你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 数字集成电路原理

数字集成电路原理范文

发布时间:2023-11-09 10:39:57

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇数字集成电路原理范例,将为您的写作提供有力的支持和灵感!

数字集成电路原理

篇1

中图分类号:TN702 文献标识码:A 文章编号:1009-3044(2014)19-4476-02

集成电路从60年代开始发展至今,其规模大致上遵照摩尔定律发展[1],即芯片上的晶体管数目每隔18个月就翻一番或每三年翻两番。目前单个的芯片上已能够制作上百万个晶体管的一个完整数字系统或数/模混合的电子系统。集成电路的特征尺寸已发展至纳米水平。伴随着数字集成电路技术的越来越成熟,它于人们的生产以及生活中的应用也越来越广泛,对数字集成电路在生活应用中的进一步探究也就越来越有必要。该文将从数字集成电路的基本结构和分类这些方面对其原理进行比较详细的介绍,然后重点讨论和探究它的实际应用,最后将结合数字集成电路在生活当中的实际应用设计出一个利用数字集成电路原理制成的流水灯。

1 数字集成电路的基本原理

数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统[2]。

数字集成电路基本电路符号如图1所示,它有输入、输出、电源和接地四个端口。数字集成电路具有静态特性以及开关特性,表示静态特性的参数有输入电压、输出电压、输入电流和输出电流等。

图1 数字集成电路基本电路符号

集成电路正常工作的时候,输入电压有高电平输入电压和低电平输入电压,使用最小值表示,表示能判断高电平的最低输入电压,因此,在高电平给定时,需高于的电压,用最大值表示,表示能判断低电平时的最大输入电压,因此,在低电平输入电压给定时,需低于的电压。

输入电流有高电平输入电流和低电平输入电流,都是表示集成电路输入端加上电压时,流经输入端的电流。其中表示输入端加上最大输入电压时的电流,表示输入端加上规定高电平输入电压时的电流,表示输入端加上规定低电平输入电压时的电流。CMOS输入电流几乎等于0,因此,只用表示。集成电路的输入电流随类型不同而不同。

2 数字集成电路应用

2.1 多路自动巡检控制器

在一些电子仪表较密集的工业控制和自动检测系统中,经常会使用多台同种检测控制仪表,对不同的处所和位置进行检测和控制。为了达到对这些仪表的集中监测的目的,通常会采用一台多路自动巡检控制器。它能对被控通道自动巡检,并将被控通道用数字显示器显示出来。它既可以作为自动巡检,又可以转换为手动巡检,使用起来相当的方便。

电路组成,它主要由脉冲发生器、计数器、通道转换器和通道显示器等组成。

2.2 绕线机电子计数器

普通的绕线机一般采用机械传动的指针式计算器来进行计数,由于存在传动齿轮的磨损和固有机械间隙,有时很难做得到准确计数。接下来要介绍的电子计数式绕线机,则采用了接触式的光电传感器来触发电子计数器进行计数,所以准确度比较高。此外,由于使用了具有加减功能的电子计数器,所以在绕线过程中出现纠错重绕的时侯,计数器仍然能够对实际绕组数进行加减,它的计数精确度高,使用方便。

在绕线轴加装的圆盘上有一个长孔,该孔与光电传感器对应,当绕线机旋转时,每转一周,光电传感器就被触发一次。先被触发的传感器进行加减识别功能,后被触发的传感器则输出计数脉冲。

2.3 数字集成电路在军事方面的应用

自从20世纪60年代第一块集成电路问世以来,以集成电路为核心的微电子技术发展迅速,并促进了通信技术、计算机技术和其他电子信息技术的快速发展,对人类社会的经济繁荣、社会进步、国防建设及日常生活都产生巨大影响[3]。

战术通信指在作战地域内指挥一个战役或战斗所使用的通信,主要是无线通信。目前,新军革以信息化为核心的,作为各作战分队的连接纽带,战术通信的关键性作用日渐彰显。和其他的电子设备相同,微电子器件也大量应用在战术通信装备中,微电子技术在战术通信的发展过程中发挥着至关重要的推动作用[4]。在战术通信装备里,嵌入式微处理器、数字信号处理器和可编程逻辑器件是一种重要的数字集成电路。嵌入式微处理器用来完成整机的主控和运行各种应用软件,数字信号处理器用来完成运算流程复杂的基带数字信号处理,可编程逻辑器件用来完成对运算能力要求较高的中频数字信号处理。

2.4 基于数字集成电路的交通灯

随着经济社会的到来,各国的车辆数量也不断上涨,这就势必带给城市交通不少难题,例如:交通堵塞日益严重,交通事故不断增加,交警任务更加繁重等等。为了解决这些的困难,我国以及国外都加快了在交通事业方面的研究步伐,尤其是在控制交通信号灯方面。下面将介绍的就是数字集成电路在交通灯中的使用。

数字集成电路在交通信号灯控制器中的使用原理:

交通灯控制器主要包括显示器、上控制器、计数器、信号发生器、译码电路和置数器,首先上控制器接收特殊状态命令或者接收清零命令,一方面显示在显示器上,一方面发出信号至信号灯译码驱动电路,即南北大道信号或者东西大道信号,一方面发出信号至置数器,接着计数器综合考虑置数器的信号和时钟信号发生器发出的信号,把信号传送给译码器,最后显示在显示器上。

一般十字路口的交通情况和主控制器的设计关系为:

1)当东西大道通行时,绿灯亮,南北大道禁行,红灯亮,时间延迟为40秒:

2)当东西南北大道都禁行时,东西大道黄灯亮,时间延迟为5秒;

3)当东西大道禁行时,红灯亮,南北大道通行,绿灯亮,时间延迟为30秒:

4)当东西南北大道都禁行时,南北大道黄灯亮,时间延迟为5秒。

然后就是回到第一种情况开始循环执行。我们可以把这四种状态分别设为:S=000,S=001,S=010,S=011,另若有特殊情况,如遇到交通事故,警车或者救护车通过,其对应状态设为S=l00,根据以上的状态分析,我们可以用两片74LSl92来实现这样的功能。

3 总结

本文首先对数字集成电路意义和原理进行了介绍,接着重点阐述了许多在我们的工、农业以及生活上基于数字集成电路的一些应用,例如绕线机电子计数器、交通灯等。随着社会的不断进步,科技的不断腾飞,越来越多的先进设备将会运用到我们的生活当中,未来我们将会见到更多数字集成电路产品在我们生活当中的应用,便利我们的生活。数字集成电路虽然只是一个元件,但是将他创造性地应用于产品制作时,它将变成又一件便利我们生活的新产品。因此,想为我们的生活设计一些新颖舒适的产品,那么我们也必须首先懂得它的内在含义和广泛应用。

参考文献:

[1] Moore G E.Cramming more components onto integrated circuits[J]. Electronics,1965,38(8):114-117.

篇2

随着微电子技术的发展,数字集成电路获得了越来越广泛的应用。深入了解数字集成电路特性,正确分析数字集成电路在实验中出现的种种异常现象,对于提高数字电子技术使用效果、加深使用者对数字电路理论的理解有着十分重要的作用。而实现上述目的的最关键部分在于对数字集成电路的设计相关内容有着较为清晰的理解,本文正是在这种背景下,探讨了数字集成电路的不同设计方法以及所采用的核心工艺,以求为理论界与实践界更好的认识数字集成电路提供必要的借鉴与参考。

一、数字集成电路理论概述

数的表达是多种多样的,如二进位、八进制、十进位、十六进位等。电脑中数字处理是二进位,所以一切资料都要先转化为“0”和“1”的组合。在教学中要对学生强调这里的“0”和“1”不是传统数学中的数字,而是两种对立的状态的表达。数字集成电路是传输“0”和“1”(开和关)两种状态的门电路,可把来自一个输入端的信息分配给几个输出端,或把几个输入端传来的信息加以处理再传送出去,这个过程叫做逻辑运算处理,所以又叫逻辑集成电路。在数字集成电路中电晶体大多是工作在特性曲线的饱和状态和截止状态(逻辑的“0”和“1”)。数字集成电路又包括着如下三种电路:门电路,是作为不包含时间顺序的组合电路;触发器电路,其能存储任意的时间和信息,故在构成包含时间关系的顺序电路时必不可少,这种电路叫做时序逻辑电路,例如寄存器、管理器等。触发器电路是基本时序单元电路;半导体记忆体电路,它可以存取二进位数字字信息,记忆体的作用是用来记住电子电脑运算过程中所需要的一切原始资料、运算的指令程式以及中间的结果,根据机器运算的需要还能快速地提供出所需的资料和资料。在上课时,发现学生易将组合逻辑电路、时序逻辑电路混淆,所以教学中要反复强调两者的的特点,进行对比,使学生能正确区分两种电路。

二、数字集成电路的设计

第一,MOS场效应电晶体的设计。常用的是N沟MOS管,它是由两个相距很近、浓度很高的N十P结引线后做成的,分别叫做源极“S”和漏极“D”。在源极“S”和漏极“D”之间的矽片表面生长一薄层二氧化矽(SiO2),在SiO2上复盖生长一层金属铝叫栅极“G”(实际上“G”极是个MOS二极体)。NMOS集成电路是用得很多的一个品种。要注意一点是多晶矽栅代替了铝栅,可以达到自对淮(近乎垂直)掺杂,在栅下面的源、漏掺杂区具有极小横向的掺杂效应,使源、栅漏交迭电容最小,可以提高电路的速度。

第二,CMOS集成电路互补场效应电晶体的设计。CMO是指在同一矽片上使用了P沟道和N沟道两种MOS电路。这种反相器有其独特之处,不论在哪种逻辑状态,在VDD和地之间串联的两个管子中,总有一个处干非导通状态,所以稳态时的漏电流很小。只在开关过程中两个管子都处于导通状态时,才有显着的电流流过这个反相器电路。因此,平均功耗很小,在毫微瓦数量级,这种电路叫做CMOS电路。含有CMOS电路的集成电路就叫做CMOS集成电路,它是VLSI设计中广泛使用的基本单元。它占地面积很小、功耗又小,正是符合大规模集成电路的要求,因为当晶片的元件数增加时功耗成为主要的限制因素。CMOS集成电路成为低功耗、大规模中的一颗明星,它是VLSI设计中广泛使用的基本单元,但它的设计和工艺难度也相应地提高了许多。CMOS集成电路在P型衬底上先形式一个以待形成PMOS管用的N型区域叫做“N井”,在“N井”内制造PMOSFET的过程与前述的NMOS管相同,所以制造CMOS集成电路的工序基本上是制造NMOS集成电路的两倍。另外还要解决麻烦的门锁效应(Latch-up)。但它仍是高位数、高集成度、低功耗微处理器等晶片的首选方案。

第三,二极体的设计。集成电路中的二极体均由三极管的eb结或cb结构成,前者的正向压降低,几乎没有寄生效应,开关时间短;后者常在需要高击穿电压的场合中使用,技术上又不必单独制做,只是在晶体管制成后布线时按电路功能要求短路某二个电极,从留用的P-N二边引线出去和电路连接。课堂教学中,对二、三极管的特性及工作原理要做详细的复习,以便学生理解。

第四,电阻设计。集成电路中的电阻是在制造电晶体基区层的同时,向外延层中进行扩散制成。阻值取决于杂质浓度、基区的宽度和长度及扩散深度。当需要更大电容阻值时,采用沟道电阻;在需要更小电容阻值时,则采用发射区扩散时形成的N十区电阻。

这里电阻与学生之前学习的电阻进行比较,利于学生理解。

第五,电容设计。集成电路中的电容器有两种,一种是P-N结电容,它是利用三极管eb结在反向偏压下的结电容,电容量不是常数,它的大小与所加偏压有关,且有极性;另一种是MOS电容,电容值是固定,与偏压无关。一般用重掺的区域作为一个板极,中间的氧化物层作为介质层,氧化物层的顶层金属作为另一个板极。但是,集成电路设计中应尽量避免使用电容,数字电路一般都采用没有电容的电路。

三、数字集成电路的核心工艺

首先是薄圆晶片的制备技术。分别在半导体专用切片机、磨片机、拋光机上加工出厚度约为400um、表面光亮如镜、没有伤痕、没有缺陷的晶片。

其次是外延工艺技术。为了提高电晶体集电结的击穿电压,要求高电阻率材料。但为了提高电晶体工作速度,要求低电阻率材料,为此在低阻的衬底材料上外延生长一层高阻的单晶层,这叫做外延技术。

第三是隔离工艺技术。因为数字集成电路中各组件是做在同一半导体衬底片,各组件所处的电位也不同,要使做有源元件的小区域(电晶体)彼此相隔离开,这种实现彼此隔离的技术叫做隔离技术。正是由于它的出现,使分立元件发展到数字集成电路成为可能。现在常用的有介质隔离(将SiO2生长在需要隔离的部位)和P-N 结隔离两种方法。P-N结隔离是在隔离部位形成两个背对背的P-N结;外延结构P-N结隔离是在P 型衬底表面的n型外延层上进行氧化、光刻、扩散等工艺,并将硼杂质扩散到特定部分,直到扩穿外延层和P 型衬底相接。外加反向电压使外延n型层成为一个个相互隔离的小岛,然后再在这个n型外延小岛区域上分别制造电晶体或其他元件。

最后是氧化工艺技术。半导体器件性能与半导体表面有很大关系,所以必须对器件表面采用有效保护措施。二氧化矽被选作为保护钝化层,一来它易于选择腐蚀掉;二来可以在扩散之后在同炉内马上通氧进行氧化;三来可以作为选择掺杂的掩蔽物;再来它常被用来作导电层之间的绝缘层。当然用作钝化的介质还有氮化矽薄膜,这里不多介绍。各种薄膜不仅要执行其本身的预定功能,也要和后续的全部工艺相相容。即钝化薄膜要能承受所要求的化学处理及加热处理,而其结构还保持稳定。从上面工艺流程可以看到,每一步光刻之前都有氧化工序,图形加工只能在氧化层上进行。

设计是一项难度较大的工作,在设计中要考虑许多细节的东西,实践与理论之间有一定的差距,对于我们技术学校的学生而言,可以让他们做一些简单的设计,自己动手搭建电路并做测试,在做中发现问题,解决问题,从而加深对知识的理解。

(作者单位:福建省第二高级技工学校)

参考文献:

篇3

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

篇4

中图分类号:TN431文献标识码:A文章编号:1009-2374(2009)20-0035-02

在数字电路实验室,集成块是常见的,由于它的体积较小,性能的好坏很难判断。因此,这里提出运用了单片机原理、C语言、通信原理、低频电路、数字电路等基本知识,设计了一台基于PC机的数字集成电路通用测试仪。这里主要探讨硬件电路构思与设计。

该测试仪主要是运用单片机的接口与显示程序和C语言的串行通讯程序来测试14管脚、16管脚的74Ls系列的集成块好坏。主要用到单片机CPU集成块89C51、驱动器集成块164、通信集成块232。该测试仪运用发光二极管实测灯与标准灯的发光情况相比较,来判断其好坏。该方法简单方便,是实验室不可缺少的工具之一。

一、想法的来源

一块小小的集成块,如何才能判断它的好坏呢?当然,有一些集成块在工作时是可以用万用表测量其管脚电压来判断它的好坏,但是比较麻烦。

“数字集成电路通用测试仪”,目的是能够简单而且方便地测试集成块的好坏。它主要是运用单片机的汇编语言和C语言来编程,还要用到通信原理、数字电路等知识。

该测试仪可以单拍测试,也可以连续测试,通过串行通讯送过来的数据,用发光二极管的发光情况来判断。用实测灯(绿色二极管)与标准灯(红色二极管)的亮暗来比较,如果两者发光情况一致,则表示通过,说明集成块是好的;如果不一致,则表示通不过,说明有管脚坏了。

有了这种测试仪,我们可以很方便地判断集成块的好坏,减少了实验室人员的工作量,具有很强的实用性。

二、总体设计

(一)技术指标

1.测试管脚数≤16PIN;

2.测试速度

3.测试品种可任意更换。

(二)技术要求

1.能对各种数字集成电路进行功能测试。

2.可连续测试,连续测试时,每按一次按钮,可全部测完,发光二极管上给出合格(失败)判断,并将测试结果在PC机上显示。

3.也可单拍测试,单拍测试时,每按一次按钮,进行一个节拍的测试并在显示器显示节拍号。

4.通过键盘操作,可将盘上的品种程序调入测试仪,测试结果通过串口回送PC机,PC机在屏幕上能显示合格管脚图形及实测管脚图形。

(三)硬件设计

对于生活在现代科技发达的社会技术人员来说,软件已经成为一种时尚,有了软件,提高了现代人生存的速度,但是,有些软件的应用必须在硬件的基础上才能够使用。对硬件电路的设计不但要熟练掌握低频电路原理、高频电路原理、数字电路原理、还得熟练掌握电子设计自动化(EDA)的技术。

(四)软件设计

软件设计和硬件设计必须结合进行。在本次课题设计中,主要是运用LCAW软件和C语言进行编程,用PROTEL软件画原理图。

基于PC机的数字集成电路通用测试仪设计时所用到的元件比较多,设计时必须根据原理图仔细安装,熟练掌握有关软件的使用,并且特别要注意软、硬件的结合使用。

三、硬件电路的设计

如一般的计算机系统一样,单片机的应用系统由硬件和软件所组成。硬件由单片机、扩展的存储器、输入/输出设备等硬部件组成的机器,软件是各种工作程序的总称。硬件和软件只有紧密结合、协调一致,才能组成高性能的单片机应用系统。在系统的研制过程中,软硬件的功能总是不断地调整,以便于相互适应。硬件设计的任务是根据总体设计要求,在所选择的机型的基础上,具体确定系统中所要使用的元器件,设计出系统的电路原理图,必要时做一些部件实验,以验证电路图的正确性,以及工艺加工的设计加工、印制板的制作、样机的组装。

(一)硬件设计要点

一个设计确定后,经过详细调研,可能产生多种设计方案,在众多的设计方案中怎样选择?为使硬件设计尽可能合理,应重点考虑以下几点:

1.尽可能选择功能强的芯片,以简化电路。

2.留有余地。在设计硬件电路时,要考虑到将来修改、扩展的方便。ROM空间、RAM空间、I/O端口,在样机研制出来后进行现场试用时,往往会发现一些被忽略的问题,而这些问题是不能单靠软件措施来解决的。如有些新的信号需要采集,就必须增加输入检测端,有些物理量需要控制,就必须增加输出端。如果在硬件设计之初就多设计出一些I/O端口,这个问题就会迎刃而解;A/D和D/A通道和I/O端口同样的原因留出一些A/D和D/A通道,将来可能会解决大问题。

3.以软代硬。单片机和数字电路本质的区别就是它具有软件系统。很多硬件电路能做到的,软件也能做到。原则上,只要软件能做到的就不用硬件。硬件多了不但增加成本,而且系统故障率也提高了。以软代硬的实质是以时间代空间,软件执行过程需要消耗时间,因此,这种代替带来的不足就是实时性下降,在实时性不高的场合,以软代硬是很合算的。

4.工艺设计。包括机箱、面板、配线、接插件等。必须考虑到安装、调试、维修的方便。另外,硬件抗干扰措施也必须在硬件设计时一并考虑进去。

(二)所用芯片介绍

硬件设计的步骤中的第一步就是查找可能涉及的芯片的资料。这是一步非常重要的步骤。它是硬件电路设计正确性和可靠性的基础。

1.89C51芯片的简介。AT89C51是一种低功耗、高性能内含4K字节闪电存储(Flash memory)的8位CMOS微控制器。片内闪电存储器的程序代码或数据可在线写入,亦可通过常规的编程器编程。AT89C51芯片内部具有下列硬件资源:4K字节闪电存储器,128字节RAM ,32条I/O线,两个16位定时/计数器,五源两级中断结构,全双工串行口,片内震荡器及时钟电路等。AT89C51片内含三个封锁位,若封锁位LB1已被编程,则EA引脚上的逻辑电平在芯片复位时被采样并锁存。但如果该器件上电时无复位,那么相应锁存器便被初始化为随机值,此值将保持到复位时止。片内闪电存储器的编程,AT89C51片内存储器售后通常处于擦除状态,即每一地址单元内容均为FFH,人们随时可对其编程,编程电压有高压12V的,也有低压5V的低压编程方式为在用户系统内对AT89C51进行编程提供了方便;而高压编程方式则与常规的闪电存储器或EPROM编程器相兼容。

2.RS-232芯片的简介。RS-232是美国电气工业协会推广使用的一种串行通信总线标准,是DCE(数据通信设备,如微机)和DTE(数据终端设备,如CRT)间传输串行数据的总线。TC232内部有两个发送器和两个接受器,还有一个电源变换器,是一种廉价RS232电平转换器, RS232C虽共有25根信号线,但在近程通信不需要调制解调器的情况下,一般只用少量信号线。若采用直接通信,则通常只用TXD和RXD及地信号线。

3.164芯片的简介。方式0是外接移位寄存器的工作方式,用以扩展I/O接口。输出时将发送数据缓冲器中的内容串行地址到外部的移位寄存器,输入时将外部移位寄存器内容移入内部的移位寄存器,然后写入内部的接受数据缓冲器。在以方式0工作时,数据由RXD串行地输入/输出,TXD输出移位脉冲,使外部的移位寄存器移位。方式0输出时,串行口上外接74LS164串行输入并行输出移位寄存器的接口。TXD端输出的移位脉冲将RXD端输出的数据移入74LS164。CPU发送数据缓冲器SPUF写入一个数据,就启动串行口发送,对SBUF的写信号在S6P2时把1写入输出移位寄存器的第9位,并使发送控制电路开始发送。内部的定时逻辑在对SBUF写和SEND被激活(高电平)之间有一个完整的机器周期。在SEND有效时,输出移位寄存器中输出位内容送RXD端输出,移位脉冲由TXD端输出,它使RXD端的输出数据移入到外部的移位寄存器。

(三)硬件电路的设计

硬件电路的设计如下图所示:

参考文献

[1]张友德,赵志英,涂时亮.单片微型机原理/应用与实验[M].上海:复旦大学出版社,1996.

篇5

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)06-0153-02

目前,集成电路设计公司在招聘新版图设计员工时,都希望找到已经具备一定工作经验的,并且熟悉本行业规范的设计师。但是,IC设计这个行业圈并不大,招聘人才难觅,不得不从其他同行业挖人才或通过猎头公司。企业不得不付出很高的薪资,设计师才会考虑跳槽,于是一些企业将招聘新员工目标转向了应届毕业生或在校生,以提供较低薪酬聘用员工或实习方式来培养适合本公司的版图师。一些具备版图设计知识的即将毕业学生就进入了IC设计行业。但是,企业通常在招聘时或是毕业生进入企业一段时间后发现,即使是懂点版图知识的新员工,电路和工艺的知识差强人意,再就是行业术语与设计软件使用不够熟练、甚至不懂。这就要求我们在版图教学时渗入电路与工艺等知识,使学生明确其中紧密关联关系,树立电路、工艺以及设计软件为版图设计服务的理念。

一、企业对IC版图设计的要求分析

集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CMOS或BiCMOS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关EDA工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得IC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,IC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。

2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。

3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

三、教学实现

1.数字版图。数字集成电路版图在教学时,一是掌握自动布局布线工具的使用,还需要对UNIX或LINUX系统熟悉,尤其是一些常用的基本指令;二是数字逻辑单元版图的设计,目前数字集成电路设计大都采用CMOS工艺,因此,必须深入学习CMOS工艺流程。在教学时,可以做个形象的PPT,空间立体感要强,使学生更容易理解CMOS工艺的层次、空间感。逻辑单元版图具体教学方法应当采用上机操作并配备投影仪,教师一边讲解电路和绘制版图,一边讲解软件的操作、设计规则、画版图步骤、注意事项,学生跟着一步一步紧随教师演示学习如何画版图,同时教师可适当调整教学速度,适时停下来检查学生的学习情况,若有错加以纠正。这样,教师一个单元版图讲解完毕,学生亦完成一个单元版图。亦步亦趋、步步跟随,学生的注意力更容易集中,掌握速度更快。课堂讲解完成后,安排学生实验以巩固所学。逻辑单元版图教学内容安排应当采用目前常用的单元,并具有代表性、扩展性,使学生可以举一反三,扩展到整个单元库。具体单元内容安排如反相器、与非门/或非门、选择器、异或门/同或门、D触发器与SRAM等。在教授时一定要注意符合行业规范,比如单元的高度、宽度的确定要符合自动布局布线的要求;单元版图一定要最小化,如异或门与触发器等常使用传输门实现,绘制版图时注意晶体管源漏区的合并;大尺寸晶体管的串并联安排合理等。

2.模拟版图。模拟集成电路版图设计更注重电路的性能实现,经常需要与前端电路设计工程师交流。因此,版图教学时教师须要求学生掌握模拟集成电路的基本原理,学生能识CMOS模拟电路,与前端电路工程师交流无障碍。同时也要求学生掌握工艺对模拟版图的影响,熟练运用模拟版图的晶体管匹配、保护环、Dummy晶体管等关键技术。在教学方法上,依然采用数字集成电路版图的教学过程,实现教与学的同步。在内容安排上,一是以运算放大器为例,深入讲解差分对管、电流镜、电容的匹配机理,版图匹配时结构采用一维还是二维,具体是如何布局的,以及保护环与dummy管版图绘制技术。二是以带隙基准电压源为例,深入讲解N阱CMOS工艺下双极晶体管PNP与电阻匹配的版图绘制技术。在教学时需注意晶体管与电阻并联拆分的合理性、电阻与电容的类型与计算方法以及布线的规范性。

3.逆向版图设计。逆向集成电路版图设计需要学生掌握数字标准单元的命名规范、所有标准单元电路结构、常用模拟电路的结构以及芯片的工艺,要求学生熟悉模拟和数字集成单元电路。这样才可以在逆向提取电路与版图时,做到准确无误。教学方法同样还是采用数字集成电路版图教学流程,达到学以致用。教学内容当以一个既含数字电路又含模拟电路的芯片为例。为了提取数字单元电路,需讲解foundry提供的标准单元库里的单元电路与命名规范。在提取单元电路教学时,说明数字电路需要归并同类图形,例如与非门、或非门、触发器等,同样的图形不要分析多次。强调学生注意电路的共性、版图布局与布线的规律性,做到熟能生巧。模拟电路的提取与版图绘制教学要求学生掌握模拟集成电路常用电路结构与工作原理,因为逆向设计软件提出的元器件符号应该按照易于理解的电路整理,使其他人员也能看出你提取电路的功能,做到准确通用规范性。

集成电路版图设计教学应面向企业,按照企业对设计工程师的要求来安排教学,做到教学与实践的紧密结合。从教学开始就向学生灌输IC行业知识,定位准确,学生明确自己应该掌握哪些相关知识。本文从集成电路数字版图、模拟版图和逆向设计版图这三个方面就如何开展教学可以满足企业对版图工程师的要求展开探讨,安排教学有针对性。在教学方法与内容上做了分析探讨,力求让学生在毕业后可以顺利进入IC行业做出努力。

参考文献:

[1]王静霞,余菲,赵杰.面向职业岗位构建高职微电子技术专业人才培养模式[J].职业技术教育,2010,31(14):5-8.

[2]刘俐,赵杰.针对职业岗位需求?摇探索集成电路设计技术课程教学新模式[J].中国职业技术教育,2012,(2):5-8.

[3]鞠家欣,鲍嘉明,杨兵.探索微电子专业实践教学新方法-以“集成电路版图设计”课程为例[J].实验技术与管理,2012,29(3):280-282.

篇6

合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

篇7

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

篇8

中图分类号:G642.4 文献标识码:B

文章编号:1671-489X(2013)30-0095-02

集成电路设计相关课程体系是各高等院校电子科学与技术、电子信息科学与技术等工科专业核心专业课程设置的重要组成部分,为大学生深入学习掌握集成电路设计的基本原理、分析方法、仿真方式等打下基础。大多数理工科高校对电子类专业开设模拟集成电路设计和数字集成电路设计的课程,对学生进行综合培养。对于模拟和数字集成电路设计,如果要深入到晶体管级进行分析和设计,那都必须进行原理的深入学习。而在现实工作中,数字集成电路设计主要是通过运用高级硬件电路描述语言基于门级对电路进行设计,晶体管级的原理分析只是理论基础。模拟集成电路设计则必须完全深入晶体管级进行分析和设计,所以模拟集成电路设计更加繁琐和复杂,对理论分析的要求也更高。

本文通过笔者多年来在模拟集成电路设计理论和实践教学中积累的经验和教学心得,对如何在繁琐和复杂的教学中使学生更好地掌握知识体系进行探讨。

1 教材的选择

1.1 国外经典教材的参考

集成电路的设计国外特别是美国要领先中国几十年的技术水平,如绝大多数高精尖端的芯片都是被INTEL、AMD、TI、ADI这样的跨国巨头所垄断,在教学知识体系方面自然是美国的高校如斯坦福、加州大学等要比国内高校更加系统和完善。美国出版的多本教材更是被奉为集成电路设计的圣经,如拉扎维编著的《模拟CMOS集成电路设计》、艾伦编著的《CMOS模拟集成电路设计》等。但是即使是被奉为圣经的教材,虽然经典,也有其局限性。如拉扎维编著的《模拟CMOS集成电路设计》对电路的理论分析非常透彻且深入浅出,却缺乏相应的仿真实验来验证其理论分析;而艾伦编著的《CMOS模拟集成电路设计》虽有部分仿真实验来验证其理论分析,但其理论分析又不如拉扎维的教材那么透彻和深入浅出。

1.2 国内教材的选择

国内的高校虽然较国外高校而言在集成电路设计领域起步要晚,差距也很大,但是在近些年国家政策的大力扶持下,已经有了突飞猛进的发展。国内也有了几本模拟集成电路设计知识讲解得比较透彻的教材,比如:清华大学王自强编著的《CMOS集成放大器设计》就从简单知识入手,讲解浅显易懂;东南大学吴建辉编著的《CMOS模拟集成电路分析与设计》分析比较透彻,讲解自成体系。但是国内出版的教材也都缺乏相应的仿真实验来验证其理论分析。

针对国内学生在集成电路设计知识领域基础比较差的现状,可以选择国内讲解得比较简单浅显的教材为主线,并以国外经典教材为参考。

2 教学方法的改进

模拟集成电路设计作为电子科学与技术专业的一门专业核心课程,比某些专业基础课程如电路原理、数字电子技术、模拟电子技术等要难度更大,也更为繁琐和复杂。如果按照传统方式进行讲解,或者说仅仅是按照教材进行理论分析和推导,那么学生很难对这门知识深入理解和掌握。因此,在教学理论知识的过程中,穿教材中没有的、可以验证其相应理论的仿真实验,这样能够更好地使学生理解和掌握理论知识。

2.1 以HSPICE仿真实验为辅助

SPICE是一种可以用于电路仿真的工具,大家所熟知的有PSPICE,它是一种可以适用于分立原件的电路仿真工具,而HSPICE是在集成电路设计领域专业使用的高精度的仿真工具。专业的集成电路设计公司和研究所都是使用UNIX或LINUX环境下的大型专业工具软件进行集成电路设计仿真,而笔者所在高校因为在此领域起步较晚,专业开设也较晚,专业实验室也并不具备,所以并不具备很好的实验条件来进行实验辅助教学。因为HSPICE具有可以在Windows环境下方便使用的小型版本的软件,所以可以很方便地用在课堂教学中。

2.2 理论与实践相结合教学

在繁琐复杂理论分析和推导的过程中,不断地穿HSPICE仿真,来验证理论分析和推导的结果,可以让学生显著加深对理论的理解和掌握。HSPICE仿真部分的内容是清华、复旦、东南大学等高校教师出版的教材里面都没有详细讲解的内容,也是他们课堂理论讲解过程中不会涉及到的知识。而在笔者所在高校以HSPICE仿真实验为辅助,结合理论教学后,取得了积极显著的教学效果,学生对理论知识的理解和课程考试成绩都得到了大幅度的提升。以2008级到2010级电子类专业的学生为例,模拟集成电路设计课程考试得优率从22%提升到了43%以上,学生对此教学方法也是高度认同。

3 结束语

在我国大力实行人才战略,强调人才培养的大环境下,笔者所在高校也响应国家号召,加强本科生培养,实施卓越工程教育,取得积极可喜的成绩。国家在近些年大力支持集成电路设计的产业发展,国内在此领域也有了长足进步,但也更加需要更多的专业人才来满足市场需求。在此背景下,本文积极探索和提高模拟集成电路设计的教学方法,取得长足的进步和发展,也得到学生的高度认同。笔者希望自己的经验和方法可以为兄弟院校相关专业的教学提供参考和借鉴。

参考文献

[1]Lazavi.模拟CMOS集成电路设计[M].西安:西安交通大学出版社,2003.

[2]Allen P E.CMOS模拟集成电路设计[M].2版.北京:电子工业出版社,2011.

篇9

中图分类号:TN79 文献标识码:A 文章编号:1674-098X(2013)01(a)-00-02

随着科学技术的飞速发展,新的电子产品和器件层出不穷,21世纪显然已经成为了信息化和数字化的时代。数字地球、数字商场、数字化生存、数字服务等概念早就成为人们生活中屡见不鲜的名词,当前人们日常交往中的很多方面都与数字联系得越来越紧密,比如每一个人的QQ号、身份证号、手机号、IP地址等等都在广泛的数字化。数字已经不再是传统意义上的1、2、3、5…,它们已经成为了区分标示和进行社会管理的重要载体。现在和今后,我们的生活都在进一步进行数字符号化,我们需要的资料和存储的信息都会用这些简单的数字传递复杂的内容,这一系列看似简单的数字承载了我们学习、工作和生活中的很多方面。这些任务的承担都必须以数字电路为根本进行数据信息的采集、分析、区分和处理,从而转化成影响着我们现实社会的数字电路信息符号。现在,数字电路已经十分广泛的深入到社会中的各个领域。近年来,科学技术的突飞猛进引发了很多行业深刻的变革和翻天覆地的变化,数字信息行业在很多方面都处在科学技术发展的前端,其中显而易见的是数字电子科学技术,在科学大发展大繁荣的浪潮中,数字电子科学技术得到狂飙式的发展,当前毫无疑问已经成为了发展最快和影响力最大的学科之一。数字逻辑器件从20世纪60年代以小规模集成电路为主发展到当前的中、大规模集成电路,甚至是超大规模的集成电路。数字逻辑器件的不断发展和应用更新,势必会推动着整个数字电路的继续前进。

1 数字电路的噪讯干扰处理

在数字电路中我们会经常采用布尔代数的数学方法,用来描述事件之间相互的逻辑关系。和一般普通代数层面中的变量不一样,逻辑变量则是用来描述逻辑关系中的二值变量,即用1和0这两个值来表示对立的逻辑状态。数字电路依照0和1的稳定情况来作为运算基础,所以这其中就会存在噪讯界限。相对于模拟电路而言,数字电路有着非常强大的噪讯。数字电路中,数字信号因为与电流变化中磁数变化的诱导电压的影响,电流变化就会在某个地方形成了噪讯的产生地,这又与电路长度、回路的面积息息相关。数字信号转变时会带来过渡性的电路,进而带动导体产生噪讯电压,再加上噪讯电流的流动会容易造成数字电路的误动作。电路的阻抗越高受到外部噪讯干扰就越容易,对抗噪讯的干扰除了控制噪讯电压以外,还应该加大结合阻抗,同时减少输入阻抗。数字IC中如果空端子表现出open的状态就会使阻抗变高,这进而又会导致数字电路极容易受到噪讯的误动作干扰。所以,数字IC的空端子需要连接电阻与电源。多层板信号线的阻抗,因为导线系设在背景的表面上,所以也可以减低阻抗的效果。

2 数字技术与模拟技术的融合

因为LSI和IC本身的高速化,为了能够使机器能够同时达到正常运行的目标,所以这就难免会使得技术的竞争越来越激烈。尽管系统构成的电路不一定有clock的设计,但是毋庸置疑的是系统是否可靠必须要考量到选用电子组件、电路设计和成本、封装技术、防止噪讯产生、防止噪讯外漏等综合因素上。数字或模拟电路的极其小型化、多功能化、高速化会使得小功率信号与大功率信号、低输出阻抗与高输出阻抗、小电流与大电流等问题常常会在同一个密封密度的电路板中出现,设计人员置身于这样的环境就将面对如此高难度和富有设计思维的挑战。比如,十分稳定的电路和吵杂的电路相依时,一旦没有把噪讯侵入到十分稳定的电路对策看做成设计的重点,那么事后尽管进行很多次设计也将难免会陷入无解的局面。又如,假设将小型的模拟信号增幅后,利用10bitA/D的数字转换器转换成数字信号,但是就因为分割辐宽是4.9 mV,但是要把该电压的level正确的读取出来就不会是一件容易的事情,很多事情就会使得超过10bit的A/D转换器陷入了不能正常顺利运行的困境。

3 数字集成电路的选择

基本门电路是由简单的分离元件构成,虽然设计起来比较容易简单,但是运行和反映的速度很多时候相对较慢,负载承受的能力也较差,电气的性能也有待进一步提高。目前使用得最为广泛则是数字集成电路。其优点是:体积较分立元件设备小几百倍;抗干扰能力强;故障率和功耗率都很低,输出电阻低;输出特性好;稳定性强。数字集成电路中又以是CMOS和TTL系列电路这两种为主。CMOS系列器件的工作电压在3~18 V之间,TTL系列的工作电压是5 V,所以CMOS电路的工作范围相对较广,其噪声的容限也较大,所需要消耗的功率相对较低。尽管CMOS的电路输入端进行了保护电路的设置,但是因为限流电阻的尺寸有限和保护二极管,这就会难免使得其承受的脉冲功率和静电电压受到限制。CMOS电路在运输、组装和调试中因为不可避免的会接触到静电和高压的物件,所以要保护好输入的静电。此外,CMOS还会产生电路锁定效应,为了安全和方便的使用,人们一直在致力于从设计和制造上排除锁定效应的研究。因为,集成电路的要求都比较高,需要先进行芯片的设计和程序的编制,但是更多的时候在使用现成数字电路中进行了简单的分析,这是非常不够的。专用的集成电路是一种新型的逻辑器件,因为其具有灵活性和通用性的特点,所以成为了对数字系统进行设计和研制的首选器件。总的来说,数字电路在今后的发展中还有广阔的空间,但是其基础知识不会发生改变,如何进行进一步的改进,这就迫切需要新型的数字人才去发现并改进当中不大完善的地方,完善和弥补电路中的每一个缺点和不足,使得当中各个部分和环节都能发挥最大的作用。

4 数字电路系统设计

数字电路设计是从原理方案出发,把整个系统按照一定的标准和要求划分成若干个单元电路,将各个单元电路间的连接方式和时序关系确定下来,在这个前提下进行数字电路系统的实验,最终完成总体电路。数字系统结构由时基电路、控制电路、子系统、输出电路、输入电路五部分构成,当中数字系统的核心是控制系统。数字电路系统的设计有分析系统要求、设计子系统、系统组装和系统安装调试等步骤组成。数字电路系统的设计也不是一次两次就能完成,需要设计人员进行反复的调试和探究,通过自上而下的设计方法和自下而上的设计方法进行数字系统的设计,依托RTL传输语言等常用工具完成。数字电路系统设计包含了很多问题,比如,电路的简化可能会使得电路性能降低,但是电路性能指标提升难免会以牺牲电路简化为条件。所以,数字电路系统的设计过程有很多因素需要考虑和兼顾。

5 数字电路的抗干扰措施

在利用TTL或CMOS这两种逻辑门电路作为具体的对象进行设计时,还需要注意到下面几个问题。

5.1 多余端的处理

数字集成逻辑门电路在正常的使用时是不允许多余端悬空的,不然就极有可能十分容易的把干扰信号引入到数字电路中。所以,在数字电路的设计中,针对多余端的处理,我们则是按照不改变数字电路的正常工作状态以及确保其性能稳定和可靠为基本原则。

5.2 去耦合滤波器

数字电路一般都是由多数片逻辑门电路组成,他们供电则来自于公共的直流电源。所以,这种电源并不是很理想的,很多时候是依靠整流稳压的电路进行供电,所以也会存在一定程度的内阻抗。数字电路正在处于运行时,就会产生很大的尖峰电流或者是脉冲电流,这些电流流经到电路的公共内阻抗时,必然相互间会产生一定的影响,情况严重时会使得数字电路的逻辑功能发生混乱,甚至是陷入崩溃状态。所以数字电路在设计中针对这一情况的处理办法一般都会使用耦合滤波器去应对,常常会使用10~100 μF范围之内的大电容器和直流电源再联合去滤除多余的频率成分。值得注意的是,还需要将每一集成芯片的电源与地之间接一个0.1 μF的电容器,用来滤除掉开关带来的噪声干扰。

5.3 接地和安装防范

科学的接地和安装工艺是数字电路设计中比较有效的措施。在实际操作中,可以把信号地和电源地分开出来,将信号地集中到一点,再把这两者用最短的导线相互连接起来,用来避免大电流流向其他器件的输入端,进而导致系统的逻辑功能失效。如果电路设计中同时有数字和模拟这两种器件,也需要将它们分开,再选择一个符合条件的共同点接地,皆宜消除相互之间的影响。当然也可以设计出数字和模拟两块电路板,分别给他们配上直流电源,再把两者合适的连接起来。在电路板的设计和安装中,也必须要注意尽量将连线缩短,这就能很大程度的减少接线电容带来的寄生振荡。

6 结语

数字处理技术和集成电路技术正在飞速的发展,数字电路也得到了越来越广泛的运用,像当前的数字电视、数字照相机等产品已经走进了广大人们生活当中,数字化已经成为了当前科学技术和社会发展的不可逆转的潮流。数字电路设计组成了诸如数字测量系统、数字通讯系统、数字控制系统等等。随着科学技术的不断进步,数字电路的设计带来的成果和发挥的影响力将会越来越受到重视。

参考文献

篇10

【基金项目】湖南省自然科学基金项目(14JJ6040);湖南工程学院博士启动基金。

【中图分类号】G642.3 【文献标识码】A 【文章编号】2095-3089(2015)08-0255-01

随着科学技术的不断进步,电子产品向着智能化、小型化和低功耗发展。集成电路技术的不断进步,推动着计算机等电子产品的不断更新换代,同时也推动着整个信息产业的发展[1]。因此,对集成电路相关人才的需求也日益增加。目前国内不仅仅985、211等重点院校开设了集成电路相关课程,一些普通本科院校也开设了相关课程。课程的教学内容由单纯的器件物理转变为包含模拟集成电路、数字集成电路、集成电路工艺、集成电路封装与测试等[2]。随着本科毕业生就业压力的不断增加,培养应用型、创新型以及可发展型的本科人才显得日益重要。然而,从目前我国各普通院校对集成电路的课程设置来看,存在着重传统轻前沿、不因校施教、不因材施教等问题,进而导致学生对集成电路敬而远之,退避三舍,学习积极性不高,继而导致学生的可发展性不好,不能适应企业的要求。

本文结合湖南工程学院电气信息学院电子科学与技术专业的实际,详细阐述了本校当前“集成电路原理与应用”课程理论教学中存在的问题,介绍了该课程的教学改革措施,旨在提高本校及各兄弟院校电子科学与技术专业学生的专业兴趣,培养学生的创新意识。

1.“集成电路原理与应用”课程理论教学存在的主要问题

1.1理论性强,课时较少

对于集成电路来说,在讲解之前,学生应该已经学习了以下课程,如:“固体物理”、“半导体物理”、“晶体管原理”等。但是,由于这些课程的理论性较强,公式较多,要求学生的数学功底要好。这对于数学不是很好的学生来说,就直接导致了其学习兴趣降低。由于目前嵌入式就业前景比较好,在我们学校,电子科学与技术专业的学生更喜欢嵌入式方面的相关课程。而集成电路相关企业更喜欢研究生或者实验条件更好的985、211高校的毕业生,使得我校集成电路方向的本科毕业生找到相关的较好工作比较困难。因此,目前我校电子科学与技术专业的发展方向定位为嵌入式,这就导致一些跟集成电路相关的课程,如“微电子工艺”、“晶体管原理”、“半导体物理”等课程都取消掉了,而仅仅保留了“模拟电子技术”和“数字电子技术”这两门基础课程。这对于集成电路课程的讲授更增加了难度。“集成电路原理与应用”课程只有56课时,理论课46课时,实验课10课时。只讲授教材上的内容,没有基础知识的积累,就像空中架房,没有根基。在教材的基础上额外再讲授基础知识的话,课时又远远不够。这就导致老师讲不透,学生听不懂,效果很不好。

1.2重传统知识,轻科技前沿

利用经典案例来进行课程教学是夯实集成电路基础的有效手段。但是对于集成电路来说,由于其更新换代的速度非常快,故在进行教学时,除了采用经典案例来夯实基础外,还需紧扣产业的发展前沿。只有这样才能保证人才培养不过时,学校培养的学生与社会需求不脱节。但目前在授课内容上还只是注重传统知识的讲授,对于集成电路的发展动态和科技前沿则很少涉及。

1.3不因校施教,因材施教

教材作为教师教和学生学的主要凭借,是教师搞好教书育人的具体依据,是学生获得知识的重要工具。然而,我校目前“集成电路原理与应用”课程采用的教材还没有选定。如:2012年采用叶以正、来逢昌编写,清华大学出版社出版的《集成电路设计》;2013年采用毕查德・拉扎维编写,西安交通大学出版社出版的《模拟CMOS集成电路设计》;2014年采用余宁梅、杨媛、潘银松编著,科学出版社出版的《半导体集成电路》。教材一直不固定的原因是还没有找到适合我校电子科学与技术专业学生实际情况的教材,这就导致教师不能因校施教、因材施教。

2.“集成电路原理与应用”课程理论教学改革

2.1选优选新课程内容,夯实基础

由于我校电子科学与技术专业的学生,没有开设“半导体物理”、“晶体管原理”、“微电子工艺”等相关基础课程,因此理想的、适用于我校学生实际的教材应该包括半导体器件原理、模拟集成电路设计、双极型数字集成电路设计、CMOS数字集成电路设计、集成电路的设计方法、集成电路的制作工艺、集成电路的版图设计等内容,如表1所示。因此,在教学实践中,本着“基础、够用”的原则,采取选优选新的思路,尽量选择适合我校专业实际的教材。目前,使用笔者编写的适合于我校学生实际的理论教学讲义,理顺了理论教学,实现了因校施教,因材施教。

表1 “集成电路原理与应用”课程教学内容

2.2提取科技前沿作为教学内容,激发专业兴趣

为了提高学生的专业兴趣,让他们了解“集成电路原理与应用”课程的价值所在,在授课的过程中穿插介绍集成电路设计的前沿动态。如:从IEEE国际固体电路会议的论文集中提取模块、电路、仿真、工艺等最新的内容,并将这些内容按照门类进行分类和总结,穿插至传统的理论知识讲授中,让学生及时了解当前集成电路设计的核心问题。这样不但可以激发学生的好奇心和学习兴趣,还可以提高学生的创新能力。

2.3开展双语教学互动,提高综合能力

目前,我国的集成电路产业相对于国外来说,还存在着相当的差距。要开展双语教学的原因有三:一是集成电路课程的一些基本专业术语都是由英文翻译过来的;二是集成电路的研究前沿都是以英文发表在期刊上的;三是世界上主流的EDA软件供应商都集中在欧美国家,软件的操作语言与使用说明书都是英文的。因此,集成电路课程对学生的英语能力要求很高,在课堂上适当开展双语教学互动,无论是对于学生继续深造,还是就业都是非常必要的。

3.结语

集成电路自二十世纪五十年代被提出以来,经历了小规模、中规模、大规模、超大规模、甚大规模,目前已经进入到了片上系统阶段。虽然集成电路的发展日新月异,但目前集成电路相关人才的学校培养与社会需求存在很大的差距。因此,对集成电路相关课程的教学改革刻不容缓。基于此,本文从“集成电路原理与应用”课程理论教学出发,详细阐述了“集成电路原理与应用”课程教学所存在的主要问题,并有针对性的提出了该课程教学内容和教学方法的改革措施,这对培养应用型、创新型的集成电路相关专业的本科毕业生具有积极的指导意义。

篇11

数字频率计又称为数字频率计数器是近代电子技术领域的重要测量工具之一,同时也是其他许多领域广泛应用的测量仪器,是计算机,通讯设备,音频视频等科研生产领域不可或缺的测量仪器,它是一种十进制数字显示被测信号频率的数字测量仪器。数字频率计是在规定的基准时间内把测量的脉冲数记录下来,换算成频率并以数字形式显示出来。数字频率计用于测量信号(方波,正弦波或其他周期信号)的频率,并用十进制数字显示,它具有精度高,测量速度快,读数直观,使用方便等优点。

基于单片机的数字频率计的设计,目的是设计一款数字频率计,能够测量1 Hz~20 MHz的数字频率,包括三角波、正弦波及方波的测量,支持0.5 V~20 V电压。本频率计的特点是突破普通单片机频率计喜欢选用的直接测量法,选择了高频用多周期同步法,低频用周期法来测量频率。这样可以使频率计达到更高的精度。而且本频率计通过程序来控制分频芯片自动分频,无需测量者对信号进行预估计,超出测量范围会自动警报,更加人性化。

那么单片机和数字频率计的关系呢?为了实现智能化的技术,测频实现宽领域,高精度的频率计,一种有效的方法是将单片机用于频率计的设计中去。单片机数字频率计以其可靠性高,体积小,价格低,功能全等优点,广泛的应用于各种智能仪器中,这些智能仪器校核以及测量过程的控制中,达到了自动化传统仪器中的开关和按钮被键盘所代替,测试人员在测量时只需按需要按的键,省掉了很多繁琐的人工操作,而采用lcd液晶显示器能够清楚明了的显示出测得的实验数据。单片机测量的频率精度高,速度快,在测量频率时,能够很好的解决测量精度和测量时间的矛盾。同时还具有时间显示功能,为各种生活工作提供了方便。

随着科学技术与计算机应用的不断发展,以单片机作为核心的测量控制系统层出不穷。在被测信号中,较多的是以模拟和数字开关信号。此外还经常遇到以频率为参数的测量信号。例如流量,转速晶体压力传感以及参变量-频率转换后的信号等等。对于这些以频率为参数的被测信号通常采用测频法,测频率的测量在生产和科研部门中经常使用,也是一些大型系统实时检测的重要组成部分。数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置。它不仅可以测量正弦波、方波、三角波、尖脉冲信号和其他具有周期特性的信号的频率,而且还可以测量它们的周期。经过改装,可以测量脉冲宽度,做成数字式脉宽测量仪;可以测量电容做成数字式电容测量仪;在电路中增加传感器,还可以做成数字脉搏仪、计价器等。因此数字频率计在测量物理量方面应用广泛。数字式频率计基于时间或频率的A/D转换原理,并依赖于数字电路技术发展起来的一种新型的数字测量仪器。由于数字电路的飞速发展,所以,数字频率计的发展也很快。通常能对频率和时间两种以上的功能数字化测量仪器,称为数字式频率计(通用计数器或数字式技术器)。

数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成,计算机及各种数字仪表中,都得到了广泛的应用。在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得尤为重要。测量频率的方法有多种,其中电子计数器测量频率具有使用方便、测量迅速,以及便于实现测量过程自动等优点,是频率测量的重要手段之一。

数字频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。闸门时间也可以大于或小于一秒。闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。本文。数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。集成电路的类型很多,从大的方面可以分为模拟电路和数字集成电路2大类。数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个应用领域。

为了实现智能化的技术,测频实现宽领域,高精度的频率计,一种有效的方法是将单片机用于频率计的设计中去。单片机数字频率计以其可靠性高,体积小,价格低,功能全等优点,广泛的应用于各种智能仪器中,这些智能仪器校核以及测量过程的控制中,达到了自动化传统仪器中的开关和按钮被键盘所代替,测试人员在测量时只需按需要按的键,省掉了很多繁琐的人工操作,而采用lcd液晶显示器能够清楚明了的显示出测得的实验数据,这就是其优势之处。

篇12

作者简介:张丽(1981-),女,江苏南通人,南通农业职业技术学院机电系,讲师。(江苏 南通 226007)

中图分类号:642.0 文献标识码:A 文章编号:1007-0079(2013)26-0051-02

“数字电路与逻辑设计”是机电专业中的一门专业基础课,它的特点是逻辑性、实践操作性强。它的先导课程有“电路分析”、“模拟电子技术”和“protel99SE”,后续课程有“单片机技术”、“家电原理”和“电子测量技术”,在整个学科体系中起着承前启后的重要作用。

一、“数字电路与逻辑设计”课程设计的理念

以职业能力培养为出发点,应遵循“手脑并用”、“做学合一”、“理论与实际并行”、“知识与技能并重”的教学原则,突出以“能力为本位”的课程模式,以应用和就业为导向,以培养职业技能为目的。以学生为主体,教师为主导,才能充分发挥学生的自主学习积极性。把握学生的认知过程和接受能力的规律,注重对学生创新意识和创新能力、综合意识与综合能力、实践意识与实践能力的培养。以理论联系实际为指导,重点提升学生运用知识的能力,使之养成良好的学习习惯,把握行为引导法促进学生能力提升的发展性教育理念。

二、高职教育及高职学生的特点

高职学生的特点是基础知识薄弱、理论学习困难、学习情绪化、对感兴趣的事物接受能力强。

高职教育的特点是面向岗位群,机电专业面向的岗位主要有:

生产现场操作及维修岗位:要求具有机电产品生产现场的工艺实施能力;机电工具设备的使用与操作能力;对机电产品进行装配、检测与调试的能力;要求仪表的使用、计算机测试、系统分析或产品故障分析的技术能力要强。

机电产品、设备安装及调试岗位:能够对机电设备进行安装、调试、运行管理与设备维护,并能对一般控制系统进行维护与改造。

机电产品、设备技术管理及服务岗位:要求技术管理人员具备看懂机械图纸和电气图纸的能力;具有机电一体化设备的使用、维护、管理能力,具有一定的生产管理、技术管理等知识。机电设备销售与售后服务技术人员具有机电设备的原理、装配工艺等知识,具有机电设备的检测与维修能力。

三、“数字电路与逻辑设计”项目化教学的必要性

传统的教学法是从知识点的掌握到电路的分析再到电路的设计,由局部到整体,自下而上。它以教师为中心,以课堂为中心,以教材为中心,忽视了学生积极性、主动性的发挥,实践以模仿为主,突出技能性训练,缺少设计性、创新性,教学效果不是很理想。

因此,必须根据不同的岗位职业能力要求,确定课程的职业能力目标:会用各种表示方法描述数字电路逻辑功能,会分析常用电路的功能;能完成数字电路的设计,能分析和排除电路中出现的故障;能通过对数字集成电路芯片资料的阅读,了解数字集成电路的逻辑功能和使用方法;能熟练掌握数字电路中常用仪器仪表的使用;能画出所设计的数字逻辑集成电路的电原理图,能列出所设计的电路的元器件清单,会撰写所设计电路的测试说明。

根据课程的职业能力要求确定课程的知识目标:掌握逻辑代数基础知识;了解集成逻辑门电路内部构造;掌握组合、时序逻辑电路的分析设计;理解触发器的工作特性;掌握脉冲波形的产生和整形;A/D及D/A转换。

在此基础上采用项目教学法,它是从实际问题出发来讲电路的构造、元器件的选择,再到知识的运用,由整体到局部,自上而下,宏观把握,以学生为中心,以项目为中心,以实际经验为中心,紧紧围绕工作任务完成的需要来选择和组织课程内容,突出工作任务与知识的联系,让学生在职业实践活动的基础上掌握知识,增强课程内容与岗位职业能力要求的相关性,大大提高了学生的就业能力。

四、“数字电路与逻辑设计”课程设计思路

为落实以培养学生职业能力为目标的课程实施,给出课程总体设计思路:坚持以高职教育培养目标为依据,遵循“以应用为目的,以必需、够用为度”的原则,以“掌握概念、强化应用、培养技能”为重点,力图做到“精选内容、降低理论、加强基础、突出应用”。

课程设计以电子产品的制作为载体,以便于与企业共同开发该课程:项目一,声光控制灯电路制作;项目二,竞赛抢答器制作;项目三,电子生日蜡烛制作;项目四,流水彩灯制作;项目五,31/2位直流数字电压表的制作。

项目的选择以课程标准中的教学内容为依据,既与数字电路知识紧密结合,又能够充分体现当前的工程实际情况,同时具有一定的创新空间,学生可以运用学过的知识进行创造发挥。

通过任务引领的项目活动将必备的知识、技能、行为、态度内化融合,使学生具备本专业的高素质劳动者和高级技术应用人才所必须的数字集成电路设计、制作与测试的基本知识和基本技能,同时培养学生爱岗敬业、团结协作的职业精神。

五、“数字电路与逻辑设计”教学内容的设计

该课程的总体目标:使学生具备本专业的高素质劳动者和高级技术应用型人才所必需的电子设计基本知识,具备灵活运用常用数字集成电路实现逻辑功能的基本技能;为学生全面掌握电子设计技术和技能,提高综合素质,增强职业变化的适应能力和继续学习能力打下一定基础;通过问题的解决,培养学生团结协作、敬业爱岗、吃苦耐劳的品德和良好的职业道德观。

1.内容的选取

以项目二竞赛抢答器的制作为例来说明:

根据总体目标确定该项目的知识目标、技能目标、素质目标。

知识目标:掌握编译码器知识、触发器知识、计数器知识、脉冲波形的产生和整形知识、单稳态触发器知识、复习逻辑代数知识。

技能目标:掌握编译码器、计数器功能、选择连接及使用;掌握555定时器的连接及使用;运用仿真软件画仿真图;具备查阅集成芯片产品手册的能力。

素质目标:培养耐心细致的工作态度,培养严谨扎实的工作作风,培养学生竞争与合作意识。

2.教学内容的序化

(1)任务下达。将项目分解为五个子任务:译码电路的设计与制作、抢答电路的设计与制作、倒计时电路的设计与制作、声响电路的设计与制作、控制电路的设计与制作。

以子任务抢答电路设计与制作为例。知识目标:学习掌握二进制编码器、二进制优先编码器、BCD编码器、BCD优先编码器。能力目标:掌握编码器功能、选择连接及使用、运用仿真软件画仿真图、具备查阅集成芯片产品手册的职业能力。素质目标:培养耐心细致的工作态度、严谨扎实的工作作风、竞争与合作的意识。

对该子任务进行分析:选手抢答情形即选手A首先按下按钮,显示屏上显示A抢答成功,其他选手再按按钮无效,选手A松开按钮后,显示屏上A抢答成功的状态保持不变,直到主持人清零,进行下一轮抢答。抢答电路的重要功能:锁存功能。既要能“锁”,也要能“存”。“锁”——其他选手,“存”——抢答成功的选手信息。通过类比的方式引入编码的概念,对该任务进行仿真后下达任务卡。

(2)资讯。让学生回顾以往解决相关问题的方法,给出用门电路实现的方法;让学生检索常用编码器的数据手册,通过手册了解芯片的功能和基本使用,掌握编码器的测试方法,通过测试加深对芯片的功能和使用方法的了解。

教学重点:二进制编码器与优先编码器的异同点。教学难点:编码器的使用。对芯片进行测试后进行芯片用法分析。

(3)计划决策。通过类似电路分析,启发学生思路;引导学生讨论该任务中编码器的选型,分析采用二进制编码器设计的缺陷;重点讨论如何解决优先编码器的硬件电路已经固定好的优先级;深入各小组听取学生决策意见;根据任务要求,各小组讨论出任务实施方案,设计出系统框图,指导老师确认方案的可行性。

(4)任务实施。任务的实施过程主要以学生为主体,学生三人一组,将学习能力较好、中等、较弱的学生合理分配到各组,教师指导、答疑。

(5)检查评估。根据各小组的演示给出综合评价(部分实现、全部实现、有创新功能);抽取设计较佳和较差电路进行点评;教师给出优化电路,要求学生课后进行分析。

3.教学手段、方法

项目二的教学方法:基于问题教学法 (从实际问题抢答竞赛出发);基于兴趣的教学法 (向学生进行任务的虚拟仿真flash演示);理论实践二位一体教学法 (编码器功能知识的掌握与电路搭建);可视化教学法(芯片功能的测试将传统测试方法与专用的数字芯片测试仪结合);小组讨论法(3人分组);启发式教学法(任务分析部分);类比教学法(编码概念引入部分);探究法(任务实施过程中)。

本门课程教学手段、方法:任务驱动法、行为导向项目教学法;工学结合,现场教学法(项目中每个任务的综合);传统教学手段(讲解法、示范法、模仿法、练习法);多媒体教学手段(PPT课件、flash仿真、网络教学及互动平台)。

六、“数字电路与逻辑设计”考核评价方式

建立终结性评价和过程性评价相结合的评价方式。终结性评价中知识考核占30%,综合考核占70%。过程性评价以项目为单位,其中教师评价占40%,学习档案占30%,小组评价和自我评价各占15%。

七、总结

以职业岗位活动调研为前提进行职业能力需求分析;以职业能力需求分析为导向确定课程职业能力目标;根据职业能力目标的需求确定知识目标;根据岗位工作过程和认识规律构建教学模块;以职业能力训练项目作为课程目标和教学内容的载体;以真实的职业活动实例作为训练素材;通过项目教学真正实现“教、学、做”三者的融合;建立以形成性考核为主的课程考核体系。

参考文献:

篇13

2集成电路设计类课程体系改革探索和教学模式的改进

2014年“数字集成电路设计”课程被列入我校卓越课程的建设项目,以此为契机,卓越课程建设小组对集成电路设计类课程进行了探索性的“多维一体”的教学改革,运用多元化的教学组织形式,通过合作学习、小组讨论、项目学习、课外实训等方式,营造开放、协作、自主的学习氛围和批判性的学习环境。

2.1新型集成电路设计课程体系探索

由于统一的人才培养方案,造成了学生“学而不精”局面,培养出来的学生很难快速适应企业的需求,往往企业还需追加6~12个月的实训,学生才能逐渐掌握专业技能,适应工作岗位。因此,本卓越课程建设小组试图根据差异化的人才培养目标,探索新型集成电路设计类课程体系,重新规划课程体系,突出课程的差异化设置。集成电路设计类课程的差异化,即根据不同的人才培养目标,开设不同的专业课程。比如,一些班级侧重培养集成电路前端设计的高端人才,其开设的集成电路设计类课程包括数字集成电路设计、集成电路系统与芯片设计、模拟集成电路设计、射频电路基础、硬件描述语言与FPGA设计、集成电路EDA技术、集成电路工艺原理等;另外的几个班级,则侧重于集成电路后端设计的高端人才培养,其开设的集成电路设计类课程包括数字集成电路设计、CMOS模拟集成电路设计、版图设计技术、集成电路工艺原理、集成电路CAD、集成电路封装与集成电路测试等。在多元化的培养模式中,加入实训环节,为期一年,设置在第七、八学期。学生可自由选择,或留在学校参与教师团队的项目进行实训,或进入企业实习,以此来提高学生的专业技能与综合素质。

2.2理论课课堂教学方式的改进

传统的课堂理论教学方式主要“以教为主”,缺少了“以学为主”的互动环节和自主学习环节。通过增加以学生为主导的学习环节,提高学生学习的兴趣和学习效果。改进措施如下:

(1)适当降低精讲学时。精讲学时从以往的占课程总学时的75%~80%,降低为30%~40%,课程的重点和难点由主讲教师精讲,精讲环节重在使学生掌握扎实的理论基础。

(2)增加课堂互动和自学学时。其学时由原来的占理论学时不到5%增至40%~50%。

(3)采用多样化课堂教学手段,包括团队合作学习、课堂小组讨论和自主学习等,激发学生自主学习的兴趣。比如,教师结合当前本专业国内外发展趋势、研究热点和实践应用等,将课程内容凝练成几个专题供学生进行小组讨论,每小组人数控制在3~4人,课堂讨论时间安排不低于课程总学时的30%[3]。专题内容由学生通过自主学习的方式完成,小组成员在查阅大量的文献资料后,撰写报告,在课堂上与师生进行交流。课堂理论教学方式的改进,充分调动了学生的学习热情和积极性,使学生从被动接受变为主动学习,既活跃了课堂气氛,也营造了自主、平等、开放的学习氛围。

2.3课程实验环节的改进

为使学生尽快掌握集成电路设计经验,提高动手实践能力,探索一种内容合适、难度适中的集成电路设计实验教学方法势在必行。本课程建设小组将从以下几个方面对课程实验环节进行改进:

(1)适当提高教学实验课时占课程总学时的比例,使理论和实验学时的比例不高于2∶1。

(2)增加课外实验任务。除实验学时内必须完成的实验外,教师可增设多个备选实验供学生选择。学生可在开放实验室完成相关实验内容,为学生提供更多的自主思考和探索空间。

(3)提升集成电路设计实验室的软、硬件环境。本专业通过申请实验室改造经费,已完成多个相关实验室的软、硬件升级换代。目前,实验室配套完善的EDA辅助电路设计软件,该系列软件均为业界认可且使用率较高的软件。

(4)统筹安排集成电路设计类课程群的教学实验环节,力争使课程群的实验内容覆盖设计全流程。由于集成电路设计类课程多、覆盖面大,且由不同教师进行授课,因此课程实验分散,难以统一。本课程建设小组为了提高学生的动手能力和就业竞争力,全面规划、统筹安排课程群内的所有实验,使学生对集成电路设计的全流程都有所了解。

3工程案例教学法的应用

为提升学生的工程实践经验,我们将工程案例教学法贯穿于整个课程群的理论、实验和作业环节。下面以模拟集成电路中的典型模块多级放大器的设计为例,对该教学方法在课程中的应用进行详细介绍。

3.1精讲环节

运算放大器是模拟系统和混合信号系统中一个完整而又重要的部分,从直流偏置的产生到高速放大或滤波,都离不开不同复杂程度的运算放大器。因此,掌握运算放大器知识是学生毕业后从事模拟集成电路设计的基础。虽然多级运算放大器的电路规模不是很大,但是在设计过程中,需根据性能指标,谨慎挑选运放结构,合理设计器件尺寸。运算放大器的性能指标指导着设计的各个环节和几个比较重要的设计参数,如开环增益、小信号带宽、最大功率、输出电压(流)摆幅、相位裕度、共模抑制比、电源抑制比、转换速率等。由于运算放大器的设计指标多,设计过程相对复杂,因此其工作原理、电路结构和器件尺寸的计算方法等,这部分内容需要由主讲教师精讲,其教学内容可以放在“模拟集成电路设计”课程的理论学时里。

3.2作业环节

课后作业不仅仅是课堂教学的巩固,还应是课程实验的准备环节。为了弥补缺失的学生自主设计环节,我们将电路结构的设计和器件尺寸、相关参数的手工计算过程放在作业环节中完成。这样做既不占用宝贵的实验学时,又提高了学生的分析问题和解决问题的能力。比如两级运算放大器的设计和仿真实验,运放的设计指标为:直流增益>80dB;单位增益带宽>50MHz;负载电容为2pF;相位裕度>60°;共模电平为0.9V(VDD=1.8V);差分输出摆幅>±0.9V;差分压摆率>100V/μs。在上机实验之前,主讲教师先将该运放的设计指标布置在作业中,学生根据教师指定的设计参数完成两级运放结构选型及器件尺寸、参数的手工计算工作,仿真验证和电路优化工作在实验学时或课外实训环节中完成。

3.3实验环节

在课程实验中,学生使用EDA软件平台将作业中设计好的电路输入并搭建相关仿真环境,进行仿真验证工作。学生根据仿真结果不断优化电路结构和器件尺寸,直至所设计的运算放大器满足所有预设指标。其教学内容可放在“模拟集成电路设计”或“集成电路EDA技术”课程里[4]。

3.4版图设计环节

版图是电路系统和集成电路工艺之间的桥梁,是集成电路设计不可或缺的重要环节。通过集成电路的版图设计,可将立体的电路系统变为一个二维的平面图形,再经过工艺加工还原为基于硅材料的立体结构。两级运算放大器属于模拟集成电路,其版图设计不仅要满足工艺厂商提供的设计规则,还应考虑到模拟集成电路版图设计的准则,如匹配性、抗干扰性以及冗余设计等。其教学内容可放在课程群中“版图设计技术”的实验环节完成。通过理论环节、作业环节以及实验的迭代仿真和版图设计环节,使学生掌握模拟集成电路的前端设计到后端设计流程,以及相关EDA软件的使用,具备了直接参与模拟集成电路设计的能力。

友情链接