发布时间:2023-11-28 14:47:18
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇材料科学与工程研究方向范例,将为您的写作提供有力的支持和灵感!
欧美国家在20世纪60―70年代开始设立材料科学与工程系。名称变更反映了对材料领域研究认识的变迁,即“材料研究需要依据其行为和特征,而不是依据材料类型来进行”。1998年教育部对材料类本科专业目录进行了调整,将原来划分过细的十多个材料类小专业合并成了现在的冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、材料物理、材料化学等六个专业。同时,在引导性专业目录中还设置了材料科学与工程一级专业。虽然以材料科学与工程一级大学科来设置专业是必然趋势,但材料科学与工程人才培养模式仍在探索之中[1]。同济大学当年就设置了材料科学与工程本科专业,期望以欧美的模式来培养材料学科人才。实际上,早在20世纪80年代,当时的同济大学建筑材料工程系就为建筑材料专业的本科生开设了材料科学导论、断裂力学、表面物理化学和传热、传质与动量传递(简称三传)4门基础课程。近几年因为参与学院材料科学与工程专业培养计划的修订工作,查阅了国内外许多大学这个专业的培养计划,国内高校在材料科学与工程专业培养计划上的认识一直存在争议。美国麻省理工(MIT)材料科学与工程专业本科培养计划的公开信息最多,不仅有课程列表和学分要求,还有课程的详细简介。尤其是麻省理工的开放课程服务(OpenCourseWare),使得我们还能够进一步了解课程大纲和部分内容。此外,MIT材料学科是USNews全美排名第一的,他们的培养
计划应该具有更好的借鉴意义。本文在反复仔细研究其有关本科培养的各种公开资料的基础上,对其培养计划进行了分析,结合自己的教学工作实践,总结了一些心得体会,希望与国内同行共享。
一、麻省理工材料科学与工程专业的培养计划
MIT材料科学与工程系设3个专业(Course)。其一为一般意义上的材料科学与工程专业(Course 3),学生所得学位是材料科学与工程理学学士(Bachelor of Science in Materials Science and Engineering),其所授学位是被ABET(Accreditation Board for Engineering and Technology,美国工程与技术鉴定委员会)授权的,绝大部分学生都选读这个专业。其二为课程选择度更大的一般专业(Course 3-A),这个专业的毕业生将获得没有特别指定专业领域的理学学士(Bachelor of Science without specification)学位,系里并不寻求ABET对这个学位的授权,只有很少学生选择这个专业,常常是医学、法学、MBA预科生选择这个专业。第三是考古与材料专业(Course 3-C),学生所得学位是考古与材料理学学士(Bachelor of Science in Archaeology and Materials),系里也不寻求ABET对这个学位的授权。从系里是否寻求对所授学位授权就可以看到,MIT材料科学与工程系本科生的主要专业是一般意义上的材料科学与工程专业(Course 3)。后面的讨论主要针对Course 3的培养计划进行。
1. 课程和学分要求
该培养计划的要求包括:(1)MIT的一般要求,共17门课程,其中自然科学6门,人文社科8门,限选科技课程2门,实验课程1门。(2)交流能力课程(Communication Requirement)4门。(3)系内课程,包括一套核心课程(Core subjects,共10门课),一个论文或2个实习以及4门限选课程,合计184~195学分。其2011―2012版本的课程和学分要求见表1,表中课程名称前面的数字表示课程号,后面跟表示学分的数字、课程性质、前修或同修课程号。MIT每门课程的学分由三部分组成,表示学习课程所需要的时间分布,中间用短线隔开,第一个数字表示讲课时间,第二数字表示实验、设计或者野外工作时间,第三个数字表示预习的时间,是以中等学生所需要时间估计的。1个学分大约相当于一学期需要14小时的学习时间。从表 1可见,一般专业课程,预习所需时间是讲课时间的2~3倍。
备注
*可以代替本先修课程的其他先修课程列在课程描述页面。
(1)这些课程可以算作必修课程或者限选课程的一部分,但不能同时计算。
(2)可以选9-12学分。
(3)通过申请,可以被类似课程替代。
2. 限选课程的选择
中列出了21门限选课程,每个学生只需要选择4门课(48学分)。理论上,学生可以在21门课程中任选48学分,甚至经过批准,还可以选择其他系的课程或者研究生课程来代替。实际上,由于材料的范围很广,这些选修课程是根据主要的研究领域来设置的,它们是: 生物与聚合物材料(Bio-and Polymeric Materials),电子材料(Electronic Materials),结构与环境材料(Structural and Environmental Materials),基础与计算材料科学(Fundamental and Computational Materials Science)。
因此,在MIT材料学院的网页上,曾经列出了各领域推荐的限选课程。网页上还列出了每一个方向的咨询教授,以方便对上述领域某一方面更感兴趣的学生选课。
3. 部分课程大纲和教学情况分析
(1)材料科学与工程基础课程
这个课程为15学分(5-0-10),总是与“材料实验”一起选修。课程安排也是交叉进行,实验周不上课,一共有4个实验周。这样,材料科学与工程课程讲课时间就缩短为9周(一个学期14周,最后一周为考试)。其课程安排为周一、三、五各2小时的讲课(lecture),周二和四各1小时的复习课(recitation)。所以一共27次讲课,18次复习课。实际讲课为24次,另外3次课为测验和考试。最后一次考试并不是考全部课程内容,即每次测验和考试都是分段内容。
这个课程由两个教授分别讲授,每个教授都是24次课,因此可以推论,每次每个教授将讲1小时。一个讲授结构和化学键(Structure and Bonding),一个讲授热力学和统计力学学(Thermodynamics and Statistical Mechanics)。
两部分课程分别布置6次作业,每部分每次都是2~3个题目,都有交作业的期限,没有按期交作业的,该次作业成绩为0。作业答案在交作业期限过后就会立即公布。课程总成绩由作业成绩占20%、三次测验占80%构成。得分标准为:总评80分以上A,70~79分为B,55~69分为C,低于55分为不及格。
(2)实验课程
MIT材料系内有2门必修的实验课程,即材料实验和材料综合实验。这两门课程同时还是加强专业交流能力培养的课程,所以,教学过程特别注意专业交流方面(包括论文写作、口头技术报告等)的形式要求。材料实验与材料科学与工程课程同时选修,在2年级第一学期进行。材料综合实验课(Materials Project Laboratory)基本上就是几个同学合作的科研项目,在3年级下学期进行。下面以二年级的材料实验为例,介绍其教学和考评办法。
如前所述,材料实验共4个实验周,实验周没有其他专业课。实验内容包括量子力学原理演示、热力学和结构,同时囊括了几乎全部现代材料分析研究方法(XRD、SEM/AFM、DSC、光散射等),并通过口头和书面方式加强交流能力培养。从教学内容看,这门实验课承担了教授材料研究方法的任务。
一般将50个左右学生(2011年的2年级学生只有43人)分成6个组。每个实验周有3个实验主题,每个主题下面2个实验,2个组共选一个主题,每组选做其中一个实验。6个实验同时进行。一周3次实验,每次4小时。因此,每个组每周只做3个实验(每个主题做1个实验),共12个实验。由于每个组只做了一半的实验,对另一半实验的了解,通过每周2次的1小时交流课程(recitation sections,一般隔天举行)来实现。交流课上,大家各自在黑板上即兴介绍实验的发现,回答教师和同学的提问。
该实验课由3个教授上,其中一个总负责。课程成绩评分标准
二、分析和讨论
1. 关于必修课和选修课
系内必修课程除毕业论文或企业实习外,共有10门。大学一般要求的17门课,理论上可以自由选择,但从表1系内课程的先修课程可以看出,微积分I和II,物理I和II是需要先修的,大学一般要求的6门自然科学课程就去掉了4门,能够自由选择的大学自然科学课程剩下2门。从系里建议的选课表(roadmap)可以看到,另外2门自然科学是化学和生物。所以,自然科学的必修课程实际上相当于14门。
限选课程要求包括GIR类型2门和48学分的系内选修课。有3门系内课程(共39个学分)可以作为GIR课程来选,但不能同时作为系内课程要求的学分。大多数系内选修课程的学分为12分,这样的话,系内限选课48学分需要选读4门。所以,每个学生可以有6门专业选修课程。有意思的是,在表1中只有21门限选课程,而该系主要的研究领域(或者说相当于我们的专业方向)有4个,平均每个方向只有5.25门课。如果去掉2011―2012年新增的2门课程,过去几年只有19门课,平均每个方向只有4.75门课程。看来,MIT材料科学与工程专业的课程设置,并不鼓励学生选单一专业方向的课程。实际上,在以前分专业方向限制选修课时,每个专业方向仅仅提供2~3门课程,进一步的分析见下文。
反观我们的培养计划,我们的专业方向必修课程有5门(14学分),选修课程应选4门(8学分),合计9门课程22学分。因为我们的学分是按照每周上课学时数计算的。如果按照MIT的学分计算方法,学分约为每周上课学时数的3~4倍,考虑到我们的上课周数为17~18周,而MIT才14周,因此,我们的专业方向应选学分至少相当于MIT的88学分,比其4门课程(48学分)的要求多了5门课程(40学分)。可见,我们的培养计划更加注重学生专业方向知识和技能的培养。
另外,MIT材料科学与工程系的研究领域非常广泛,关于其主要研究领域的介绍出现在3个网页上。其一是在该系的学位要求中关于限选课程的介绍网页,4个主要的研究领域分别是生物与聚合物材料、电子材料、结构与环境材料、基础与计算材料科学。其二是在MIT的招生网页,4个主要的研究领域分别是:半导体材料和低维系统(Semiconductor materials and low-dimensional systems)、能源材料(Materials for Energy)、纳米结构材料(Nanostructures)、材料的生物工程(Bioengineering of Materials)。在介绍全体教师(Faculty)的网页,列出了30个研究方向(discipline),共122人次(有重复计算,因为实际教师只有35人),平均每个研究方向4.07人次(或1.17人)。少的方向仅1人如微技术、半导体,最多的是纳米技术,23人次。上面列出的生物工程(包括生物物理和生物技术)9人次,能源材料(包括能源与环境、储能)9人次。人数比较多的研究方向还有结构与环境材料9人次,高分子材料7人次,电、光和磁材料7人次。
可见,尽管MIT研究的材料类型很多,但其本科生培养计划中,涉及具体材料类别方向的课程特别少。
2. 关于考核与成绩
MIT很多课程的成绩评定都包括平时作业和出勤与课堂参与情况。有的课程,考试以外的项目在成绩评定中所占份额可达到50%,有的实验课程则更是高达85%这在一定程度上反映了MIT对大学生平时学习的管理是非常严格的,与我们头脑中关于国外大学生“自由”学习的图像截然不同。
3. 关于选课进度安排
MIT材料系没有规定统一的选课进度表。但从其推荐的选课安排(roadmap)看,具有如下特点:
(1)8门大学一般要求的社科课程(GIR)分布在8个学期选修,即每学期选修1门社科课程;
(2)一年级把大学要求的6门自然科学课程(GIR)学完,包括数学、物理和化学。
(3)二年级起全面进入专业学习。第一学期学习材料科学与工程基础、材料实验2门课程,两门课交叉进行,实验周不上课。上课周每天都有材料科学与工程基础课,实验周每天都有实验或交流,学习安排非常集中。
(4)每学期的课程一般为4门,其中1门为社科课程。
MIT二年级第1学期就学习专业基础课程,这比我们的教学计划提前很多。国内的教学计划进度安排曾经强调,前两年不安排专业课,以至于我们的材料科学与工程课程被安排在第5学期,材料研究方法更是被安排在第6学期,使得高年级学习特别紧张,深入接触专业知识和方法的时间被推迟。
4. 关于培养计划的修订
从网页上能够追溯到MIT材料系1998年的培养计划,其培养计划在2003年做了很大的调整。两者的比较
这两个培养计划的最大差别在必修课,课程名称几乎完全变了。但对比课程名称和教学内容可以发现,新培养计划中的“材料科学与工程基础”包含结构与化学键、热力学与统计力学两大部分内容,分别由两位教授讲授,似乎代替了原来的“材料热力学”、“材料物理化学”和“材料化学物理”3门课程,因为其教材之一仍然是物理化学(Engel, T., and P. Reid. Physical Chemistry. San Francisco, CA: Benjamin Cummings, 2005. ISBN: 9780805338423)。“材料实验”应该与原先的“材料结构实验”对应,“材料综合实验”应该与原来的“材料加工实验”对应。“材料的微结构演变”与原来的“材料结构”相似。取消了“材料力学”、“材料工程中的输运现象”2门课程。增加了“材料的电光磁性能”、“材料的力学性质”、“有机和生物材料化学”、“材料加工”4门课程。取消2门,合并2门,增加4门,课程总数不变。
选修课变化较小,只是增加了若干课程,特别是生物材料和纳米材料的课程。其实,两门生物材料课程是2000年增加的,当时选修课由4方向增加为5个方向。选修课的最大变化是理论上不再分专业方向,学生可以任意选课。但实际操作时,仍然向学生推荐各专业方向的课程组合。无论如何,每个专业方向的课程不足4门,学生必然需要选修其他方向的课程。
从2003年至今,必修课没有变化,选修课则有一些小的调整(表5)。其中2005年减少了高分子化学、化学冶金学(Chemical Metallurgy)2门课程。增加了2门数学,材料热力学(原来的必修课),先进材料加工,衍射和结构,材料的对称性、结构和张量性质,材料选择,共7门课程。可见,增加的这些课程仍然是与具体材料种类无关的。2007年和2011年分别增加了1门生物材料方面的课程。可见,即使是选修课的调整,仍然在继续加强有关材料行为特征方面的课程,减少有关具体材料种类的课程。
5. 关于培养目标与课程设置
过去,MIT材料科学与工程系培养目标分四类,研究型学位(Course 3)、预科型学位(Course 3A)、实践型学位(Course 3B,2003年取消)和考古型学位(Course 3C)。其中,研究型学位与实践型学位培养要求的唯一差别是不变的,即前者在四年级做毕业论文,后者在二年级暑假和三年级暑假做2个20周的企业实习,其他课程要求完全相同。现在把实践型学位取消了,但仍然保留了学生向这个方向发展的渠道,即学生仍然可以选择做毕业论文或者企业实习,学位合并在研究型学位(Course 3)中。
从2003年培养计划大调整来看,MIT材料科学与工程专业(Course 3)的主要培养目标是让本科毕业生继续深造。也可能是社会需求的变化促使MIT对培养计划进行调整。这从MIT选读实践型学位人数变迁或许可以看出一些端倪(表6)。从1998年到2002年,实践型学位人数多于研究型学位的人数,2002年突然降低,与研究型学位相当。查看大学2年级实践型学位学生注册数,从2002年起突然减少,由原来每年约20人突然减少为6人。2003年培养计划调整当年,还有5人注册为实践型学位,这应该是此前培养计划延续所致。
那么,没有了实践型(Course 3B)学位,是否还有学生仍然会选择实习代替论文呢。下面从2002~2008年MIT材料系本科毕业生去向分析。除了一些研究生院,网页一共列出了38家企业和17家政府部门或咨询机构。统计2002年以后(至2005年结束,当年仅剩下1人)各年4年级实践型学位人数(也约等于当年毕业人数)总和恰为38人,与毕业生去向统计的企业单位数刚好相同。这难道是巧合?是否可以推论,2003培养计划修改之后几乎就没有学生选择去企业实习了?
MIT材料专业取消实践型学位,以及此后可能几乎没有人选择实习代替毕业论文事实,一方面可能与美国产业向国外转移,本国企业对工程师的需求减少有关;另一方面,MIT培养计划中的课程设置调整也起了一定作用。因为选择实践型学位人数锐减在前(2002年),培养计划调整在后(2003年)。培养计划中去掉的必修课“材料力学”和“材料工程中的输运现象”,显然属于工程类课程。因此,其培养计划课程中增加材料研究型基础知识、减少工程知识的倾向十分明显,也说明其培养计划随社会需求进行了及时调整。
另外,尽管2003年培养计划中的必修课有较大调整,但选修课调整比较有限。而且调整前后,没有改变其材料类本科生宽专业培养的模式。
但在选修课中,把专业方向的基础课程去掉,仍然让人有点匪夷所思。例如,高分子化学在高分子材料领域历来就被认为是专业基础课。MIT在2005年却把这门课从本科生培养计划中去掉了。查看其高分子方向研究生培养计划核心课程,可以看到高分子物理化学、高分子合成、高分子合成化学等基础课程。可见,MIT把专业方向的一些基础知识培养放在了研究生阶段。
以上似乎给人这样的印象,如果不继续读研究生,则专业方向的基础知识是不太够的,无形中将人才培养的周期拉长到研究生阶段了。但从我自己教学的经验来看,学习高分子物理就可以了解高分子材料的行为和特征,未必需要清楚地知道高分子材料的合成与制备方法。我的一些研究生以前从未学习高分子方面的课程,为了让他们在研究中能够理解和使用高分子材料,我就是先给他们讲授高分子物理的基本知识。
另外,注意到MIT材料专业研究生数量是本科生数量的2.2倍,有很多研究生来自校外,特别是来自国外。所以,MIT材料专业培养计划中对专业方向选修课程的调整,结合研究生阶段的课程安排,既考虑到了本科宽专业基础的培养模式,又打通了本科生培养与研究生培养之间的关联,在研究生阶段加强专业方向基础知识的培养,也便于接受其他教育背景的学生来读研究生,还是十分合理的。
本专业培养具备金属材料科学与工程等方面的知识,能在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域,从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。
主要课程:金属学、材料工程基础、材料热力学、材料力学性能、金属工艺学、金属热处理、材料固态相变、材料分析技术、金相技术、金属材料学、金属学实验等。
就业方向:从事金属材料及其他在机械、能源、汽车、冶金和航空航天等领域中的应用研发工作,或者材料的生产及经营、技术管理和材料的检测、失效分析等技术工作。
专业点评:未来几年,我国将在国产大飞机、航空母舰、航空发动机等领域投入巨资,本专业人才将迎来更大的发展机遇。相关企业主要分布在东北、陕西、河北等地。由于此专业工科性质很强,男生较好就业(女生可以选择材料研究方向)。
推荐院校:哈尔滨工业大学、燕山大学、西安工业大学、辽宁科技大学、南昌航空大学、河南科技大学、江西理工大学应用科学学院。
无机非金属材料工程
本专业与金属材料工程研究范围有所交叉,但重点培养具备无机非金属材料及其复合材料科学与工程方面的知识,并且使学生掌握各类土木工程材料在建筑工程中的应用技术、测试方法和开发能力。
主要课程:材料力学、工程制图与CAD、无机化学、有机化学、粉体工程、材料制备原理、热工过程与设备、无机材料工艺学、材料工艺性能实验、建筑施工技术与组织、工程测量等。
就业方向:在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域,从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作。
专业点评:本专业分混凝土、陶瓷、新材料等多个研究方向。混凝土的研究已经很成熟,人才需求大,本科学历就足以找到好工作;陶瓷研究近几年才兴起,生物陶瓷、特种陶瓷等研究前景广阔,就业或考研皆宜;高性能、多功能无机非金属新材料在发展现代武器装备中起到十分重要的作用,这方面的高水平人才在我国尤为紧缺。
推荐院校:华南理工大学、武汉理工大学、陕西科技大学、河北联合大学、洛阳理工学院、景德镇陶瓷学院(国家品牌特色专业)、巢湖学院。
高分子材料与工程
与金属材料工程、无机非金属材料工程专业研究对象有所区别,高分子材料与工程专业的研究对象是高分子材料。作为发展最为迅速的三大材料之一,本专业面向传统和新兴的诸如塑料、橡胶、纤维、涂料、石油化工、生物医学、新能源、海洋、国防等各类行业,培养具有理工交叉特点的人才。
主要课程:高分子化学、高分子物理、高分子工程、高等有机化学、物质结构、材料科学基础、聚合物成型加工与应用、功能高分子材料、特种复合材料等。
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)41-0216-02
面对21世纪的挑战,如何加强学生创新能力的培养,已成为我国当前高等教育改革的重要课题。随着社会经济发展和科学进步的需要,多学科已交叉渗透到与材料制备、结构、性质和应用各个领域。在科学技术高速发展,各种材料不断创新涌现,产业化的背景下,材料科学与工程专业以“宽专业、厚基础、高素质、重实践、强能力”原则,深化改革“材料工程应用复合型专业创新人才”培养方案,突破专业个性培养模式的约束。精心设计课程体系是实施创新教育的关键,是培养具有创新能力人才的核心环节,也是培养复合型人才的最有效途径之一。目前,“大材料”学科相互交叉渗透融合已成共识,专业课程却内容相对陈旧,逻辑和结构衔接不够紧密;设计性、综合性、创新性、开放性实验相对较少,支持专业培养目标的力度不够等问题日益凸显。在此背景下,本专业以材料的材料制备/加工、组织结构/成分、性能、应用四个要素及其相互关系为基础,构建专业核心课程群、专题选修课群、工程实践课程群为基本框架的课程体系。
一、整合课程内容,构建专业核心课程群
材料科学与工程专业培养计划从2007年开始,以全面系统的知识学习和综合思考能力培养为主,以材料制备/加工、组织结构/成分、性能及应用等四要素及其关系构成的材料学科共同基础知识作为重要的教学内容,构筑了“理论教学、实践教学、科学研究三个维度基本框架的新型课程教学体系”。目前,贵州大学材料科学与工程专业设置了“金属材料”、“材料压力加工”方向课程。为了满足“宽专业、厚基础、高素质、重实践、强能力”的培养目标,材料科学与工程专业按金属材料、材料压力加工二个方向的共同的或相近的学科基础、科学内涵、研究方法与研究设备,设计专业核心课程群,体现“大材料”学科共同的知识体系。如《固态相变》与《热处理工艺学》整合成《热处理原理及工艺》,《材料分析方法》与《材料物理性能》整合成《材料现代研究方法》,融入CAD、Origin、Matlab等软件组建新《计算机在材料中的应用》课程等;构建6~8门具有基础性、系统性、发展性特点的“专业核心课程群”(图1)。专业核心课程群以材料科学基础作为主线,安排各门课的教学内容,既相互衔接、循序渐进,又各有侧重、特点突出。便于学生学习材料共性规律,掌握有关材料及其关系构成的材料学科共同基础知识。鼓励教师把科研项目涉及核心课程相关的基础原理理论引入课堂教学,帮助学生树立完整、基本的知识观念,最大限度地拓展学生的知识结构,是培养应用复合型专业人才的重要组成部分。
二、设置专题选修课群,适应学生个性发展
加强理论基础同时,适当拓宽知识面,注重培养学生适应社会多样化、复杂化的能力。根据地方经济发展需求和学生个性发展,结合材料科学进展、专业教师科研特色,本专业在培养方案个性课程模块中设置“专题选修课程群”,让学生拓宽渠道获取更多学科专业知识,各得其所、各展其长,完善学生的知识结构系统,满足学生个性发展。学生根据其兴趣、未来发展、就业需要,自主选择相关课程。具体措施是:确定3~4个重点学术方向,每一方向下设置由3~4门课程组成的专题选修课程(图2)。学生可选择进入其中一个方向学习相关专业课程,使学生在熟悉共性知识基础上,掌握一种在国内处于领先水平的材料制备及组织控制技术。从而培养学生运用宽口径专业基础知识解决具体实际问题的应变能力和素质,提高学生适应知识经济社会的能力。
三、强化工程实践课程群,培养学生创新能力
实践课程是理论教学的延续。实践课程群主要包括《综合实验》、《认识实习》、《生产实习》、《毕业实习》、《毕业论文(设计)》及《综合素质拓展》等课程。为了进一步增加实验教学的综合性、研究性、设计性、先进性,对专题实验1、2、3内容进行整合,开设《综合实验》,强化学生创新能力和实践能力。专题实验1中验证性、演示性实验设计成综合性实验;专题实验3中引入3个教师科研项目创新性实验。鼓励学生积极参加国家数学建模比赛、省级节能减排设计研究、校级SRT计划等素质拓展活动,培养学生专业素质技能和实践创新的能力。校外实习基地涵盖材料制备—过程处理—组织观察—性能测试—应用的生产流程,可以满足各种实习教学的要求。引入电化教学等改革手段,学生能在短时间内吸收消化更多学科知识,掌握专业实习重点、难点,提高了实习质量。毕业论文采用“本科导师制”,选定基地技术人员或专业老师为导师,让学生提前进入导师课题组,熟悉设备操作,以不同的企业生产问题或科研课题内容加以培养创新能力。
从自身实际出发,材料科学与工程专业构建了应用复合型创新人才的课程体系。课程体系实施是一项系统工作,不可能一蹴而就,还需强化试验平台建设、教学改革、师资建设,课程评价体系等措施,才能确保其顺利实施和有效运行。
参考文献:
[1]叶运生,姚思源.素质教育在中国[M].成都:四川人民出版社,2001:23-47.
[2]余世浩,欧阳伟,尚雪梅,等.材料成型专业应用型创新人才培养的研究[J].理工高教研究,2010,29(6):83-85.
[3]邓小民.以学科平台建设为基础培养学生创新能力[J].安徽工业大学学报,2006,23(3):17-18.
[4]邹丽霞,花明,黄国林,等.“化学工程与工艺专业”复合式应用型人才培养模式的研究[J].化工高等教育,2008,25(1):15-18.
[5]林金辉,曾英,龙剑平,等.材料与化学化工类本科专业课程体系和实践教学体系的改革与构建[J].化工高等教育,2011,28(6):24-27.
[6]蒋淑英,孙永兴,黄万群,等.“材料科学与工程”学科建设与发展[J].科教文汇,2009,(22):198,223.
[7]林金辉,汪灵,邱克辉,等.材料科学与工程专业的课程体系和实验教学体系建设[J].高等教育研究,2007,24(6):54-56.
关键词:实践;材料本科生;工程;教学;发展;新出路
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)18-0074-02
一、当前材料科学的基本内涵和本科生教育教学的现状
材料科学是一门偏重于社会应用的学科,它是重要的工程施工、运营、维护的专业,主要从事产品的生产、加工、销售。它涉及的范围比较宽广,包括物理、化学、纳米材料、陶瓷材料等,需要培养大量优秀人才从事到社会实践当中。目前材料类本科学生教学对于提高学生对于材料科学的认识,发展现代材料技术起到了重要的促进作用,提高了我国材料产业的生产和发展,研究出一系列优异品质的材料产品。本科生在掌握材料科学知识比较透彻,能够很好地讲解书本上的知识,但是在实践应用当中,我们培养出来的学生就会捉襟见肘,不知道该如何下手。这种教育教学模式极大地不利于培养新型材料科技人才,造成本科生只会讲解书本上的知识,而在实践中不知道该怎样去做的问题。这就需要重新来确定材料科学的教育方式和教学手段,运用新型教学手段对学生材料科学进行教育,这样才能更好地确保我们培养出来的学生能够满足社会的需求。只有树立以实践为主导进行材料类本科生的教学,这样培养出来的学生才会更能具有实践操作能力,才能更好地根据实践进行科研创新,促进材料科学朝着更高的水平去发展壮大。
二、材料科学教学过程中所存在的问题与不足
1.学生实践动手能力不足,在实践中不知道怎样去运用学到的知识。当下,我们材料科学教育只是停留在单纯的教学当中,很多学生对材料科学知识烂熟于心,但是一到工厂实践当中,就会显露出来自己的动手实践能力短板,他们在实践当中不知道该怎样去应运这些知识,不知道在哪些方面去进行应用。这些问题就会让学生在生活实践当中不能很好地解决实际问题,造成知识资源的浪费和人员能力的丧失。学生实践能力不足,对于毕业后在社会当中解决实际问题起到很大的阻碍作用,使得学生不能够准确地解决问题,不利于材料科学的发展壮大。
2.教师在知识传授当中缺乏对学生实践能力的锻炼,没有形成良好的社会实践氛围。目前,本科院校教师教育教学方式很大程度上不利于学生实践能力的锻炼,让学生过分注重专业课程学习,对实践操作训练安排不够到位。这种教育方式对于材料科学发展是致命的,需要教师根据知识内容,相应地开设与此对应的实践教学,这样学生在学习专业知识的同时还可以进行实践操作,让学生对这些知识有更为深刻的认识。如此,学生在实践当中锻炼了能力,使其在未来社会当中能够懂得如何应用这些学到的知识。
3.学校对实践重视程度不够,安排教学时间和资源不够充分。学校比较重视学科教育,而在实践应用方面不够重视。学校安排了大量的时间和精力进行学科教育的学习,而在实践操作课程方面的安排程度不够,造成学生没有足够的时间去进行实践。并且,学校在教育资源上分配存在不合理的现象,对一些实验器材定期购买和维护的力度不够到位,造成学生在进行实践操作的过程中,教学资源不够使用,影响学生正确应用专业文化知识。因此,需要学校对实践进行重新定位,把实践课程放到重要的位置,集中力量发展实践操作课程,促进我国教育水平的显著提高。
三、以实践为主导针对材料类本科生的教学的重大意义
以实践为主导对本科生进行教学改革,是促进教学方式变革的重要目标。只有让学生的实践能力得以提升,材料类本科生走入社会当中才能胜任各种任务要求。
1.实践促进学生创造性思维的形成与发展。学生在实践当中去运用知识,可以提高对知识的掌握程度,帮助学生更为深刻地认识到知识的作用,促进学生深层次认识知识。同时,实践可以促进学生思维灵感的产生,学生在运用当中能够发现自己所存在的问题与新的想法,知道如何运用所学到的知识进行科技创新。这样,我们学生在材料科学当中的知识就可以进行创新学习,促进创新型思维方式的形成与发展,为学生对未来如何科学地进行材料创新打下坚实的基础。
2.实践可以检验学生学习知识的能力,让学生知道该怎么进行学习。实践是应用知识的过程,只有在运用当中才能知道自己哪些方面的知识掌握不够完善。这样才能在以后的学习过程中,知道自己未来学习的方向和努力的目标,以促进本科学生对于专业知识进行反复检验,能够让学生在书本当中知道该如何去运用这些知识。此外,经过实践应用,学生知道自己应该怎样去学习材料科学这个大类,确定自己的研究方向和研究目标,从而促进材料科学创新的新发展、新进步。
3.实践可以促进教学方式的改进,实现合理教学安排和教学管理。实践在教学当中具有重要的地位,它是F代教学方式的重要实现方式。教师通过实践可以清晰地知道学生在哪些方面当中掌握的内容不够完善,需要在哪些领域下大力度地进行教学投入与改进。这样可以更好地促进我国教育教学方式朝着更为科学的角度发展。如此,学生不仅可以在教学当中学到最为合适的教学课程,同时教师也可以根据学生的学习情况合理安排教学进度和教学管理,保证每一名学生都可以获取知识,并促进材料科学教学的进一步发展。
四、以实践为主导针对材料类本科生的教学发展创新对策
1.积极建立校企合作办学制度,让材料专业学生能到实践当中去检验自己。企业是个丰富的实践平台,学生可以在企业当中去充分应用自己学到的知识和能力,锻炼创新思维,积极将学到的知识运用到实际当中,这样不仅可以让学生对学到的知识产生认同感,同时还可以让其在实践当中认识到自己所欠缺的地方。这样才能使他们回到学校学习后知道自己学习的目标与方向,促进我国人才朝着使用方向去发现,促进材料本科生教学得到较大程度发展。另外,建立校企合作办学机制,可以解决企业当中技术人员短缺的问题,及时发现他们生产中所出现的问题,以提高企业的生产水平和产品的科技含量,为企业发展做出重要的推动作用,起到一举两得的效果。
2.积极增添学生实践课程,让学生能够对知识有更为深刻的认识。在当前的教学安排当中,实践课程安排不够,造成学生实践能力不足的问题。这就需要教学管理者积极增添学生的实践课程,满足学生锻炼实践能力的需求,使得学生在学习专业文化知识的同时,还可以增强实践操作能力,能够对专业文化知识有更为准确的认识。这样教育教学水平才可以提升到一个更高的水平,学生对材料科学有了更为清晰的认识,在未来进入社会中才能够做到灵活运用专业文化知识,从而提高学生在社会当中的认可度,能够更好地促进学生的个人发展。
参考文献:
[1]段俊霞,沈红.本科生创新能力培养:墨西哥蒙特雷科技大学的经验及启示[J].现代大学教育,2015,(06).
[2]高爽,吕杰,段玉玺,王洪来,王楠.本科生教学质量监控系统管理与实践――以沈阳农业大学本科生教学质量监控系统为例[J].沈阳农业大学学报,2015,(03).
美国俄亥俄州立大学(OSU)是一所历史悠久的研究型高等学府,为十大联盟Big Ten Conference成员,被誉为“公立常春藤”大学之一。OSU开设的专业几乎涵盖了所有的学术领域,很多专业在全美名列前茅。
OSU工程学院材料科学与工程系由地质、采矿及冶金系和粘土、陶瓷系合并而成,许多教师在国际相关研究领域享有很高的声誉。系里拥有一栋办公楼和两栋试验楼,拥有很多具有国际先进水平的仪器和设备,其研究方向覆盖了金属、陶瓷等电子、生物、超导、传感器、金属间化合物、先进复合材料、涂层、薄膜材料等的加工、组织及其化学、物理、力学性能的研究。
国内某高校(以下称A高校)是一所以土木建筑、环境市政、材料冶金及其相关学科为特色,以工程技术学科为主体,工、理、文、管、法、经、艺等学科协调发展的多科性大学。该高校冶金工程学院由冶金工程、材料成型与控制工程、金属材料工程、化学工艺与工程4个专业组成。其研究方向覆盖表面纳米化处理、超细晶材料制备、涂层材料、电池材料、钢铁材料、金属间化合物等领域。
OSU的材料科学与工程系和A高校的冶金工程学院都设置有材料科学基础课程,且都立足培养材料加工类专业理论应用型人才。因此,对这两所大学材料科学基础类课程的教学方法进行比较研究是可行的。通过比较研究,对国内高校材料专业乃至其他理工类专业的教育教学改革和课程体系建设具有一定的启示和借鉴作用。
一、课程体系
OSU的本科教育旨在培养学生对专业的学习兴趣,帮助学生获得应对现代社会挑战所需要的知识和能力。OSU将每学年分为Winter、Spring、Summer、Autumn四个学期。除了Summer Quarter,其他学期都安排了材料科学基础的相关课程,其专业课设置均为专业基础课,即精心为学生设计的入门课程,主要目的是给学生展示该学科涉及哪些方面的内容,哪些内容可以在今后的学习中进行深入学习,帮助学生完成从高中向大学阶段的过渡[1]。
OSU材料科学基础相关主要课程有:MSE564——材料微观组织和力学性能、MSE342——材料的微观组织和特性、MSE741——透射电镜、MSE205——材料科学与工程简介、MSE361——材料的力学性能简介、MSE605——材料科学原理、MSE765——材料的力学性能。这些课程共分为三个体系,205、605讲授的是材料科学基础和原理,注重介绍各类材料的组织、结构、性能、加工工艺与其应用之间的关系,讲授金属材料、陶瓷、聚合物、化合物等材料的组织结构对其力学等性能的影响以及分别采取哪种工艺改变材料的结构获得预期性能。361、564、765主要讲授了材料的宏观力学性能,例如陶瓷、金属材料、聚合物、化合物等材料的拉伸、疲劳、断裂、蠕变等宏观力学性能,并阐述了材料组织结构对其变形行为的影响。
342和741讲授了材料微观组织结构分析与表征,主要通过XRD、SEM、EBSD、TEM等分析方法对材料的位错、织构等微观组织结构的分析与表征。课程体系安排由浅及深,比如605是205的深化版,对相关理论进行了深入讲解,重点对位错、扩散、钢的热处理部分进行了扩充。765是361、564这两门课程的深化版。学生可以自主的根据自己的掌握程度以及兴趣选择基础课程或者深化课程,完善自己的理论知识体系。
A高校实施以通识教育为基础的专业教育,培养德、智、体、美、劳全面发展的高水平高素质人才。该高校材料科学基础相关课程主要包括金属学、材料化学、材料组织结构的表征、材料性能学、材料加工原理和材料综合实验,体现“组织决定性能,性能决定用途”的知识核心。此外,该高校设有材料塑性力学、凝固理论、轧制技术、冲压成型等课程,旨在帮助学生形成一个从材料合成到后续加工的完整知识体系,但是理论基础课程设置较少,学生对基础理论的掌握程度有待深入。
二、实践教学
实验是课程的重要组成部分,也是学生学习掌握材料组织性能、材料检测方法的重要手段[2]。OSU采用分时段的实验室管理方法,即将每次参与实验的学生分成四组,四组学生在50分钟内交换使用实验仪器,大大提高了实验效率,也能够让每个学生亲自参与到实验环节中,并从中得到锻炼与知识的理解与巩固。学院也会设计一些趣味实验,MSE361课程就设置了一个“Egg Drop”项目,就是让学生开动脑筋,采用奇思妙想确保鸡蛋从5层楼上扔下来而不破裂,要想成功完成这个项目,学生需要发挥团队协作精神,综合运用材料力学知识,选取有效材料对鸡蛋进行保护,并采用有限元进行模拟分析。
A高校的材料科学基础课程实验属于验证性技术基础实验,一共包含三个内容,分别为金相样品的制备及显微镜使用,Fe3C-Fe平衡组织分析以及金属塑性变形与再结晶实验。实验采用集中安排的形式,安排在具体的某周某节课,由教师动手操作,学生围在周围学习,然后分组完成实验操,每个学生的亲身经历比较少,通过实验获得的专业知识也会减弱。
三、课堂教学方法
课堂教学方法是在一定的理论指导下,为实现既定教学目标而采用的课堂教学形式。教师应该了解和掌握多种教学方法,根据具体的教学情境和教学目标运用不同的教学方法。
OSU所有的教室基本都配备有投影设施,在讲课过程中,教师可以用电子笔在PPT上勾画、讲解。另外教师在授课过程中,可根据需要设置一些问题,学生通过手中的clicker,按键给出自己的判断,答题结束后,屏幕上很快显示出统计结果,教师会据此了解学生对知识点的掌握情况。
OSU课堂多采用以激发学生潜能为目标的“案例教学”、“交互教学”和“小组讨论”。案例教学通过教师讲解实例向学生介绍材料组织及性能的相关理论知识,然后学生再利用网络、书籍等资料,运用所学的知识对自选材料进行分析;交互式教学方法,构建了一个平等和互相尊重的学习氛围,实现了师生之间的相互沟通和加深对新概念的理解;在小组讨论与汇报过程中,教师对每个学生都十分重视,尽量让每个学生都有表现的机会,强调让每个人都分担一部分工作。在展示成果时,每人都要汇报自己做了什么,并谈谈自己独到的见解。有些课程在课程讲授完之后,会要求学生分小组完成一个项目设计,这样可以培养学生的团队合作意识、创新精神和社会责任感,使其学会如何收集资料,也使概念的记忆和问题的解决迅速化。
A高校目前的课堂以讲述为主导,案例教学和交互教学方法逐渐加以应用,这样的做法对学生自己构建知识体系有重要意义。但是在构建知识体系的过程中,教师相对传统的讲述方式、作业布置等情况,导致对学生知识结构方向的纠偏作用比较小。学生在不知道问题的已知条件的由来的时候,往往难于形成自己的知识体系。课堂互动的效果与美国的课堂气氛差异很大,在美国课堂上,只要教师提出了问题,学生会马上有激烈的反应,若是有讨论的话,教室里马上就会活力四射;但是在中国课堂上,教师提出问题,大多数学生会选择沉默,教师需要用“点将”的方式实现互动。
OSU将更多的时间留给了学生,让学生有更多的作业时间和创新时间。A高校则在课堂教学上花了更多的时间,教师和学生的创新思路和时间将受到限制。
四、考核体系
OSU将考试成绩分散在日常学习中,根据学生的到课率、课堂答题情况、作业完成情况、小测验、期中考试、期末考试、实验(实验表现和出勤)、实验评估和项目等综合决定。所以从头至尾,学生需要认真学习才能取得理想的成绩。
A高校的成绩由期末考试和平时成绩来决定,期中、期末考试占70%,平时成绩占30%。平时成绩包括实验、出勤和作业全部。因此,学生就会只注重最终的学习结果,而不注重期间学习的过程。这对学生人生观,价值观的形成有重要的影响。
五、启示与借鉴