资源,引导学生进行分析推倒,发挥学生的主观能动性,培养学生分析能力和利用所学知识解决实际问题的能力。通过对电磁感应在实际应用中的介绍,锻炼学生解题能力的同时也锻炼了其发散性思维。

【参考文献】

篇10

弄清楞次定律后,引导学生理顺判断感生电流方向的步骤,结合具体题目让学生练习使用楞次定律判断感生电流的方向。在应用中,不仅让学生扎实掌握判断感生电流方向的方法,还要启发引导学生结合具体问题仔细揣摩楞次定律所阐述的规律。这样在认识规律中应用规律,在应用规律中加深认识规律,使认识与应用融为一体,经过反复训练,学生就能基本上掌握楞次定律及其应用。这是第一阶段的教学。

完成第一阶段的教学,使学生学会运用楞次定律判断感生电流的方向,按课本的要求基本完成任务。如果至此中辍,我觉得对楞次定律的教学只能说是浅尝辄止,学生对楞次定律的掌握也是浅尝辄止。要想使学生真正把握楞次定律的实质,明确电磁感应的变化机理,因而能对楞次定律做到灵活应用,仅完成第一阶段的教学还是不够的,还有待于对楞次定律做进一步的剖析,使学生对楞次定律所揭示的电磁感应现象中遵循的规律有更深刻的认识。为此,我在第一阶段教学的基础上,在第二阶段(复习阶段)结合电磁感应的具体实例启发引导学生,进一步认识电磁感应的全过程并总结其内在关系如下:

在电磁感应过程中,由于原磁场的变化,导致感生电流的产生,这一过程称之为“相生”,而感生电流的效果――感生电流的磁场又反过来阻碍激发产生感生电流的原磁场磁通量的变化,这一过程称之为“相克”。由此可以看出,电磁感应的本质是:在一定的条件下,产生感生电流,而感生电流的效果又反过来破坏产生自身的条件和基础。即既存在“相生”的过程,又存在“相克”的过程,就在“生”和“克”的依赖、制约中形成电磁感应这一事物。学生的认识跃升到这个境界上,我便引导学生把楞次定律概括成这样的表述形式“感生电流的效果总是反抗引起感生电流的原因”。这里所说的原因既可指磁通量的变化,也可以追溯到更“原始”的原因,如相对运动、回路变形、或提供原磁场变化的变化电流等等。这里所说的效果,既可理解为感生电流的磁场,又可理解为因感生电流的出现而引起的机械作用等等。

对楞次定律的探讨认识升华到这样的高度,运用楞次定律解决问题的范围也就扩大了,学生不仅运用楞次定律对感生电流方向的判断更加熟练自如,且对电磁感应的其它有关问题的分析和判断也能“心领神会”,甚至对某些问题的处理会独辟蹊径,捷足先登。下面试举几例说明。

例1.如图1所示,两个U形金属线框放在光滑水平面上,虚线范围内是一个匀强磁场,若线框A向B运动,刚好能进入B(有接触而无摩擦),当A、B接触的短暂时间内A将如何运动?

(A)加速向B(B)加速离开B

(C)减速向B(D)静止不动

分析:A未进入B前只产生感生电动势,不产生感生电流,未受磁场力作用。当A进入B与B接触时,A、B成闭合回路,出现感生电流,A受到磁场力作用,运动状态发生改变。弄清A受磁场力的方向,便得知其运动状况。对于A所受磁场力方向:

②A中产生感生电流的原因,是A向B运动切割磁力线(或穿过A、B所围回路中磁通量减少),所以感生电流的效果必定阻碍A运动,故A所受磁场力的方向与其运动方向相反。

例2.如图2所示。M、N为两根长直金属导轨,其上套着甲、乙两裸导线,处于匀强磁场B中,当甲沿图示方向运动时,乙向什么方向运动?

②甲运动使回路面积增大,穿过回路磁通量变化而产生感生电流。所以,感生电流的效果必定是使乙与甲同向运动以阻碍回路面积的增大。

例3.蹄形磁铁中间有一个可绕竖直轴自由转动的正方形金属框架abcd。按图3所示方向绕竖直轴旋转蹄形磁铁,问abcd将怎样运动?

分析:磁铁绕轴旋转,将使abcd中磁通量发生变化,产生感生电流,磁场又将对电流有力的作用,可分析abed的运动状况。

②磁铁的转动使线圈abcd中磁通量发生变化而导致感生电流发生,所以感生电流的效果必定因阻碍磁铁的相对转动而自身随磁铁转动。

例4.一条柔软的闭合导线,位于一变化的磁场中,要使该闭合导线所围成的面积增加,那么应采取下列措施中的(A)磁场要不断增强且方向垂直纸面向外,(B)磁场不断增强且方向垂直纸面向里,(C)磁场要不断减弱且方向垂直纸面向外,(D)磁场不断减弱且方向垂直纸面向里。

②因为只有磁场减弱使回路中产生感生电流,感生电流的效果才使导线所围面积增加以使回路中的磁通量增多来阻碍磁通量的减弱。

在研究电磁感应中,像这样的题目比比皆是,仅举以上三例。每一例的第一种处理方法毋庸置疑是一种正确的思维方法,特别是学生在学习这部分知识的开始阶段,由于对电磁感应过程认识不深,这样按部就班训练学生思维是十分必要的,且能将前后知识融会贯通,各种法则都能得到练习应用,这对于培养学生全面分析问题,提高综合思考能力是大有裨益的。但较第二种处理方法,它又显得“迂回曲折”、中间过程较多,学生往往因在某一环节上判断出现问题而导致整题的判断失误。而第二种处理方法在解决这类问题上能起到删繁就简,提高解题速度和准确程度的效应。在第二阶段的教学中,我采用第二种方法训练学生,在遇到以上的问题时,学生表现得思维敏捷,运用自如、判断准确,收效显著。

帮助学生深入理解楞次定律,全面了解电磁感应中的。“生”、“克”过程,学生观察和研究许多电磁感应现象变得灵通了。如老师提到诸如此类的问题:灵敏电流计出厂运输中为何要在两接线柱上连一根导线?发电机发电时,未加负载动力机转动“轻松”、“欢快”,而加上负载后“闷声闷气”?还有变压器原线圈中的电流为何随副线圈上负载的增减而变化。学生都能清楚作答。

另外,学生真正热悉了规律,在解决电磁感应问题时还能自觉地避免顾此失彼的毛病。像磁场力使通电导线产生运动,这种运动必然会使导线中产生反电动势以减少导线中的电流,即减弱磁场的作用力,如果导线受其它力的作用而在磁场中作切割磁力线的运动,那么在有闭合回路的条件下,磁场必定对由此而产生的感生电流发生作用力,以阻碍导线与磁场间的相对运动。所以,在电磁感应中凡“因电而动”不能忽略了反电动势的出现;凡“因动而电”不能忽略了磁场对电流的作用,阻碍导线与磁场的相对运动。学生在处理这些问题时由于深刻理解了电磁感应过程中的“生”、“克”规律,所以各方面都能兼顾到,综合思维能力大大加强了。

篇11

关键词: 电磁感应现象;探究性实验教学;教学方法

Key words: electromagnetic induction phenomenon;exploratory experiment teaching;teaching method

中图分类号:G633.7 文献标识码:A 文章编号:1006-4311(2016)30-0149-03

0 引言

电磁感应现象是《电工基础》这门课程的核心内容,它揭示了磁和电的内在联系,是我们进一步学习《电子技术》、《电机学》、《电气设备》等专业课程的重要基础,在整个电类专业课程的学习过程中具有非常重要的地位,是同学们必须理解并熟练掌握的内容。为了便于学生理解并掌握电磁感应现象,根据自己多年来的教学实践,探索运用了演示实验的探究式教学的方法进行教学,收到了良好的教学效果。

1 提出问题,引入新课

首先,通过复习磁场的有关知识,使同学们进一步理解磁现象的电本质:磁场是由电流产生的,即“电能生磁”。最早发现电能生磁这一现象的物理学家是丹麦的奥斯特,1820年4月,奥斯特通过实验(称为“奥斯特实验”)发现了电流可以产生磁场,实验现象见图1。

奥斯特实验的这一发现就像是架起了一座电和磁之间的桥梁,人们自然而然的就会想到这座桥梁难道仅仅是一个单行道吗?就会产生以下的猜想:既然电流可以产生磁场,那么磁场是不是也可以产生电流呢?磁场如果能产生电流,那么,它应该具有什么样的条件呢?从而引出我们这一堂新课的教学内容。

2 根据猜想,设计实验

电流可以产生磁场,是通过试验获得的。那么我们可以引导学生思考,是不是也可以考虑通过实验的办法来研究“磁场能否产生电流”这个问题。为此,我们需要考虑实验装置的设计问题,并利用设计的实验装置来研究“磁场能否产生电流”的问题。

2.1 实验装置所需实验器材的选取

老师通过引导同学思考,要完成“磁场能否产生电流”的问题的研究,必须提供那些器材。

①要创造出磁场环境,需要什么器材?

②要看是否产生电流所以要提供电流的载体或者是电流流动的路径,需要什么器材?(导体:直导体、螺线管线圈等)

③电流即使产生了也是看不见摸不着,要发现电路中是否有电流的产生,需要什么器材?(灵敏度高的电流表、检流计)

讨论的结果:实验所需要的器材是:磁铁、导体、灵敏度高的电流表。

2.2 设计实验装置

2.3 利用实验装置进行实验研究,填写实验情况记录表

利用图2、图3所示的实验装置,引导进行相应的实验研究,并将实验结果记录到相应的实验情况记录表中,见表1和表2。

①奥斯特实验证明导体通电后可以产生磁场,那么反过来是不是把导体放在磁场里就会产生电流呢?观察发现没有电流产生,将观察结果记录到表1和表2中。

②把导体直接放在磁场里没有产生电流,可能是由于导体与磁场处于相对静止的缘故;那么我们试着让导体和磁场相对运动起来,看能不能产生电流?(观察记录实验结果)

2.4 分析实验,探究结论

从表1、表2记录的情况来看,在一定的条件下,磁场是可以产生电流的。那这个条件是什么呢?这就需要我们进一步寻找以上两个实验的共同之处,从本质上总结出磁能生电的条件。

①先分析螺线管线圈的实验情况。

在实验装置中,我们知道条形磁铁在其周围空间存在磁场,磁场的强弱和方向可以用磁力线来描述,磁力线穿过线圈平面的磁力线的根数成为线圈的磁通量,记为¢(磁通量是我们前面已经学习了的概念)。穿过线圈平面的磁力线的根数越多,线圈的磁通量越大;反之,线圈的磁通量越小(见图4)。

有了线圈的磁通量的概念后,我们再来分析实验过程(见图5):我们很容易就可以发现,当条形磁铁插入螺线管线圈时,穿过线圈的磁力线根数增加,线圈的磁通量变大;当条形磁铁从螺线管线圈拔出时,穿过线圈的磁力线根数减少增加,线圈的磁通量变小,也就是说,在条形磁铁插入或者拔出螺线管线圈的过程中,线圈的磁通量¢发生了变化,同时,我们从表2的记录情况可知,此时闭合电路有电流产生。

当条形磁铁不动时,穿过线圈的磁力线根数不变,线圈的磁通量¢没有变化,同时,我们从表2的记录情况可知,此时闭合电路没有电流产生。

到此时,我们好像找到了“磁能生电”的条件:当通过线圈的磁通量发生改变的时候,螺线管线圈实验装置的闭合电路(由装置中的螺线管线圈、电流表及连接二者的导线构成)中有电流产生;当通过线圈的磁通量没有发生改变的时候,闭合电路中没有电流产生。如果这个条件也能解释直导体装置的实验现象,那我们就找到以上两个实验的共同之处,从本质上总结出磁能生电的条件。

②再分析直导体实验装置的实验情况。

如果我们将实验装置中的直导体、导线和电流表构成的闭合电路视为一个(单匝)线圈。当导体静止在磁场中和导体沿磁力线方向上下运动时,穿过线圈的磁力线根数没有发生变化,线圈的磁通量¢没有变化,按照我们找到的“磁能生电”的条件来判定,此时闭合电路(由直导体、导线和电流表构成的)中应该没有电流产生,这一点和表1的观察记录情况是吻合的;当导体向左、向右切割磁力线运动时,我们可以发现线圈的面积在变化,穿过线圈的磁力线根数在变化,也就是说线圈的磁通量¢发生了变化,按照我们找到的“磁能生电”的条件来判定,此时闭合电路(直导体、导线和电流表构成的电路)中应该有电流产生,这一点和表1的观察记录情况也是吻合的。

这样我们就找到了两个实验的共同之处,从本质上找到了磁能生电的基本条件:不管是什么原因,只要穿过线圈的磁通量发生改变(理解:线圈中既要有磁通量,又要有磁通量的变化),闭合电路中就一定有电流产生。

3 总结提炼,获得新知

物理学每遇到新的问题、新的现象,都会促使新的概念的产生。本节课我们通过实验探究的办法,发现了在一定的条件下,磁场是可以产生电流的这样一个新现象,为描述这一现象,产生了以下新的概念:①电磁感应:把由于穿过线圈的磁通量发生改变,而在闭合电路中产生电流的现象,称为电磁感应;简单地说,就是把磁能生电的物理现象称为电磁感应。②感应电流:由电磁感应现象产生的电流称为感应电流。③感应电动势:由电磁感应现象产生的电动势,称为感应电动势。④产生电磁感应的条件:穿过线圈的磁通量必须发生改变。

4 新课提示

通过本节课的学习,我们认识了电磁感应这种物理现象。下一次课,我们将继续进行实验探究,找到由电磁感应现象引起的感应电动势大小和方向的表达式,以便于我们在今后的学习和工作中分析各种电磁感应现象。请同学课后在复习本节课教学内容的基础上,预习电磁感应定律一节。

5 结语

从1820年4月丹麦物理学家奥斯特发现电流的磁效应,到1831年8月29日,历经的十年的艰苦努力,大胆探索,英国物理学家法拉第终于发现了磁能生电的重要事实及其规律,进一步揭示了电和磁的联系。之后仅两个月,他就根据电磁感应原理,制成了世界上的第一台发电机,发电机的发明,是电能的大量生产成为可能,从而使人类社会由蒸汽时代跨入了电气时代,由此拉开了第二次工业革命的序幕。第二次工业革命对人类社会的经济、政治、思想文化、生活方式等方面产生了深刻的影响,为人类社会的发展做出了巨大的贡献。

法拉第在众多的领域都取得了惊人地成就,这一切都缘于他是一个刻苦学习、勇于坚持、大胆探索的人。今天,我们仿照法拉第等前人探索的路子,通过探究性实验教学的过程,感受科学探索的精神,从而培养同学们养成坚持不懈、勇于探索、实事求是的科学态度,争做社会的有用人才。

参考文献:

篇12

引言

弹药库是用于储存弹药一类特殊危险品的仓库,也属于特殊仓库。弹药品具有易燃烧、爆炸等特性,在受热、点火等外来因素的影响,极易引起不安全事故。

雷电是一种极具破坏力的自然现象,其电压可高达数百万伏,瞬间电流更可高达数一百多万安培,容易对弹药库的安全造成危害。

下面介绍小型弹药库的基本情况,分析雷电危害小型弹药库的途径,介绍小型弹药库防雷设计要点,为小型弹药库的防雷提供科学、实用的设计要点。

1、小型弹药库的基本情况

小型弹药库常用于军训、煤矿、交通建设等方面弹药的储存,属于危险品一类仓库。小型弹药库选址通常避开大中城市、工矿基地、重要交通枢纽等人员密集区和交通要道,建筑一般为一层框架或砖混结构,基础为条形或独立基础。

2、雷电危害小型弹药库的途径

根据小型弹药库建设在地理位置偏僻,建筑高度低的特点,危害小型弹药库雷电途径,主要是直击雷危害和闪电电磁感应危害。

2.1直击雷危害

直击雷对弹药库直击雷危害包括:热效应、电效应和机械效应。

雷击产生的热效应,可在雷击点局部的温度产生高达6000~10000℃,甚至更高温度,可使弹药库燃烧或弹药爆炸。

雷击产生的电效应,雷击弹药库时,雷电流通过载流导体产生电动力的破坏作用。

雷击产生的机械效应,雷云放电过程中,放电通道瞬时温度非常高,通道周围的空气急剧膨胀,以超声波速度向四周扩散,形成冲击波,造成弹药库的倒塌。

2.2闪电电磁感应危害

雷击时,雷电通道和雷电防护装置上的雷电流,在冲击接地电阻上产生的电压降,会在建筑物内部导线形成的环路感应出浪涌电压和电流,雷电流迅速变化在其周围空间产生瞬变的强电磁场,也使附近导体上感应出很高的电动势。浪涌电压和电动势放电,容易在金属构件上产生火花,造成弹药点火爆炸。

3、新建小型弹药库防雷设计要点

新建的小型炸药库的防雷设计,要充分考虑周围的地理、地质、气象等因素,设计要点如下。

3.1直击雷防护

直击雷防护装置包括:接闪器、引下线和接地装置。

采用装设在建筑物上的接闪器(接闪网、接闪带),沿屋角、屋脊、屋檐和檐角等易受雷击的部位敷设。根据建筑物防雷技术规范要求,小型弹药库为二类防雷建筑物,应在整个屋面组成不大于10m×10m或12m×8m的网格。

引下线采用建筑的柱内钢筋,柱内钢筋大于或等于φ16时,采用2根为一组引下线;当柱筋大于φ12,小于φ16时,采用4根为一组引下线。宜采用柱内外筋作为引下线,增大引下线与弹药的安全距离。

利用基础内钢筋网作为防雷接地体,建筑基础为条形基础,基础梁钢筋距地面深度大于0.5m时,利用基础梁2根钢筋相互焊通,形成环形电气通路。基础梁距地面深度小于0.5m或无钢筋的闭合条形混凝土基础,应敷设环形人工接地体, 接地体的规格尺寸应按表1规定确定。

利用基础内钢筋网作为防雷接地体,建筑基础为独立基础,采用独立基础与基础梁内不少于2根的钢筋相互焊接,形成电气连通,作为建筑的防雷接地体。

2.2闪电电磁感应防护

为了防止或减少雷电电磁感应对室内弹药的影响,将建筑物框架、混凝土内钢筋、金属门窗、接地体钢筋组成网状法拉第笼,并在室内适当位置预留等电位接地端子,将室内的金属构件与等电位接地端子形成电气连通。

4、已建小型弹药库防雷设计要点

已建没有安装防雷装置的小型弹药库,防雷设计应根据实际情况,设计安装直击雷和闪电电磁感防护装置。

4.1直击雷防护

安装接闪杆进行保护,首先应根据滚球法计算出接闪杆高度,接闪杆的高度依据滚球法计算。

4.1.1单支接闪杆高度计算:

滚球法是以hr为半径的一个球体,沿需要防直击雷的部位滚动,当球体只触及接闪杆或只触及接闪器和地面,而不触及需要保护的部件时,则该部件就得到接闪器的保护,见图1。

滚球半径hr的取值与建筑物防雷类别有关,小型弹药库为二类防雷建筑,滚球半径hr规定为45m。

距地面hr处作一平行于地面的平行线;以针尖为圆心,hr为半径,作弧线交于平行线的A、B两点;以A、B为圆心,hr为半径作弧线,该弧线与针尖相交并与地面相切;从此弧线起到地面止就是保护范围。保护范围是一个对称的锥体,避雷针在hr高度为XX′平面上的保护半径rx为避雷针轴线至锥体母线交点的水平距离,可按下列公式计算:

4.2闪电电磁感应设计

宜在接闪杆对应的小型弹药库外墙,敷设规格不大于0.1m×0.1m网格的屏蔽层,屏蔽层宽度不少于5米接地一次。

独立接闪杆及其接地装置至被保护建筑物及与其有联系的管道、电缆等金属物之间的间隔距离不应小于3m 。

新建和已建的小型弹药库,若有电气线路引入室内,采用屏蔽电缆时其屏蔽层应至少在两端并宜在防雷区交界处做等电位连接,系统要求只在一端做等电位连接时,应采用两层屏蔽或穿钢管敷设,外层屏蔽或钢管按前述要求处理,室内配电箱安装适配的防爆型浪涌保护器。

小型弹药库要求距离周围的大树不应小于5米,距离高压线不应小于15米。

小型弹药库内大的金属构件应与预留的等电位接地端子等电位连接,接地端子的接地电阻值不应大于10欧。

根据小型弹药库的不同情况,采取相应的防雷措施,做到安全可靠、经济合理,保障小型弹药库的防雷安全。

篇13

电磁学包括电和磁以及电磁感应三部分,电学和磁学既有相同之处又有不同,学好了电学才能学好磁学,反之,电学掌握不好磁学就易混淆。

静电场由两部分组成,分别是真空中的静电场以及电解质中的静电场。电学部分的重要物理量是电场强度和电势。主要物理模型是点电荷和匀强电场。一个重要实验定律是库伦定律,两个重要定理分别是高斯定理和安培环路定理。两个定理应用了高数中通量和环流的概念,通过两个定理的数学表达式,理解静电场是一种真实的客观存在的物质,是有源无旋场。电场的能量储存在电场中而非电容中。电场对放入其中的电荷有力的作用。

稳恒磁场也分成两部分,分别是真空中的恒定磁场和磁介质中的恒定磁场。磁学部分的重要物理量是磁感应强度和磁场强度,主要物理模型是无限长载流直导线和匀强磁场。重要实验定律是比奥萨法尔定律(与电场中库仑定律类比),重要定理是磁场中的高斯定理和安培环路定理,通过磁场中上述两定理的数学表达式,理解稳恒磁场是有旋无源场。磁场对放入其中的运动电荷有力的作用。磁场对单个运动电荷的作用称为洛伦兹力,对大量定向运动电荷的作用称为安培力。值得注意的是大学物理上册中学习的右手螺旋定则,在磁学部分有大量应用。

电磁感应部分,高中已经学过楞次定律和法拉第电磁感应定律。难点在于感应电动势分成了感生电动势和动生电动势。电动势的产生的实质是非静电力的做功,动生电动势是洛仑兹力充当非静电力,感生电动势是感应电场的力充当非静电力。磁场的能量储存在磁场中而非电感中。

友情链接