你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 生物技术与生物医学工程

生物技术与生物医学工程范文

发布时间:2023-11-28 14:47:18

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇生物技术与生物医学工程范例,将为您的写作提供有力的支持和灵感!

生物技术与生物医学工程

篇1

[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2014)01-0135-03

黑龙江八一农垦大学生物技术专业是在农业微生物实验室的基础上建立的,曾三次被评为黑龙江省普通高校重点建设专业。该专业经过多年发展,培养了大量社会所需的生物技术人才,与社会联系广泛,社会声誉逐步提升,专业建设能密切联系本地经济社会发展,在与相关产业和领域的合作方面有良好的机制与途径,毕业生广泛受到用人单位的欢迎,历年初次就业率就达到85%以上。

经过多年的建设,生物技术专业的培养体系已较为成熟,但生物技术的迅猛发展,新知识、新技术的不断涌现,对生物技术人才培养的质量提出了更高的要求。因而,生物技术专业人才培养目标、思路及方案的制订要充分考虑学校的优势、就业需求和未来发展的需要,要站在学科前沿,紧盯生物技术专业的发展趋势,适度超前,培养在几年乃至若干年之后,仍为社会所需要的人才。[1]本文依托黑龙江省寒区农业废弃物资源化综合利用工程技术研发中心这一平台,对生物技术专业的实践教学模式进行初步探索、研究。

一、生物技术专业实践教学存在的问题

我校生物技术专业的学生实践能力的提高主要通过以下几个层次进行:首先是基础课实践能力培养,主要是通过生物基础、生物化学、分子生物学、细胞生物学、微生物学、免疫学和遗传学课程的实验与生物基础课的野外实习得到初步的锻炼;其次是在学习基因工程、发酵工程及设备、细胞工程、生物工程下游技术等专业课程中的实验及实习得到进一步的训练,主要涉及一些专业基本技术的培养;最后就是本科毕业论文的设计、研究及毕业实习。但在实践能力培养过程逐渐发现存在诸多问题。

(一)实验课内容陈旧重复

实验教学是培养学生实践能力的重要环节。生物技术是21世纪发展最快的学科,生物技术的研究内容、方法及设备日新月异。为了适应生物技术的发展,实验教学要不断地革新。而我校由于师资力量条件的限制,仪器设备年更新率不足5%,致使有些课程的实验内容无法更新。比如,发酵工程及设备的实验有3个:豆酱的生产、酸奶的发酵和固定化酵母细胞及酒精的生产,实验内容仍旧停留在20年前的水平。而发酵工程及设备、酶工程两门课程均有固定化细胞的实验内容,基因工程、分子生物学也存在实验内容重复的问题。实验课内容的陈旧及重复,使培养的学生不能适应社会的发展,竞争力不强。

(二)课程实习实施效果良莠不齐

生物技术专业的课程实习主要涉及三门课,一是生物学基础,在帽儿山进行为期1周的标本采集及鉴定实习,该课程的实习由学生直接参与,加之有丰富经验的老教师带队,历年实施效果较好,得到学生欢迎。另两门是发酵工程及设备、生物工程下游技术专业课,也均有1周的课程实习,但该两门课程的实习均是采用参观实习的形式,由于该部分的实习均是参观发酵车间,噪音大,学生听不清楚,学生在实习过程中走马观花,预计的实习时间很难达到,存在着实习实际学时达不到理论学时及实习效果差的问题。另外,发酵车间均大同小异,选择参观好几个发酵工厂,学习效果差异不大,学生通过实习学到的知识量少。

(三)毕业论文研究不能有效提高学生的动手和创新能力

学生是在指导教师的指导下进行毕业论文的设计、实施和撰写,毕业论文的完成可以培养学生的创新能力和实践能力。但目前存在着老师指导学生数量过多的现象,有的老师会指导10名左右本科生;同时需要老师填写及督促、检查学生完成的表格有选题执行情况统计表、指导教师情况统计表、教师工作总结、毕业论文执行情况检查表、中期检查表、工作进度表、教师指导记录表、工作日志、学生工作总结和优秀论文推荐表等,这些均加重了老师的工作量,使老师平均指导每个学生的精力减少,不可避免地造成学生毕业论文完成质量不高的问题。

(四)毕业实习实施困难

教学计划中安排学生在第八学期的1至15周进行毕业实习,是将四年所学的理论和实践相结合的重要阶段,可促进学生基本理论、基本知识、基本技能的融会贯通,提高学生运用知识解决问题的能力。而目前就业的严峻形势、学校对就业率的要求使学生不能安心去实习,因为利用实习阶段去找工作的学生较多,而学院为了完成就业的任务,也放松了对毕业实习的管理。另外,长期的教学实践表明,由于学生的动手能力差,学生进入实习单位后不能很快适应角色,用人单位也不愿意接收实践能力不强的学生。

二、工程中心建设的实践条件

寒区农业废弃物资源化综合利用工程技术研发中心依托单位为黑龙江八一农垦大学,共建单位为哈尔滨世宏环保工程有限公司。中心目前拥有包括35L-500L-1000L发酵系统、厌氧操作台、大型高速离心机、凝胶成像系统、高分辨率显微镜、蛋白质纯化系统、高效液相色谱等仪器设备100多台套,价值500多万元。中心学术带头人王伟东教授目前为国家“十一五”科技支撑计划项目首席专家、黑龙江省“十一五”重大科技攻关项目首席专家、黑龙江省普通高校新世纪优秀人才、黑龙江省杰出青年基金获得者。研究团队多年来在木质纤维素的微生物分解与转化、畜禽粪便和秸秆资源化处理生产生物有机肥、沼气发酵技术与工程和秸秆微生物发酵生产饲料技术等方面取得了众多的研究成果。

共建企业哈尔滨世宏环保工程有限公司是一家环保工程设计及施工、农林废弃物及污水处理的生物技术与生物质能源工程公司。公司涉及农业废弃物处理、环境污染(水、气、固体废弃物)防治厌氧处理工程、大型沼气发电工程、发酵料液制肥工程、环保设备集成、环保产品、环境工程等诸多方面。公司自成立以来,完成了鸡西市梨树区碱厂村、阿城滨圣养殖基地、通河龙口等多处大型沼气工程。公司通过多起大型沼气工程的建设,具备了丰富的建设经验,能够承担大型沼气工程的建设与机械设备的开发、安装、调试等工作。公司不仅致力于沼气工程的建设工作,还致力于先进技术的开发与利用,开展畜禽粪便堆肥化、生物质能源工艺技术及相关工程设备研发、技术熟化、成果转化、技术服务等。

三、依托工程中心的实践教学改革措施

(一)优化实验课设置,整合实验内容

针对实验教学过程中存在的问题,参考国内高校生物技术专业课程实验的设置进行实验项目的整合,把重复的内容进行了归类,开设新的实验项目。每门课程的实验内容、方法及目的均由授课教师进行开会论证,参与者为生物技术专业所有的授课教师及学院主管领导,特别邀请共建企业技术人员进行指导,对实验课的开设实行严格的论证,并对有些课程的实验进行了整合,形成一门课程:生物技术综合大实验课程,总学时为40学时,在第六学期开课;教学内容主要是融会贯通生物与分子生物学、微生物学、发酵培养的实验技能,综合考虑学校的教学条件及今后进入企业进行实习的要求开展实验;教学方式采用学生自行查阅资料、设计方案,由指导老师对实验方案修正后实施。

(二)调整专业课程实习为生产实习

鉴于专业课程实习与毕业实习存在的诸多问题,对生物技术的教学计划进行修订,保留了生物基础课程实习,取消了专业课程实习,在第五学期的开学之初增加4周的生产实习,主要是进入发酵企业进行顶岗实习。为了让学生能在实习单位尽快适应生产单位的条件,充分利用工程中心拥有的发酵设备条件,在工程中心进行1周的操作训练后分散进入实习单位,如大庆志飞生物化工有限公司、肇东日成酶制剂厂、大庆华理能源生物技术有限公司等10多个企业,采用学校教师与企业技术人员共同指导负责制对学生的实习进行指导和管理。

(三)建设“多师结构”的实践教师教学团队

在培养理论与实践兼备教师方面,我院进行了有益的探索。[5]为了进一步提高教师和学生的实践能力,本科毕业论文的指导教师打破完全由教师承担的制度,采用企业技术人员和教师共同指导方式。一方面减轻老师的工作量,另一方面研究的课题在一定程度上也解决了企业的一些问题,同时学生的综合能力也得到了提高。

(四)鼓励学生依据工程中心的条件申请创新训练项目

为推进创新创业人才培养模式改革,强化学生创新创业能力训练,进一步提升大学生的创新能力和创业能力,培养适应创新型国家发展战略需要的高水平创新人才,我省及学校从2012年起设立创新训练项目、创业训练项目和创业实践项目。获批省级项目,学校支持8000元/项;获批校级项目,学校支持5000元/项。鼓励学生利用工程中心的条件进行创新训练项目申请,申请成功后,工程中心将依据项目的内容提供实验条件。

四、人才培养效果

实验课程整合后,改变了以往以小的实验为主,实验内容简单,仅仅为理论中某一知识点验证的弊端,将有相关的知识内容有机地结合在一起,对学生系统掌握理论知识起到了很好的诠释作用。生产实习的安排在解决了专业课程实习仅是参观而得不到实际锻炼的问题的同时,还为更好地开展毕业实习奠定了基础,在此过程中工程中心起到了良好的衔接作用。“多师结构”的实践教师教学团队使学生的毕业论文质量得到了进一步提高,解决实际问题的选题内容比例增加。2009级毕业生选题中,针对实际问题的选题占32.4%,虽然比例还不是很高,但比2008级毕业生增加了近10%。2009级毕生中有15人参加到创新研究项目中,有5人次获得优秀毕业论文,投稿论文3篇。

五、结语

生物技术专业结合校企共建工程中心进行了一些可提高学生实践能力的教学改革,充分调用工程中心的各种资源,让生物技术专业学生在工程中心中可以体验不同的角色,获得不同的经历,接受多种熏陶,打造学术型和应用型人才培养并举的育人平台,将学生、指导教师团队、工程中心、企业现场融入生物技术人才培养体系当中,构建“四位一体”的实践教学模式。研究虽然取得了一定的效果,但阻碍实践教学能力提高的因素还有很多,诸如限制实验项目更新的仪器设备、毕业论文中流于形式的一些表格填写、毕业实习与就业矛盾的解决等问题,还需要主管部门的认真思考,提出合理的解决方案。

[ 参 考 文 献 ]

[1] 王彦杰,韩毅强,晏磊,等.生物技术专业“落地人才”培养模式的探索与实践[J].安徽农学通报,2012(5):150-151.

[2] 王洪振,于长春,郝锡联,等.生物技术专业本科实践教学的改革成实践[J].吉林师范大学学报(自然科学版),2010(1):113-115.

篇2

Principles and Techniques Teaching and Reform

CHEN Changming

(College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642)

Abstract Plant Genetic Engineering Principles and Techniques is a plant related graduate of an important basic course, the article reviewed the current postgraduate course in practice teaching reform, analyzes the existing problems. According to the characteristics and horticulture graduate personnel training requirements of plant genetic engineering, it is proposed to improve the quality of teaching practice teaching methods and measures to improve the practical teaching system to improve the ability of students to acquire knowledge and innovation.

Key words graduates; Plant Genetic Engineering; teaching reform

0 引言

基因工程是二十世纪八十年代在分子生物学和分子遗传学的基础上发展起来的一门新兴学科。它的主要研究内容是体外将核酸分子插入质粒或其他载体分子,构成新的遗传物质组合,并将其转化到原先没有这类遗传因子的寄主细胞内,且能持续稳定地表达和遗传。因此,应用基因工程技术,人们可以按照自己的主观愿望,创造出自然界原本不存在的新生物类型。科研人员正是利用这一特征,已在提高农作物产量,改善品质,增强抗逆性和抗病虫害的能力等方面取得令人瞩目的成就。园艺作物主要包含果树、蔬菜、观赏植物三大类经济作物,基因工程在园艺作物品种改良,关键基因的发掘,种质鉴定等方面有着重要的作用,如今很多农业院校园艺系相继开设了研究生的园艺植物基因工程原理与技术课程。

1 研究生基因工程原理与技术课程教学与实践改革现状

为了适应现代生物技术的飞速发展和达到培养高素质科研人才的要求,基因工程原理与技术课程已被设置为包括生物技术、生命科学、生物工程在内的生物相关专业、医学专业及农林专业本科生和研究生的必修课。由于基因工程技术在生物科学研究中的地位举足轻重,在众多综合院校和农业院校都开设了基因工程类课程,对基因工程类课程改革做了许多研究工作。阮小蕾等探讨了本课程在传统的理论和实验教学中存在的不足,结合笔者的教学经验,在教材建设、教学内容的改革与建设、实验配套的硬件与软件建设、实验教学安排等方面进行了探索,总结出了一套行之有效的理论和实验教学方法。姜大刚等对研究生基因工程实验教学改革进行了探讨。提出了以教学大纲为指导开展教学,做好课程规划;构建“和谐课堂”,重视教学效果;教学内容的与时俱进和不断充实完善;重视师资队伍建设,发挥骨干教师的模范作用;科研内容的渗入和应用等观点。马婧等针对园艺专业研究生的特点和人才培养要求,提出了根据课程性质,合理安排课程时间,针对专业特点,选择理论教学内容。并探讨了实验教学实践的方法,提出了采用小班教学,“高带低”的辅助教学模式。

2 园艺研究生植物基因工程原理与技术课程教学与实践存在的问题

园艺植物基因工程原理与技术是针对园艺专业低年级硕士、博士研究生的一门专业选修课程,包括基因工程原理讲授和实验技术操作两个部分。以笔者所在的华南农业大学园艺学院为例,该课程是针对园艺相关专业(包括果树学、蔬菜学、花卉学、园艺产品采后科学、茶学)低年级硕士和博士研究生开设的一门专业选修课程,该专业生源大部分为园艺专业本科毕业生,同时存在一些跨专业考研的与生物不相关专业的学生,他们在本科阶段没有学习过基因工程、分子生物学、植物生物技术等相关知识,相对来说,存在学生基础知识薄弱、专业背景复杂、研究方向多样等因素,这为园艺植物基因工程原理与技术课程在园艺专业研究生中的教学带来了一定的困难。除此之外,开设时间短,课时少,一些学校的实验条件有限等现实情况也成为了该课程开展的制约条件,另外由于很多同学以前没有做过分子生物学方面的实验,对基因工程实验的操作非常生疏,因此也必要对他们进行特别的指导与教学。针对以上问题,该课程应结合专业特色和教师个人科研工作,让研究生掌握一定的基因工程技术,为今后的研究和生产工作奠定基础,本文从课程的理论体系教学和实验设置等方面提出了课程改革的措施。

3 研究生园艺植物基因工程原理与技术课程教学改革措施

3.1 设计合理的园艺专业研究生植物基因工程原理与技术理论教学内容

园艺植物基因工程原理与技术虽然以实验操作为主,但离不开基本原理知识的讲述,传统的基因工程理论知识体系庞大而复杂,在有限的课时里(设计为30个学时),讲授者很难将所有相关知识一并传授给学生。因此挑选合适的讲授内容就显得尤为重要了。园艺专业研究生的研究对象主要为果树、蔬菜和花卉,运用植物基因工程技术的主要目的是对植物某一性状进行改良。所以在课程内容选择上应该以植物基因工程所要解决的主要问题为导向,带着问题和目标选择授课内容。讲授侧重于植物基因工程的相关内容,重点讲解核酸提取,目的基因的克隆,植物表达载体的构建,重组子筛选,农杆菌介导的转基因方法等内容。通过这些内容的教授,学生就可以掌握在植物基因工程研究中所需要的基本理论知识,为将来从事相关的科学研究打下基础。随着现代基因工程技术的快速发展,基因工程的技术更新很快,除了基本的基因工程原理知识,也需要及时获得最新的用于植物基因工程,尤其是适用于园艺类植物基因工程的新方法和新技术,并整合到教学内容中,如最近出现的可用于园艺植物基因沉默的新技术TALEN和CRISPR/Cas系统等,与时俱进地更新教学内容,将新知识、新理论、新方法传授给学生。

3.2 合理安排实验内容

研究生教育应以科研为目标,园艺植物基因工程原理与技术课程的学习就是为研究生将来进行植物基因工程相关的科研活动打基础的,我们的课程教学与设计也要以园艺植物研究为导向,巧妙进行实验设计,合理安排实验内容。植物基因工程相关的实验方法和技术非常多,应选择适合园艺专业研究生的实验内容。选择内容的标准主要有三个方面:第一,实用性原则,现在我们园艺学院科研项目所需的基因工程操作主要有基因克隆、载体构建、表达分析、基因遗传转化等,所以我们着重从这些方面入手,设计实验,让学生对将要从事的基因工程方面的实验有一个整体的认识;第二,创新性原则,基因工程技术发展了这么多年,出现了很多新的技术,然而在我们的实验教学过程中,一直沿用最基本的实验操作模式,因此在现有实验的基础上加上一些近年来新发展的技术可培养研究生科研上与时俱进的思维,如我们可在实验的内容加上生物信息学的内容,或者学生采用电子克隆技术得到的基因序列,设计扩增引物,用PCR的方法扩增,并送往公司测序,然后分析序列,以培养学生独立思考与探索的意识,而且现在用的实验指导书,实验技巧与知识已经陈旧,有必要增加新的基因工程操作技术到本课程的实验指导书中;第三,合理性和可操作性原则,园艺研究生有别于其他生物专业的研究生,他们的生物技术,生物化学以及分子生物学方面相关知识比较薄弱,所以在实验过程中的实验内容及时间安排应循序渐进,合理有序,首先从学生们易于接受的DNA提取、PCR以及凝胶电泳入手,再进一步到载体构建及基因表达,实验操作过程中分组进行,每组4~5人,每一组由一个实验经验丰富的高年级研究生任指导组长。

3.3 理论联系实际,开展科研训练,探索原理讲授与实验技术操作最佳结合方式

篇3

在传统的发酵工程教学过程中,存在着很多问题,如教师讲、学生听的填塞式教学模式还没有被完全打破,教学与实践结合不紧密,学生积极性激发不够。为了解决以上问题,近几年来笔者所在学校对发酵工程课程的教学内容、教学方法和手段、实验开设方式和教学评价体系等方面进行了多次探索与实践,并取得了一定的成绩。

一、培养目标

教育部2012年了《国家教育事业发展第十二个五年规划》,强调应用型、复合型人才的迫切需要,因此医学院校发酵工程专业课程也应以培养适应现代化建设和社会发展需要的,具有创新精神和较强实践能力的复合型、应用型医药、生物技术专门人才。

二、教学内容的改革

发酵工程是一门与生产实践密切相关的学科,为了让学生能够更深入的了解发酵的理论知识和实验技能,我们综合了科学出版社、高教出版社和化学工业出版社出版的高等教育“十二五”规划教材,全部教学内容涉及发酵工程上游的菌种选育、发酵机制、发酵动力学、工业培养基及原料处理、灭菌与空气除菌,中游的发酵设备及放大、发酵过程优化及控制,及下游的产物回收与精制、发酵产品工艺和应用。同时,为了加强学生对课程理论知识的记忆和理解,我们还设立了发酵罐使用、基因工程菌种选育、高密度发酵、高通量筛选、乳酸发酵等多种实验课程。课程最后还带领同学到合作的生物制药或是诊断试剂等发酵生产企业参观,进一步将学校学习和实际生产联系起来,不仅有利于学生对理论知识的掌握,更有利于学生的就业和未来发展。

三、教学方法和手段的改革

医学院校最常采用的一种教学方法和手段就是PBL教学,全称为problem-based learning,即以学生为主题,以问题为导向,激发学生自主学习的能力。本课程亦将PLB教学引入发酵工程课程的教学当中。在教学过程中,学生组成学习小组,针对某些实际发酵过程的难题、知识点等问题,每组集体学习,建立解决问题的假设,并讨论解决方案的可行性,最后进行总结分析。在PBL教学实践过程中,学生们完全依靠自己的学习来发现问题、讨论问题、拓展问题,并解决问题。所以加深了他们对知识点的记忆和解决问题的能力,不会再出现考试结束记忆全无的情况。

为了让学生在课堂上学到更多的知识及视听享受,我们花了大量的时间即精力制作了大量精美、内容充实的多媒体课件,并伴有大量的动画演示,比如,发酵罐、灭菌过程、发酵过程和培养基配置过程。突触重点和难点,做到理论和实践相结合的教学方法。

四、教学评价体系改革

合理的教学评价体系有利于尽快发现教学过程中的问题,改进教学方法,提高教学质量。在发酵工程教学评价上,我们采用问卷调查的形式,从总体教学效果。教师组织实施情况和学生主观感受三个方面评价。总体教学效果分优秀、良好、一般、差四个等级建立教学评价体系。

五、考核方式改革

我们将课程的成绩考核分为3部分,即平时成绩(10%,包括出勤率和PBL课程)、实验成绩(30%,包括实验理论考试、实验操作考试和实验报告)和期末成绩(60%)。企业发酵工程参观后,还会让学生完成一份对发酵生产过程的体会论文,让学生切身体会到发酵工程的乐趣。

六、教学实践面临的问题

发酵工程在本校生物技术专业开展以来,教学成果显著,但是由于实施时间较短,经验和现有教学条件不足,难免不出现一些问题。具体表现在设备的欠缺、网络信息平台建设不完善,没有形成完整的视频教学,图书馆数据跟不上时代的发展,缺少有PBL教学能力和经验的老师,这些也限制了本校发酵工程课程的进一步发展。

七、总结

经过几年的教学实践,我们已经形成了一整套发酵工程的教学模式,并积攒了很多教学经验,取得了很好的教学成果,培养的学生也能很好的适应社会需求,将教学和就业紧密的结合到一起,实现理论知识和实践技能的完美统一。相信通过我们的努力,未来医学院校发酵工程课程也会取得可持续的发展,具有良好的前景。

参考文献:

[1]陈梦然.高校教师专业发展的基本标准.高校教育管理,2013,(02):63-9.

[2]甄德山,白益民.有关教师素质研究中的几个问题.教育改革,1994,(01):16-8.

篇4

生物医药:

制药产业与生物医学工程产业是现代医药产业的两大支柱。生物医药产业由生物技术产业与医药产业共同组成。各国、各组织对生物技术产业的定义和圈定的范围很不统一,甚至不同人的观点也常常大相径庭。

生物医学工程是综合应用生命科学与工程科学的原理和方法,从工程学角度在分子、细胞、组织、器官乃至整个人体系统多层次认识人体的结构、功能和其他生命现象,研究用于防病、治病、人体功能辅助及卫生保健的人工材料、制品、装置和系统技术的总称。

(来源:文章屋网 )

篇5

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)22-0119-02

一、引言

《计算方法》综合了计算数学和计算机科学相关知识,具体研究利用计算机解决数学问题的相关理论和相关方法。该课程作为我校生物医学工程专业本科学生的课程,目前仅有理论教学环节,教学效果有待提高。本文结合生物医学工程专业特点,基于我院在医学影像成像方法的研究成果,借助我校信息学科与计算机学科的优势,对《计算方法》课程教学改革进行探讨。将《计算方法》课程的理论知识应用于医学成像中,包括CT成像、近红外光学成像和光致超声成像等,以期摸索出适合生物医学工程专业学生的《计算方法》实验教学体系,培养知识与能力并重、理论与实践兼顾的创新型生物医学人才。

二、计算方法课程特点及教学存在的问题

随着科学技术特别时计算机科学与技术的高速发展,科学计算已成为继理论分析、实验研究之后的第三种科学研究手段。计算方法研究利用计算机解决科学问题的相关理论和方法,是科学计算的核心。作为数学理论与工程应用之间的一个纽带,计算方法在很多学科领域发挥着重要作用,很多高校已将该课程作为学生的必修或选修基础课程。

计算方法紧密结合数学理论和计算机科学,是数学的一个重要分支,也是理工科学生一门重要的基础课程。计算方法研究利用计算机解决数学问题的相关理论和方法,强调计算机技术的实际应用和数学算法的工程实现,对学生的动手能力有较高的要求。由于与工程实践密切结合,该课程的教学必须理论与应用并重。

《计算方法》课程具有以下特点:(1)计算方法课程不仅涉及高等数学中学过的相关理论内容,而且注重运用这些理论去解决问题,而不是理论本身。它有助于加深学生对数学理论的理解和认识。(2)计算方法课程公式较多而且难记。(3)强调对计算机的使用,尤其是在计算机上借助一定的软件平台实现相关算法。

生物医学工程是一门兴起于20世纪60年代的交叉学科,涉及化学、数学、物理、药学、生物t学、电子技术、工程技术、材料、计算机技术和信息技术等众多学科及领域。该学科综合了工程学、生物学和医学的理论和方法,具有综合性强、知识结构交叉跨度大、发展速度快等特点。从事该专业的本科生不仅需要电子技术、生命科学、电子与信息科学相关的基础理论知识;而且还需具备生物医学与工程技术相结合的科学研究能力。由于生物医学工程学科知识结构的交叉性和综合性,对高校培养的该专业人才需要更高、更全面的能力素质要求。

我校生命科学技术学院将《计算方法》课程作为大三生物医学工程与生物技术专业学生的选修课,经过几年的教学,存在的主要问题如下:

1.《计算方法》课程教学内容照本宣科,与生物医学工程专业基本无联系。目前,课程教学内容与生物医学工程专业以及生命科学技术学院研究方向基本上没有联系,结合不够紧密,没有将生物医学工程专业领域涉及的科学计算学生所学专业领域科学计算问题融入教学计划和教学内容。

2.《计算方法》重点在于理论教学,对数值实验能力的强调不够。以往的教学环节中,选用的教材在内容安排上没有对数值计算过程中实验过程的描述。老师在授课过程中,忽略了学生数值实验能力的培养。实际上,这门课程不仅具有完整的理论体系,更是一门实践性很强的课程,数值实验在该课程中必不可少。

三、教学改革具体措施

针对上述问题,本文从教学内容、教学模式和考核方法等方面进行研究,结合生物医学工程专业特点,基于生命科学技术学院科研平台,加强数值实验,摸索适合生物医学工程专业学生的《计算方法》实验教学体系,培养知识与能力并重、理论与实践兼顾的创新型生物医学人才。

1.扩展《计算方法》教学内容。我校《计算方法》课程选用西北工业大学出版社出版的教材《计算方法》,教材内容包括计算误差、基于二分法和迭代法的方程近似求解、直接法和多种迭代法求解线性方程组、特征值和特征向量的计算、最小二乘法求解方程组、曲线拟合、曲线插值、以及数值积分与数值微分等,课程内容大部分涉及的都是数学理论,以及各种方法的详细推导,教材上的例子主要是简单的数学问题,与实际应用联系较小,与生物医学工程专业更是没有联系。我们在教学过程中,结合我院科研以及生物医学工程专业特点,在理论讲解与公式推导的同时,融合医学成像具体实例,让学生了解如何在本专业领域运用该课程相关知识。

2.开设《计算方法》实验教学。为提高学生动手能力,我们在经典计算方法课程内容基础上,结合生命学院科研项目,加入与生物医学工程专业相关的应用实例,例如CT图像重建,计算方法课程中的迭代法和最小二乘法均可用于CT图像重建,基于学院CT硬件系统采集的数据,结合合适的成像模型,学生上机编程完成CT图像重建。通过该实例学生不仅了解了CT成像原理,更掌握计算方法在CT成像中的应用。再例如辐射传输方程的求解问题,该问题在生物医学成像中普遍存在。辐射传输方程属于复杂的偏微分方程,在光学成像前向建模中,需要求解该方程,而计算方法课程中有一章的内容讲解偏微分方程的数值求解方法,学生可以开展基于数值方法的辐射传输方程求解。同时,我们加大编程仿真,特别要指导学生应用所学知识进行生物医学工程应用实践。

3.完善《计算方法》教学模式。《计算方法》课程的目的是让学生利用计算机,结合一定的软件工具,解决实际问题。考虑到课程特点,以及学生前期已经学习Matlab语言,我们使用Matlab软件作为计算方法的编程工具。我们在当前计算方法课程的课堂教学安排中,除了理论教学,还增加仿真实验。教师在课堂讲解时,进行详细演示,同时要求学生课后进行编程与上机。课后作业采用计算机编程完成,学生提交报告,给出程序代码以及运行结果。使学生通过仿真实验掌握计算方法中的理论知识,同时学会编程运用计算方法相关内容解决实际问题,提高动手能力。

4.改进《计算方法》考核方式。传统《计算方法》课程考核采用笔试形式,主要考查的是学生对基本知识点的掌握情况。本文改革中,我们兼顾知识与能力的评价标准考核学生学习效果。评价标准主要包括:计算方法基本理论知识、基于Matlab工具的编程仿真实现计算方法相关算法、生物医学工程实际问题解决能力。对于计算方法基本理论知识的考核,采用笔试闭卷形式;对基于Matlab工具的编程仿真实现计算方法相关算法,考核学生在计算机上利用Matlab语言编程实现误差分析、二分法和迭代法求解方程组、数据插值、数据拟合、数值积分与微分等;对于生物医学工程实际问题解决能力的考察,给出两到三个生物医学应用问题,要求学生根据现有数学模型,基于测量数据问题求解,并给出误差分析结果。总之,采用形式多样的考核方式,对学生的综合能力进行测评。

四、结语

本论文对计算方法课程改革进行了探讨,构建教学研用有机结合的计算方法教学体系。通过基础知识传授、计算机仿真实验、医学断层成像具体问题实践,建立包括基础理论――验证实验――应用实践三个层次的相互衔接的计算方法学教学体系;同时,生物医学工程专业背景下的算方法教学,融合了包括分子数学、生物、计算机与信息等多学科知识,对学生的理论、实践与应用能力协同训练与提升,为多学科交叉复合型创新人才的培养奠定基础。

参考文献:

[1]刘师少.计算方法[M].北京:科学出版社,2011:2.

[2]聂德明,李文军.关于计算方法课程教学改革的思考[J].黑龙江教育,2013,(10):59-60.

[3]胡春玲,袁。吕刚.应用型本科院校《计算方法》课程教学模式研究[J].大学数学,2013,29(2):10-13.

[4]马东升,董宁.数值计算方法[M].北京:机械工业出版社,2015.

[5]焦纯,卢虹冰,张国鹏,等.结合计算思维能力的培养,深化生物医学工程教学改革[J].医疗卫生装备,2014,35(9):141-143.

Teaching Reform of "Computational Methods" for Biomedical Engineering Students

CHEN Duo-fang

篇6

研究基因的专业有:

1、生物科学专业,是一门前沿的边缘学科,生物科学是一门以实验为基础,研究生命活动规律的科学。一般大学都设在生命科学院内,与生物技术,生物工程是兄弟专业。其专业涉及面相当广,包括植物学,动物学,微生物学,神经学,生理学,组织学,解剖学等等。

2、临床医学专业,是一门实践性很强的应用科学专业,致力于培养具备基础医学、临床医学的基本理论和医疗预防的基本技能,临床医学专业学生主要学习医学方面的基础理论和基本知识,人类疾病的诊断、治疗、预防方面的基本训练,有对人类疾病的病因、发病机制做出分类鉴别的能力。

3、生物医学工程专业,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化生物医学工程专业培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力。

(来源:文章屋网 )

篇7

生物医学工程是一门新兴的边缘学科,它综合了工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化。其学习内容包括以下几个方面。

1.1医学影像技术

即通过X射线、超声、放射性核素、磁共振、红外线等手段及相应设备进行成像的技术,现还有正在兴起的阻抗成像技术等。

1.2医用电子仪器装备

分为诊断仪器和治疗仪器两大类。诊断仪器主要是用以采集、分析和处理人体生理信号,现在使用较多的是心脑电、肌电图仪和多参数的监护仪等,而通过体液来了解人体内生物化学反应过程的生物化学检验仪器也已逐步完善并走向微量化和自动化。治疗仪器设备则是采用X射线、γ射线、放射性核素、超声、微波和红外线等仪器设备,如X射线深部治疗机、体外碎石机、人工呼吸机等。手术设备如γ刀、激光刀、呼吸麻醉机、监护仪、X射线电视等。现代化医疗技术中还将设备功能更加多样化、复杂化。

1.3生物力学

主要是研究生物组织和器官的力学特性,人体力学特性和其功能的关系。其中包括生物流变学(血液流变学)、软组织和骨骼力学、循环系统动力学和呼吸系统动力学等。

1.4生物材料

即人工器官、组织工程所需要的物质与材料,其大多数是需要植入人体,需要具备耐腐蚀、化学稳定性,需要具有与机体组织的相容性、血液相容性、无毒性。作为材料,根据所需还应满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。需要掌握的知识包括金属、非金属及复合材料、高分子材料的合成工艺条件和表征、成型制备、性能等。

1.5生物效应与生物控制

生物效应是指在医疗诊断和治疗中,光、声、电磁辐射和核辐射等能量在机体内的分布、变化等作用。而生物控制则是机体自身的调节控制现象。采用生物、化学的方法对这些情况加以认识。其他还有介入式诊断、治疗等。生物医学工程最为竞争激烈的领域在医学成像技术上,其中以图像处理、阻抗成像、磁共振成像、三维成像技术以及图像存档和通信系统为主。而对医学信号的处理分析,包括心脑电、五官、语言、心音呼吸等信号和图形的处理与分析,以及神经网络的研究处理也是目前世界各国研究与学习的热点。作为生物医学工程专业的本科学生,将从业于该领域的研究、设备研发及制造、使用、维修养护等。所具备的知识体系是从物理化学基础、工程学到医学,十分广泛,仅四年内进行如此庞大的知识学习,学生将会呈现基础知识欠缺而专业知识也不深入的问题。为此,我们就医科大学、理工科大学、综合性大学各自特点进行了调研与分析,在此基础上,提出了生物医学工程本科学习建立特色课程体系的见解。

2生物医学工程专业人才的培养特色的研讨

我国生物医学工程本科专业分别在医科类大学、综合大学与理工科类大学中均有设置。由于生物医学工程具有典型交叉特性,该专业的毕业生的就业方向有运用医学影像学技术、医学信息学技术等在医院进行疾病诊断及治疗,有运用基础数学、物理、化学知识进行理论创新与实践,更多的是运用工程技术进行医疗器械、设备装备的研发、制造与维护管理等。由于生物医学工程庞大的知识体系,无法由某一个从业人员掌握,需要各方向的协作与合作,由此认为,设置于医科类大学、综合大学与理工科类大学的生物医学工程专业应有各自的特色。

2.1医科类大学生物医学工程专业人才的培养特色

2.1.1人才培养目标

作为医科大学,其专业人才培养具有鲜明的医学特色与优势。医科类大学生物医学工程相关专业的人才,其就业方向更多应以进入医院从事常规放射学、CT、核磁共振、DSA等的操作及计算机操作,运用各种影像、信息等诊断技术进行疾病诊断或治疗,所以其培养的人才首先应学习并具备医学的专业知识,然后才是具备基于医学专业领域需要的现代医疗仪器的研发与使用、管理能力的知识体系的学习,成为拥有工学知识及应用能力的医学应用型、复合型高级人才,毕业后所从事的仍是医药卫生领域工作,在医院设备使用、维护、管理方面起重要作用。因此其课程的设置应该与工科类生物医学工程侧重点不同。如在一般医科大学中都设有生物医学工程专业,以及与此相关的医学影像学专业、医学信息学专业等,其培养目标就应以“培养具有基础医学、临床医学和现代医学生物医学工程(如影像学、信息学等)的基本理论知识及能力,能在医疗卫生单位从事医学诊断、治疗(或信息管理等)和医学成像(或医学信息等)技术等方面工作的医学高级专门人才”为主。相应的培养要求应在于“学习基础医学、临床医学、医学影像(或信息学、医学超声学等)的基本理论知识,受到常规放射学、CT、核磁共振、DSA、核医学影像学、信息学、医学超声等操作技能的基本训练,具有常见病的影像诊断、超声治疗和介入放射学操作基本能力,基本的仪器(装备)维修保养能力”上。

2.1.2课程设置

基于医科大学的特色,其主干课程应注重基础医学、临床医学,同时开设基于医学特色的工学、工程学课程。具体如基础类的基础数学类、物理类、化学类、计算机类,如高等数学、普通物理学、有机化学、生物化学、微机原理及应用等课程,基础和临床医学类课程,如人体解剖学、生理学、诊断学、内科学、外科学、儿科学、妇产科学、药学、中医学、中药学、卫生管理等课程,然后按照各高校侧重设置传统生物医学工程的工学类、工程类课程,如模拟电子、数字电子技术、传感器、数字信号处理、医学图像处理、医用仪器原理、医学影像仪器、检验分析仪器、临床工程学、人体形态学等,部分专业可设置如力学类、机械工程类、有机材料或金属材料类课程。虽然是同一生物医学工程专业,但需要按照本校特色来设置课程,切忌大而全无特色,或各高校均设置同样课程。这是违背了生物医学工程高度交叉学科的学科特色的。

2.2综合性大学工科以及理工科大学生物医学工程专业人才的培养特色

2.2.1人才培养目标

现今综合性大学工科以及理工科大学基本上都设有生物医学工程专业,如北京大学工学院、浙江大学生物医学工程与仪器科学学院、东南大学生物科学与医学工程学院,四川大学高分子科学与工程学院等,各具特色。以东南大学生物科学与医学工程学院为例,其前身是生物科学与医学工程系,创建于1984年。学院的科学研究及学生培养方向就是强调生命科学与电子信息科学学科的交叉与渗透,应用电子信息科学理论与方法解决生物医学领域中的科学问题,发展现代生命科学技术。其人才培养目标在于“培养掌握生物医学工程专业知识,掌握分析与健康相关的生物医学工程问题的方法,并具备综合应用所学知识和方法解决实际工程问题的能力,具备健全人格和远大理想的工医结合复合型优秀人才”。即更加注重于培养工程与医学相结合的复合型人才,这些专业人才的从事的工作更多是在用于医学诊断、治疗的仪器设备的设计、研发及制造、维护等上面。而四川大学的生物医学工程专业的培养目标,按照其特色制定为“以工程为主,以从事生物医学工程教学科研的相关学科为依据,培养从事生物力学、生物材料、人工器官等相关方面的研究、开发、生产的高级专门人才。”,偏向于材料工程学。由此可知,在综合性大学工科以及理工科大学中,生物医学工程专业应更注重工学、工程学内容,其培养目标就应以“培养具有现代医学生物医学工程(如机械、电子、材料、计算机在医学中应用等)的基本理论知识及能力,能在医疗设备相关企事业单位从事设备(或装备)设计研发、制造、维修维护、管理等方面工作的高级复合型专门人才”为主。相应的培养要求应更多的学习工学的基本理论知识,受到常规医疗装备、设备等设计、研发、操作、维护维修、管理技能的基本训练并具有相应能力”上。

2.1.2课程设置

篇8

    二、医科院校生物医学工程学科专业教育现状分析

    高等医科院校生物医学工程学科和临床医学结合紧密,医学大背景很深厚,具备丰富的医学类学科教学资源和优越的临床设备实践条件等优势,但同时因学科体系不完善、教学师资力量比较薄弱、专业实验室建设投资大等影响因素,一定程度上制约了生物医学工程学科专业的高效快速发展。

    1.理工学科体系不完善。生物医学工程专业学科涵盖面非常广,广到什么程度呢?可以用四个字形容———“包罗万象”,如果用“学科频谱”来描述学科涵盖面宽度,生物医学工程无疑是88个一级学科中“频谱宽度”最宽的学科。目前大多数开设生物工程学的高等医科院校,物理、数学、化学等基础学科相比理工科院校比较薄弱,而且缺乏材料、自动化等重要工程学科的有力支撑,这些支撑学科的缺少会导致相应课程设置不完善以及综合性实践训练平台缺乏,学生无法系统地学习工程类课程,得不到系统扎实的工程技术训练,影响人才培养目标的整体实现。

    2.复合型师资比较缺乏。要实现培养医工结合与交叉的复合型高级工程技术人才目标,首先需建设一支医工结合与交叉的复合型师资队伍方阵。在高等医科院校,生物医学工程专业师资队伍中具有理工科教育背景和医学教育背景的教师比较多,而既懂医学又懂工程技术,能将工程技术与医学需求紧密结合起来的复合型、交叉型、融合型师资比较缺乏,教师队伍知识结构普遍不够合理,与各相关学科交叉融合能力弱,这些现状一定程度上影响了课程体系构建以及教学质量和人才培养质量。

    3.创新能力培养不扎实。生物医学工程专业85%以上的基础课和专业(基础)课程都要开展实践教学,必须建设相应的实践教学平台,这些实验室建设要求高、仪器设备多、投入大,部分院校在生物医学工程专业课程实验条件建设经费投入不足,单独开设的实验课程比较少,实践教学体系不够完善;课程标准中演示性、验证性等基础性实验设置比较多,而综合性、设计性实验设置比较少[4];缺乏“大学生电子设计创新基地”等综合性实训实验硬件软件平台和组织管理经验;学生规模小,缺少其他理工科学科支撑,组队参加全国大学生电子设计竞赛、全国大学生挑战杯设计竞赛等活动较为困难。

    4.学生专业思想不牢固。生物医学工程学作为一门新兴的边缘学科,覆盖面广,涉及领域跨度大,专业知识体系复杂,专业课程内容在各学科之间交叉频繁,本科学生对本专业缺乏深入的了解、足够的信心和学习热情;相对材料、自动化、机械、通信以及临床、医学影像等专业,生物医学工程专业学生所学知识普遍存在“宽而不精”,“广而不细”等问题,就业时相对处于劣势;部分学生由于学习任务重、压力大,导致学习积极性、主动性不高,专业思想不够牢固,甚至影响到专业整体的学习风气。

    三、对策初探

    高等医科院校要盯准医工结合的复合型高级工程技术人才培养目标,突出学科交叉综合培养、工程技术意识培养、创新能力素质培养,深化教学改革,加大教学投入,改善教学环境,加强队伍建设,充分发挥医学院校资源优势,积极探索具有医科院校特色的生物医学工程专业教育培养模式,构建科学合理的课程体系和实践教学体系,不断提升生物医学工程人才培养质量。

篇9

随着科技的进步,纳米技术在生物医药和科学技术等领域的应用较为广泛。尤其是生物医药领域,对于临床医学和基础医学的发展起到了积极的推动作用。虽然在不少科学家和医学研究家们对纳米技术进行了详细的研究,并将其运用于生物医学领域,取得了不错的成效。但是对于纳米技术的研究还不够深入,相较于发达国家而言,我国的纳米医学技术还处于发展的初级阶段。需要对纳米医学技术在今后发展中面临的机遇和挑战进行分析。

一、纳米技术在生物医药领域的应用

(一)纳米生物学

纳米生物学是以纳米作为尺度,其研究内容主要包括:其一,细胞器结构、细胞器功能。比如细胞核和线粒体内部结构和功能分析。其二,交换细胞信息,包括生物体的物质、细胞能量信息等。其三,针对生物反应问题,对其反应机理问题进行研究和分析。比如有关于生物复制和生物调控的机理分析。其四,发展分子工程。包括纳米生物分子机器人和信息处理系统等。将纳米显微术引入生物医药领域,可以为生物学家研究进行研究提供技术支撑。比如ScanningProbeMicro-scopes,简称SPMs,中文简称扫描探针显微镜,这是一种新型的纳米生物技术,标志着显微技术和纳米技术的发展。除此之外,扫描显微镜(STM)的内部结构较小、不复杂,因此操作流程较为简单,生物学家可以借助扫描显微镜展开原子级分辨探究,从而提高生物细胞观测能力和分辨能力。仔细观察原子级的内部结构对于进一步探索和研究生物原子微观知识具有推动作用。在自然条件下,利用扫描显微镜可以对生物的蛋白质、多糖等分子展开直接观察。借助STM弹道电子发射电镜可以对单个原子进行操作,这是一种典型的人工改变单个生物结构和分子结构的行为方式。这种方式可以实现治疗疾病这一超前设想。

(二)生物医学工程

将纳米技术引入生物医药领域,可以帮助传统医生解决复杂的难题。比如纳米机器人和生物传感器。纳米机器人简称分子机器人,是酶和纳米齿轮的结合体,将其引入生物科学领域,能够充当微型医生一角,为医生解决以前的疑难杂症问题。这种纳米机器人不仅可以直接注入血液,还可以成为一种传输身体健康与否的工具。一方面,血液在传输过程中能够判断分子机器人的健康状况,机器人能够获得能量,达到疏通血管血栓的目的。另一方面,医生通过外界信号编制好的程序能够探知和杀死人身体中的癌细胞,从而全面系统地监视身体构造和疾病情况。这种先进医学工程能够为现代医学的发展打下坚实的基础。除此之外,利用纳米技术还可以进行器官的修复工作,比如对修复的器官进行整容手术或者基因配置,从而将错误或者不符合的基因去除,引入正确的染色体装置,进而保障机体的健康运作。

(三)纳米治疗技术

将纳米技术引入生物医药领域是一场全新的革命运动,能够在日后的临床治疗方面起到一定的积极作用。比如德国柏林“沙里特”临床医院,早先就有过利用纳米技术治疗癌症的成功案例。研究人员将氧化钠纳米微粒注入鼠类的肿瘤里,然后将他们放置在磁场中。由于受磁场的影响,患有肿瘤的鼠类的温度会随着纳米微粒升温而增加。实践表明,纳米微粒在可变磁场中的温度能够上升到46℃。这样的高温足够将癌细胞杀死。肿瘤附近的机体组织是健康的,没有受损坏,因此纳米微粒不会烧毁这些健康组织,健康组织的温度也不会受到伤害,这就需要研究人员将目光转移到人体试验中,实现消除人体癌症的目的。

二、纳米技术在生物医学领域中应用的展望

随着社会经济的不断发展以及科学技术的不断进步,纳米技术和生物医学之间的联系不断加强,两者的有机结合不仅能够改善生物医学技术的不足,还可以促进生物医学的进一步发展,为更多的临床实验奠定基础。

(一)生物检测诊断材料的应用

不可否认,将纳米材料与生物诊断技术进行有效融合,能够提高医学检测技术水平。实践证明。两者之间的配合还需要结合生物医学工程和先进医疗器材,医学工程是促进纳米技术与生物医学互相融合的基础,对生物医学工程进行深入研究和分析,能在一定程度上催生新医疗器材的出现。如此一来,机械设备的使用用途和功能将会得到不断扩大,这在很大程度上取决于纳米材料的功能。由此可见,将纳米材料合理运用于生物医疗诊断中,势必会进一步催生一大批更为先进的医疗诊断器材。

(二)纳米技术植入人体器官

利用先进的纳米材料可以制成性能优良的人造器官和人工血液等。将这些器官和血液植入人体,能够帮助人类远离疾病,免遭疾病的伤害。比如将传感器和基因技术进行有机结合,能够将微利器官(比如听觉和视觉上遭到损害的机体)直接植入体内,从而帮助他们恢复视觉和听觉,从而达到正常人的状态。

三、纳米医药技术在发展中面临的机遇和挑战

就机遇而言,我国是首位将纳米晶体合成碳纳米管的国家,这个碳纳米管的长度属于世界最长,其性能良好。在医药学研究方面,我国科学家们利用纳米技术研制出了一批具有抗菌效果的医疗器材和设备,并为现代医疗技术的发展提供了先进的理论和技术支撑。在纳米药物载体的研究方面,我国已有有关于“动物体内”应用的报道。这已标志着我国纳米医疗技术进入了世界领先地位。就挑战而言,与发达国家相比,我国的纳米技术还不够成熟,还需要进一步加强对纳米材料、纳米传感器等方面的研究,以此作为进一步推动我国生物医药科技进步的基础。

四、结语

纳米医药技术对于进一步推动我国临床医学和基础医学的发展具有积极的影响。因此国家相关部门以及科研成员应该以积极主动的态度投入到生物医药纳米技术领域,进一步推动我国生物医药科技的进步。

参考文献:

[1]董大敏.纳米技术与社会发展意义的辩证思考[J].商业经济,2011,23:27-28+32.

篇10

前言

三维打印(Three Dimension Printing,简称3DP)属于一种快速成型(Rapid Prototyping,简称RP)技术,它由计算机辅助设计(CAD)数据通过成型设备以材料逐层堆积的方式实现实体成型。“三维打印”在技术界也叫“增材制造”、“自由成形”、“快速成形”或“分层制造”等[1]。三维打印起源可追溯于上世纪八十年代,1984年查尔斯・赫尔发明了将数字资源打印成三维立体模型的技术,并于1986年成立了3D Systems公司,开发了第一台商用立体光敏3D打印机,1988年,斯科特・克伦普发明了熔融沉积成型技术(FDM)并于1989年成立了Stratasys公司,随后在2012年合并以色列3D打印公司Objet。3D Systems和Objet是目前世界上最大、最先进的两家3D打印公司。我国清华大学颜永年教授于1988开始研究3D打印成型技术,华中科技大学王运赣教授以及西安交通大学卢秉恒院士等,纷纷于上世纪90年代起就开始涉足3D打印成型技术的研究。

1998年,清华大学的颜永年教授又将3D打印成型技术引入生命科学领域,提出生物制造工程学科概念和框架,并于2001年研制出用于生物材料快速成型的3D打印设备,为制造科学提出了一个新的发展方向--生物制造。生物制造的一个重要手段即是生物3D打印。生物三维打印是以活细胞(living cells)、生物活性因子(proteins and bio-molecules)及生物材料 (biomaterials)为基本成形单元,设计制造具有生物活性的人工器官、植入物或细胞三维结构,是制造科学与生物医学交叉融合的新兴学科,它是目前3D打印技术研究的最前沿领域,也是3D打印技术中最具活力和发展前景的方向[2,3]。

1 3D打印技术的分类

目前比较典型的3D打印快速成形技术主要分为三种[4]:

1.1 粉末粘结3D打印光固化材料3D打印与熔融材料3D打印

粉末粘结3D打印是目前应用最为广泛的3D打印技术,其工艺过程如下:首先,在工作平台上均匀铺洒单位厚度的粉末材料;其次,依据实体模型离散层面的数字信息将粘结剂喷射到粉末材料上,使粉末材料粘结,形成单位实体截面层;再次,将工作台下降一个单位层厚;最后,重复第一步至第三步,逐层堆砌,形成三维打印产品。其存在缺点是,通过粉末粘连成形的零件精度和强度偏低,一般需要后续工艺提高其强度,但后续处理工艺会导致零件体积收缩,变形严重。

1.2 光固化3D打印(光敏三维打印)

该技术使用液态光敏树脂作为原料制作零件模型,光敏材料三维打印成形基于喷射成形技术和光固化成形技术,喷头沿X方向往复运动,根据零件的截面形状,选择性喷射光固化实体材料和光固化支撑材料形成截面轮廓,在紫外光照射下光固化材料边打印边固化,层层堆积至制件成形完毕。但其应用于骨骼类产品打印的主要缺点是,当前具有生物活性的骨骼类材料如羟基磷灰石,生物玻璃等材料自身不是光敏性材料,需与光敏材料混合使用,因此影响产品的生物活性在打印后将受到很大影响。

1.3 熔融材料3D打印成形

熔融材料三维打印成形基于熔融涂覆成形(FDM)专利技术,分别加热两种丝状热塑性材料至熔融态,根据零件截面形状,选择性涂覆实体材料和支撑材料形成截面轮廓,并迅速冷却固化,层层堆积至制件成形完毕,其原理与光敏材料3D打印成形类似 [16]。目前熔融材料三维打印成形,可采用由磷灰石和骨骼所需的有机盐配置而成的骨水泥,不需要额外添加紫外光照射固化所需的光敏介质,有利于保证材料后续的生物相容性和生物活性。但由于挤压式喷头的喷嘴处压力大,容易造成阻塞现象,因此对喷嘴和材料浆料的粒径要求较高。

除三维打印外,应用比较广泛的商业化快速成形工艺还包括立体光刻成形(SLA)、选择性激光烧结成形(SLS)堆叠、实体制造(LOM)、熔融堆积成形(FDM)等,但这些工艺大多需要配备价格昂贵的激光辅助系统,且成型工艺实质上还是类似于上述三种材料叠加-固化技术。因此,三维打印技术被认为是最具生命力的快速成形技术,发展潜力巨大,在医学中的应用前景广阔,其推广应用将对传统的医疗产品生产模式带来颠覆性的影响。

2 三维仿生重构建模技术的发展

基于医学图像的三维重构建模技术是生物3D打印技术的重要研究内容之一。3D打印生物构件的实现首先需要在计算机环境下有效重构和建模,生成可用于驱动打印喷头的指令数据进而操控成型设备实现产品成型。随着医学影像技术的发展,人体组织的二维断层图像数据可以方便地获取以进行医学诊断和治疗。但是,二维断层图像只是表达了某一截面的解剖信息,医生可以凭经验由多幅二维图像去估计病灶的大小及形状,“构思”病灶与其周围组织的三维几何关系,可三维打印设备却无法根据这些断点数据进行立体三维成型,因此,基于医学图像的三维重构建模技术是生物3D打印技术的重要前驱步骤。

由于CT或MRI等检测设备扫描得到的二维图像信息不能直接用于快速成型,只有通过专用软件将二维断层图像序列重建为三维虚拟模型,并生成为快速成型机可以接受的STL(Stereo Lithography)格式图形文件,才能最终制造出生物产品三维实体模型。近十多年来,欧美等发达国家的科研机构对于医学图像三维重建的研究十分活跃,其技术水平正从后处理向实时跟踪和交互处理发展,并且已经将超级计算机、光纤高速网、高性能工作站和虚拟现实结合起来,代表着这一技术领域未来的发展方向。

在市场应用领域,国外已经研制了三维医学影像处理的商品化系统,其中,比较典型的有比利时Materialise公司的Mimics、美国Able Software公司的3D.Doctor和VGstudio MAX。在国内,中国科学院自动化研究所医学影像研究室自主开发的3D Med是基于普通微机的三维医学影像处理与分析系统,系统能够接收CT、MRI等主要医疗影像设备的图像数据,具有数据获取、数据管理、二维读片、距离测量、图像分割以及三维重建等功能。清华大学计算机系研发的人体断面解剖图像三维重构系统能给外科手术中的影像诊断提供一定的参考。中国科技大学在应用Delphi开发三维重构软件的研究上取得了很好的成果。国内企业也研发了一些三维医学影像处理系统。如西安盈谷科技有限公司“AccuRad TM pro 3D高级图像处理软件”于2005年4月投入市场。它能对二维医学图像进行快速的三维重建,并能对临床影像的数据进行科学有效的可视化和智能化挖掘和处理,为临床提供更多有价值的信息。但目前国外优秀软件如Mimics、3D Doctor、VGStudio MaX等的价格非常昂贵,且其技术严格保密。国内的产品大多没有自主知识产权和成熟的商业应用模式。

3 3D打印技术在生物医学工程中的应用

3D打印技术在生物医学工程中应用广泛,其应用领域大致包括:体外器官模型、仿生模型制造;手术导板、假肢设计;个性化植入体制造;组织工程支架制造;生物活体器件构建以及器官打印;药物筛选生物模型等。如图1所示为3D打印在生物医学工程中的各种应用情况[5-7]。

3.1 体外器官模型、仿生模型制造。该类应用主要用于医疗诊断和外科手术策划,它能有效地提高诊断和手术水平,缩短时间、节省费用。便于医生、患者之间的沟通,为诊断和治疗提供了直观、能触摸的信息,从而使手术者之间、医生和病人之间的交流更加方便。

3.2 手术导板、假肢设计。该类应用便于订制精确的个性化假体,实现个性化医疗需求。根据患者缺损组织数据量身订制的假肢,可提高假肢设计的精确性,提高手术精确度,确保患者的功能恢复,减少患者的痛苦。

3.3 个性化植入体制造。人体许多部位的受损组织,需要个性化定制。如人类面部颌骨(包括上下颌骨) 形态复杂, 极富个性特征, 形成了个体间千差万别的面貌特点。人类的头颅骨,需要准确与颅内大脑等软组织精确匹配扣合,人体的下肢骨、脊柱骨等会严重影响患者今后的步态及功能恢复。因此这类修复体可通过3D打印技术实现个性化订制和精确 “克隆”受损组织部位和形状。

3.4 组织工程支架制造。如通过3D打印技术设计和制备具有与天然骨类似的材料组分和三维贯通微孔结构,使之高度仿生天然骨组织结构和形态学特征,赋予组织工程支架高度的生物活性和骨修复能力。

3.5 生物活体器件构建以及器官打印。此方面的应用大多涉及活体细胞的生物3D打印技术。细胞三维结构体的3D构建可以通过活细胞及其外基质材料的打印构建活体生物器件。如英国赫瑞瓦特大学和一家干细胞技术公司合作,首次将3D打印拓展到人类胚胎干细胞范围。这一突破使得利用人类胚胎干细胞来“打造”移植用人体组织和器官成为可能。美国康奈尔大学研究人员最近在其发表的研究论文中称,他们利用牛耳细胞在3D打印机中打印出人造耳朵,可以用于先天畸形儿童的器官移植。

3.6 药物筛选生物模型。药物筛选指的是采用适当的方法,对可能作为药物使用的物质(采样)进行生物活性、药理作用及药用价值的评估过程。作为筛选,需要对不同化合物的生理活性做大规模横向比较,因此有研究人员指出通过3D打印技术,精确设计仿生组织药物病理作用模型,可以使人们开在短时间内大规模高通量筛选新型高效药物。最近,四川大学联合加州大学圣地亚哥分校等科研机构,通过3D打印技术设计了一款肝组织仿生结构药物解毒模型(如图1-c),该研究成果发表在最近一期的Nature Communications上,受到3D打印研究领域的广泛关注。

3D打印在生物医学工程中应用:(a)3D打印磷酸钙骨组织工程支架; (b)3D打印细胞、活体器官构件;(c)3D打印肝组织仿生结构药物解毒模型。

4 结束语

三维打印技术正处在蓬勃兴起的阶段,3D打印技术在生物医学工程中得到了广泛的应用,其应用以及发展现状表明:3D打印在体外器官模型、组织工程与再生医学、个性化医疗以及新药研发等方面展现出广阔的应用前景。抓住生物材料及植入器械的三维打印技术新一轮发展浪潮,发展我国生物三维打印技术,对发展我国生物材料医疗器械产业步入国际先进水平具有十分重要的意义。

参考文献

[1]Kenichi Arai1, Shintaroh Iwanaga, HidekiToda, Capi Genci, Yuichi Nishiyama, Makoto Nakamura. Three-dimensional inkjet biofabrication based on designed images[J]. Biofabrication, 2011, (3).

[2]Calvert P. Materials Science: printing cells[J]. Science, 2007.

[3]Mironov V, Reis N, Derby B. Bioprinting: a beginning[J]. Tissue Enginerring. 2006.

[4]Karoly Jakab, Francoise Marga, Cyrille Norotte, Keith Murphy, Gordana VunjakNovakovic, Gabor Forgacs. Tissue engineering by self-assembly and bio-printing of living cells[J]. Biofabrication, 2010, (2).

[5]Vladimir Mironov, Richard P. Visconti, Vladimir Kasyanov, Gabor Forgacs, Christopher J. Drake, Roger R. Markwal. Organ printing: Tissue spheroids as building blocks[J]. Biomaterials, 2009, (30).

篇11

G058 南京医科大学学报自然科学版

R008 南京邮电大学学报自然科学版

G059 南京中医药大学学报自然科学版

A008 南开大学学报自然科学版

W590 南水北调与水利科技

G288 脑与神经疾病杂志

G662 内科急危重症杂志

G523 内科理论与实践

E104 内陆地震

A026 内蒙古大学学报自然科学版

A111 内蒙古师范大学学报自然科学汉文版

G513 内蒙古医科大学学报

P004 内燃机学报

W002 泥沙研究

U504 酿酒科技

A110 宁夏大学学报自然科学版

G665 宁夏医科大学学报

H071 农产品质量与安全

* H105 农学学报

T034 农药

T924 农药科学与管理

H404 农药学学报

H279 农业工程学报

Z008 农业环境科学学报

H773 农业环境与发展

H278 农业机械学报

H286 农业生物技术学报

H222 农业现代化研究

V032 暖通空调

H219 排灌机械工程学报

U602 皮革科学与工程

U604 皮革与化工

G759 齐鲁医学杂志

N041 起重运输机械

E021 气候变化研究进展

E361 气候与环境研究

E352 气象

E566 气象科技

E359 气象科学

E001 气象学报

* E521 气象与环境科学

E633 气象与环境学报

X532 汽车安全与节能学报

X018 汽车工程

X013 汽车技术

P001 汽轮机技术

G595 器官移植

Y009 强度与环境

C007 强激光与粒子束

X021 桥梁建设

U018 青岛大学学报工程技术版

G061 青岛大学医学院学报

T012 青岛科技大学学报自然科学版

H267 青岛农业大学学报自然科学版

U535 轻工机械

J001 清华大学学报自然科学版

W020 情报学报

S106 全球科技经济瞭望

CODE 期刊名称

D002 燃料化学学报

P011 燃烧科学与技术

E563 热带地理

E642 热带海洋学报

H516 热带农业科学

E110 热带气象学报

H415 热带生物学报

G609 热带医学杂志

H223 热带作物学报

T105 热固性树脂

N071 热加工工艺

C134 热科学与技术

R501 热力发电

P006 热能动力工程

T013 人工晶体学报

N106 人类工效学

F041 人类学学报

G805 人民军医

T070 日用化学工业

H097 乳业科学与技术

S011 软件学报

N029 与密封

R086 三峡大学学报自然科学版

D012 色谱

H382 森林工程

E635 沙漠与绿洲气象

H070 山地农业生物学报

E101 山地学报

G742 山东大学耳鼻喉眼学报

J022 山东大学学报工学版

A020 山东大学学报理学版

G062 山东大学学报医学版

V012 山东建筑大学学报

A637 山东科学

H031 山东农业大学学报自然科学版

H804 山东农业科学

A057 山东师范大学学报自然科学版

G511 山东医药

G063 山东中医药大学学报

G574 山东中医杂志

A014 山西大学学报自然科学版

H393 山西农业大学学报自然科学版

H390 山西农业科学

G064 山西医科大学学报

* G923 山西医药杂志

R072 陕西电力

U025 陕西科技大学学报自然科学版

H217 陕西农业科学

A066 陕西师范大学学报自然科学版

G630 陕西医学杂志

G725 陕西中医

V088 上海城市规划

A056 上海大学学报自然科学版

U528 上海纺织科技

W023 上海管理科学

X038 上海海事大学学报

H292 上海海洋大学学报

G330 上海护理

X006 上海交通大学学报

H022 上海交通大学学报农业科学版

CODE 期刊名称

G066 上海交通大学学报医学版

M021 上海金属

G343 上海精神医学

G283 上海口腔医学

J031 上海理工大学学报

H282 上海农业学报

A043 上海师范大学学报自然科学版

G069 上海医学

G946 上海中医药大学学报

G389 上海中医药杂志

A515 深圳大学学报理工版

G329 神经疾病与精神卫生

G070 神经解剖学杂志

G319 神经损伤与功能重建

J052 沈阳工业大学学报

V011 沈阳建筑大学学报自然科学版

H024 沈阳农业大学学报

G071 沈阳药科大学学报

G202 肾脏病与透析肾移植杂志

F203 生理科学进展

F001 生理学报

F042 生命的化学

F215 生命科学

F046 生命科学研究

Z034 生态毒理学报

H784 生态环境学报

S784 生态经济

Z014 生态学报

Z028 生态学杂志

Z023 生态与农村环境学报

F049 生物多样性

F003 生物工程学报

G401 生物骨科材料与临床研究

F016 生物化学与生物物理进展

* F205 生物技术通报

F224 生物技术通讯

F204 生物加工过程

F012 生物物理学报

F213 生物学杂志

G006 生物医学工程学杂志

G332 生物医学工程研究

G603 生物医学工程与临床

G624 生殖医学杂志

G072 生殖与避孕

C033 声学技术

C054 声学学报

E302 湿地科学

E636 湿地科学与管理

A615 石河子大学学报自然科学版

T933 石化技术与应用

篇12

一、生物医药产业概述

(一)生物医药产业定义。目前,生物医药产业尚无统一的界定标准,一般意义讲,它是指运用生物技术从事药品、设备生产和提供相关服务企业的集合,主要包括生物制药和生物医学工程两方面内容。生物制药产业主要包括生物技术药、化学制药和中药制药等领域,其中中药制药是我国独具特色的生物制药子产业。生物医学工程产业是指运用生物医学工程技术进行产品开发、设计与生产的产业,主要包括生物医用材料及植入器械、诊断试剂以及高新技术诊疗设备及系统等。

(二)生物医药产业特征。首先,生物医药产业具有“三高一长”的特征。生物医药产业是资本与技术高度密集型产业,具有高投入、高风险、高回报、长周期等特征。生物制药是一个投入相当大的产业,主要用于新产品的研究开发及医药厂房和设备仪器方面。新药的研发周期很长,从化合物筛选、临床前研究、各期临床试验到批准上市往往需要10-15年时间,而且风险很大,成功率仅在百万分之一,开发过程中一旦出错,都可能导致项目失败。但若研发成功也有着惊人的高回报。

其次,生物医药产业具有行业周期较弱的特点。医药产业与生命科学密切相关,很难说存在成熟期,是永远成长和发展的产业。医药产品与服务是人类生存的必需品,有不可替代性和广泛的刚性需求,因此,生物医药产业的发展与经济景气程度的关联度较低,具有超强的抗经济危机能力。在历次的经济衰退期,包括2008年的全球金融危机中,美国纳斯达克医药类股票及标准普尔保健指数均有不错的表现。

再次,生物医药产业高度依赖研发资源服务。与IT等高新技术产业不同,生物医药产业在研发阶段更依赖基础科学研究,研发团队需要在产业化的不同阶段适时引入在技术评估、资本运作、市场营销等多种创新要素,加速成果转化。

二、生物医药产业链条分析

(一)生物技术药。上游:主要包括生物制品原材料和研发服务,有研发服务投入大、风险高、附加值高等特点,原材料生物制品制备领域成本相对较低,血液制品行业由于血浆资源的稀缺性较高,平均毛利率达10-15%;中游:主要包括基因工程药物、单抗药物、疫苗、血液制品等药品的制造,制造环节科技含量与附加值较高,行业平均毛利率30%;下游:医药流通及服务环节,由于进入门槛较低,毛利率在5―8%。

(二)化学药。上游:主要包括化工原料供应和化合物筛选,药用辅料及包材的供应;中游:主要包括化学原料药与药物制剂的制造,化学合成药产业中,大宗原料市场趋于饱和,毛利率低,特色原料药和制剂药增长速度较快,而且附加值高,特色原料药和制剂产品的毛利率通常分别在50%、40%左右,化学合成新药作为新产品,往往具有较高的附加值;下游:包括化学药物流通及服务。

(三)现代中药。上游:主要包括中药材种植(养殖)、新药研发,毛利率较高,达40%;中游:主要包括饮片炮制、配方颗粒加工、中成药制造和植物提取物制造,其中中药饮片加工行业毛利率约为30%,中成药制造毛利率约为35%,配方颗粒毛利率达45%;下游:包括中药材流通及服务。

三、国内生物医药产业发展现状

近年来,在人口老龄化及经济发展的双重因素作用下,我国药品市场高速扩容,2002~2012年,我国医药工业总产值的复合增长速度达到22.3%。目前,我国已成为世界第一大原料药生产和出口国,世界第二大OTC药物市场,世界第三大药品市场。2012年,我国药品市场规模达到9261亿元,医药产业总产值达到 18147.9亿元;预计到2020年,我国药品市场规模将以年均12%的增速继续扩容,到2020年市场规模将达到2.3万亿元。第一,从市场格局来说,我国正形成中药、化学药、生物药三足鼎立的市场格局;第二,从各类药品市场份额来看,西药是药品市场的主体,中成药约贡献20%以上,特别是在小医院、基层医疗和零售;第三,从产业布局来看,生物医药“三高一长”的产业特点要求产业向经济发达地区集聚、向专业智力密集区集聚、向园区集聚。目前我国生物医药产业初步形成了以长三角、环渤海为核心的集群发展态势。“十二五”期间,我国生物医药产业仍将进一步集聚于东部沿海地区科研院所集中和创新能力较强的省份,以及少数中西部的中心城市,区域发展不平衡有进一步强化的趋势。其中,研发要素将进一步向上海、北京集聚;此外,西部地区的四川成都、重庆已经具备良好的产业基础,成渝经济圈在生物医学工程领域创新活跃,是西部地区重要的生物医药成果转化基地。

四、成都市生物医药产业发展现状

成都具有良好的生物医药产业基础,在生物制药、现代中药、生物医药材料等领域实力较为雄厚,拥有科伦、地奥等一批优势企业。现代中药、疫苗、血液制品、大输液产品的技术研发水平处于国内领先地位。近年来,成都生物医药产业增长显著,年主营收入增速保持在20%以上。2012 年,全市共有生物医药企业600多家,其中规模以上209家,实现主营业务收入314亿元,占全市规模以上工业比重4.1%;实现利税65亿元,同比增长18.6%。

从政府区域规划角度看,成都市生物医药产业发展前景是可观的,但是不可否认,当前成都市生物医药产业的发展仍面临着不小的问题与挑战。主要是以下几个方面。第一,企业竞争力不强,尽管成都市高新区内聚集了200余家生物医药企业,但尚无真正核心的龙头企业;第二,产业高端化不足。成都市生物医药企业大多处于化学药仿制生产、中药复方生产等产业链低端位置,在药物研发试制、药品检测与鉴定、知识产权服务等高端环节仍旧较为缺失;第三,产业同质化竞争较为激烈。由于生物医药产业的高技术、高资本投入的产业特征,因而对于地域、能源、交通等因素要求不高。成都市内各个区域均有生物医药企业分布,导致企业同质化竞争明显,更易造成企业间的恶性竞争;第四,产业机构亟待升级。成都市大部分企业研发创新不足,产学研合作也较为缺乏,导致一些研发成果产业化较慢,一些关键性产业化技术长期没有突破,制约了产业向高技术、高附加值的下游深加工产品领域延伸,产品更新换代缓慢。

五、成都市生物医药产业发展对策建议

(一)明确发展思路,加强产业招商引资。要明确思路,将生物医药产业作为成都市重点主导产业进行重点扶持和培育。加强产业研究,充分发成都市在我国西部地区的区位、资源优势,重点支持和发展成都市相关区域具有比较优势或能实现突破性发展的产业领域。同时,要把“招商选资”作为成都市生物医药产业发展的一项长期工作。利用好国际产业链分工和产业外包转移契机,“导入招商”与“存量招商”并举,引进一批产业高端和产业链薄弱、缺失环节的关键企业。

(二)优化产业发展环境,促进产业联动发展。要促进“产城一体”组团化发展,加强产业发展载体支撑。加大现有园区的土地整理、清理及置换工作力度,为产业发展预留后备载体空间,大力促进生物医药制造与“成都国际医学城”医疗服务的融合、互动发展,延伸产业链条,以制造环节为主体,带动总部经济与生产业的快速发展。设立生物与医药产业发展的专项资金,加大对优质企业及项目的扶持力度。同市引导企业加大技术创新和技术引进力度,增强自主开发能力,鼓励企业联合高校、科研机构等围绕重大关键技术及高端产品进行 “产、学、研、用”合作。

(三) 完善政府体制机制,改善政府职能。加强生物医药企业运行监测分析,对重点企业实行“一企一策”、“一事一议”。深化与周边省(市)县的产业合作,主动出击,吸引其他省市的优秀技术资源和优秀生物医药企业向成都市高新区、天府新区等区域进驻。支持企业积极申报新版GMP认证,对通过认证的企业基于资金补贴。

参考文献:

篇13

面向21世纪的中美商务合作论坛

首届西湖国际儿科论坛

燃烧副产物及健康影响

微电子与等离子体技术的基础及应用研究

国际智能电网理论研究和应用

安全探测与信息技术

农业与食品检测用纳米技术与生物传感器研究

肿瘤发病分子机制联合研究

绿色超级作物的分子育种

北京化工大学与忠南国立大学双边学术研讨会

美国研究联络会第7次年会

第4届IEEE生物信息与生物医学工程国际会议

2010发育与疾病国际研讨会

第3届古桥研究与保护国际学术研讨会

第3届计算智能与设计国际学术研讨会

2010国际信号、系统和电子会议

第6届无线通信、网络技术及移动计算国际会议

澳大利亚的华文教育

专门用途英语在亚洲

美国犹他大学的学生事务工作

地球关键区界面反应:分子水平环境土壤科学

中日学者共探信息技术

量子物质科技正在成为新世纪重要前沿

大规模跨媒体数据挖掘与检索

裂纹路径研究新技术新方法

产品创新管理研究进展

产业集聚理论与区域协调发展

2009年数字制造国际学术会议述评

非传统安全与和平发展国际会议综述

工业文明和可持续发展——亚洲博士生创新研讨

核酸和糖化学生物学的研究热点和最新进展

岩土环境修复与可持续发展

移民与专业文凭互认

e社会传播:创新、合作与责任

信息保障与安全热点技术

无网格、粒子类和扩展有限元方法国际学术会议

第7届杭州植物病理与生物技术国际研讨会

法律、语言与全球公民权利

改革开放三十年中国行政国家的重塑

生态文明:环境、能源与社会进步

中美经贸关系——问题与前景

历史上的中国出版与东亚文化交流

住房保障与房地产业的可持续发展

2008美国岩石力学会议及学术访问

美国大学考察报告

概率统计的现状与未来

基础、临床与公共卫生需携手共进

工程塑性力学及应用进展

智能机器人与应用的现状与发展趋势

分子影像前沿研究与应用

专利信息管理和检索的最佳实践

2008年国际计算机科学、计算机工程及应用计算大会

友情链接