你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 机电一体化技术定义

机电一体化技术定义范文

发布时间:2023-10-13 15:37:36

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇机电一体化技术定义范例,将为您的写作提供有力的支持和灵感!

机电一体化技术定义

篇1

在电力系统中,线路整定是一项复杂的系统工程,它涉及到各个元件之间的保护和协调配合。随着近年来电网规模的不断扩大,线路布置的日益复杂,电力系统线路保护和整定计算也显得越来越繁琐。通过近年来的不断深入研究,线路整定计算自动化程度有了巨大的变化和有效的提高,但是还未曾全面良好的从整定计算人员的复杂计算工作中脱离出来。因此,目前的线路保护和整定计算还是一项复杂的继电保护工作,在工作中具有着工作环境复杂,程序较多,考虑到的因素多和耗费时间长的特点。

一、线路整定计算一体化结构

继电保护在电力系统中有着重要的作用与意义。在电力系统中,线路由于受到自然地、人为的或者设备自身故障等因素造成的某处发生故障,这就需要继电保护装置能够快速及时的运行,并针对这些故障采取隔离、切除、警告的措施来保持配电系统的连续性、可靠性和稳定性,同时能够保证工作人员人身安全、设备安全等。电力线路继电保护整定计算是最为复杂和繁琐的整定计算工作之一,在这项工作之中首先要考虑工程项目周围环境因素、工作程序影响和时间的开销问题。因此在这个过程中就需要广大工作人员不断采用新的科学技术手段去分析和整合,从而减轻工作人员的工作压力和负担,提高工作效率。

二、保护整定计算中存在问题

在一般的线路整定计算过程中,整定计算具有着定制计算偏重于灵敏性,对用户变电所线路选择难以保证输电要求和选择重合闸的质量无法保证的缺陷,这些不完善的设备和缺陷主要表现在以下几个方面:

1、先进技术应用的不够合理

没有实现线路保护整定计算全过程的自动化。目前的线路保护整定计算软件通常只完成了线路零序电流保护、相间距离保护和接地距离保护的整定计算。线路保护装置中其他整定项目的整定,如启动量、控制字等,仍然需要用户通过一定的计算工具完成;整定计算软件的整定结果仍然需要用户手工输入到定值通知单中;通知单已经执行的线路保护新定值仍然需要用户手工录入到线路保护整定计算软件中,作为保护的当前运行定值。这种工作模式需要用户进行大量的手工转换工作,加重了整定计算人员的工作负担。

2、计算方式方面

在零序电流保护、相间距离保护、接地距离保护的整定中,没有考虑实际线路保护装置中这些保护的配置情况。随着微机保护的发展和国外保护的引进,许多线路保护装置都配置了两段式零序保护、反时限零序保护、四段式距离保护等比较特殊的保护。为了提高整定计算工作的效率,提高整定计算结果的正确性和合理性,有必要研制新的线路保护整定计算软件,实现线路保护整定计算全过程的自动化,从根本上将整定计算人员从繁杂的计算工作中解放出来。

三、线路保护整定计算一体化系统结构

线路保护整定计算一体化系统整体结构线路保护整定计算一体化系统由4个子系统构成。系统管理子系统实现电力系统一、二次参数的建立和管理功能。阶段式保护整定计算子系统实现面向线路保护装置的零序电流保护、相间距离保护和接地距离保护的整定计算功能。保护装置整定计算子系统实现所有线路保护装置各个整定项目的整定计算功能。定值通知单管理子系统实现所有线路保护装置定值通知单的管理功能。

一套系统化的线路保护装置通常都是采用多种不同的工作原理构成的保护系统和保护装置,而在线路整定保护一体化系统结构中,所需要的整定计算方法和方式都是通过阶段性保护来完善和控制的。在这种保护系统中,是由于上下两级之间存在着配合和整定复杂的状态,这也就造成了保护之间相互复杂和反复强调的曲面。在目前的高频保护系统中,具有着一套系统化的计算管理模式,只要在电网系统中满足运行变化的限度,便可以进行系统、精确和高效的计算方式。

四、线路保护整定计算的扩展性

随着近年来科学技术的飞速发展,微机技术、信息技术、数字技术和电子技术广泛的应用在电力系统中,这就促使各种新型号、新结构和新材料的线路保护装置的不断推出和迅速发展,为电力系统的安全可靠发展提供了必然依据,也为电力系统整定计算质量的提高指明了发展方向。新的线路保护装置与已有保护装置相比,无论是整定项目的数目内容,还是基本整定原则之中都存在较大差别。因此,每增加一种新装置都必须针对该装置定义其包含的数据内容编制其对应的整定计算代码,才能够在整定计算系统中对该装置进行数据管理和整定计算。但是如果每新增一种保护装置都必须对整个整定计算系统的代码进行修改和编译,则程序维护的工作量非常大,既要灵活添加各种新增保护装置,又要减小程序维护的工作量最理想的解决方案,就是实现新增保护装置的插件式升级为了实现新增保护装置的插件式升级。在线路保护整定计算一体化系统中采用了建立统一的保护装置数学模型和统一的保护装置接口函数的方法。

五、整定原则

1、阶段式保护整定计算原则

阶段式保护主要指零序电流保护、相间距离保护和接地距离保护。阶段式保护的上、下级保护间存在相互的配合关系,其整定计算比较复杂需要较多的人工干预。通常,阶段式保护的整定计算单独进行不与线路保护装置同时进行。但是在实际电力系统中,不同的线路保护装置配置的阶段式保护的段数性质,投退情况都不相同,在完全不考虑保护装置实际情况的阶段式保护整定是不正确不合理的。

2、数据结构整定计算原则

篇2

中图分类号:TM77 文献标识码:A

整定计算是保证电网正常运行最为基本的工作,能够使得故障出现之后继电保护装置可以在短时间之内做出相应的反应,保护电路并尽快的排除故障。数据模型拼接技术是整定计算之中一个很重要的方法,而现在的技术等等方面也面临着不少的难题。本文通过研究现状的方式对数据拼接的发展方向做出简要的分析。

一、整定计算的基本结构

整定计算是针对于数据的维修保护,通常都是将所有的数据集中起来一同维护管理。我们可以知道数据的集中无疑就是数据库的职能了,因而整定计算的基础就是数据库,其中包括了许多基础数据的内容:如接线图、设备台账、基本运行方式、后备保护运行定值、整定计算模板、整定计算原则等多方面的基础数据。其中接线图主要使用了分层管理的方式,将电压等级从南方最高的电压到省内最低的电压分成几个等级的电压。基本运行方式有全网运行、各省运行、省间运行等几种基础的运行方式。其中全网运行方式的基础就是各省与省间运行方式两种。后备保护运行定值由在各省之间的后备保护定值一同组成。而整定计算原则既可以使用全国统一的整定计算原则,同样可以使用各省自己单独制定的整定计算原则。

基础数据库将管理由管理方交给的所有建立的数据库,包括维修、保护等等多个方面的管辖措施。各省电网用户都会有属于自己的数据库,自己的数据库也仅对用户本人所开放,并且所有数据的使用登陆等等情况都会有所记录,保证用户数据的绝对安全。

二、数据模型的拼接

1 数据模型拼接的基本原理

上文中阐述了如何实现基础数据库的建立与管理,而数据的拼接正是把用户的数据上传到上级数据库,然后进行拼接,从而形成完整的数据库。拼接的过程大致是下属电网整定计算系统导出图形与参数到XML交换文件,之后经过第一次导入完整导入到空区域。后续导入即是匹配导入,仅导入修改的部分。其中目标区域是接受导入源工程数据的区域,这些区域都存在于目标工程之中。而目标工程指的是某种计算工程并且接受导入的数据进行整定计算。

2数据交换的原则

数据交换的过程中,所交换的文件对数据以及电网参数进行详尽的描述,导出时选择相应的区域或者选择部分区域以及之间的线路进行传输。而相对应的,导入的操作之中,文件的交换成为了数据交换过程之中最为关键的一个部分,要注意到以下几个方面:(1)导入的过程中,文件的导入必须伴随着相应的设置以及用户的确认才能完整的进行,最终保存至数据库之中。(2)交换文件与元件的名称进行匹配。匹配主要是由两个方面来进行的,自动匹配以及手动匹配,当然大多数的系统之中都是优先采用自动匹配,而当不能自动匹配成功的时候,只有采用手动匹配的方式来进行匹配。两种匹配方式都是为了迎合数据的分级方式从而进行的,均是逐层匹配。(3)在数据导入数据库的过程之中,数据库将会记录每一次所导入的数据所属的区域,当下一次相同区域数据导入时,数据库将会将两次导入数据的区域相互比较,如有缺失的区域,系统将缺失的区域提取出来,询问是否已经删除。而相对应的一次性设备,将不会保存这类的信息。若上述中记录信息的区域之中存在有一次性设备,系统将直接进行提示是否删除。

3 整定计算数据拼接的技术难点

整定计算数据拼接的主要技术难点主要表现在将下级导出的交换文件与上级网络进行拼接的过程之中,需要考虑许许多多这两个方面的差距并做出最为合适的处理方案。其中包括了厂站、线路和其他元件的增加与删减、名称的更改、参数的改动、位置的改动、运行方式的不统一等等。这些不统一在修改的过程中存在的很多必须要注意的方面使得整个修改方案变得更加的困难。首先要确保在拼接之后的数据不会有任何的偏差。其次拼接过程中数据的修改不能从单独的一方面进行,并且修改的过程最好能够完整的展示给每一个用户,能够方便用户的操作,从而提高整个系统修改的实用性。还有另外一点就是基于用户操作的习惯不相一致,计算机的系统也会有所差异,所以之后整个数据拼接过程的优化,将会从新程序的开发以及更新管理方案进行更加进一步的调整。

三、数据拼接发展方向

基于上述对于现阶段继电保护数据拼接的分析,可以看出现在数据拼接仍然有不少的难点需要我们进一步解决,其中技术难点与管理上的难题都有所存在,造成现在的数据拼接并不是十分科学高效的。故下文之中将对数据拼接的发展方向进行分析研究。

1智能化的开发将会成为数据拼接的主要发展方向。近些年来,智能化的发展越发的迅速,包含了众多的领域,以至于神经网络、遗传信息等方面都出现了重大的突破。这些领域因为智能化的介入从而有了飞速的发展,完全都是因为这些领域之中,复杂的问题计算与研究占据了十分大的一部分,而继电保护的一体化整定计算数据的拼接无疑也是属于这一方面的。在数据拼接的过程之中会出现很多上下级信息不完全相同进而需要双方面进行信息检查的时候,智能化的优势将会体现出来,智能化将会把所有的信息进行比较分析,从而以最快的速度将整个数据拼接过程之中出现的差异给予正确的修复,智能化同时也可以更加方便用户的操作,使得信息的拼接变得更加方便简洁,而相对于现在的数据拼接系统而言,智能化更高强度的加大了数据拼接的速率,同时也将错误率降至最低的水平之下。

2计算机的网络化使得整个世界有了新一次的革命,对于数据的拼接同样如此。网络化同样应该进入数据拼接的处理之中,继电保护能保护整个电力系统,在故障发生的同时可以最为有效的排除、切断故障元件,而数据的拼接在整个整定计算过程中显得格外重要。故障点的探寻等信息的交换,在网络化的环境之中,可以将信息更加快速安全的进行拼接整合,使每一个保护单元都可以共享信息以及更加稳定协调的工作。网络化使得数据信息管理更加方便简洁,将信息有序的进行排列,在数据拼接的过程之中,大大减少了双方信息不一致而导致的更加复杂的整理修改数据。

结语

篇3

1.1机电一体化的基本概念

机电一体化技术从大的领域来说属于机械领域,其定义版本较多,其中一种较为权威的定义表述如下:机电一体化一般是指在机械的设计与功能扩展中,应用机械特有的主要功能、信息处理、功能控制等,把机械系统的控制中心进行集成化,并且与安装在计算上的上位机软件实现双向通信,一般来说,机电一体化技术也是一门交叉学科技术,涉及到的主要技术有通信技术,机械技术,微电子技术,电力电子技术等,机电一体化技术的核心功能就是把以上技术结合起来,形成一个整体并内嵌入机械系统中。

1.2机电一体化技术的基本特征

机电一体化技术作为一门应用广泛的技术,有其自身的特点,通过实际调查总结和查阅相关资料,本文总结出了机电一体化技术的3个主要特点,接下来详细说明如下。(1)应用的广泛性:机电一体化技术由于涉及的技术较多,是一门涉及多学科的交叉技术,正是由于这一特点,使得机电一体化技术应用十分广泛,已经远远超出了机械工程的应用范畴,当然,本文的研究重点还是放在机电一体化技术在机械工程上的应用及发展趋势。(2)具有很强的逻辑性:由于机电一体化的核心任务就是把各种技术合理融合,应用到机械领域中,把系统的机械机构和上位机软件控制合为一体,也就是形成一个统一的整体,从这个层面来说,机电一体化技术具有很强的逻辑性,或者说拥有很强的系统性。(3)机电一体化具有很强的最优化建模理论:机电一体化技术经过多年的发展,已经形成完整的最优化理论体系,相关算法可以参阅相关文献,限于论文篇幅,在这里不再累述。

1.3机电一体化技术的最新发展趋势

经过多年的发展,机电一体化技术已经形成了自己的理论体系,随着我国高新技术不断发展,越来越多的新技术被应用到机电一体化技术上,机电一体化的最新的发展趋势是控制智能化、精确化、零延迟化、结合计算机处理技术和信号传输技术,机电一体化技术也朝着无线控制、高速控制、精确控制的方向发展。

2机电一体化技术在机械工程上的应用以及发展趋势分析

本小节在上文介绍机电一体化技术相关知识的基础上探讨机电一体化技术在机械工程领域的当前应用以及未来的发展趋势,结合实际,本文从机电一体化技术应用于机械工程领域的历程分析、机电一体化在现代机床控制上的应用、机电一体化技术在全自动包装机领域的应用等三方面简单论述机电一体化技术在机械工程上的应用以及发展趋势,下面详细讨论。

2.1机电一体化技术应用于机械工程领域的历程分析

在国外,机电一体化技术应用到机械工程领域较早,通过查阅资料得知,美国在上世纪90年代就把自动控制设备应用与机械制造领域,我国相对起步晚,但是起点较高,20世纪60年代,我国通过引进苏联控制设备,逐渐把机电一体化技术应用到机械领域,并在20世纪80年代,实现机电控制设备国产化,随着科技不断进步,以计算机处理技术和无线通信技术为代表的新技术不断应用与机电一体化技术,这使得机电一体化技术焕发出勃勃生机,应用领域进一步扩大。

2.2机电一体化在现代机床控制上的应用

机电一体化在机械工程领域很重要的一个应用领域就是应用在现代机床控制上,现代机床控制要求精度高、速度快、智能化高,这就要求现代机床的控制系统具有很强的抗干扰性,机电一体化技术由于采用计算机处理技术,处理速度快,精度高、内置多块DSP芯片,抗干扰能力强。

2.3机电一体化技术在全自动包装机领域的应用

机电一体化技术除了应用与纯机械工程领域,还大量应用于相关机械与电子相结合的控制领域,通过实际调查得知,我国全自动包装机已经全部采用机电一体化技术,由于包装机械不但设计机械工程知识,还涉及机电控制技术,微机处理技术等,所以一般的控制系统很难胜任,机电一体化技术由于是一门交叉学科,所以具有很强的灵活性,所以机电一体化技术较好的解决了这个问题,机电一体化把软件控制和机械控制结合起来,融为一体,通过上位机软件来控制包装机的运行状态。

3机电一体化技术在机械领域的发展前景

通过对机电一体化当前发展趋势的调查研究,本文认为,机电一体化技术在机械领域的发展前景包括以下几点:(1)专用化趋势不断加强:随着机电一体化应用到机械领域的不断深化,机电一体化技术表现出明显的专用化趋势。(2)智能化不断加强:近年来,随着人工智能等新技术不断应用到机电一体化领域,机电一体化技术也呈现了智能化趋势。(3)能耗低:节约资源,保护环境成为全社会的共识,在这种背景下,机电一体化技术积极加强自身改革,不断研发新技术,把能耗进一步降低。

篇4

第一章 绪论

1.1概述

进入80年代以来,关于机电一体化技术的研究和应用已成为全球性的课题,可以说,从军事到经济、从生产到生活、从简单的日用消费品生产到复杂的社会生产和管理系统.机电一体化技术几乎达到无所不在、无孔不入的地步。然而,“什么是机电一体化?”,‘呼机电一体化技术都包括那些特征?”,“机电一体化技术在各应用领域中的发展状况如何?”等问题却很难令人回答,这一方面是因为机电一体化技术的研究不断向深度持续发展,所采用的技术手段越来越先进,无法通过定义来界定其发展潜力;另一方面是因为机电一体化技术的应用领域不断向户度持续发展,也无法通过定义来界定其应用范围。

第二章机电一体化技术发展

机电一体化是机械、微电子、控制、计算机、信息处理等多学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要发展方向有数字化、智能化、模块化、网络化、人性化、微型化、集成化、带源化和绿色化。

2.1数字化。微控制器及其发展奠定了机电产品数字化的基础,如不断发展的数控机床和机器人;而计算机网络的迅速崛起,为数字化设计与制造铺平了道路,如虚拟设计、计算机集成制造等。数字化要求机电一体化产品的软件具有高可靠性、易操作性、可维护性、自诊断能力以及友好人机界面。数字化的实现将便于远程操作、诊断和修复。

2.2智能化。即要求机电产品有一定的智能,使它具有类似人的逻辑思考、判断推理、自主决策等能力。例如在CNC数控机床上增加人机对话功能,设置智能I/O接口和智能工艺数据库,会给使用、操作和维护带来极大的方便。随着模糊控制、神经网络、灰色理论、小波理论、混沌与分岔等人工智能技术的进步与发展,为机电一体化技术发展开辟了广阔天地。

2.3模块化。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、动力接口、环境接口的机电一体化产品单元模块是一项复杂而有前途的工作。如研制具有集减速、变频调速电机一体的动力驱动单元;具有视觉、图像处理、识别和测距等功能的电机一体控制单元等。这样,在产品开发设计时,可以利用这些标准模块化单元迅速开发出新的产品。

2.4网络化。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾。而远程控制的终端设备本身就是机电一体化产品,现场总线和局域网技术使家用电器网络化成为可能,利用家庭网络把各种家用电器连接成以计算机为中心的计算机集成家用电器系统,使人们在家里可充分享受各种高技术带来的好处,因此,机电一体化产品无疑应朝网络化方向发展。

2.5?人性化。机电一体化产品的最终使用对象是人,如何给机电一体化产品赋予人的智能、情感和人性显得愈来愈重要,机电一体化产品除了完善的性能外,还要求在色彩、造型等方面与环境相协调,使用这些产品,对人来说还是一种艺术享受,如家用机器人的最高境界就是人机一体化。

第三章 机电一体化技术在钢铁企业中应用

在钢铁企业中,机电一体化系统是以微处理机为核心,把微机、工控机、数据通讯、显示装置、仪表等技术有机的结合起来,采用组装合并方式,为实现工程大系统的综合一体化创造有力条件,增强系统控制精度、质量和可靠性。机电一体化技术在钢铁企业中主要应用于以下几个方面:

3.1智能化控制技术(IC)。由于钢铁工业具有大型化、高速化和连续化的特点,传统的控制技术遇到了难以克服的困难,因此非常有必要采用智能控制技术。智能控制技术主要包括专家系统、模糊控制和神经网络等,智能控制技术广泛应用于钢铁企业的产品设计、生产、控制、设备与产品质量诊断等各个方面,如高炉控制系统、电炉和连铸车间、轧钢系统、炼钢―――连铸―――轧钢综合调度系统、冷连轧等。

3.2分布式控制系统(DCS)。分布式控制系统采用一台中央计算机指挥若干台面向控制的现场测控计算机和智能控制单元。分布式控制系统可以是两级的、三级的或更多级的。利用计算机对生产过程进行集中监视、操作、管理和分散控制。随着测控技术的发展,分布式控制系统的功能越来越多。不仅可以实现生产过程控制,而且还可以实现在线最优化、生产过程实时调度、生产计划统计管理功能,成为一种测、控、管一体化的综合系统。DCS具有特点控制功能多样化、操作简便、系统可以扩展、维护方便、可靠性高等特点。DCS是监视集中控制分散,故障影响面小,而且系统具有连锁保护功能,采用了系统故障人工手动控制操作措施,使系统可靠性高。分布式控制系统与集中型控制系统相比,其功能更强,具有更高的安全性,是当前大型机电一体化系统的主要潮流。

篇5

1 机电一体化的概念

人类从使用简单工具到现代的机器发生了巨大的变化。特别是计算机控制技术出现以后,传统机械又有了一个飞跃。

机器应该是机械和电器的合成。传统的机械工程和自动控制工程从专业学习到工程设计应该一体化。目前,关于机电一体化的定义与概念,许多书籍都是根据国外书籍的定义和概念而引用。对于国外的概念基本强调机器人跟数控机床的概念。虽然,机器人和数控机床是机电一体化中具有一定代表性的产品,但绝非是机电一体化的全部内容,机械的内容很多:化工机械、轻工机械、重工机械、纺织机械等。机电一体化强调的是机械产品的自动化和智能化的问题。

2 机电一体化的基础知识

机电一体化涉及的知识还是比较广泛的。在机电一体化设计中常常会涉及到机械做功,液体压力做功等理论力学和材料力学的相关知识。对于机械零件还涉及到机械零件的加工方法一些工艺性问题。尤为重要的是数控加工技术。零件的加工精度、材料的选择都是需要学习的。一些机械零件例如:轴和轴承、齿轮、凸轮、链条、链轮等可以说是机电一体化设备中应用极广泛的一类机械零件。对于零件的学习使是我们应具备的基础。还有自动控制和人工控制的内容,电路电器的基本知识。

3 传感器

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息按一定的规律变换成为电信号或其他所需的形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制的要求。它是实现自动检测和自动控制的首要环节。

传感器大致可分为物理传感器和化学传感器两大类。在机电一体化中起着至关重要的作用。常见的传感器有:压力传感器、位移传感器、位置传感器、温度传感器、湿度传感器、气敏传感器等等。

4 绦凶爸

所谓执行装,就是把从电源、液压、气压等动力源获得的能量变换成旋转运动或者直线运动的一种装置。执行装置主要由执行元件、传动原件等构成。主要的执行装置有如下几种:步进电机装置、伺服电机装置、普通电机装置、液压油缸装置、液压马达装置、气压装置、气动马达装置。这些机械装置是控制系统的控制对象,也叫控制系统的执行装置。普通电机装置也是控制系统的控制对象,如采用变频器可以控制转速,PLC也可以控制转速和角位移。普通电机采用控制器的控制精度和效率没有步进电机和伺服电机高,但是在一些控制要求不太高的机电一体化设备中,目前应用还是比较广泛的,毕竟普通电机价格比步进电机和伺服电机低得多。

5 计算机控

机械设备的控制系统从最初的的强电控制到现在的计算机控制,经历了如下过程:简单的开关控制――继电器控制――单片机控制――单板机控制――PLC控制――PC控制。事实上,到现在为止机械设备的控制系统无论从简单的开关控制,继电器控制到复杂的单片机控制、单板机控制、PLC控制、PC控制都有它们的使用价值。随着时间的发展,使用的比例肯定会按上述顺序,前面的越来越少,后面的越来越多。目前来看单片机控制、PLC控制系统在机电一体化应用领域的数量上应该是最多的。

数控技术是指用数字指令来实现一台或多台机械设备动作控制的技术。它所控制的通常是为止、角度、速度、等机械量和开关量,以及温度、流量、压力等物理量。数控技术和计算机控制技术是相互关联的。数控技术的特点:精度高、速度快、可靠性高。

6 机电一体化的设计方法

机电一体化设计类型可分为:

根据受控对象的不同,进行机电一体化设计;

改进型机电一体化设计;

创造发明性机电一体化设计;

不同的机电一体化设计类型,也有不同的设计方法。所谓根据受控对象的不同进行机电一体化设计,也就是不同行业有不同的受控对象。比如数控机床、包装机械一类的受控对象基本上是机械动作;在化工机械中,处理机械动作外还有对温度、流量、压力、配比等物理量的控制;也有将化学量作为受控对象的,如土壤分析仪对土壤酸碱度、钙、镁、磷的分析等。当然受控对象最多的还是机械动作问题。

改进型机电一体化设计是应用非常广泛的一类设计。比如,我国数控机场普及度不高的现状的主要原因一方面是数控机床的售价太贵,对于许多企业来说很难承担这笔开支的。所以对现有机床进行数控化改造,提高现有机床的生产效率和质量、节约成本等起到很好的效果。

在机电一体化设计中,我们主要考虑3部分的设计:机械部分、控制部分、传感器部分。事实上,为了简化问题,机电一体化的设计思路完全可以从两部分来考虑。即机械部分和控制部分,因为传感器完全可以在控制部分中一起考虑。机电一体化设计发展到今天,机械部分的设计仍然是这三部分中最重要的部分。过去在机电一体化设计的学习和实际工作中存在一种错误的认识和看法:认为机械设计直观简单,技术含量没有控制部分高。这是一种本末倒置的认识。

篇6

机电一体化概念始于70年代,是根据英文Mechanics(机械学)的前半部分和Electronics(电子学)的后半部分而构成的,即Mechatronics。在80年代由美国机械工程协会专家组定义为:“由计算机信息网络协调控制的,用于完成包括机械力、运动和能量流等动力学任务的机械和(或)机电部件相互联系的系统”。

机电一体化技术,是由微电子技术、计算机技术、伺服传动技术与机械技术相结合的综合性技术,是微电子技术、计算机技术向机械技术不断渗透的产物。机械技术是机电一体化技术的基础。随着高新技术引入机械行业,机械技术面临着挑战与变革。在机电一体化产品中,它不再是完成单一的系统联接,而是在系统结构、重量、体积、刚性与耐用方面对机电一体化系统有着重要影响。目前,随着机电一体化系统所需的控制功能、控制形式、控制方式的不同和多控制过程日趋复杂,对控制系统的要求越来越高。

1机电一体化系统的构成与关键技术

1.1机电一体化系统的构成

从构成要素上来看,机电一体化系统由机械系统(机构)、电子信息处理系统(计算机)、动力系统(动力源)、传感检测系统(传感器)、执行元件系统(如电机)等五个子系统组成。机电一体化系统的基本特征是给”机械”增添了头脑(计算机信息处理与控制),因此是要求传感器技术、控制用接口元件、机械结构、控制软件水平较高的系统。

从所要实现功能上来看,因为机电一体化系统(或产品)是由若干具有特定功能的机械与微电子要素组成的有机整体,要有满足人们使用要求的功能(目的功能),所以根据不同的使用目的,要求系统能对输入的物质、能量和信息(即工业三大要素)进行某种处理,输出所需要的物质、能量和信息。因此,系统必须具有以下三大“目的功能”:①变换(加工、处理)功能;②传递(移动、输送)功能;③储存(保持、积蓄、记录)功能,不管是实现哪类“目的”功能的系统(或产品),其系统内部必须具备如下图所示的五种内部功能,即主功能、动力能功能、检测功能、控制功能、构造功能。其中“主功能”是实现系统“目的功能”直接必需的功能,主要是对物质、能量、信息或其相互结合进行变换、传递和存储。“动力功能”是向系统提供动力、让系统得以运转的功能。“检测功能和控制功能”的作用是根据系统内部信息和外部信息对整个系统进行控制,使系统正常运转,实施“目的功能”。而“构造功能”则是使构成系统的子系统及元、部件维持所定的时间和空间上的相互关系所必需的功能。从系统的输入/输出来看,除有主功能的输入/输出之外,还需要有动力输入和控制信息的输入/输出。此外,还有因外部环境引起的干扰输入以及非目的性输出(如废弃物等)。

既然机电一体化系统(产品)可以分解成一系列要素或子系统构成,那么怎样使各要素或子系统之间顺利地进行物质、能量和信息的传递与交换呢?这就涉及到了接口的概念。所谓接口就是各要素或各子系统之间的联系条件。从系统外部看,机电一体化系统的输入/输出是与人、自然及其他系统之间的接口;从系统内部看,机电一体化系统是由许多接口将系统构成要素的输入/输出联系为一体的系统。从这一观点出发,系统的性能在很大程度上取决于接口的性能,各要素或各子系统之间的接口性能就成为综合系统性能好坏的决定性因素。机电一体化系统是机械、电子和信息等功能各异的技术融为一体的综合系统,其构成要素或子系统之间的接口极为重要,在某种意义上讲,机电一体化系统设计归根结底就是“接口设计”。广义的接口功能有两种,一种是输入/输出的功能;另一种是变换、调整的功能。

1.2机电一体化系统的相关关键技术

①机械技术:机电一体化的机械产品与传统的机械产品的区别在于:机械结构更简单、机械功能更强、性能更优越。在设计和制造机械系统时除了考虑静态、动态刚度及热变形等问题外,还应考虑采用新型复合材料和新型结构及新型的制造工艺和工艺装置。②传感检测技术:传感检测技术的内容,一是研究如何将各种被测量转换为与之成比例的电量;二是研究对转换的电信号的加工处理。机电一体化系统要求传感检测装置能快速、准确、可靠地获取信息。③信息处理技术:信息处理的发展方向是提高信息处理的速度、可靠性和智能化程度。人工智能技术、专家系统技术、神经网络技术等都属于计算机信息处理技术的范畴。④自动控制技术:机电一体化系统中的自动控制技术主要包括位置控制、速度控制、最优控制、自适应控制以及模糊控制、神经网络控制等。⑤伺服传动技术:伺服传动包括电动、气动、液压等各种类型的传动装置,常见的伺服驱动系统主要有电气伺服和液压伺服。⑥系统总体技术:机电一体化系统是一个技术综合体,它利用系统总体技术将各有关技术协调配合、综合运用而达到整体系统的最佳化。

2 机电一体化的设计过程

机电一体化的机械动力部分由一般电动机演变为控制电动机,里程碑式地引入了电子和计算机等先进技术,代替人完成机器的检测与控制等工作。在知识经济中体现了制造业高科技化,促进了高科技产业和知识经济的发展。它是一种用于机电产品最优设计的方法学。它包括4个基本学科:电气、机械、计算机科学和信息技术。如图1所示。

摘要:本文结合笔者的多年工作经验,对机电一体化系统的构成及关键技术进行了简要的分析,并就机电一体化系统的几种可靠性设计进行了探讨。

关键词:机电一体化;系统设计;构成;过程;方法;可靠性

机电一体化概念始于70年代,是根据英文Mechanics(机械学)的前半部分和Electronics(电子学)的后半部分而构成的,即Mechatronics。在80年代由美国机械工程协会专家组定义为:“由计算机信息网络协调控制的,用于完成包括机械力、运动和能量流等动力学任务的机械和(或)机电部件相互联系的系统”。

机电一体化技术,是由微电子技术、计算机技术、伺服传动技术与机械技术相结合的综合性技术,是微电子技术、计算机技术向机械技术不断渗透的产物。机械技术是机电一体化技术的基础。随着高新技术引入机械行业,机械技术面临着挑战与变革。在机电一体化产品中,它不再是完成单一的系统联接,而是在系统结构、重量、体积、刚性与耐用方面对机电一体化系统有着重要影响。目前,随着机电一体化系统所需的控制功能、控制形式、控制方式的不同和多控制过程日趋复杂,对控制系统的要求越来越高。

1机电一体化系统的构成与关键技术

1.1机电一体化系统的构成

从构成要素上来看,机电一体化系统由机械系统(机构)、电子信息处理系统(计算机)、动力系统(动力源)、传感检测系统(传感器)、执行元件系统(如电机)等五个子系统组成。机电一体化系统的基本特征是给”机械”增添了头脑(计算机信息处理与控制),因此是要求传感器技术、控制用接口元件、机械结构、控制软件水平较高的系统。

从所要实现功能上来看,因为机电一体化系统(或产品)是由若干具有特定功能的机械与微电子要素组成的有机整体,要有满足人们使用要求的功能(目的功能),所以根据不同的使用目的,要求系统能对输入的物质、能量和信息(即工业三大要素)进行某种处理,输出所需要的物质、能量和信息。因此,系统必须具有以下三大“目的功能”:①变换(加工、处理)功能;②传递(移动、输送)功能;③储存(保持、积蓄、记录)功能,不管是实现哪类“目的”功能的系统(或产品),其系统内部必须具备如下图所示的五种内部功能,即主功能、动力能功能、检测功能、控制功能、构造功能。其中“主功能”是实现系统“目的功能”直接必需的功能,主要是对物质、能量、信息或其相互结合进行变换、传递和存储。“动力功能”是向系统提供动力、让系统得以运转的功能。“检测功能和控制功能”的作用是根据系统内部信息和外部信息对整个系统进行控制,使系统正常运转,实施“目的功能”。而“构造功能”则是使构成系统的子系统及元、部件维持所定的时间和空间上的相互关系所必需的功能。从系统的输入/输出来看,除有主功能的输入/输出之外,还需要有动力输入和控制信息的输入/输出。此外,还有因外部环境引起的干扰输入以及非目的性输出(如废弃物等)。

既然机电一体化系统(产品)可以分解成一系列要素或子系统构成,那么怎样使各要素或子系统之间顺利地进行物质、能量和信息的传递与交换呢?这就涉及到了接口的概念。所谓接口就是各要素或各子系统之间的联系条件。从系统外部看,机电一体化系统的输入/输出是与人、自然及其他系统之间的接口;从系统内部看,机电一体化系统是由许多接口将系统构成要素的输入/输出联系为一体的系统。从这一观点出发,系统的性能在很大程度上取决于接口的性能,各要素或各子系统之间的接口性能就成为综合系统性能好坏的决定性因素。机电一体化系统是机械、电子和信息等功能各异的技术融为一体的综合系统,其构成要素或子系统之间的接口极为重要,在某种意义上讲,机电一体化系统设计归根结底就是“接口设计”。广义的接口功能有两种,一种是输入/输出的功能;另一种是变换、调整的功能。

1.2机电一体化系统的相关关键技术

①机械技术:机电一体化的机械产品与传统的机械产品的区别在于:机械结构更简单、机械功能更强、性能更优越。在设计和制造机械系统时除了考虑静态、动态刚度及热变形等问题外,还应考虑采用新型复合材料和新型结构及新型的制造工艺和工艺装置。②传感检测技术:传感检测技术的内容,一是研究如何将各种被测量转换为与之成比例的电量;二是研究对转换的电信号的加工处理。机电一体化系统要求传感检测装置能快速、准确、可靠地获取信息。③信息处理技术:信息处理的发展方向是提高信息处理的速度、可靠性和智能化程度。人工智能技术、专家系统技术、神经网络技术等都属于计算机信息处理技术的范畴。④自动控制技术:机电一体化系统中的自动控制技术主要包括位置控制、速度控制、最优控制、自适应控制以及模糊控制、神经网络控制等。⑤伺服传动技术:伺服传动包括电动、气动、液压等各种类型的传动装置,常见的伺服驱动系统主要有电气伺服和液压伺服。⑥系统总体技术:机电一体化系统是一个技术综合体,它利用系统总体技术将各有关技术协调配合、综合运用而达到整体系统的最佳化。

篇7

机电一体化最早出现在1971年日本杂志《机械设计》的副刊上,随着机电一体化技术的快速发展,现在的机电一体化技术,是将机械技术、电工电子技术、微电子技术、信息技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。它不是上述技术的简单拼凑,而是从系统的观点出发,合理配置各功能单元,使得整个系统具有高质量,高可靠性的特点。

机械工程技术由纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋扑许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。即机电一体化产品不仅是人的手与肢体的延仲,还是人的感官与头脑的眼神,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别。现代化的自动生产设备几乎可以说都是机电一体化的设备。

1.机电一体化的发展过程

机电一体化经历了长期的产生于发展过程,大致分为三个阶段:

萌芽阶段:20世纪60年代以前为萌芽阶段。由于电子技术发展迅速,人们逐步使用电子技术的初步成果完善机械产品的性能。特别是第二次世界大战后,机械产品与电子技术的结合使得许多性能优良的产品出现,对战后经济的恢复和技术的进步起到了积极的作用。

蓬勃发展阶段:20世纪70年代至20世纪80年代是蓬勃发展阶段。在这一阶段,人们主动地利用新技术的巨大成果创造新的机电一体化产品。应该特别指出的是,日本在推动机电一体化技术的发展方面起了主导作用。日本政府于1971年3月颁布了《特定电子工业与特定机械工业振兴临时措施法》,要求企业界“应特别注意促进为机械配备电子计算机和其他电子设备,从而实现控制的自动化和机械产品的其他功能”。这一时期,计算机技术、控制技术、通信技术的发展,为基点一体化的发展奠定了技术基础。

智能化阶段:从20世纪90年代开始至今称为智能化阶段。机电一体化技术向智能化新阶段迈进。人工智能技术及网络技术等领域取得的巨大进步,为机电一体化技术开辟了发展的新天地。大量的智能化机械产品不断涌现。出现了“模糊控制”和“混沌控制”等新概念。

机电一体化的目的是使系统高附加值化,即多功能化、高效率化、高可靠化、省材料省能源化,并使产品结构向轻薄短小巧化方向发展,不断满足人们的生活多样化需求和生产的省力化、自动化需求。因此,机电一体化的研究方法并不是拼拼凑凑的“混合”设计法,应该从系统的角度出发,采用现代设计分析方法,充分发挥边缘学科技术的优势。

2.机电一体化发展的共性关键技术

机电一体化发展所采用微电子技术必须解决一些共性关键技术。这些技术包括检测传感技术、信息处理技术、伺服驱动技术、自动控制技术、精密机械技术及系统总体技术等。各部分所包括的内容如下:

检测传感技术:检测传感器的检测对象有位移、压力、温度、速度、加速度、流量等物理量,其检测精度的高低直接影响机电一体化产品的性能好坏。检测传感技术的主要难点在于提高可靠性、精度和灵敏度。

信息处理技术:信息处理技术包括信息的输入、变换、运算、次数和输出技术。信息处理是否及时正确,直接影响机电一体化产品的质量和效率,因而成为机电一体化产品的关键技术。在信息处理技术方面存在的问题有减轻重量、提高处理速度、提高可靠性和抗干扰能力以及标准化、提高操作性及便于维修保养等。

自动控制技术:自动控制技术包括高精度定位控制、速度控制、自适应控制、自诊断、校正、补偿、再现、检索等技术。其技术难点是现代控制理论的工程化与实用化,以及优化控制模型的建立等。

伺服驱动技术:伺服驱动技术主要是指执行元件中的一些技术问题。伺服驱动包括电动、气动、液动等各种类型。希望之星元件满足小型、重量轻和输出功率大等三个方面的要求,以及提高对环境的适应性和可靠性。

精密机械技术:机电一体化产品对精密机械提出的新要求有:减轻重量、缩小体积、提高精度、提高刚度、改善动态性能等。

系统总体技术:系统总体技术是以中国从整体目标出发,用系统的观点和方法,将总体分解成若干功能单元,找出能完成各个功能的技术方案,再把功能和技术方案组合成方案组进行分析、评价和优选的综合应用技术。机电一体化产品要求系统的协调性很好,否则即使各个部分的性能、可靠性都很好,性能和产品也很难保证正常运行。

3.机电一体化发展趋势

随着科技的发展和经济的进步,对机电一体化技术提出了许多新的和更高的要求,出现了新的概念。如数控技术、CNC、FMS、CIMS及机器人等都被一致认为是典型的机电一体化技术、产品及系统。机电一体化的发展趋势有以下几点:

高性能化:高性能化一般包含高速化、高精度、高效率和高可靠性。新一代CNC系统就是以此“四高”为满足生产急需和人诞生的。可实现告诉数据传递,在相当高的分辨率情况下,系统仍有高速度,此外其效率也非常高。

智能化:人工智能的研究日益得到重视,其中机器人与数控机床的智能化就是重要应用。智能机器人通过视觉,触觉和听觉等各类传感器检测工作状态,根据实际变化过程反馈信息并作出判断与决定。数控机床智能化,使用各类传感器对切削加工前后和加工过程中的各种参数进行监测,并通过计算机系统做出判断,自动对异常现象进行调整和补偿。

此外,机电一体化发展趋势还有系统化,轻量化及微型化等

参考文献:

[1]机电一体化技术的发展及应用,梁俊彦

篇8

中图分类号:TM 文献标识码:A 文章编号:1009-914x(2014)26-01-01

引言

机电一体化技术一般指的是电子、机械和信息技术结合的一种新型技术,最早在上世纪70年代在西方被提出来,其本质是机械技术通过运用信息化技术不和电子技术而达到效能最优的状态。而目目前机电一体化的建模与方式技术是最新的研究热点,本文针对这个热点展开探究。

一、机电一体化技术概述

第一,我国机电一体化技术的发展与现状。我国机电一体化技术大体经历了自发初级阶段、蓬勃发展阶段和智能化发展新阶段等三个阶段。初级阶段机械产品只是通过简单的电子技术进行了产品优化,到了发展阶段则利用了当时兴起的计算机、通信和控制技术,机电结合更为灵活,到了智能发展阶段,机电一体化技术更多地吸收了激光、模糊、信息和神经网络技术等其他学科成果,逐渐形成独立的技术体系。第二,机电一体化的相关技术。机电一体化主要涉及机械技术、检测与传感器技术、信息处理技术、伺服驱动技术、接口技术、监控与诊断技术、柔性制造系统技术等技术。第三,机电一体化技术的发展趋势。目前机电一体化主要朝着智能化、集成模块化、光机电一体化、信息网络化、系统化技术方向发展,朝着技术产品能功能多样、效率优化、智能运行、稳定性强的理念发展,力求让技术产品向轻盈、超薄、细微、小巧等时尚化方向发展。

二、虚拟原型技术与机电一体化

(一)虚拟原型技术

该技术是在CAX技术、DFX技术、物理样机设计技术的基础上发展起来的,并且在发展过程中吸收了信息技术、仿真技术和先进制造技术,让机电产品的设计智能化和灵巧化,生产效率高效而稳定,最终让产品开发形成一套从设计到仿真,从分析到复杂的系统化开发体系。1,基本原理。该技术以CAX技术为基本技术基础,和以前的串行设计技术比起来,该技术实现了多功能系统的集成化结合。人们可以通过该虚拟模型技术建立机械模型,通过仿真环境得到真实实验参数,并依据实验参数对产品进一步优化,降低开发成本,缩短周期,提升竞争力。2,系统结构。该技术通常以某种可以输入多种产品参数的三维实体数字化模型结构的形式出现,该模型是可变的,动态的,人们可以依据开发和设计需要不断输入新的参数,并得到新的模型结构,根据模型结构来优化产品设计。3,技术优势。该技术具有能全面反映实验产品的初始信息、为整个产品的开发过程提供模型支撑等优势,该技术的运用为制造业的发展注入了新的活力。4,关键技术及发展应用。虚拟原型技术的关键技术主要有系统总体技术、支撑环境技术、虚拟现实技术、协同仿真技术、一体化建模、过程管理技术、模型技术等多方面的技术,作为一门融合了多个学科技术的新型综合技术体系,其发展前景十分广阔。

(二)虚拟原型技术与机电一体化

虚拟原型技术是一种新型的以多领域仿真技术、先进建模技术、信息管理技术以及交互式用户界面技术为基础的综合性技术体系,与传统的机电产品开发设计和生产技术相比起来,其原理和实际运行效率都有很大的几部。因此,如果能将虚拟原型技术有机地融入到机电产品的设计和开发中,将会有效促进机电产品开发效率的提高,并且进一步发展机电一体化技术。虚拟原型技术与机电一体化技术是相互促进的关系,虚拟原型技术最终将会促进机电一体化产品设计的高效和智能化发展,而机电产品技术的发展在解决生产难题的过程中,客观上又会带动虚拟原型技术的发展。下面本文将进一步阐释这种相辅相成的关系。

三、基于虚拟原型机电一体化的控制仿真设计

第一,概述。以虚拟原型是机电一体化产品的基础,虚拟原型技术对机电产品开发设计、电气、控制等各方面的的数据模拟和测试都起到缩短周期、提高研发效率和节约开发成本的作用。联合仿真设计主要由三个部分组成:首先是机械模型的建构,其次是LabVIEW软件同机械模型与有机融合;最后是协同仿真的过程,机电产品实现综合评定和性能测试。第二,机械特性的仿真设计。机械特性仿真设计主要包括对机械的零部件特性、机械结构、机械动力状态、机械运行状态等仿真设计的分析。对机械零部件和结构的特性分析主要采用有限元分析。有效元分析主要通过Solidworks Simulation网络软件机械零件和机构力学的模拟分析,一般要分析机械材料的强度、应力和安全性能,为机电产品的结构的尺寸、材料搭配以及传动系型号选择提供模拟参数的参考;SolidWorks 与LabVIEW软件的结合为机械动力学提供仿真设计环境,该软件对力的运动各种元素进行分析研究,提供准确的机械性能和动力分析参数;机械运动的仿真设计为机电产品的运动参数、碰撞侦测参数和运动轨设计参数等提供科学的参数分析,为机电产品的机械结构和零部件的几何数据确定等提供支持。

第三,机械动力学仿真设计。机械动力学仿真设计一般指的是指在运动条件下给机电产品的部分零件,在不同的引力、压力和力矩条件下得出机械运动的性能参数,该仿真设计一般需要SolidWorks软件的支持。仿真设计所提供的模型能够对产品在运动条件下进行各部分参数的测试,并最后通过仿真参数进行控制变量分析,最后得出机电产品的在现实运行状态各部分零件和机构性能的表现;并且依据系能表现,对机电产品中机械结构和零部件几何参数进一步进行优化设计,直至模拟的运动条件下机电产品各部分指标能达到预期。

第四,机械运动仿真设计。一般来机械运动仿真设计主要是逼真模拟机电产品在运动状态下的各部分性能的表现状况。高度仿真模拟可借助于SolidWorks提供的动画仿真环境实现。在动画仿真模拟环境中,工程师可以依据其动画表现进行性能参数测试,另一方面也便于生产方向客户展示其良好的运行性能。SolidWorks软件可以提供动画模拟仿真、基本运动模拟仿真、Motion模拟仿真。动画模拟仿真主要是展现机电装配体的运动性能,操作人员可以通过添加马达插件,然后定义软件驱动装配体的各个零部件运动。基本运动模拟仿真与动画模拟仿真略有区别,它是通过对机电装配体上增添马达插件并定义运动,定义其中的引力和弹簧等基本物理参数来测试装配体运动性能。Motio运动仿真主要通过SolidWorks Motion 插件来实现,该仿真形式主要对装配的零件和结构进行在力、阻力以及摩擦力等力的作用下所表现的性能状况测试,测试相对更为精确。

四、结语

机电一体化技术是机械、电子和信息技术的有机结合,是一门不断在融合新兴的计算机技术、智能技术、生物技术和网络技术的独立的综合性技术体系,而虚拟原型技术有利于降低机电产品开发的周期和成本,提高机电产品设计和生产的效益,虚拟原型技术的建模与仿真技术能通过虚拟数字模型的建立来代替真实的产品测试工作,提高产品开发的效率,缩短周期并节约成本,机电一体化技术在不断利用现代技术的基础上将进一步发展。

参考文献

篇9

中图分类号:TH122 文献标识码:A 文章编号:1009-2374(2012)04-0116-02

机电一体化产品简单的理解就是机械产品与电子产品的融合,机械技术与电子技术的融合,机械零件与电子元件的融合。两者共同完成某一机电功能。这也只能是传统意义上的机电一体化产品的定义。

现实生活中的机电一体化产品举不胜数。我们日常生活中使用的空调、洗衣机、微波炉、油烟机、吸尘器、电吹风等都是典型的机电一体化产品;在机械制造领域中广泛使用的各种铸造设备、锻造设备及机床、数控加工中心等也是典型的机电一体化产品;在工程机械领域中的挖掘机、装载机、起重机、搅拌站、桩工机械、路面机械等,都是用得较为广泛的机电一体化产品;在冶金设备领域,高炉、转炉、连铸机、轧钢机等更是高度机电一体化产品。

一、机电一体化产品的技术构成

机电一体化技术是各种高新技术的融合体,它主要包括以下几方面技术:机械技术、自动控制技术、传感检测技术、伺服传动技术和计算机与信息技术等交叉融合的系统技术等。

(一)机械技术

机械技术是机电一体化的基础,机械技术的着眼点在于如何与机电一体化技术相适应,实现从机械原理的选择到机械结构的设计和机械零件的选材,都能达到最优化配置;并且保证最佳的使用性能与寿命;在维修保养上最大限度地做到简洁、明快,甚至达到免维护。

(二)自动控制技术

自动控制技术是能够在没有人直接参与的情况下,利用自动控制装置使生产过程或生产机械自动地按照某种规律运行,使被控对象的一个或几个物理量(如温度、压力、流量、位移和转速等)或加工工艺按照预定要求变化的技术。自动控制系统主要由:控制器,被控对象,执行机构和变送器四个环节组成。

(三)传感检测技术

传感检测技术是机电一体化产品的系统感受器官,它负责把一线的实况用各种信号传递给机电一体化产品的指挥中枢,即计算机或自动控制单元,是将电子系统或光电系统无法处理的外界物理量或化学量转换为电信号的关键技术,它包括:电阻式、电容式、电感式、压电式、磁电式、温度传感器及光电式和数字式、波式和射线式传感器,还有相应的测试电路和信号处理技术等。

(四)伺服传动技术

伺服传动技术是指在控制指令的指挥下,控制驱动执行机构,使机械系统的运动部件按照指令要求进行运动。采用不同的分类方法,可以得到不同类型的伺服系统。按控制原理(或方式)不同,表示的方式有开环、闭环和半闭环三种形式;按被控制量性质不同有位移、速度、力和力矩等伺服系统形式;按驱动方式不同有电气、液压和气压等伺服驱动形式;按执行元件不同分为步进电机伺服、直流电机伺服和交流电机伺服形式。

(五)计算机与信息技术

机电一体化产品中的信息存取、交换、运算、判断与决策、记录等都属于此类范畴,计算机与信息技术在整个机电一体化产品中起到类似于人类大脑和中枢神经的作用,它是指导其它功能部分完成各自任务的总指挥。

二、机电一体化产品的未来发展趋势

“2011 IEEE 机电一体化与自动化国际会议”于2011年8月7日至10日于北京召开。IEEE 机电一体化与自动化国际会议(ICMA)是机电一体化、自动化领域的权威会议,在国际机器人及自动化等领域具有重要影响力。曾在中国、加拿大、中国香港、日本等国家和地区成功举办过7次。来自各国近440名学者参加了会议,围绕智能机电一体化、机器人系统和自动控制方面的最新研究成果及未来发展方向等问题充分交流。从此次会议的议题不难看出机电一体化的发展趋势趋向于智能机电一体化方向。

随着科学技术的飞速发展,机电一体化产品目前不仅向智能化方向发展,而且还向仿生物系统化方向发展,应用范围愈来愈广。

(一)智能化

随着人类文明的进步和科技的超越式发展,人类扮演的角色越来越趋于简单、明了化,人们追求高品质与快节奏的生活与工作方式,那么机电一体的发展也就越来越趋于“傻瓜”式与“一键操作”式,这样能把人类的活动从复杂的按部就班的程序化中解脱出来,用更多的时间来享受生活和工作给我们带来的诸多便捷。未来的机电一体化产品,在开发与设计的时候,顺其自然,第一先考虑的就是智能化。

智能化简单的说就是具有人工智能或模拟人类智能的系统。目前,专家系统、模糊系统、神经网络以及遗传算法,是机电一体化产品实现智能化的的主要核心技术。这四种技术相互关联,密切联系。随着机械制造与自动化程度的不断提高,将会出现智能制造系统控制器来模拟人类专家的智能制造活动,并会对制造中出现问题进行分析、判断、推理、构思和决策。可以认为把类似于人类的“大脑”(人类高度文明的汇缩体)装在了机电一体化产品之上,产品随时启动,“大脑”随时工作,去判断人类想要达到的各种需求,并能做出令我们满意的行为。人类的大脑思维系统被模块化的复制到机电一体化产品之上。

目前机电一体化产品的智能化应用已成为趋势, 例如智能机器人和数控机床等。智能机器人是通过视觉、触觉和听觉等各类传感器检测工作状态,根据实际变化过程反馈信息并做出判断与决定。数控机床的智能化体现在各类传感器对切削加工前后和加工过程中的各种参数进行监测,并通过计算机系统做出判断,自动对异常现象进行调整与补偿,以保证加工过程的顺利进行,确保加工精度和质量要求,最后加工出合格的产品。

(二)仿生物系统化

今后的机电一体化对信息的处理会做得更加完美与准确,这就依赖先进的数据处理与模块仿真系统的支持。人们从动物那里获得了启示,依据动物对外界反应的习性与规律,模拟其习惯做法,把其应用到机电一体化方向。比如说我们开发的机电一体化产品,在接受外界刺激的时候,根据动物常规习性和一般反应规律,机电一体化产品应该做出类似于动物的反应动作或程序准备工作,根据目标完成任务独立选择最优的行为动作,来实现目标任务的准确反应与目标的圆满完成。

更准确地说,仿生物系统化是集动物习性、智能化于一身的技术。此类产品如仿生物宠物狗、动物园里的仿生物虎妈妈等,这都是研究的课题。考虑到仿生物系统化研究过程的复杂性,最关键的是被仿的生物习性与要完成的机电一体化产品行为之间的相似性研究与系统模块的生成,仿生物系统化的道路还有很长的路要走。

新的时代脉搏在涌动,赋予我们在新的领域更高层次的挑战,机电一体化的发展也被赋予了崭新的使命。在发展科技不辱使命的前提下,我们更应该注重人性化理念与伦理道德,科技和信息的快速发展带来的绿色压力,充分考虑科技与生存环境的关系,共同建设好一个和诣、健康、高度文明的国家。

参考文献

[1] 徐伟.机电一体化技术的概念、现状、发展及对策[A].2009年促进中部崛起专家论坛暨第五届湖北科技论坛――装备制造产业发展论坛论文集(上),2009.

[2] 周树文.北工大成功承办2011 IEEE 机电一体化与自动化国际会议,北京工业大学新闻网,2011-08-23.

[3] 金志向.光机电一体化技术特征和发展趋势[J].科技咨询导报,2007,(15).

篇10

2机电一体化系统异地设计多能量域集成仿真技术解析

结合早期设计经验分析,有关产品功能需求与工作原理需要得到进一步重视,所以在设计计算期间应该针对系统内部组件形态加以简化,包括线性近似、阻尼刚性影响忽略等。目前设计精确度不断提升,有关CAD、行为、配置模型逐步完善;现实中系统中组件主要采用实际模型搭配,其间有必要针对系统实际性能指标加以预测。因为非线性、时变、离散等实际情况都要考虑在内,涉及传递函数形式开始不再适用,数值求解便成为唯一出路。需要特别注意的是,透过产品模型中推导出如果所有组件的行为模型都已知,则根据系统的配置模型,利用Mapple等工具包可以进行符号求解。但由于整个开发项目参与者之间存在竞争合作并重关系,这便导致系统组件行为模型的形式多样性,包括HDL、XML等可执行代码及其他MDL等。这时可将系统组件模型进行封装,通过提供封装器的标准API接口,可以开发出各种系统组件模型的封装器。利用封装器可以实现基于配置的多能量域集成聚台仿真改造。在此基础上,如果利用CORBA/JAVA/XML/Web技术,则可实现机电一体化系统异地设计的分聚台仿真目标。此外,基于XML的多能量域集成产品建模机电一体化系统异地设计的演化过程对组件的可演化性提出了很高的要求。就是在设计的早期阶段,强调组件的功能需求及性能、结构与形状方面的约束,此时主要定义复合组件的接口、配置模型、附加的约束;而在设计的后期阶段,强调组件在系统中的装配关系、端口连结关系以及组件内部各能量域内的行为属性参数件是否满足设计需求,此时需要详细定义组件的端口模型、配置模型、行为模型、几何模型、关联模型、约束模型。需要特别注意的是,整个开发项目中,任何参与者之间都存在竞争、合作关系,这便令行为组件模型样式更加丰富多样,如XML、可执行代码等,此时技术人员可考虑进行组件模型封装处理,并透过封装器标准化API接口实现配置多能量域集成聚合仿真操作目标。

篇11

随着科学技术的高速发展,电子技术也在迅猛发展,机电一体化系统逐渐完善,并且在工业生产和机械制造中得到了广泛应用,能够有效提高工业生产和机械制造质量,已经引起了我国工业生产人员的充分重视。而智能控制在机电一体化系统的背景下应运而生,促进了机电一体化系统的发展。智能控制在没有人操控的情况下可以自动控制目标,实现生产制造,智能控制的功能主要体现在控制程序和控制主体上。目前,工业行业对于工业生产的质量要求越来越高,而工业生产受到许多不确定性因素的影响,这就导致数控管理非常困难,无法控制工业生产的质量。通过智能控制来代替人工操作,能够充分发挥智能控制的优势,有效解决机电一体化系统中的问题,取长补短,使工业生产的质量更高、效率更快。因此,如何在机电一体化系统中应用智能控制技术值得广大工业人员深思。

1机电一体化系统的概述

1.1机电一体化的定义机电一体化又被称作为机械电子学,主要指的是把电子电工技术、微电子技术、机械技术、信息技术、信号变换技术、接口技术和传感器技术等多项机械和电子技术结合起来,并应用在实际工业生产中的综合性技术。1.2机电一体化系统的结构机电一体化系统的结构主要由硬件和软件来部分组成,其中硬件组成部分主要包括了电子装置、计算机装置和机械装置,而软件组成部分主要包括了计算机技术、信息技术、电子技术、机械技术、自动控制技术、系统技术、检测技术、传感技术以及伺服传动技术。其职能组成部分主要包括信息处理部分、动力组成、感知部分、控制部分、执行部分和机械运动部分。

2智能控制的概述

2.1智能控制的定义智能控制主要指的是在无人干预的情况下智能机器能够模拟人类的行为自动进行操作,其主要是通过计算机来完成相关智能操作,提前下达指令或程序,才能模拟人类智能。智能控制相对于传统人力控制来说更加复杂,但是能够更好地完成控制任务,达到控制目的。随着科学技术和社会经济的高速发展,智能控制将会面临更加广阔的发展空间,而且运用智能控制能够很好地解决传统控制无法完成的复杂控制任务,智能控制更加安全、可靠,对于一些高危操作,只需要设定一段程序,机器就能够自动代替人力完成操作。传统控制属于智能控制的最初阶段,在智能控制中包含了许多学科,这些学科相互结合,能够起到良好的辅助作用。智能控制理论体系主要基于信息学、自动控制学和人工智能学等多种学科建立起来的。2.2智能控制和传统控制之间的关系以及对比优势智能控制是在传统控制基础上的延伸和发展,自二十世纪六七十年代以来,计算机信息技术与人工智能技术发展的速度越来越快,人们为了让控制系统的控制效果更好,逐渐在控制系统中应用人工智能技术,而人工智能技术的应用,也使控制系统走向了智能控制阶段。和传统控制相比,智能控制系统主要具有这样几点优势:(1)智能控制比传统控制更加高级,是传统控制基础上的延伸和发展,智能控制的结构比较开放,分为各个等级,能够对分布的信息进行综合处理,提高了信息的处理效率,同时,利用智能控制来处理信息,更加精确,能够全面优化控制系统的功能。(2)智能控制系统中包含了众多学科,智能控制理论体系主要基于信息学、自动控制学和人工智能学等多种学科建立起来的,所以智能控制理论体系非常完善,同时对于传统控制而言更加成熟。(3)和传统控制相比较,智能控制能够适用于更加广泛的范围,智能控制能够解决机电一体化中对于控制对象不确定性的问题,安全、可靠地达成控制任务,提高了机电一体化控制效果。(4)智能控制和传统控制在使用方法上存在差异性,只能控制主要通过数控模型来进行混合控制,而传统控制主要通过运动学模型来进行控制,智能控制能够模拟出多种控制方式,适应各种控制环境,对于现代化工业生产起到了重要的辅助作用。除此之外,智能控制中还包含了传统控制理论,对于一些简单的问题可以通过传统控制来完成,而对于一些复杂的问题,就可以结合二者的优势,来发挥最好的控制效果。2.3智能控制的特点和类型综合而言,智能控制主要具有这几种特点:第一,智能控制的组织性明显;第二,智能控制的结构变化显著;第三,只能控制具有非线性特点;第四,只能控制能够满足目标的高质量、多元化需求;第五,智能控制能够从总体的基础上进行优化;第六,智能控制包含的学科种类非常齐全;第七,智能控制比较先进。智能控制主要分为这样几种类型:第一,分级递进智能控制系统;第二;复合式智能控制系统;第三,人工智能型控制系统;第四,进化型智能控制系统;第五,自主学习型智能控制系统;第六,专家型智能控制系统;第七,组合结构型智能控制系统。2.4智能控制系统的发展趋势由于智能控制系统的组织功能和适应非常强大,这也是当前机电一体化系统的发展趋势。在机电一体化系统中应用最广泛的就是人工神经网络和遗传计算系统。在机电一体化系统中,各个部分相互依存,起到了良好的辅助作用。近几年以来,我国的智能控制技术已经逐渐走向成熟阶段,逐渐在机电一体化系统中得到应用,智能控制技术作为一种先进的新兴技术,随着计算机信息时代的来临,智能控制系统一定能得到高速发展。

3机电一体化系统中智能控制的应用

近几年来,智能控制在机电一体化系统中的应用得到了广泛应用,其主要运用于数控领域、机械制造领域、机器人领域和建筑工程领域,下面就机电一体化系统中智能控制的应用进行深入分析。3.1智能控制在数控领域中的应用随着工业生产的高速发展,数控领域是近年来逐渐兴起的新型产物,数控技术的发展促进了我国工业的发展进步。目前,工业生产对于精确度的要求越来越高,而数控系统的要求也相应提高。在数控系统中应用智能控制,能够提高数控系统的精确度和可靠性。为了达到智能控制的目的,必须建立数控模型,结合应用传统控制理论,但是对于数控模型信息模糊的位置,必须运用智能控制才能精确控制目标。在数控系统中设置安全诊断系统,可以充分利用专家系统和遗传算法,来对数控系统中的信息数据进行检测、预算,从而全面提升数控系统的预测和控制功能,进一步完善数控系统。3.2智能控制在机械制造中的应用在工业生产中机械制造是主要目的,而机械制造的前提就是应用智能控制。在机电一体化系统中机械制造是主要组成部分。目前,我国的机械制造主要通过运用计算机技术和智能控制技术,这也是智能控制在机械制造中的主要应用方式。面对更加先进的机电一体化系统,传统控制技术已经无法发挥其作用,在现代化机械制造中,有许多复杂难以预测的数据,无法通过脑力运动来计算,必须合理运用智能控制技术,对人类的行为进行模拟,利用人工神经网络来建立数据模型,通过传感器来传达信息,进而通过智能控制技术来预测处理动态模拟信息。在机械制造中智能控制的应用主要体现在这些方面:对机械的故障风险进行智能诊断,智能监控机械制造的动态过程,利用智能传感器来采集信息数据。3.3智能控制在机器人领域中的应用模糊控制是机器人控制系统的核心,其操作功能多种多样,目前,工业机器人已经完全实现了智能化和自动化。为了提高工业机器人的智能化功能,必须充分运用智能控制系统,使机器人的智能传感器和视觉系统连接起来,这样在行走和搬运物品的过程中,才能自动规避障碍物,并由机器人自行设计合理的路径规划,完全模拟人体行为,来进行各种工业操作。同时,智能控制能够丰富机器人的知识储备系统,让机器人具备人工神经网络,具备逻辑思维,适应各种工业操作,把智能控制和工业机器人结合在一起,能够节省人力,提高工业生产质量。3.4智能控制在建筑工程领域中的应用随着社会经济的高速发展,人们的生活水平不断提高,在建筑工程中越来越多地运用到机电一体化系统,而智能控制是其中的重要组成部分。通过运用智能控制,能够对建筑工程进行智能化管理。在建筑物内部的照明系统中应用智能控制,能够对照明时间和光照强度进行智能化调配,不仅可以节约能源,而且能够让人们生活更加方便。在建筑物的火警装置中采用智能控制,通过计算机联网通信,摄像头和智能传感器来进行实时监控,一旦发现火灾险情,可以及时传达给主机系统,进行智能化处理,智能化预警机制能够提醒居民撤离,并把信息传输到火警部门的监控电脑中,火警人员能够及时赶到现场,救援火灾。

4结语

综上所述,智能控制在机电一体化系统中的应用,能够起到优势互补的作用,有效提高工业生产的效率和人们生活质量。智能控制和传统控制相比具有更加显著的优势,为了充分发挥智能控制的作用,必须加快智能控制和机电一体化系统的融合应用。

参考文献:

[1]曲百峰.探讨机电一体化系统中智能控制的应用[J].黑龙江科技信息,2013(20):33.

[2]肖攀,董硕.机电一体化系统中智能控制的应用探析[J].山东工业技术,2015(12):187.

[3]王睛睛.基于机电一体化系统对智能控制的有效应用的几点思考[J].科学与财富,2015(8):261.

篇12

一、选题背景

现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化,使现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。

二、机电一体化的定义

机电一体化是在大规模集成电路和微型计算 机为代表的微电子技术高度发展,向传统机械工业领域迅速发展渗透,机械电子技术深度结合的基础上,综合应用机械、微电子、自动控制、信息、传感测试、电力电子、接口、信号转变等技术以及软件编程等群体技术,合理配置机械本体、执行机构、动力驱动单元、传感测试元件、控制元件、微电子技术、加工、线路以及接口元件等硬件元素,并使之在软件程序和微电子电路逻辑的有序规则运动,在高功能、高质量、高可靠性、低功耗的意义上实现特定功能价值的系统功能技术。

三、机电一体化发展简介

机电一体化的发展大体可以分为三个阶段:

(1)20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起到了积极的作用。那时,研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

(2)20世纪70―80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的出现,为机电一体化的发展提供了充分的物质基础。

(3)20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面,对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。

四、机电一体化的专业优势

目前,机电一体化技术已广泛参透到各个领域。机电一体化这个尚未被确认的专用术语在十年之前并不为人们所注意,不过以此而取名的设备很旱就有了。随着机械设备的电子化机械部件逐浙减少,这已有十多年的历史了。 所谓机电一体化,即是机电一体化技术,或机电信息一体化技术。机电一体化系统的构成或者作为更复杂的系统,则构成的综合系统。

五、本课题内容及意义

机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。因此,“机电一体化”涵盖“技术”和“产品”两个方面。只是,机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。

机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动显示记录、自动调节与控制自动诊断与保护等。

我国用机电一体化产品取代技术含量和附加值低,耗能、耗水、耗材高,污染、扰民产品的责任重,有意义。在我国工业系统中,能耗、耗水大户,对环境污染严重的企业还占相当大的比重。近年来我国的工业结构、产品结构虽然几经调整,但由于多种原因,成效一直不够明显。这里面固然有上级领导部门的政出多门问题,有企业的“故土难离”“死守故业”问题,但不可否认也有优化不出理想的产业,优选不出中意的产品问题。上佳的答案早就摆在了这些企业的面前,这就是发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。这是解决机电产品多品种、少批量生产的重要出路。 我国在机电一体化方面的任务可以概括为两句话:一句话是广泛深入地用机电一体化技术改造传统产业;另一句话是大张旗鼓地开发机电一体化产品,促进机电产品的更新换代。总的目的是促进机电一体产业的形成、为我国产业结构和产品结构调整作贡献。总之,机电一体化技术既是振兴传统机电工业的新鲜血液和源动力,又是开启我国机电行业产品结构、产业结构调整大门的钥匙。

六、结论

随着机电一体化技术的发展,各种产品与装置实现了机电一体化,有利实现整体优化,提高产品质量和生产效率,缩短开发新产品的生产准备周期,加速科技成果向商品转化,有利推动传统产业发生深刻变革,同时,随着新产品的研发及高精密等设备的发展,要求新一代机电一体化技术、产品及系统朝着高性能、智能化、系统化以及轻量化、微型化方向发展,从而为国家带来更大的经济效益与社会效益。

参考文献:

篇13

一、机电一体化的概念

机电一体化技术最初定义是将机械、电子、计算机与自动控制综合运用的一项复杂技术,机械与电子融为一体,使物流、能量流和信息流融为一体。笔者认为现在机电一体化技术是一个高新技术融合的代名词,已不完全是机械与电子技术的结合。例如许多机电一体化产品,已将光纤技术、网络技术、智能技术融合进去,形成新的、性能更优越的机电一体化产品。这些技术使机电一体化产品具有智能功能,实现优化控制;使产品具有通讯功能,实现多个机电一体化设备的协调控制,以致整个企业的综合自动化。

二、煤矿机电一体化技术应用实践

1.我国煤矿机电一体化的现状

近几年来,我国煤矿机电一体化产品的研究和生产得到长足的进步。例如,国产电牵引采煤机已经占领国内市场,煤科院上海分院、太矿、鸡西煤机厂生产的电牵引采煤机,核心部分是由安装在采煤机上的计算机和传感器组成,具有多种保护、遥控功能。无锡采煤机厂将典型的机电一体化产品――开关磁阻电机用于采煤机电牵引,使电牵引采煤机的机电一体化水平得到进一步提高。又例如,国产全数字化直流提升机也已占领国内市场,这项技术不仅煤科总院、中国矿大等科研院所、大专院校所掌握,兖矿集团也自行研制成功全数字直流提升机,并有多台投入使用。此外,冶金自动化院研制成功全数字交交变频提升机,装机容量达2×3000kW,2001年11月在淮南张集矿投入运行以来,效果良好。

但国产煤矿机电一体化产品还存在许多问题,例如核心部分国产化程度不高;单机自动化水平尚可,但一般不具备通信功能,处于“自动化孤岛”状态;设备监测信息量不少,但未得到充分利用等等。因此,发展国产煤矿机电一体化产品,在技术上还应注意以下几点:①研究具有自主知识产权的核心装置,增加产品国产化的比例;②增加产品的通信功能,以适应综合自动化的需要;③进一步提高产品(尤其是大型设备)的故障诊断功能和智能化程度。

2.我国煤矿机电一体化的应用实践

(1) 矿井安全生产监测监控系统中的应用

矿井安全生产监控系统是最能体现煤矿机电一体化的技术之一。我国监测监控技术应用较晚,20世纪80年代初,原国家煤炭部组织了对国外煤矿监控技术进行大规模的考察和引进工作,此举大大促进了国内监控技术的发展。先后从波兰、法国、德国、英国和美国等引进了一批安全监控系统,在部分煤矿中应用;在引进的同时,通过消化、吸收并结合我国煤矿的实际情况,研制出KJ2,KJ4等系统并通过了国家鉴定。20世纪90年代以来,紧跟着世界监测监控系统的发展潮流,我国自行研发出了一批具有世界先进水平的监控系统,如煤炭科学研究总院重庆分院的KJ90系统、煤炭科学研究总院常州自动化研究所的KJ95系统等,它们的主要特点是:测控分站的智能化水平进一步的提高;具有网络连接的功能;系统软件采用了Windows操作系统,使用方便。同时,在“以风定产,先抽后采,监测监控”12字方针和煤矿安全规程有关条款的指导下,规定了我国各大、中、小煤矿的高瓦斯或瓦斯突出矿井必须装备矿井监测监控系统。自此,大大小小的系统生产厂家如雨后春笋般的不断涌现,不仅为各煤矿企业提供了更多的选择机会,且促进了各厂家在市场竞争条件下不断提高产品质量和服务意识。经过多年的实践表明,安全监测监控系统为煤矿安全生产和管理起到了十分重要的作用。

(2) 矿井提升机中的应用

矿井提升机是一种实现机电一体化很好的矿山大型机械设备,全数字化,交、直流提升机。特别是内装式提升机,从结构上将滚筒和驱动合为一体,简化了机械的结构,是典型的机电一体化设备,这充分体现了机械-电力电子-计算机-自动控制的综合体。全数字提升机高度可靠,具有可重复性故障寻址、完整的诊断设施和自诊断功能,以及简单而快速的通信功能;它采用总线方式,简化了电气安装;硬件配置更简单,也互相兼容,零备件也少;可以方便地实现软启动、软件控制和改变瞬间加速度等。

(3)井下带式输送机中的应用

在我国“八五”计划期间,通过国家一条龙“日产万吨综采设备”项目的实施,极大地提高了带式输送机的质量和技术水平,并掌握了煤矿井下用大功率、长距离带式输送机的关键技术。成功的研制了多种软起动和制动装置以及以PLC为核心的可编程电控装置、驱动系统采用调速型液力偶合器和行星齿轮减速器,目前我国已经自行生产制造了多个品种和多种类型的带式输送机。

三、我国煤矿机电一体化技术应用的发展趋势

我国自造的煤矿机电一体化设备都具有智能化、程序化、信息化的特点,以及设备体积小、操作、维护方便、保护齐全、性能可靠等优点。这些设备在煤炭生产中的广泛应用,不仅减轻了操作人员的劳动强度,还极大地提高了煤矿的安全生产水平和能力,创造了巨大的经济效益和社会效益。

四、结束语

近年来,随着微电子技术、计算机技术、软件技术、传感器技术和自动化技术的飞快发展,信息流成为机电一体化的主要特色。其产品实现自动化、数字化、智能化,在性能和功能方面均实现了质的飞跃。因此,机电一体化技术是企业信息化的重要支撑技术,是矿山综合自动化的基础。机电一体化技术在煤矿采、掘、运装备的应用和推广,极大地提升了我国煤矿生产的综合实力,为实现高效、安全、洁净、结构优化的煤炭工业生产打下了扎实的基础。

参考文献:

友情链接