发布时间:2023-10-29 09:49:53
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇电磁感应及其应用范例,将为您的写作提供有力的支持和灵感!
中图分类号:TN773文献标识码: A
引言:随着经济的发展和科学技术的进步,变频器的应用变得越来越广泛,但随之而来的干扰问题一直困扰着电气技术人员。变频器周边的电气设备以及电气线路对变频器产生干扰,同时变频器也对周边设备产生干扰。如果变频器的干扰问题得不到很好的解决,那么就不能保证变频器系统能够可靠、稳定地运行。本文针对变频器抗干扰问题,首先阐述了干扰的来源、传播方式,然后再针对这些干扰提出了不同的措施。
1、干扰的产生
1. 1外部对变频器的干扰
在空间中存在着各种各样的电磁波,例如通信电磁波、线路产生的电磁波,这些电磁波是由于导线中通过的电流产生的,其强弱受电流强度及线路布设方式的影响较大,该电磁波向空中辐射,从而影响变频器的正常运行。 当变频器的供电电源受到电网中大量谐波影响时,变频器就会出现过压、欠压、掉电等现象,从而可能造成变频器的波动甚至损坏,进而影响生产。变频器的整流管有时会受到补偿电容的影响。在补偿电容投入以及切出系统时,由于补偿电容的性质,会在电网中产生很高的峰值电压。如果此峰值电压过大,就有可能击穿变频器整流管,导致变频器损坏。
1. 2变频器对外部的干扰
变频器的整流电路工作时会产生谐波,这些谐波在电网中传播,会对其他的电气设备产生干扰。变频器工作时,其场控开关器件做高速切换,且产生高次谐波。同时,变频器的逆变电路输出电压及电流功率会携带高次谐波,这两种谐波以及开关器件引起的电磁辐射都不容忽视。在电磁干扰的作用下,变频器控制信号线及检测信号线在输出端会产生较大影响,甚至导致系统不能及时准确地检测到信号,还会使控制系统紊乱。谐波或电磁辐射干扰会导致继电器保护装置误动作,使电气仪表计量不准确,甚至无法正常工作。
2、干扰的抑制与消除
在实际应用中,为减少电磁辐射的干扰,在变频器应用中一般采用硬件和软件两方面的抗干扰措施。硬件抗干扰主要从硬件出发,对可能引起系统干扰的干扰源及干扰途径进行物理防护及切断。一般涉及变频器系统的工程中,较多采用的是隔离、接地、屏蔽以及滤波等方式进行物理抗干扰。
2. 1合理的安装和布线
工程中,对变频器安装的环境要求都有明确的规定,比如变频器的安装环境温度、湿度等。另外,不同的安装方式或者技术等也会对变频器的使用产生较大的影响。合理的布线以及合适的安装距离及角度等都能在一定程度上改善变频器的工作性能。在安装和布线时应注意以下几点:①变频器一般多安装在密闭配电柜中,并且有排风扇等装置,以保证柜内的空气流通,并且,在变频器所在的室内,一般还应装有空调等降温设备;②变频器安装时应避开电磁干扰比较严重的地方,例如电源、信号线比较集中且杂乱的地方,并且应避开灰尘大以及腐蚀性气体的场合;③应安装在一个牢固、结实且不会经常震动的地方,并且应做好对震动冲击的防护措施;④变频器对所安装的环境温度有一定要求,一般为一20℃一60℃;⑤变频器的输入输出控制及信号线应尽量避开其他设备的电源及信号线,同时其电源线要与信号控制线分开;⑥确保控制柜中的接触器有灭弧功能。
2. 2采用电抗器
在变频器电路中,电抗器可以对窜入电路中的谐波电流进行有效的抑制。在输入电路中串入电抗器可以抑制输入电路中较小的谐波电流,同时可以消除因电网电压突变和操作过电压引起的电流冲击。在变频器的输出侧串入输出电抗器,可以改善变频器输出电流。此外,负载电抗器可以限流,在一定程度上还可以保护变频器。因此,在变频器中,合理地使用电抗器可以提高变频器系统的可靠性、运行性能和效率。
2. 3使用滤波器
变频器系统的运行会使电网中产生高次谐波,从而可能造成电网波形畸变,使其功率因数降低。滤波器可以对电路中的高次谐波进行抑制或消除。采用无功补偿装置可对电网功率因数降低的情况进行调节,而对于高次谐波,应根据具体情况,在变频器的进线端及输出端加装滤波器,以改善电网波形畸变对变频器及其他设备等产生的影响。为了防止变频器产生的电磁辐射或者谐波等干扰进入电源或者其他设备,在电路中应设置滤波器。在变频器系统中,有些电源对抗干扰的要求较高,所以,在电源输入端并联滤波器可有效抑制变频器产生的电磁辐射及谐波的干扰。在变频器的输入和输出端分别加入输入和输出滤波器,可有效减少电磁干扰、电网电压突变等造成的影响。对于一些对电磁干扰非常敏感的电子电气设备,也应该加入滤波器。这种滤波器应该加在电源线上,称为电源噪声滤波器。
2. 4屏蔽整个变频器
将整个变频器系统进行屏蔽,可减小其对外界的干扰,也能防止外部的干扰对变频器系统造成影响。同时对于干扰源也要进行屏蔽,例如,对于接入变频器的信号控制线,应使用屏蔽线和屏蔽层,并且接在变频器一端的屏蔽应接控制电路的公共端,而不应接在变频器的接地或大地屏蔽层的另一端,这样可有效抑制外部干扰通过信号电缆影响变频器。再者,输出线最好采用专用的屏蔽电缆或用钢管屏蔽,信号线应尽可能短,最好控制在20 m以内,且信号线应采用双芯屏蔽,并且与主电路线及控制电缆分离开,同时还应对周围电子敏感设备线路进行屏蔽。
2. 5正确的接地
在实际的电气系统中,接地技术得到了广泛的应用。接地可以将电路中外部藕合的噪声消除,防止外界电磁干扰的影响,对提高电子电气设备的兼容性能起到至关重要的作用。所以,接地对于外来干扰及自身干扰都有一定的抑制作用。从安全和抑制干扰的角度考虑,变频器的主回路端子PE(E,G)必须接地。在实践中,通常采用多点接地、一点接地及混合接地等接地方式。具体使用哪一种接地,应根据具体情况具体分析。实际应用中,对变频器接地的要求是比较明确的,接地线严禁接在系统的零线上,更不能接在变频器或其他设备的外壳上。当系统中有多台变频器以及其他的电子电气设备时,其接地线不能拧在一起共同接地,应分开单独接地,以防止设备间的相互干扰。变频器接地时,对接地线也有一定的要求。一般接地线应比较粗,可以用较粗的短线一端接到接地端子PE端,另一端与接地极相连。一般要求接地线截面积应不小于2. 5mm2,接地线长度小于20 m,接地电阻不能大于100Ω。
2. 6采取必要的隔离
在实际工程中,一般要把干扰源单独隔离开或者把干扰源与容易受到干扰的设备隔离开。在安装变频器时应单独安装,使变频器与其他电气设备尽量互不干扰。有时尽管不能单独安装,也应注意将变频器与其他易受干扰的设备分开安装,以避免变频器的电磁噪声对其进行干扰。
3、结语
干扰的形式是多种多样的,干扰的分布是随处可见的,因此采取适当的措施来抑制干扰是十分重要的。在采取抗干扰措施时,还要考虑可行性、成本、效果等因素。采用的措施只要能解决问题即可,往往过多的抗干扰措施有可能会产生额外的干扰。随着技术的进步,变频器应用中存在的干扰问题有可能会通过变频器本身的功能来实现消除。我们相信,在不久的将来,变频器的干扰问题一定会得到有效的解决,变频器也会随着技术的进步,应用得越来越轻松、越来越广泛。
磁场测量是研究与磁现象有关的物理过程的一种重要手段。磁测量技术的发展和应用有着悠久的历史。自16世纪末期就开始使用的利用磁力为原理的测量方法,到现在广泛使用的电磁感应法和电磁效应法。目前比较成熟的磁场测试方法主要有以下几种:磁力法、电磁感应法、磁饱和法、电磁效应法、磁共振法、超导效应法和磁光效应法。
电磁感应法是利用电磁感应定律来测试磁场的方法,当一个线圈置于变化的磁场中时,当耦合与线圈的磁通发生变化时,在线圈上就会感应出响应的电压,因此,只要测试出对应的电压大小,就可以通过一定的转换方法,获得对应的磁场大小。电磁感应法一般利用具有一定面积的线圈作为探头,因此理论上不能算真正的点磁场测试,一般将线圈面积内的磁场平均值来表征线圈中心点的磁场。
1 电磁感应法测量原理
则当线圈的几何尺寸满足上述关系时,线圈的总磁通量φ只与其中心点处的磁场相关,此时所测得的是线圈中心的“点”磁场值,其方向与线圈轴向平行。
2.2 线圈常数的确定
利用满足一定尺寸要求的感应式磁传感器测量空间“点”磁场,线圈常数是个很重要的概念,
当感应线圈的几何尺寸和匝数设计确定后,线圈常数也就定了,但在实际设计尺寸时,应综合考虑L/D 和NS 值,保证实现“点”磁场测量传感器的最优化设计。
3 电磁感应法脉冲磁场测量系统
3.1 测量系统
利用电磁感应法进行磁场测量时,测试系统主要包含以下几个部分,主要由线圈探头,连接线以及采集系统组成。
线圈探头是由导线绕制,由于仅为观察线圈探头测量磁场对于电流的跟随效果,故在线圈探头设计时并未做过多考究,其参数如下:线圈匝数8匝、外径15.20mm、内径11.48mm、长15.30mm、导线直径为1.64mm,如图2所示。
3.2 试验布置
利用电磁感应法测量磁场时,因为线圈探头有一定的体积,故为了更好的测量到“点”磁场,需将线圈探头正对电感器中心处,并妥善固定。线圈探头固定位置如图3所示,试验布置如图4所示:
3.3 试验数据
(1)示波器所测得的波形如图5至图6所示(其中CH1为线圈测得信号,CH2为电流信号):
(2)将线圈测得的信号积分后,所获得的波形如图7至图8所示:
由于示波器测得的信号存在一定的偏置,其中线圈测得信号大约有-0.02的偏置,电流信号大约有-0. 8的偏置,故对其做了相应处理。在积分前,在EXCEL表格中,分别对线圈信号数据+0.02,对电流信号数据+0. 8。
3.4 试验结果分析
虽然只是简单绕的线圈,但是通过测量的结果可以明显看出,其相对于电流的跟随性良好,并且也没有出现负值。总体来说,其波形满足要求,但是线圈探头的标定仍是一个难点。
有一点值得注意的地方,在线圈测量的dB/dt波形中,同样可以发现有个向下的负脉冲,但是由于数据还要再次经过积分,所以该负脉冲的影响并不明显,并未影响到积分后磁场波形的变化。并且,通过对比第一次试验霍尔探头测量的波形可以发现,其向下的负脉冲出现在同一地方,故可以判定为同一原因引起的负脉冲,并且该负脉冲只是单纯影响测量信号。霍尔探头是直接输出磁场的波形,所以负脉冲对其影响很大;而线圈是经过积分后才获得磁场波形,所以在这两处负脉冲对其积分结果不会造成很大影响。
4 结论
本文首先对利用电磁感应法测量磁场进行了简要的介绍,并且对其注意事项与设计做了一定分析。根据实际条件,对模块的电感外侧磁场进行了测量,并且获得了磁场测试的结果。
对于霍尔效应法而言,测试得到信号后,经过简单的转换就可以得到磁感应强度信号,但是,信号中包含有较多的干扰和毛刺,需要进行平滑处理(差分放大消除共模干扰);而电磁感应法获得的信号,需要进行积分处理才能够获得最终的磁场信号,经过积分处理后的信号失去了一些重要的跳变信息,例如霍尔效应中出现的下降沿信号,就无法在感应法中明显的体现。
为了使磁场测量的工作更加方便,下一步的工作主要为消除示波器中的偏置与设计积分环节,本文的试验数据能够为后一阶段的工作提供一定的参考价值。
参考文献
[1]董李江.模块化电源脉冲磁场测试技术研究[D].南京:南京理工大学,2008.
[2]宫延伟.低频交变磁场测量技术研究及仪器开发[D].上海:上海交通大学,2010.
[3]陈金全.测量低频交变磁场的试验方法[J].桂林电子工业学院学报,2002,22(4):53-56.
[4]强磁场测量科研组.感应法脉冲强磁场测量.
[5]张玉华,罗飞路,白奉天.交变磁场测量系统中磁传感器的设计[J].传感器世界,2003:6-12.
[6]姜智鹏,赵伟,屈凯峰.磁场测量技术的发展及其应用[J].电测与仪表,2008,4:1-10.
ⅡA摩擦力和牛顿第二定律ⅡA万有引力定律Ⅱ结合我国航母考查V-T图、动力学知识Ⅲ
分析1.2010年、2012年、2013年第14题都涉及对物理学史知识的考查,2011年未出现,这样凸显出物理学的人文性,要求掌握物理学史上的重要实验,力求体现新课改的三维目标.
2.质点的运动是历年高考的高频考查内容,可以与其它知识点相结合,也可以单独考查.考点是匀变速直线运动的规律及v-t图像,而且往往与实际生活相结合.如:2010年第16、17题,第16题是v-t图像结合力做功、功率的考查,第17题是结合静电除尘器进行考查; 2011年第15、20题,第15题与动能结合考查,第20题则与电场结合;2012年回避了v-t图;2013年第19、21题,第19题考查了对位移-时间图像的理解,第21题是v-t图像结合我国航母辽宁号考查动力学知识.
3.平衡类问题及牛顿定律在的应用.如:2010年第16、17题, 2011年第21题,2012年16题.
4.对动能定理、功、平均功率及瞬时功率的考查. 如:2010年第16题; 2011年第16、18题, 2012年回避,2013年第16题.
5.随着我国航天事业的迅猛发展,万有引力定律与航天技术的结合是高考中的热点问题,同时还具有鲜明的时代特色.如:2010年20题;2011年19题;2012年21题,2013年第20题结合科技前沿神舟九号与天宫一号的对接考查万有引力的知识.
6.对电场、磁场性质的考查.如:2010年第21题;2011年第14、20题;2012年18题,2013年第15、16、18题.
7.交流电的有关知识,主要知识点包括:描述交流电的物理量、交流电的图像、变压器等.如:2010年未考;2011年第17题,2012年第17题.
8.电磁感应与直流电路的综合问题,这部分知识是试题出现的高频点,主要知识点包括:法拉第电磁感应定律、楞次定律、闭合电路欧姆定律及电路功率、电路中的动态分析等.如: 2010年第19、21题; 2011年第18题;2012年19、20题,2013年第17题.
总体上选择题的考查突出了主干、基础知识的考查,主干知识题目主要来源于《考试大纲》中的Ⅱ级要求,由于试题量较少,一些题目同时考查多个知识点,同一个题目可以使不同的物理规律、方法交织在一起,综合性较强.选择的考查也突出了以知识为载体的能力考查,理解能力、推理能力、分析综合、运用数学的能力不是孤立考查的,着重对某一种能力进行考查的同时,在不同程度上也考察了与之相关的能力.
这四年试题难度适中,没有偏题、怪题、大难度题,较多的试题背景还生活化,使考生感到亲切而不陌生.在高考的备考中要注重基础,全面复习,千万不能“猜题式”的复习,同时要重视变式训练,深挖概念规律内涵,注重训练的针对性,在训练中还要特别注重能力的培养.
二、2010、2011、2012、2013年实验题部份
分值和知识点分布
2010年2011年2012年2013年题号分值知识内容分值知识内容分值知识内容分值知识内容224分验证机械能守恒定律5分等效替代法测电流表的内阻5分长度测量-读数7分仪器读数、设计测量摩擦因数、误差分析2311分仪器读数、伏安法测电阻、应用图象处理实验数据10分设计测量加速度、应用图象处理实验数据10分电路设计、磁感应强度测定8分仪器读数、多用电表、测电池电势和内阻
分析1.对设计性、探究性实验的考查是不放弃的追求.如:10年设计用伏安法测量对温度敏感的半导体材料制成的某热敏电阻的阻值,11年设计用等效法测量电阻,还设计测量物体运动的加速度,12年设计电路测量磁感应强度,13年设计测量摩擦因数.总体上讲,对设计性、探究性实验的考查难度控制恰当,使学生感觉这样考在情理之中.
2.重视利用课程标准所列实验的原理、方法和器材再与其它知识重新组合、推陈出新.如:10年伏安法测量电阻学生很熟悉,但虚线框内却使用了电路的等效电阻;11年测量电阻的方法其实是等效思想的典范应用之一,而滑块加速度的大小a、滑块经过光电门乙时的瞬时速度v1、测量值s和t四个物理量之间所满足的关系式则是应用了匀变速直线运动的规律;12年电路部份的设计应用的仅仅是欧姆定律,而测量磁感应强度却使用了受力分析与安培力等知识;13年第22题结合匀变速直线运动的规律、受力分析、牛顿第二定律等知识,而23题则是组合的典范,把仪器读数、多用电表的使用、测量电动势和内阻很好的结合在一起.
3.考查注重能理解实验原理和方法,能控制实验条件,会使用仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论,对结论进行分析和评价.如10年第22题,考查仪器的选择,对结论进行分析和评价,第23题会读电流表和电压表;12年考查螺旋测微器的读法;13年第22题考查游标卡尺的读法、误差分析,第23题考查多用电表与电压表的读法.
在备考复习中,要力求全面复习《考试大纲》所要求的必考实验,尤其是基本实验原理、仪器使用方法、读数方法要重点复习,不能有遗漏,更不能凭前几年的感觉复习几个“重点实验”或“重点仪器”,而忽视其他实验;对实验原理和相关步骤要细致周到,不厌其烦地反复练习,做到真正理解实验原理,而不是记忆实验步骤;实验复习不仅仅是复习原理步骤后作一下实验展览,实验操作、实验数据的获得、实验数据的处理、结论的分析要亲自进行,只有真正动手,才能了解实验和仪器使用的细节之处.
三、2010、2011、2012、2013年计算题部份
分值和知识点分布
物理教材中所阐述的内容主要是经典物理学的基础知识,这些理论是建立在牛顿时空观的基础上,以力学、电磁学为重点。本文就电磁学部分的教学谈谈自己的观点。
一、电磁学的知识体系
电磁运动是物质的一种基本运动形式。电磁学的研究范围是电磁现象的规律及其应用,其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,应从以下三个方面来认真分析教材。
1.电磁学的两种研究方式
整个电磁学的研究可分为以“场”和“路”两个途径进行。只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。
场是物质的相互作用的特殊方式。电磁学部分完全可用场的概念统一起来,静电场、恒定电场、静磁场、恒定磁场、电磁场等,组成一个关于场的体系。
“路”是“场”的一种特殊情况。物理教材以“路”为线的框架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。
“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的,“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法。
2.认识物理规律
规律体现在一系列物理基本概念、定律、原理以及它们的相互联系中。
物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较,找出它们相互之间存在的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。
“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系,电阻是电路的物理性质,适用于温度不变时的金属导体。
“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。
“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。
“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步。
3.通过电磁场所表现的物质属性,使学生建立“世界是物质的”的观点
电现象和磁现象总是紧密联系而不可分割的。大量实验证明,在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其它电荷有力的作用,运动电荷的周围除了电场外还存在着磁场。磁体的周围也存在着磁场,磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。科学实验证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。
运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用,所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。转从场的观点来阐述路。电荷的定向运动形成电流,产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处。导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷,当导体中电势差不存在时,电流也随之而终止。
二、以知识体系贯穿始终,使理论学习与技能训练相融合
1.场的客观存在及其物质性是电学教学中一个极为重要的问题。电场部分是学好电磁学的基础和关键。电场强度、电势、磁感应强度是反映电、磁场是物质的实质性概念。电场线、磁感应线是形象地描述场分布的一种手段。
随着人们生活水平的提高和生活节奏的加快,导致自由空闲时间压缩,工作的繁忙往往会使人们忽略对家里养殖鱼的喂养。
本课题设计的游水观赏鱼无需喂养,可以在水缸里自由游动极具观赏性,也可用于家用装饰的门店商业装饰,美观而不失科技感。
该设计具有无线充电功能,当观赏鱼游动耗尽电量后在水缸底部充电区域可通过无线充电技术给锂离子聚合物蓄电池实现无线充电。
本课题的设计主要由鱼体驱动电路、锂电池充放电保护电路和电磁感应无线供电电路三大模块构成。
一、设计的技术难点
1.1机械结构设计
观赏鱼在水下的游动由两个独立电机进行驱动,电机转轴的圆周运动要转为左右摆动,观赏鱼尾鳍摆动推动鱼体运动。这种运动方式的转变涉及到机械链杆机构,设计合适的链杆机构对驱动~体前进不可或缺。
1.2防水密封问题的处理
水下推进系统必须合理的处理好内部各类电子元器件的静态和动态防水密封问题。开发的过程中,必须考虑不同部位的密封特点,针对不同密封部位采用不同密封方式,分类处理,完好的防水密封处理将影响鱼体整体运动效果。
二、鱼体驱动电路的设计
鱼体驱动电路设计作为本课题的三大模块之一,合理的设计对实现观赏鱼水下游动至关重要。CD4017是一款计数分频器集成IC,配合受控驰张振荡电路提供的时序脉冲信号通过对继电器触头的控制间接控制鱼体驱动电机,实现鱼体自由游动。
鱼体驱动功能的实现将由四个不同模块配合工作,包括受控驰张振荡源、计数分频器、前进驱动模块和转向控制模块组成。鱼体头部放置一个轻触开关,当鱼体游动碰触水缸壁后将触发受控驰张振荡电路并产生时序信号,随后时序信号通过CD4017芯片计数分频控制转向电机使鱼体转向继续游动,同时在鱼尾设有独立电机驱动鱼体前进游动。
三、锂电池充放电保护板设计
观赏鱼设计中电源模块采用锂电池供电。锂电池具有很高的能量密度可大容量的储存电能,这也导致其安全性能的不稳定。
通常发生的自燃或破裂的险情就是当锂电池处于过充电状态时,因能量过剩使电池发热温度上升促使电解液分解,内部压强急剧升高而引发;锂电池的使用寿命缩短就是受其处于过放电情况影响,引发内部离子传输载体超量分解造成性能恶化。
故此利用锂电池作为电源时必须设计合理的保护电路确保安全性以及性能稳定。
四、电磁感应无线供电电路设计
考虑到观赏鱼在水下的运动,所以电源模块将应用电磁感应原理设计近距离感应式无线供电系统为锂电池充电。选取XKT-412高频大功率无线供电IC和T335滤波整流IC设计无线充电发射模块;选取T3168关断型稳压IC设计无线充电接收模块。
五、结语
观赏鱼的外形体积直接影响到无线充电模块体积的大小,而本次设计的无线充电观赏鱼将用作商业用途其体积较小,所以在选取芯片设计整个系统时应尽可能选择封装较小且以满足系统功能为前提下的高度集成芯片。
参 考 文 献
[1] 高帅.仿生鳐鱼的结构设计与实验研究.哈尔滨工业大学工学硕士学位论文.2014,7:2-6
[2] 郑精辉.基于波动机理的观赏鱼探测器研究.浙江大学硕士学位论文.2007,6:3-8
[3] 陈维山.仿鱼机器人稳态游动的水动力性能研究哈尔滨工业大学.2010,7:2-5
[4] 印健健.解析CD4017集成电路的逻辑功能.电子测试.2013(7):37-38