你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 热能动力工程知识

热能动力工程知识范文

发布时间:2023-11-28 14:47:19

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇热能动力工程知识范例,将为您的写作提供有力的支持和灵感!

热能动力工程知识

篇1

中图分类号:TK223文献标识码: A 文章编号:

一、热能动力工程

热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能与动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。

二、我国的热能动力工程发展情况

随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求, 1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。

三、热能动力工程在锅炉风机方面需要解决的问题

风机主要作用为气体的压缩和气体的输送,其原理是吧旋转的机械能转换为气体压力能和动能,将气体输送到特定的地点的机械,风机经常用于锅炉中,随着对于能源的需求越来越大,锅炉中的风机在工作中经常会烧坏电机的事故,对于工厂的经济产生巨大损失,严重危害工作人员的人身安全,因此,正确运用热能动力工程技术不断改进风机,对于风机和锅炉的安全性提出更高的要求势在必行。

四、热能动力工程中锅炉及工业炉的发展

1872 年第一台锅炉在英国被制造,随着锅炉的产生,蒸汽机时代出现,1796 年瓦特发明了分离冷凝器,代表着锅炉的完整运作体系的初步确立,工业炉和锅炉原理类似,从某些方面来讲,锅炉也是工业炉的一种,工业炉是指在工厂的工业生产过程中通过燃料的燃烧进行热量的转换,对材料进行加热的设备,工业炉产生于中国商代,主要的工作方式是通过加热提炼铜器,春秋时期产生了铸铁技术,这证明着工业炉的温度控制正在进步。1794 年熔炼铸铁的高炉出现,1864 年马丁建造了气体燃料加热的平炉,随着现代化科技的进步,计算机逐渐代替了人工进行对锅炉系统的控制,推钢式炉和步进式炉成为吸纳带连续加热炉的两种基本类型,两者只有运输燃料的方式有所不同而已。

五、热能动力工程炉内燃烧控制技术运用

锅炉的燃烧控制是调整能量转换幅度的核心技术,在当今社会,锅炉由人力向锅炉内填充燃料逐渐转型为步进式的自动控制填充燃料所代替,更加先进的锅炉甚至使用全自动燃烧控制,根据其运用热能动力自动控制技术的不同,锅炉的燃烧控制分为以下几种:

1、以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC 等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至PLC 与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的,此种方式温度控制并不十分精确,需要仔细确认额定数值。

2、由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶吧需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由PLC 自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。

六、仿真锅炉风机翼型叶片

锅炉的内部的叶轮机械内部流畅需要带有十分强烈的非定常特征,并且其内部构造十分复杂,不容易进行十分细致的测量实验,并且到目前为止,仍然没有可以解释流动分离、失速和喘振等流动现象的完善的流体力学原理,因此要了解机械内部流动的本质需要更加可靠详细的流动实验和数值模拟实验,通过使用软件二维数值模拟锅炉风机翼型叶片,对空气以不同方向吹入翼型叶片造成流动分离进行模拟,并根据模拟的数值创建而未模型,进行网格的划分,设定边界条件和区域,最后输出网格,在使用求解器求解,这样才可以对不同的气流攻角的流动进行二维数值模拟,,达到模拟的目的,同时可以根据模拟不同攻角下所得到的速度矢量制成矢量图进行比较和分析,最后得出锅炉风机翼型边界层分离和攻角的关系。

七、热能动力工程的发展方向

1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识

2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

结束语

热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。

篇2

中图分类号:TE08文献标识码: A

引言

科学技术的进步,社会生产力的不断发展,能源缺乏成为了生产生活亟待解决的问题,热能作为长期广泛被应用的能源,在众多的企业发展,工程作业中发挥着重要的作用,尤其是在动力工程中。众多的企业锅炉工厂、药厂等都对热能和动力工程有着不时之需。并且应用范围逐渐扩大,应用领域也不断延伸,发展前景不可估量。

1、热能动力工程

热能动力工程,简而言之就是热能与动力工程的有机结合体,它的研究范围广泛,涉及学科众多,与很多相关专业出现了交叉现象,专业研究的方向主要被定位于二者之间的相互转换问题,能源的来源及利用途径问题。

2、我国的热能动力工程发展情况

随着社会的发展,我国国民经济得到很大的发展,人们也是越来越关注人才和教育方面,为了能够更好的适应经济前进局势中对于人才的需要,我国也会加大了对这方面的力度。在1993年我国教委对各个高校下发了相关政策,要细致划分专业,主要是9个学科,包括热能项目、热能项目以及动力设备、热力发动设备、制冷和低温项目、流体设备以及流体项目、水利水电动力项目、项目热物理、能源项目以及冷冻冷藏。到了1998年教育机构又重新下发了更改计划,将这些专业合并到一起,也就是现在的热能和动力项目,并且在全国的各个高校成立这个专业。大量的运用能源在很大程度上推动了热能以及动力项目的发展,它将各类设备原理,动力学理论学识,教育各类优异的设备转化措施进行了全面的综合,正在运用到社会的建设中,促进了社会的发展。能源动力已经广泛的运用到各个行业中,推动了我国科学技术的发展。

3、热力动力工程存在问题的深入研究

热力动力应用于锅炉是一项新的研究,虽然可以很好的解决资源环境问题,但在一定程度上它也有一些显而易见的毛病。其中最为不容忽视的便是风机问题,风机是一种机械,它通过装有多个叶片轴旋转来推动气流,叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动,是一种广泛应用于生活中的设备。举例说明,比如说发电厂,锅炉,矿井,隧道,车辆,船舶和建筑物的通风等,都离不开它或多或少的帮助,其中,作为重要的是应用于电站,它发挥着不可磨灭的作用。如今,机组向大容量,高转速,高效率,自动化方向飞速发展,是得风机的安全可靠性受到巨大压力,一旦发生巨大事故,如烧坏电机,窜轴,叶轮飞车,轴承损坏等,不仅对当地电厂造成巨大的财产损失,更是威胁着当地工作人员的生命安全。由此可见,风机利弊兼互,但技术的要求使得风机必须使用,所以,待发现新技术之前,还需的是不断完善风机技术,引进先进技术,使其向智能化方向发展,从而达到真正的节能高效。

4、热能动力工程在能源与锅炉方面的应用

4.1、热能动力工程在动力能源方面的应用与发展

在我国的工业发展中,能源动力是不可缺少的重要生产力,并且在很多工业领域中,都离不开热动能这一生产资源。如何提高能源动力的应用效率,减少热动能的无功损耗,成为了当前工业发展中最需要解决的问题。只有实现热能的高效利用,才能起到节能环保效果,才能促进工业的可持续发展。而在热能动力工程技术中,其所应用在最主要方面就是风机。

风机是一种应用非常广泛的机械设备,在多个个工程领域都是不可或缺的重要生产设备。如发电厂、车辆、船舶等。风机的主要运行原理是利用多个叶片进行旋转来产生机械能,并应用在工程机械的动力能源中,从而推动工程机械运作。随着工程机械的性能要求越来越高,对风机的运行效率也提出了更高的要求。提高风机性能同时还对于节省动力工程能源也有着重要意义,这是热能动力工程的研究方向之一。

另外,工业锅炉中的风机叶片旋转的内部机械流场的不定性非常强,所以,做详细的试验去研究锅炉风机是非常困难的,因为会涉及到很对的细节,比较繁琐,就目前的情况对其的力学解释和分析方法也不是非常的完善,尤其是对于流动分离等现象的研究在锅炉研究中时非常重要的。进行研究的时候还需要建立比较可靠的实验模型和数值模拟,从而能够仔细的分析机械流场内部。为了能够准确的研究锅炉风机叶片旋转的空气流动情况,一般情况下都是利用软件建立二维数值模拟实验的方式。对于这个软件数值模拟实验首先是要建立一个二维模型,然后根据提供的相关的数值进行网格的划分,设定边界区域,然后是求解输出的网格,主要是利用这些相关条件进行,也可以使用求解器。最后将求解出的结果在建立一个二维数值模拟,然后模拟求解空气留角下的流动,然后分析比较得出的结果与速度矢量图,从而能够得出锅炉风机叶片分离和攻角之间的关系。

4.2、热能专业中工业炉的发展

1)、空燃比例连续控制系统

这种系统的组成涉及很多,主要是烧嘴、燃烧控制器、空气/燃气比例阀、空气/燃气电动蝶阀、空气/燃气流量计、热电偶、气体分析装置、PLC等。它的主要工作原理是首先将热电偶或气体分析装置检测出数据,然后将这些数据传送到PLC,然后将这个值和设定的值进行比较,偏差值就按照比例积分、微分运算输出4-20mA的电信号,然后调节空气/燃气比例阀和空气/燃气电动蝶阀的开度,从而能够很好的控制空气/燃气比例和炉内温度。

2)、双交叉限幅控制系统

这种系统的组成涉及的方面也很多,主要包括烧嘴、燃烧控制器、空气/燃气流量阀、空气/燃气流量计、热电偶等。它的主要工作原理是通过一个温度传感器热电偶,将测量的温度转变成电信号,这个信号主要是代表测量点的实际温度,而对于这个点的温度期望值主要是通过预存贮在上位机中的工艺曲线进行自动设定的。这两个温度之间存在的温差刚好由PLC对燃气/空气流量阀的开度进行自动校准。对于该空气流量阀测量的方式主要是通过电动执行机构定位、控制空气/燃料比,以及借助外界的仪器进行的(主要是孔板和差压变送器),测量燃气的流量主要是通过一台安装在燃气支管上的质量流量计进行的,从而能够很好的控制温度。

5、热能动力工程的未来发展方向

5.1、往热能动力和控制工程发展

热能动力和控制工程的发展需要掌握热能和动力之间的相关知识内容,与此同时对锅炉的原理、汽轮机的原理、风机的原理等方面也是需要了解和掌握的,与此相关的动力机械设计、热力发电厂、燃烧污染与环境、传热传质数值计算以及流体机械相关的领域知识也需要了解和掌握的。

5.2、往热力发动机和汽车工程发展

对于热力发动机和汽车工程的发展需要掌握热力发动机的原理与车辆工程两个主要方面的知识。在此基础上,还可以往制冷低温工程和流体机械方面做进一步的发展,因而需要进一步的掌握制冷、流体力学以及机械方面的相关知识。

5.3、往水利水电动力工程发展

水利水电动力工程需要掌握水轮机、水轮机的安装检修和运行、水轮机调节、水利机组辅助设备、现代控制理论、电机学、发电厂电气设备、发电厂自动化、继电保护原理等众多领域的知识,与此同时还需要了解水电厂的计算机监控与现代测试技术的相关知识。

结束语

随着科学技术的不断发展和进步,使得热能动力工程也有了进一步的发展,同时也促进了我国热力发动机行业的发展以及一些新兴行业的发展。另外,热能动力工程在能源和锅炉中的应用,也因为经济的发展和技术的进步得到了广泛的应用。随着热能动力工程对日常生活的重要作用,希望相关的研究者更加的努力,继续在能源和锅炉的应用中发掘新的功能,进一步的满足人类的需求。

参考文献

篇3

引言

随着经济的不断发展,现有的化石资源已经远远不能满足我国现下经济的快速发展,能源问题越来越受到党和人民的密切关注。所以,在有限的能源下,想要发展经济就必须用提高科学技术的手段来使能源的利用率得到提高。热能与动力工程是一门工程应用专业,这门学科的包含机械工程学和跨热能与动力工程,这两门学科也是其主要的理论基础,该学科的应用与发展原理就是将热能与机械能在一定的条件下进行互相的转化,来产生各机械设备运转所需要的动力。我国经过长时间的探索,热能动力工程已经得到了很大的发展,取得了很好的发展成果,其应有的价值在锅炉方面体现的淋漓尽致。目前,我国在锅炉的利用和发展过程中存在的主要问题就是能耗过大,这是每个从业人员都必须面对的现实问题。我们应致力于用热能动力工程技术来对燃料的燃烧进行创新,来使能源的利用率得到改善。锅炉是主要的热能与动力工程的承载者,能量转化是其在生产过程中的主要动力,因此要提高锅炉的利用率就必须在设计锅炉初期就应该用热能与动力工程的标准来武装设计方案,唯有这样才可以使锅炉的燃烧效率以及能源利用率得到很好的提高。

1 热能与动力工程的基本内容以及发展概况

1.1 热能与动力工程的基本内容

热能与动力工程包含多们学科知识内容,因此是一门综合性比较强的学科。热能的研究以及用适当方法进行热能与动力学之间的转化是其主要的研究方向和内容。在能源利用高效的锅炉上我们可以看到,热能和动力工程的很多系统性的应用都体现在了锅炉的设计上,研究内容对锅炉的运行也起到了指导的作用。我们在对热能与动力工程研究的同时,也必须兼顾其他领域的研究,毕竟它是一门综合性的学科,尤其应将研究的重点放在热能与机械能的转化上,这样才可以更好的提高对这门学科的认知度。同时,作为一门有着广大发展前途的学科,它也设计很多的发展方向,自动化的发展方向就是随着科技的不断进步而衍生出来的。目前我国在热能与动力工程这方面的人才相对匮乏,人才的培养也是未来发展的一项重要的工程,用知识性的人才来解决能源方面的使用问题,来使热能动力工程的作用得到发挥,从而为我国的经济发展提供一个很好的平台,从这个角度来说,马不停蹄的进行科技创新,提高对热能与动力工程的研究的意义已经变得非常重要。热能与动力工程旨在解决的是能源和环保方面的问题,减少废物的产生将能源高效的利用是一件十分艰巨的同时也是我们需要克服的任务。

1.2 我国热能与动力工程的发展概况

我国的热能与动力工程始发与中国成立初期的50年代,我国各种企业以及生产方式都是遍地狼藉,后期的一切发展以及人才的培养都是借助于苏联的模式,所以我国的经济发展以及人才的培养都得到了很大的改善。随着改革开放后我国社会主义经济进行的如火如荼,热能与动力工程呈现出勃勃的发展生机。随着市场经济的要求,热能与动力工程的人才需求越来越高,因此教育部将原来零零散散的九门关于热能与动力的学科整合为一体并将其纳入大学生的学习行列。整合后的学科综合性以及学科内容针对性极强,尤其广泛的应用领域是在锅炉方面。解决能源短缺的事实是热能与动力工程发展的主要目的,这是不争的事实,所以其有很高的地位在国民经济发展中是不容置喙的,人们对它的高度重视一定会持续高温,使我国的能源提供能够更加流畅、高效。最新的热能与动力工程发展将环保理念融入到了工程实践的发展之中,减少能源的浪费,降低水、大气以及固体废物的排放,将生态化提到日程表上。现在的热能与动力工程的发展会为以后的经济发展夯下坚实的基础,将经济发展的可靠性得到很大的提高。

2 热能与动力工程在锅炉方面的应用以及发展创新

2.1 热能与动力工程在锅炉方面的应用

是否成功的将热能与机械能进行转化的核心技术就是锅炉内部的燃烧控制,随着科学技术的不断进步,锅炉填料的技术已经取得了很大的发展,由以前的人工填料演变成现在的燃料填充的自动化阶段。热能动力自控技术可以将锅炉的燃烧分为两个类型。第一种是由各种元件组成的连续性控制系统,这种方式能有效的进行锅炉内部的温度调节,以此来提高燃烧效率,但是温度控制不够精确,需要仔细认真的态度进行细致确认;第二中是双交叉控制系统,这种方式可以节省材料,更重要的是能较为精确的控制温度在合适的范围内。目前,工业炉是应用比较广泛的一种炉子,是工业生产中的重要组成部分。工业炉的主要作用就是通过更加深入的研究能源利用率来达到锅炉发展的新时期。经过对热能动力学的研究,现在的步进式以及推钢式锅炉在热能的转化方面取得了令人欣喜的进展,虽然这两种方式在输料方式上有一定的不同点,但是使用起来效果却是非常好的。在未来的发展方向上我们可以清楚的看出,热能动力学工程可以在能源方向、汽车工程方向以及低温控制技术方向上有着很大的提高空间,在未来的市场上有着无限的发展潜力,能够逐渐的将人们的生活方式发展成自动化。锅炉供暖、电能供电技术等等都应耳熟能详了,这些已经完全融入到人们的生活生产中,当然世界上还有很多的未知之谜需要我们求探索,需要有识之士去开发、去展望,去实现我们美好的明天。将锅炉等行业的能源利用达到最高,实现能源的高效化。

2.2 热能与动力工程在锅炉方面的发展创新

2.2.1 热能与动力工程在锅炉方面的发展

世界第一台锅炉在英国产生,随之进行了蒸汽时代的工业革命,虽然锅炉是工业炉的一种,利用燃烧来提供所需要的热量,但是这样不但对能源有着很大的浪费,而且也会造成生态环境的恶化。随着科技的进步,越来越多的技术应用到了改良锅炉行业中。当前,在我国各行各业上广泛应用、工业上加热装置普遍使用的锅炉就是工业炉,它的种类很多,数量涉及的范围广,我国国民经济的发展很大程度就是依赖工业炉的改良与使用,因此它的发展与国家建设以及战略息息相关。在国家节能减排的号召下,锅炉业首当其冲,节约型的锅炉建设是各个行业努力发展的目标,在高校中热能与动力学的学生应该积极涉猎各种技术,在学习好理论基础知识的前提下还需要培养一定的分析问题、解决问题的能力,作为21世纪的学生,必备的素质之一就是进行计算机操作,那样才能跟上时代的步伐。能源对于一个国家的重要性不言而喻,国家经济发展是否长久受能源利用效率的直接影响,创新、环保能力的培养是当代人才的迫切需要。发展新技术,提高能源利用率尤其是在锅炉行业的效率是摆在我们面前的主要问题。

2.2.2 热能与动力工程在锅炉方面的创新

众所周知,进行能量的转换调节是锅炉燃烧控制中非常重要的一环。随着时代的不断发展,锅炉的类型以及填充燃料的方式都有了很大的发展,同时也有效的控制了锅炉的燃烧效率。在燃料的消耗系统中,有两类是能够进行能量控制的。一类是调节空气与燃料的比例值,通过和锅炉的设定值进行比较来得出所想要的结果,但是这种方式比较复杂,而且精确的计算也没有实现,要想使技术的准确性能够保障,还需要对锅炉的设定值进行多次的确认才可以。现在的主要手段是经过计算机的设计计算来提高锅炉的效率,通过计算机来控制锅炉的运行与操控,达到自动化的目的。通过调整锅炉的燃烧方式提高了能源利用率,减少了对环境的污染。在锅炉风机上,热能与动力工程为降低风机故障而造成设备损害,因此在改良风机的问题上热能与动力工程也进行了很大的创新,保障了锅炉电机的安全运行。热能与动力学工程在最近几十年的发展中研发出一种可以在不同方向上测定燃料速度的软件,通过数学模型得出一系列的模拟结果,从而可以有效的改善锅炉内部某些部件的性能。

3 热能与动力工程在锅炉应用方面存在的问题

热能与动力工程在锅炉应用方面存在的主要问题除了如何提高能源利用率外,最主要的就是锅炉风机方面问题。锅炉的风机主要是用于传送以及压缩气体,也就是将气体风能转化为机械能,从而保证锅炉的正常运转。随着人们大量的需求能源,越来越多的负荷强加到锅炉上,致使风机的自身性能降低,从而导致锅炉电机的损害,严重影响锅炉的效率,并且在一定情况下会导致锅炉其他设备受损,这将直接导致大量的经济损失,同时也会对操作工人造成安全威胁。良好的热能动力工程技术能有效的尽心锅炉的改进,但是由于叶轮机械结构复杂,很多不确定性的因素都会影响温度的测量,致使我国到目前为止还没有有效的方法来解决这个问题。所以如何行之有效的将热能与动力工程技术应用到风机的改良上,顺利的产生持续性能高的锅炉已经成为热能与动力工程人员需要考虑的问题。只有不断的依靠热能与动力工程技术不断的对风机进行改进,才能保障工作人员安全以及锅炉的正常运转,才能不断的对锅炉进行改造,才能使锅炉在运转和工作中发挥出应有的作用。

4 结语

锅炉有着悠久的历史,经过人类科技文明的发展,锅炉也经历了很大的改善,拓展了自己的性能。本文在对锅炉运转以及设计理念上应用热能与动力工程进行了详细的阐述,并对该工程对锅炉中存在的问题提出了有效的解决办法,深入的研究了热能动力工程在技术上对锅炉在燃烧方面的应用,尽所能的通过提高燃烧效率增强燃料利用率。简而言之,目前我国人才尚很缺乏,需要大量的培养相关知识性人才,用实际行动来提高他们对该行业的探索能力,不断的对该工程涉及的领域进行研究,勇于创新,挖掘出热能与动力工程在包括锅炉在内的使用领域上的其他潜力,行之有效的降低能量的消耗,为我国的经济发展事业奉献自己的一份力量。

参考文献:

[1]王楚鸿.新形势下电厂锅炉应用在热能动力的发展前景[J].科技视界,2013(31).

[2]安连锁.泵与风机[M].北京:中国电力出版社,2001.

[3]费雍.浅析电厂的热能与动力工程[J].科技创新与应用,2013,02

篇4

中图分类号:TK229文献标识码: A

引言

目前全球都面临着严重的能源危机,这是一个不争的事实,如何积极开发新能源,提高现有能源的利用效率,减少能源资源浪费成为了世界各国关注的焦点。热能动力工程作为一种研究热能源与动力工程的学科,其专业领域中的很多研究都与能源资源利用有关,通过热能功利工程的相关技术来提高能源利用效率,并且其在很多工程领域中也都发挥了一定的功能作用。锅炉作为工业生产中的一项重要生产设备,在热能动力提供上发挥了关键作用。如何提高锅炉的运行效率,增大锅炉炉内燃烧率,减少锅炉排放的环境污染问题,是当前锅炉应用中亟待解决的问题。

一、热能与动力工程以及锅炉构成的概述

热能与动力工程研究的领域主要包括热能工程、热力发动机、流体机械、流体工程、能源工程、制冷技术、工程热物理、冷藏冷冻工程等方面,总的来说即是研究热能与动力的相互转化。[1]其中锅炉方面主要应用的技术是热能工程、热力发动机、动力机械、工程热物理、能源工程等技术。热能与动力工程作为利用能源的工程,首先要解决的即是能源方面和环保方面的技术问题。如今,虽然我国的煤炭资源较为丰富,但在一些企业毫无节制的开采之下,储存量也日益减少,而且由于我国的人口基数大,所以人均占有量较低,为世界人均水平的 60%左右。此外,煤炭资源也会产生二氧化碳、二氧化硫、一氧化碳、一氧化氮等对动植物生存、土壤环境产生威胁的有害气体。所以如何努力研发出脱硫等技术以减少有害气体的产生和对环境的污染,将煤炭资源较为高效地转化和利用,成为一项十分艰巨的任务。首先要做好阶段性目标和总体目标的规划,这样才能在充分了解热能与动力工程的基础上规避风险;其次要充分了解用户的需求提出可行性的设计方案,有的放矢地进行建设;最后要提升热能与动力工程的运营标准,严格把关,这样才能有效避免资源和时间的浪费。

在我国目前生产应用的锅炉主要有工业锅炉和电站锅炉两种,按不同的分类方式可以分为多种,例如按锅炉本体的不同结构,可分为火罐锅炉、水管锅炉和水火管锅壳式锅炉;按外形的不同则可分为卧式和立式;按用途的不同可分为热水锅炉和蒸汽锅炉等。锅炉主要由外壳部分和燃气锅炉的电气控制部分两者组成,其中外壳部分分为面壳和底壳,面壳主要用来防止风沙和尘土的损害和侵蚀,而底壳则用于固定锅炉的燃烧器,同时要在底壳上安装轮回水泵、燃气阀、膨胀水箱、三通阀、主热交换器等配件,这些配件通过底壳的连接成为一个整体。[3]此外,对于锅炉来说,最主要的硬件即是燃气锅炉电器的控制部分,它的主要作用在于控制风机、风压开关、燃气阀、轮回水泵、燃料燃烧、地暖温度探测等装置的运行。而时至今日,随着科技水平的不断进步,大多数公司企业都开始采用电脑控制的方法进行运转,这样可以更加精确的控制温度,维持其均衡。

二、热能与动力工程在锅炉中出现的相关问题

1、锅炉方面存在的问题

锅炉的主要问题还是因为锅炉内部的风机的问题,风机在锅炉是热能和动能相互转换的一个器件,是锅炉不可缺少的部分。风机的转动会提升锅炉内部的压强从而把压缩后的气体运送到安装制定好的机械中,而当气压回归正常时压缩气体又开始膨胀从而产生机械运动的动力。风机是被安置在锅炉内部但是有时候需要很强的动力会让锅炉造成超过负荷的运动,这样才经常出现电机被烧坏的现象,在生产上造成了所遇额外的经济损失,而这种现象也会对操作人员的人身安全产生威胁。所以现在非常需要提高锅炉的安全性,避免出现伤及生命财产的现象。

2、热能与动力工程在锅炉风机方面出现的相关问题

我们知道锅炉中的风机的主要作用就是将机械能转化为人们所需要的动能。然而,随着人们对能源的需求量的不断增加,风机在运行的过程中极易损坏电机,在某些较为严重的情况下,还会给工作人员带来生命危险,使企业的经济效益大大下降,给企业带来了巨大损失。所以我们很有必要针对锅炉中风机出现的这些问题来改善和提高风机的装备,促进热能与动力工程的发展。

三、热能动力工程在能源与锅炉方面的应用

1、热能动力工程在能源方面的应用

能源动力工业的发展直接影响着一个国家的经济发展和国防的建设,所以它所涉及到的领域也是比较广泛的,进而集成了众多的新型技术产业,对经济的发展具有积极的作用。热能动力工程对于能源的应用,主要体现在风、电两个方面,例如发电站的应用、风机的应用。对于风机的应用,它可以包括发电厂、工业炉窑以及供热锅炉等,以此领域的通风与引风为主,另外,还可以用在工业厂房、矿井、泠却塔、隧道等处的通风、冷却和排尘。随着科学技术的不断进步,电站和工业锅炉的发展越来越追求机组的大容量、高效率、高转速以及操作的自动化,所以对系统的安全性与可靠性提出了越来越高的要求。

2、热能动力工程在锅炉中的应用

目前的工业锅炉是利用燃料的燃烧或者是电能转化的热量,对物料或者工件进行加热。另外,在锅炉队热能动力工程的应用中主要以软件仿真锅炉风机的翼型叶片与炉内燃烧控制技术为主,当前的炉内燃烧控制技术不再是手动控制已经变成了自动控制,其控制的方式可以是双交叉限幅控制系统或是空燃比例连续控制系统两种中的任何一种。锅炉当中的风机,将气体进行输送或是压缩,将机械能转换成相应的动能,所以风机对锅炉来说具有非常重要的作用。近几年以来,人类对能源的需求不断增加,造成众多企业加大了锅炉的工作量,导致部分锅炉负荷工作引发了很多的问题,与此同时也造成了很多的损失,比如风机的长时间工作会产生大量的热量将其烧坏,因而直接影响了锅炉的正常运行。

四、热能与动力工程未来的发展方向

目前,随着各行各业的不断发展,热能与动力工程的发展方向是比较可观的,它可以在多个领域发展。比如说可以发展热能动力及控制工程、热力发电机及汽车工程等多个方向。但是,需要注意的是,在发展不同的工程时,要掌握不同的热能与动力工程的技术和原理知识,做到具体问题具体分析,更好地促进各工程的较好较快发展。此外,正是由于热能与动力工程拥有较好的发展前景,因此我们更加需要不断提高与该工程有关的技术水平,增强工作人员的专业素质,为该工程的质量提供良好的保证。热能动力工程在动力能源方面的应用与发展在我国的工业发展中,能源动力是不可缺少的重要生产力,并且在很多工业领域中,都离不开热动能这一生产资源。

如何提高能源动力的应用效率,减少热动能的无功损耗,成为了当前工业发展中最需要解决的问题。只有实现热能的高效利用,才能起到节能环保效果,才能促进工业的可持续发展。而在热能动力工程技术中,其所应用在最主要方面就是风机。风机是一种应用非常广泛的机械设备,在多个工程领域都是不可或缺的重要生产设备。如发电厂、车辆、船舶等。风机的主要运行原理是利用多个叶片进行旋转来产生机械能,并应用在工程机械的动力能源中,从而推动工程机械运作。随着工程机械的性能要求越来越高,对风机的运行效率也提出了更高的要求。提高风机性能同时还对于节省动力工程能源也有着重要意义,这是热能动力工程的研究方向之一。目前将锅炉的燃烧控制系统主要分为了以下两种:

第一,目前企业比较常用的就是空燃比连续控制系统。该系统主要由可编程的逻辑控制器、比例阀、燃烧控制器等部分组成。目前,空燃比连续控制系统主要是利用锅炉内部相关燃烧数据的分析传入可编程的逻辑控制器,通过逻辑控制器对于向比例阀传输电子信号,对其开放程度进行调控,由此来控制锅炉内部的温度。

第二,目前应用比较普遍的双交叉先付系统。双交叉先付系统对于锅炉的控制主要依靠温度传感系统来实现。通过对于温度的准备测量,将温度信号传递到逻辑控制器,然后通过逻辑控制器对空气流量阀的打开程度进行调解。同时,对于燃料的进出口进行调解,精确的控制温度。

结束语

总之,热能动力工程是一门对工业动力能源应用非常有利的现代工程学科,其能够促进工业锅炉性能的提升,实现能源利用效率最大化。因此需要我们充分认识到热能与动力工程技术在锅炉领域里的不足,勇于创新并解决它,并且不断实践与学习,来挖掘热能与动力工程技术在其领域中更多的潜力,就能更加高效有序地保证锅炉的运转,提高燃料的利用率。

参考文献

篇5

热能与动力工程是多门科学技术的综合,其中包括现代能源科学技术,信息科学技术和管理技术等,主要涉及热能动力设备及系统的设计、运行、自动控制、信息处理、计算机应用、环境保护、制冷空调、能源高效清洁利用和新能源开发等工作,面向及培养知识面广、基础扎实、创新能力强的复合型高级人才。

篇6

一、热能与动力工程的相关研究

所谓热能动力工程的研究,指的就是我们在日常的工业生产中对热能和动力工程之间的关系的向导和探讨,也是我们对热能研发工业的一种创新和发展,我们要研究的不仅仅是热能与动力工程的日常工作状况,更加要从热能与动力工程的装置概念,以及热能的特点方面来详细的介绍。

1.热能动力装置的概念

热能动力装置分为两大基本类型:第一种,主要是以燃烧之中产生的燃气进入到发动机之中,进而进行相关能量的转换,并且加以循环利用,比如内燃机等装置,是此种类型的典型代表;第二种,则是首先将燃料燃烧过程之中所产生的热能,通过技术手段,传递至相关液体之中,并且使液体汽化,进而气化之后产生的蒸汽导入到发动机当中,从而进行热能的传递以及转换,蒸汽机是其典型的代表。

2.热能的特点研究

(1)是太阳能及其能量的转换。太阳能,通过对植物的照射,进而使植物的内部存有的叶绿素,发生一系列的能源转换以及光合作用,这类光合作用是经过复杂的生物反应而进行的,并不是可以直接的分解或者制造出来的,这是生物科学方面的一个重要的理论,也是我们热能研究的一个重要产生条件。

(2)燃料化学能及其转换过程。燃料化学能的转换,主要是通过燃烧的方式,将存在于其中的化学能,转换成为热能,这主要是涉及到我们的化学反应的过程,是我们的热能生产者运用自己所学到的科学知识,并将其投入到实际的生产过程中去,这也是我们在日常的工业生产中所必备的一个重要方法。

(3)热能的转换。热能的产生还有许多其他的办法,我们可以采用各类动能和势能的转换来获取我们需要的能源,其中主要包括有两种能量的形式,即电能以及机械能,电能包括有热电发电机,而机械能,则主要有汽轮机以及内燃机。根据机械能的守恒定律,我们可以将电能和动能进行一些相互之间的转换,从而满足我们社会生产的需求。

二、热能的利用

1.电力工业

热能动力工程在其中有着非常重要的应用,在核发电、火力发电等装置设备的使用之中,热能动力工程及相关的技术,是其工作的基础。

2.钢铁工业

尤其在高炉炼铁、炼钢以及轧钢等工艺当中,应用极为广泛

3.相关的有色金属工业

其中包括有铝、铜等有色金属,其冶炼,均使用的是热能

4.化学工业

在化学工业的相关应用之中,合成氮、酸碱等的相关生产工艺程序,主要使用到的是热能动力工程之中的技术手段,以其基本的原理来作为理论依据

5.石油工业

其中包括有石油的采集、冶炼、运输等等多个环节,都运用到了热能动力工程当中的相关技术理论

6.机械工业以及相关的建筑工业

包括有材料的生产、材料的制造、相关工艺锻造、焊接技术以及铸造等,都有热能的利用,则是交通运输领域当中,包括有汽车、轮船、飞机等的使用;第八,农业生产以及水产养殖等方面,也有着广泛的运用,包括有蔬菜的温室培养、鱼池的加温加热、电力方面的农业灌溉等方面,均有着广泛的使用。

三、热能动力工程对于环境的影响

热污染、空气污染、噪音污染以及放射性的危害等,在热污染当中,带来的主要危害是温室效应,其主要是河水发电站等,在很大程度上会影响水源当中生物的生存以及空气质量的变化,空气污染,则主要是发电厂、工业设备企业以及暖气、汽车尾气的排放,同样会造成温室效应,所以,针对以上几点问题,需要在相关的工作当中予以改进,更好的为环境的可持续性发展做出积极的贡献。

四、解决热能与动力工程问题的措施重点

1.加快相关产业结构的调整

针对热能动力工程,需要很好的对其相关的产业结构进行调整和改进,力求提升能源的使用效率,同时,积极的针对生产性的服务业,进行发展,以满足人们的方便、提升生产质量为核心内容。产业的结构是保证我们产业得到合理发展和分配的重要因素,也是我们在现如今的产业发展中所能做到的一个很大方面。

2.强化技术创新

针对热能动力工程及相关的产业,需要很好的针对其技术手段进行更新,技术的创新永远是我们面对外界大的竞争力的一个强有力的方法,我们只有不断的提升自身的技术,我们的生产才能得到更好的发展,我们的产业也才会有着先进的竞争力,我们的技术也才能更加得到运用,只有,我们做到了自身的竞争优势,我们的热能和动力工程的研究才能得到很大的提高和维护。

3.从根本做起、从基础性的建设做起,逐步的控制增量

我们解决问题的办法不是高谈一些理论的措施,而是需要我们真正的针对这些问题做到一个解决的方案,要理论联系实际,要针对相关的不足,进行产业的调整以及结构的优化,逐渐的强化相关的污染防治措施,全面的实施重点工程建设,要控制好我们对于热能和动力工程的发展需求量,要在社会资源能够承受的范围内将问题作出一个合理化的解决,这也是一种环保的对待社会资源的自然资源的一种方法。

4.发展创新性的模式,进而加快经济的循环,依靠现代化的科学技术手段

创新型的发展模式并不是说让我们抛弃原有的发展模式,去寻求一个新的方法,热能和动力工程的研究是一个专业并且应当是一个具有一定的技术的产业,也是我们现代社会工业资源发展的主要产业,我们发展的目的也不是一味的追求经济的增长,更加重要的也是希望有一个现代化的科学技术手段和发展模式,这也是我们在面对热能和动力工程问题上的主要解决措施,科学的面对资源的利用和开采,科学的研究热能和动力工程,科学的发展社会主义工业建设,科学的创造美好的工业生产环境。

结语

通过上面的研究,我们能够看出来,我们的社会的热能和动力工程的研究所存在的主要问题,我们也都提出了一些解决问题的办法,这些措施也都是我们社会能源进步的标志性做法,我们的最终目的就是希望我们的热能和动力工程的发展过程能够更加的环保和高效,将能源的利用达到最大化的状态,同时也应该使得我们的热能研究和动力工程研究得到一个很好的联系。

参考文献

篇7

为适应国家经济、科技、社会发展对高素质人才的需求,引导不同类型高校根据自己办学定位和发展目标,发挥自身优势,办出专业特色,“十一五”期间教育部、财政部将择优重点建设一批高等学校特色专业,通过优化专业结构,提高人才培养质量,办出专业水平和特色,为同类型高校相关专业建设和改革起到示范和带动作用。

华北电力大学热能与动力工程专业创办于1958年,原名为电厂热能专业,历经五十多年的建设和发展,现已成为本校师资力量最强、就业形势较好、招生人数较多和学生成才率较高的专业之一,本专业累计毕业生人数已达10616人,在校生人数2647人。尤其最近几年,在两大电网公司和五大发电集团共同组成的校理事会的支持和帮助下,学科实力得到了质的飞跃,毕业生就业形势一直保持在全国各专业的前列。华北电力大学能源与动力工程学院已经成为我国发电领域最重要的人才培养基地,得到了发电行业的充分肯定,在我国发电领域具有重要的影响。

华北电力大学热能与动力工程专业紧密结合国家经济和社会发展需求,以培养“厚基础、重实践、强能力”的热动专业技术人才和管理人才为目标,改革人才培养方案,加强课程体系和教材建设,优化师资队伍,强化实践教学,具有鲜明的“热能与动力工程”专业特色和“电力行业”特色,取得了一系列显著效果。

一、建设思路与改革措施

1.建立并形成热动专业人才培养调研机制

通过校理事会定期开展能源动力、发电(火电、气电、风电和核电等)、环保等相关行业的人才需求形势调研和毕业生就业状况研讨与分析,根据国家的人才需求,制定适应不同专业方向的模块化、层次化人才培养方案。

2.以本科教学水平评估所形成的规范性课堂教学、实践教学和教学管理模式为建设起点,加强精品教材的培育和建设

课程教学体现相关领域的最新发展,普遍采用国内外高水平的新版教材,继续组织编写高质量的适用教材,形成深入开展教学研究的有效机制。

3.加强师资队伍建设,改革教师培养和使用机制

有计划地选派青年教师到企业进行锻炼,到国内外高水平大学或研究机构做访问学者或短期合作研究;鼓励和支持教师参加企业的短期高级技术培训、生产一线观摩、调研和相关会议;聘请一定数量的具有企业生产和管理经验的人员兼职授课,形成学校和企业、学校和国内外大学及研究机构的定期人员交流机制。

4.改革实践教学,推进人才培养与生产实践相结合

为了适应我国能源与电力发展对全新实践型、创新型人才的需求,热能与动力工程实验教学中心整合相关实验室资源,依托电站设备状态监测与控制教育部重点实验室为本科生设立的“能动之光”科技创新项目,建成了包含电厂实践教学模块、动力工程基础实验模块、热能动力工程实验模块、创新实验模块的集知识学习、技能拓展、工程训练、创新能力培养为一体的实验教学示范中心。涵盖专业基础实验、专业实验、综合实验、创新实验,能够满足不同专业、不同层次学生的需要,实现理论与实践、校内与校外的无缝链接,体现“厚基础、重实践、强能力”的人才培养特色。

二、建设成果

热能与动力工程专业是一门跨学科、综合性强、重实践的学科,着重培养基础扎实、知识面宽、能力强、素质高,德、智、体全面发展的,集现代信息技术与热能动力工程知识为一体的高级专门技术人才和管理人才,要求学生通过四年的学习不仅要掌握全面的理论知识,而且必须具备较强的实际操作能力,以适应现代能源、电力行业相关领域对高级人才的需求。华北电力大学热能与动力工程专业以国家能源电力需求为建设导向,从方向凝练、人才培养、教学体系构建、师资建设、教材建设、实验室建设等方面进行全方位探索和实践,取得了丰硕的成果。

1.专业建设别具特色,人才培养模式灵活多样

为适应国家能源电力行业发展的需要,热能与动力工程专业依托一级学科“动力工程及工程热物理”博士点,在热能与动力工程和电厂集控运行方向的基础上,拓展专业方向,开设燃气轮机联合循环、核工程与核技术、制冷与空调工程、新能源等专业方向,覆盖主要发电形式,具有鲜明的电力特色。通过与国家大型企业合作,采用“订单+联合”的培养模式,使专业教育符合社会的发展需求,满足了国家对社会紧缺的复合型拔尖创新人才和应用人才的需要,进一步提高高等教育教学质量,推进人才培养模式改革。

2.加强基础、突出能力、注重创新,构建高质量人才培养体系

按照“夯实基础、突出能力、注重创新、全面发展”的指导思想制定热能与动力工程专业人才培养方案,既加强培养学生厚重的基础,又注重培养学生的创新精神和实践能力。近年来热能与动力工程及相关专业方向毕业生的一次签约率超过98%,毕业生因“作风扎实、动手能力强、有较强的创新精神”深得能源电力行业及其他用人单位的广泛赞誉。

3.优化师资队伍结构、积极打造优秀教学团队

高水平教师队伍是专业建设的有力保障。近年来,热能与动力工程专业按“博士化、工程化、国际化”要求进行师资队伍建设,引进急需人才、培养未来人才、用好现有人才,新引进的教师均为名牌高校的博士或博士后,有数名教师在华北电力科学研究院进行为期半年的工程化训练,有计划、分年度派教师赴美国、法国、英国、丹麦、日本等能源和电力较发达国家的高校或研究机构做访问学者。目前热能与动力工程专业教学团队教师队伍职称结构、年龄结构、学位结构合理,2007年被评为北京市优秀教学团队。

4.以精品课程建设为核心打造课程体系,带动教材建设

根据热能与动力工程专业课程建设计划,以创建精品课程为课程体系建设重点,核心课程全部建成精品课程,同时带动热能与动力工程专业的教材建设,有力推动了热能与动力工程专业的建设水平。到目前为止,已建成1门国家级精品课程、7门省市级精品课程、3门学校精品课程;国家“十一五”规划教材3门及其他教材12门。

5.建设特色实验中心,构建分层次、模块化的实验教学体系

热能与动力工程实验教学中心构建了“专业基础-专业-综合-创新”分层次、模块化的实验教学体系,进一步丰富了华北电力大学“四模块”(基础实验模块、校内实践模块、仿真实验模块、校外实践模块)实践教学体系的内涵。2007年8月热能与动力实验教学中心顺利通过北京市教委组织的专家组评审,荣获北京市高等学校实验教学示范中心称号。

三、鲜明特色

华北电力大学热能与动力工程特色专业时刻以国家能源电力需求为建设导向,以其包容并蓄、均衡有道的精神,不断派生出一批新专业和学科方向,并将继续不断强化内涵、扩展外延,满足国家对能源电力不断发展的新需求,具有鲜明的专业特色。

1.突出专业特色和行业特色

华北电力大学热能与动力工程专业以为国家能源与电力工业培养热动专业技术人才和管理人才为主要目标,专业建设紧密结合国家经济和社会发展需求,具有鲜明的“热能与动力工程”专业特色和“电力行业”特色。

2.支撑学校的大电力学科体系

近年来,热能与动力工程专业针对国家能源结构调整和节能减排工作所形成的新的人才需求,调整和优化了专业方向的设置,从热能与动力工程专业孵化出来的风能与动力工程、核科学与核技术等专业成为华北电力大学大电力学科体系的重要组成部分,进一步提升学校服务于我国能源电力发展的能力和水平。

3.理论与实践教学体系完备,特色鲜明

从复合型人才培养角度出发,建立了以能力培养为主线,分层次、多模块相互衔接的理论与实验教学体系,课程设置实现了系列化、层次化、模块化、厚基础、宽口径,增加学生学习的选择性、自主性,体现“重实践、强能力”的人才培养特色。

4.探索创新人才培养的新模式

积极进行人才培养模式、课程体系、教学内容和教学方法的改革,通过设立“创新人才培养实验班”,采用校企联合“订单式”人才培养模式,为全校本科创新人才培养起到推动和示范作用。

篇8

中图分类号:TK22 文献标识码:A 文章编号:1006-0278(2014)03-180-02

近年来,随着工业的快速发展,我国锅炉的种类也逐渐增多,但是在锅炉的制造和应用方面还存在不少的问题,主要是能源利用效率比较低的问题。因此,如果提高能源利用效率成为我国热能与动力工程研究的方向之一。在本文中,笔者结合自身工作实际,从我国现阶段热能与工程发展情况入手,分析了热力动力工程和能源的发展状况。

一、热力动力工程及其未来发展方向

(一)现阶段的热力动力工程研究情况

我国的热力动力工程专业是在上世纪五十年代形成的,而它的兴起则是在前苏联,这个专业下面还包括几十个小专业,主要与偶电厂热能、制冷、锅炉,以及空调空城、低温、内燃机等等。而在我国实行改革开放之后,尤其是进入新世纪之后,这些小专业逐渐压缩成为九个小专业,前不久有被合并成为一个专业。在我国的大多数高校开设了热能与动力工程专业。

热能与动力工程专业的研究内容包括两个方面,一个是热能,一个是动力,它是一门技术性和应用性均非常强的专业,涵盖的知识领域主要包括机械工程、工程热物理、热能动力工程。此外,还包括能量转换和有效利用的理论和技术等,制冷装置、动力工程、动力机械等也属于这一专业的知识领域。该专业的应用领域也比较广泛,可以说是我国科技发展的基础专业所在。随着我国社会主义市场经济体制的逐步晚上,社会需求的不断多样化,以及科学技术的应用发展,均称为其发展的挑战。

(二)热能与动力工程的发展方向

热能与动力工程的发展方向首先表现在动力控制工程的发展方向,其研究发展需要掌握动力测试技术、汽轮机原理、动力机械设计、热工自动控制,以及燃烧污染与环境、锅炉原理、传热传质数值计算等方面的知识;其次,在热力发电机与汽车工程发展方向上,则需要掌握内燃机原理、燃料和燃烧、热力发动机的排放、环境工程理论,以及内燃机电子控制、低温技术学等方面的知识。

此外,在水利水电工程发展方面还需要掌握水轮机原理、水力机组辅助设备、现代控制理论、电机学与发电厂电气设备等方面的知识。

二、工业炉的发展状况

在工业生产领域,工业炉的作用比较大,在推动工业生产方面发挥着独特的作用。工业炉是一种热能转化装置,通过燃烧来产生热量,然后用燃烧产生的热量来加工物料和工件。在工业生产当中,工业炉是比较重要的生产设备,当前,工业炉在工业生产的各个领域均有应用,而且品种比较多,有力推动了工业生产的发展。早在商周时期,我国已经制造出功能强大的锅炉,随着工业生产的发展,锅炉逐渐发展成为当前的工业炉。所以,锅炉可以说是工业炉的一种特殊形式。相关的统计结果显示,在我国的12个行业当中,工业炉装备在12万台以上,其中,机械制造行业的工业炉占到了总数的67%,而工业炉有可以分为燃烧炉和电炉。现阶段,多数行业使用的是工业炉。而这两种工业炉中,燃烧炉的使用范围最广,有力推动了我国工业生产的发展。

三、工业炉燃烧控制技术的应用

若想比较好地控制热能动力工程锅炉内的燃烧,控制炉内的温度,必须控制能量转化幅度。在过去,锅炉燃烧均是使用人力向锅炉内添加燃料,通过这种方式来保证锅炉的连续工作。但现阶段,不少企业已经采用了步进式锅炉自动控制技术来控制燃料的添加。在下文中,笔者介绍两种锅炉燃烧的控制方式。

(一)空比例连续控制系统

空比例林旭控制系统由气体分析装置、燃烧控制器等部件构成,通过检测热电偶来设定燃烧数据;利用计算机技术计算出燃烧的偏差值,保证输出结果的准确性,实现对锅炉燃烧的控制。不过相关的研究表明,通过这种方式控制燃烧,常常会会出现偏差,计算结果的准确性会大幅降低。

(二)双交叉限幅控制系统

双交叉限幅控制系统,主要由热电偶、烧嘴和流量阀等组成。但是从另一个角度来讲,即通过温度传感器,把需测量的温度转换成电信号,之后,在计算所需测量的温度是不是与预先设定的温度相同,从而实现对锅炉内燃料燃烧的有效控制。锅炉采用这种燃烧控制方式,主要有两个方面的好处,一是可以节省能源和部件,二是可以实现对锅炉内温度的精确控制。实践证明,这种控制技术的应用效果非常好,值得在热能动力工程中应用和推广。

除此之外,控制热能动力工程锅炉内的燃烧温度,还应结合工程的需要,合理选用燃料。众所周知,有些燃料的燃烧控制较容易,而有些燃料燃烧较剧烈,控制相比较难,这就要求在锅炉内填充燃料前,合理选择燃料,通过对比燃烧点、燃烧所持续的时间等确定使用哪种燃料。

四、仿真锅炉风机翼型叶片

在锅炉的内部,有着不少的叶片,这些叶片在燃料燃烧的过程中会通过自身的转动形成复杂的流畅,主要的特征便是非定长。因此,通过相关的实验来检测其性能有着比较大的困难。现阶段,也缺乏健全和完善的流体力学理论知识来解释其中发生的各种现场,比如流动分离现象、失速现象和喘振现象等。在这种情况下,就需要通过流动实验和数据模拟来探测机械内部的流动问题。

五、热力动力工程在能源发展方面

(一)能源方面存在的问题

当前,世界各主要经济体的经济复苏迹象逐渐明朗,随着世界经济的复苏和持续发展,能源供应紧张的局面将会加剧,世界各国将会更加重视本国的能源安全问题,在采取行之有效的能源战略同时,加快各种能源利用新技术和新工艺。而能源动力工业作为我国国民经济和国防建设的支柱性产业,在推动国家经济发展方面做出了突出的贡献。所以,必须提高能源利用效率,缓解能源紧张的局面。

而热电厂的风机,是一种可以产生能源的机械装置,通过轴旋转产生的气流,可产生大量的动能,在发电厂、工业生产和锅炉生产过程中具有广泛的应用。对于一些发电机组来说,随着电力需求的增加,电网的运行将会更加的安全和可靠,所以,这对于风机的应用也就提出了更高的要求。

(二)能源方面的发展前景

人类社会赖以发展的重要基础便是能源,能源在确保人类社会的可持续发展方面有着巨大的作用。在世界能源形势不容乐观的形势下,如果更加合理高效的利用能源,成为世界性的研究课题。当前,我国的能源利用主要以煤炭和电能为主,也就是在能源利用结构中,煤炭是核心,我国是以煤炭为主的能源利用结构。这种能源利用结构,一方面会对环境产生比较大的影响,造成生态环境和大气环境的严重破坏,一方面会消耗大量的能源,过度消耗煤炭资源,使我国的能源供应日益紧张。

篇9

热能与动力工程在锅炉领域的应用,是改善我国锅炉应用中,能源过度浪费、资源量减少的重要举措。经济发展需要能源支撑,近些年环保意识提升,对于能源应用方面更注重利用率的提高。作为能源转换的关键媒介,锅炉的应用领域扩大,逐渐成为热能与动力工程研究关注的焦点。我国地大物博,有丰富的能源资源,但是若一度过度浪费或者无节制消耗,能源会不断减少,甚至限制城市建设与经济发展。在此基础上,就需要及时将锅炉领域发展以及热能与动力工程研究力度加大,推进锅炉建设步伐的同时,不能忽视热能与动力工程的创新升级,植入更多学科知识,并激发热能与动力工程作用,扎实锅炉发展基础,提高运行效率,有效节约能源消耗。

1锅炉应用研究

锅炉在很多工业生产中都是必备组成。通过化学能转换的方式,将能源以热能或者其他能的方式为人们提供,除了化学能与热能转换之外,还能够将蒸汽转换为机械能,其具体结构详见图1。锅炉实际应用中,与发电机相互配合,将普通能源转换为电能,满足生产生活需要的同时,方便产业发展。锅炉的应用种类受到燃料差别影响存在一些不同,如热水锅炉或者蒸汽锅炉等,天然气、煤等都是锅炉运行的关键燃料。应用最普遍的为热水锅炉,是正常生活的必备器械,满足民用热水需求。工业、传播或者机车等行业则应用的锅炉类型为蒸汽锅炉。锅炉应用为人们生活提供了很多方便,同时也为工业发展等创造更多发展与创新的契机。锅炉应用价值巨大,但是能源消耗也比较大,这方面是锅炉长久发展与创新必须关注的内容。如何提高锅炉应用作用,减少锅炉运行能耗,是当前锅炉应用研究的重点内容。

2热能与动力工程介绍

热能与动力工程研究中,必须掌握其中的组成内容,这样才能在提高热能与动力工程转化效率方向引导下,取得更理想的创新效果。流体机械、热力发动机、热能动力、火力火电、水利水电、制冷低温工程、能源环境、新能源开发等都是热能与动力工程研究的重点,寻找更科学的方式,有效转化热能与动力,是热能与动力工程研究的主要方向,同时也是综合性较强的体现。热能与动力工程研究中,加大深入研究力度,从系统化角度出发,融入更多自动化元素,简化能量转化过程的同时,真正将能源利用率提高,并且为锅炉的应用与升级提供更多帮助。

3锅炉领域中热能与动力工程应用问题剖析

针对当前的锅炉应用来讲,其生产运行期间,风机非常关键,是帮助其实现能源转换的基础,及时为锅炉运行输送所需要的有效气体。在这种情况下,热能与动力工程的应用,将其有效渗透到风机运行中,经过行之有效的优化与调整,对锅炉风机结构加以升级,并且提高锅炉运行效能。当然整个过程中必须认识到,锅炉内部结构尤其复杂,特别是叶轮方面,外界因素极易对温度变化值造成影响,造成锅炉测量的结果准确性下降,系统安全可靠性降低,这方面必须提高重视。面对这方面的问题,热能与动力工程植入研究中,虽然不断寻找更合理的创新方式,但是所提出的处理办法缺乏确切性。两者的融入并非一无所获,热能与动力工程帮助锅炉及时对风机叶片燃烧环节进行检测,不仅能够精准掌握其速度,同时还能够根据数据统计对燃烧速度进行模拟,对风机叶片的使用寿命进行高精度模拟与评估,严格控制锅炉运行与燃烧速度,将锅炉运行期间可能存在的风险排除。

4锅炉领域热能与动力工程应用必要性

热能与动力工程在锅炉的应用中,根据锅炉运行依靠的机械工程学原理,及时在其中注入跨热能动力学内容,从而对转化规律进行掌握,梳理与总结将能量进行最大化转化的方法。从整体上来讲,热能与动力工程在锅炉中的应用,工程专业性特点非常突出。实际应用中,研究的主体为热能与动力转化,根据锅炉应用特点,注重转化效率提高的同时,还要综合机械、工程热物理以及其他领域工程变化规律,以达到锅炉运行中热能与动力工程应用目的。作为锅炉运行中的重要组成,热能与动力工程实际应用中,必须尊重其中的系统性变化,并且总结锅炉运行规律。加大信息技术与自动化技术等的应用,明确锅炉发展的方向,核心在于综合应用自动化技术,有效将其融合到热能与动力工程中,将其作用发挥到最大化。与此同时,还要将锅炉运行效率提高,保证锅炉运行安全的同时,激发锅炉运行的经济价值。

5锅炉中热能与动力工程运用创新举措总结

5.1风机监控中热能与动力工程的应用

热能与动力工程在锅炉的运用中,针对锅炉中的风机进行了优化与创新。对风机的应用进行了客观分析,认识到风机作为锅炉结构的重要组成,及时为锅炉提供运行所需要的气体,以保证燃料得到充分燃烧。社会建设与经济发展背景下,锅炉能源消耗率增加,及时将风机运行时间延长,才能真正将锅炉运行效率以及能源供应率等提高。部分锅炉系统运行中,过度追求效率提升,以不科学的手段将风机运行时间延长,如此会增加风机运行负荷,热量迅速增加,风机结构位置特殊,若热量增加却得不到及时措施予以降温,必然会出现问题,不仅无法将锅炉运行效率提高,甚至还会对正常运行造成影响,威胁锅炉运行安全。面对这种情况,热能与动力工程的应用,及时明确风机运行期间所承受的负荷点,并制定科学合理的散热方案,保证风机恒温运行,延长风机使用寿命,提高风机运行效率。热能与动力工程与风机运行的结合,必须对其内部结构全面了解,认识到风机运行期间温度数据的测量与统计,常规测量手段并不能满足其要求,尤其是技术方面存在明显的限制性因素,在这种情况下,从电气技术方面着手,利用软件的方式,对风机叶片燃烧速度进行实时监测,及时统计监测数据并迅速创建二维模型,在网格划分基础上,得到风机叶片燃烧的准确速度。求解器的协助下完成计算与结构分析,这种方法在一定程度上解决了风机运行期间温度控制、燃烧速度等监测短板,当然实际应用中比较容易受到温度影响而出现一些温差,这方面还需要进一步深入研究。

5.2锅炉燃烧控制方面热能与动力工程的应用

热能与动力工程在锅炉中的应用,还体现在燃烧控制方面。锅炉整体运行中,燃烧控制是重要组成,不仅对能量转换幅度进行有效调整,同时也是自动化控制升级的关键环节。现代化技术与自动化模式的融入,帮助锅炉实现了人力填充燃料的转变,升级为步进式自动控制填料,当前部分锅炉已经实现了全自动燃烧控制,自动化水平明显提高。结合当前锅炉中热能与动力工程应用情况,其与自动控制技术的融合等,科学控制锅炉的燃烧速度。具体控制方法主要包括两方面。(1)空燃比例连续控制系统,组成部件包括烧嘴、热电偶、流量计、PLC、燃烧控制器以及气体分析装置、电动蝶阀等。从热点偶检测的方式,对燃烧控制数据及时掌握,随后是数据传输,对比锅炉运行规定数值,通过比例积分以及锅炉输出电信号等对存在的偏差值进行调节,还要控制电动蝶阀以及比例阀等开合的具体程度,由此帮助空燃比例连续控制系统实现空气、燃料比例的严格控制,从而达到对锅炉内温度有效调节的目的(图2)。当然这种温度控制方式在实施中受影响因素较多,所以精确性方面还需要进一步提高,特别是其中的额定数值,必须提前仔细确认。(2)双交叉限幅控制系统,同样是热能与动力工程在锅炉燃烧控制中的应用体现。此系统的运行,涉及到烧嘴、流量计,还应用到燃烧控制器、热电偶以及流量阀等。温度传感器积极配合热电偶,将测量温度的相关信息及时转换成电信号是基本工作原理。测量点实际温度便是电信号,结合工艺曲线测定的方式,对电信号进行数值对比,随后在PLC的帮助下,对空气流量阀开合程度适当调整,并调整燃料,严格按照规定比例对空气、燃料等加以控制。空气流量需要孔板与差压变送器的支持完成测量。在此基础上还要安装质量控制装置,及时对锅炉燃料量进行控制,保证温度控制在合理范围内。

6锅炉中热能与动力工程运用发展方向研究

锅炉中科学应用热能与动力工程,不仅帮助锅炉实现了各方面数值的严格控制与实时监督,同时也完善了锅炉内部结构,升级了锅炉运行性能。热能与动力工程在其中的应用范围还在不断扩大,帮助锅炉对热能有效控制,节约锅炉运行能耗,降低锅炉对环境的污染,同时协助锅炉实现热工自动控制。除此之外,热能与动力工程的研究,在汽车工程或者制冷低温工程等方面也有明显应用。及时对内燃机进行优化,科学控制热力发动机的运行排放等,协调其与环境的关系。通过低温技术学以及制冷原理等研究,完善了制冷低温系统,提高制冷低温系统运行效率。

7结束语

对于锅炉来讲,热能与动力工程在其中的运用,不仅从多方面对锅炉自动化运行水平加以提高,同时也优化了锅炉运行结构,提高了燃烧效率,协助锅炉真正实现精细化能耗控制。尤其是风机监控以及燃烧控制等方面,经过有效磨合与优化,锅炉以及热能与动力工程都取得明显进步。

篇10

热能与动力工程在我国发展的时间不算短,已经形成了一套自身的理论。随着社会进步的不断加快,锅炉生产企业对如何提高锅炉的热能越来越重视。近几年,通过把热能与动力工程的理论和具体经验融入到锅炉生产中去,有效地提高了锅炉的热能。但是当前如何提高热能与动力工程在锅炉领域中的有效运用还没有进行深入研究,需要引起相关人士的重视。

1 锅炉结构分析

锅炉作为一种能源转换设备,也就是把燃料中的热能转化为电能、光能等形式的能量。由于锅炉应用的范围十分广泛,所以锅炉的质量直接关系到锅炉企业以及其他应用行业的发展。按照不同的标准锅炉可以分为不同的类型,但是不论是哪种类型,其和其他种类的锅炉具有同样的实质,起到的作用就是实现能源转换。当前最为常用的就是电站锅炉和工业锅炉。二者的区别就是后者比前者使用的范围更加广泛。不同的行业所使用的锅炉类型是不同的,锅炉生产企业应该生产不同用途的锅炉,满足市场的需求。

从锅炉的整体来说主要包括以下两个部分:外壳与电气控制。而外壳则是由底壳和面壳两个部分组成的,这两个部分的作用存在着很大不同,但都对外壳的正常使用有着重要意义,底壳在功能上支持锅炉燃烧,在作用上则是锅炉燃烧的核心部分。在底壳上设置了电控盒与热交换器,这两个部件和底壳连接在一起就构成了一个完整的部分,同时也能够保证与其他部分的连接质量。面壳对于锅炉的燃烧起到间接保护的作用,能够有效地避免杂质进入到锅炉内部,对锅炉燃烧造成不良影响,同时也能够对锅炉中的其他部件起到有效地控制作用。

2 热能与动力工程在锅炉领域中的应用

随着热能与动力工程的发展,人们开始针对热能与机械能之间的转化进行了深入地研究,如何提高二者之间转化的效率已经成为了锅炉生产企业必须关注的问题,这也要求研究生产人员具备较高的专业知识,特别是工程机械学和跨热能动力学方面。在研究热能与动力学工程的过程中,实现理论和实践相结合,即把理论知识运用到实践中,从实践中总结出理论知识,这样才能更好地促进热能与动力学工程在实践中的有效运用,特别是在锅炉生产领域。由于热能与动力工程涉及的内容很多,随着我国信息技术水平的不断发展,其获得了大量高新技术的支持,在使用中发挥出更好的作用,促进我国锅炉生产企业的发展,也进一步提高了企业的经济效益,在激烈的市场竞争中获得生存。

2.1 热能与动力工程在锅炉风机监控中的应用

锅炉的构造十分复杂,其中风机是锅炉构造中十分重要的部件,风机性能的好坏直接关系到锅炉能否正常运行。风机所起的作用就是把外部夹杂氧气的气体运送到锅炉中,这样才能够保证锅炉内的燃料充分燃烧,提高了锅炉的热能转化率。在我国经济发展同时需要消耗大量的能源资源,而能源资源的数量是有限的,所以为了解决节省能源资源,就需要延长风机的运行时间。但是在风机运转的过程中,随着时间的增长会产生大量的热量,一旦这些热量排不出去,就会导致风机烧毁,甚至导致整个锅炉设备无法正常使用。而热能与动能工程在风机监控中使用,就能够改善风机的工作现状,延长风机的时间并迅速地排出大量的热能。

由于风机的内部构造十分复杂,使用常规的测量方式很难正确测量风机内部的温度数据,而且虽然科学技术得到了发展,但是针对解决风机温度的测量方案取得的效果不是很好。把热能与动力工程软件应用到风机温度测量中,能够实现从不同方向上对风机温度进行测量,而且能够自动创建二维模型并进行网格划分,同时计算出结果,使风机的运行得到有效控制。虽然这种方式相比其他的测量方案取得的效果更加显著,但是仍然存在一定的误差,不过这种误差都是在可控范围内的。

2.2 热能与动力工程在锅炉燃烧控制中的应用

锅炉主要是通过燃烧燃料来实现热能的转换。而锅炉燃烧的控制技术就是对能量转换的幅度进行控制和调整的技术。随着科技的发展,锅炉填料已经从过去的人工填料转化为自动填料,甚至出现了全自动智能化锅炉控制系统。锅炉燃烧控制技术可以根据锅炉所采取的自控技术进行分类,下面进行细致阐述。

2.2.1 以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC等部件组成的空燃比例连续控制系统。这种燃烧控制系统主要是通过热点偶检测燃烧的温度数据传输到PLC中,并与已经设定的标准值进行比较,把两个数据之间的偏差值通过比例积分运算输出电信号,并同时进行调节,进而达到满足锅炉所需要的空气和燃料之间比值的目的并有效地调节锅炉内部的燃烧温度,但是使用这种控制系统对于温度的控制并不准确,这就需要工作人员能够对标准数值进行确定并对燃烧温度的数值进行仔细测量。

2.2.2 由烧嘴、燃烧控制器、流量阀、流量计、热电偶等组成的双交叉限幅控制系统。其工作原理主要是通过温度传感器和热电偶把需要进行精确测量的温度变成电信号,这个电信号即测量点的实际温度,此测量点温度期望值是由预先存贮在上位机中的工艺曲线自动给定的,根据这两个数据之间偏差值的大小,由PLC自动调整燃料与空气流量阀门的开合程度,通过电动运行机构的定位及空气和燃料的比例控制,并借助孔板和差压变送器测量空气的流量,采用一个专用的质量控制装置来控制燃料量,从而使温度精确地控制在需要的数值上。

3 热能与动力工程的发展方向

随着对热能与动力工程研究的不断深入,该项技术应用和发展的范围更加广泛,也更加关注燃烧污染、动力机械设计等方面。除此之外,汽车工程方向也是该项技术应用和关注的主要方向,例如内燃机电子控制、发动机运行等方面。还有一个方向就是制冷方面。总之,当前对热能与动力工程研究的还只是一小部分,还需要专家学者不断在实践应用中总结,不断丰富该项技术的理论知识,尝试在其他领域应用该项技术,促进该领域的发展。

4 结束语

综上所述,文章主要针对当前锅炉领域热能与动力工程的有效应用进行了分析,使得锅炉利用效率得到提高,锅炉燃烧水平呈现上升趋势。除了热能与动力工程知识以外,其他领域知识的综合运用也使我国锅炉燃烧质量更加有保障。热能与动力工程是一门内涵丰富的学科,可运用的空间很大,需要社会人员对该项工程进行系统性的研究,这对于社会经济的发展也具有促进作用。

参考文献

篇11

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2014)36-0113-02

能源是现代人类文明的支柱之一,能源类人才的培养一直是我国高等教育中不可或缺的一部分。在中国教育部(原国家教育委员会)《普通高等学校本科专业目录》的制订与修订过程中,与能源相关的专业随着学科的发展、社会分工的变革以及教育对象的变化不断地进行着调整。本着适应经济社会发展、社会需求的变化,适应高校多类型、人才培养多规格的需要和有利于复合型、创新型人才的培养的原则,与能源相关的专业从第二版的“热能核能类”中的四个专业经历第三版中的“能源动力类”的两个专业后,发展到2012年第四版“能源动力类”的“能源与动力工程”一个专业。《普通高等学校本科专业目录》修订过程中的专业调整,不仅为我们明确了专业建设的指导思想,同时也对我们提出了专业建设的新任务。

我校创建于1951年,1985年开始本科生教育工作,是一所电力行业为背景、特色鲜明的行业类院校。“热自”专业(即现在我校“能源与动力工程”专业的前身)设置于学校创立之初,是学校的老牌专业。在60多年的办学过程中,尽管专业名称经历了“热能工程”、“热能与动力工程”和“能源与动力工程”的变化,但是专业建设始终本着为电力行业服务的宗旨,努力打造“电力工程师的摇篮”,在课程体系的构建、实践环节的设计上侧重于培养电力行业内的能源专业技术人才,为我国电力工业培养了大量的专业人才。

2012年《普通高等学校本科专业目录》颁布实施,我校的“能源与动力工程”专业以此为契机,在专业建设方面,结合自身专业的背景情况,深入思考,在专业建设的某些方面又进行了有益尝试。

一、专业方向的设定

2012年颁布实施的《普通高等学校本科专业目录》第四版中能源动力类二级学科门类下列的专业仅存了“能源与动力工程”一个专业,使得该专业转型成了一个“大能源”范畴 内的专业。但是,从人才培养的规律来说,在拓宽专业面的同时,还是要“有所为,有所不为”。我校的“能源与动力工程”专业一直以为电力行业培养人才为主,是侧重于电厂的热能动力,这个主线条不应改变。但同时考虑到即便是电力行业内的人才,在实际工作之中也要“术业有专攻”的实际情况,我们的“能源与动力工程”专业人才的培养既不能过于宽泛,又不能过于单一,培养方案最好能够体现在一定行业领域的多元化培养。

人才的培养源于社会的需求,专业的培养方案应以满足社会人才的需要为首要目标。多年来,我校教师与电力行业企业紧密接触,及时掌握人才需求的发展动向,同时对毕业生就业后的实际工作岗位进行一定的跟踪,在掌握一定信息的情况下了解到,电力行业内所需要的能源动力工程专业人才也在发生着一定的变化,从以往传统的电厂运行人员为主,已经悄然衍生出污染物控制、清洁能源、节能、能源管理等多种人才的细化。

综合前面专业设置变化和人才需求细化两种情况,我们结合学校多年来对电力行业内“能源与动力工程”专业人才的培养经验,发挥自身专业特点和优势,以专业方向的多元化设置为切入点,在培养方案中,通过课程的设置,凝练和体现出三个专业方向:电厂热能动力、洁净发电技术和节能与能源管理。“电厂热能动力”方向继续秉承和发挥学校的专业特色,旨在培养电力生产运行、检修方面的人才;“洁净发电技术”方向紧跟我国的能源和环保的发展趋势,侧重于培养学生在污染物控制和新能源方面的素养;“节能与能源管理”方向结合建设资源节约型和环境友展节好型社会的客观需要,培养有节能意识、熟悉节能管理、掌握一定节能技术的能源计量与管理人才。

二、课程体系的的构建

课程体系的构建是否合理决定着培养目标是否得以实现,直接关系到人才的知识储备,课程体系中课程的配置需要从多方面综合考虑,即要形成较为完成完整的人才培养课程体系,又要能体现出的专业方向的设置。

能源动力工程专业是一门内容丰富而又广泛的学科,所涉及的课程较多,为了合理配置课程,我们按照学校教务处的要求,设置了公共基础课程、专业领域课程、拓展选修课程、集中实践教学四个模块。在这四个模块中除了公共基础课程模块与专业本身的直接关联度不大外,其他三个模块都与专业关系密切。

考虑到“工程流体力学”、“传热学”、“工程热力学”、“工程燃烧学”、“锅炉原理”、“汽轮机技术”、“热力发电厂”等专业基础课和专业课是我校能源动力工程专业的传统课程,这些课程的知识是无论哪个专业方向的学生都应该掌握和具备的知识,在课程体系中,将这些课程设置在必修的专业领域课程模块中,以确保每名能源与动力工程专业的学生都必须学习这些课程。

而在体现我校“能源动力工程专业”专业方向的多元化方面,我们在灵活性较大的拓展选修课程模块中动足脑筋,在满足学校课程学分设置的前提下,在拓展选修课程模块中精选课程,使得拓展选修课程模块中课程都与各自的专业方向相契合,比如“电厂热能动力”专业方向设置“单元机组及集控运行”、“超临界和超超临界参数机组”等与电厂实际联系紧密的7门课程,“洁净发电技术”专业方向设置“洁净煤技术”、“可再生能源发电技术”等与清洁发电有关的8门课程,“节能与能源管理”专业方向设置“能源管理与审计”、“节能技术概论”等能源管理类的8门课程。与此同时,为了满足部分学生对拓展专业视野的需求,又将拓展选修课中不同专业方向的选修课相互打通,允许学生跨专业方向选修课程,使得拓展选修课程模块中课程的选修灵活性更强。

在集中实践环节的实践教学设置中,继续秉承“重传统,拓方向”的思想,无论哪个专业方向的学生,都要求参加下电厂的专业实习、仿真实习和“锅炉原理”、“汽轮机原理”和“热力发电厂”三大专业课程的课程设计等实践环节,以保证我校能源与动力工程专业学生的电力特色。此外,对三个专业方向又各自设立了自己的实践教学环节:“电厂热能动力工程课程设计”、“洁净发电技术课程设计”、“节能与能源管理课程设计”,来体现专业方向侧重的不同。同样也允许学生跨专业多选其他专业方向的实践环节。

三、师资队伍的建设

师资是培养方案的执行者,良好的师资队伍是教学质量的保证,我校的能源与动力工程专业一直非常重视师资队伍的建设,采用引进与培养相结合的方法建设师资队伍。

首先,我们从外面引进高水平人才来补充新专业建设所需的专业教师扩充我们的师资队伍。近几年,我们有针对性地从国外引进上海市“东方学者”两名,提升了师资队伍在分布式能源与制冷领域的专业水准;从电力行业的研究所和一线企业引进了经验丰富的高职称人才和实验人员,增加了有工程经验的师资力量。

其次,我们从培养自身教师入手,通过进修学习、产学研合作、“双师计划”培训等多种方式提高教师的学术水平和工程水平。近几年,我们选送了1名优秀教师赴美国进行为期一年的风能发电方面的学习交流;先后选送若干名教师去西安热工院、外高桥电厂等行业内单位进行产学研合作;每年都有序地选送教师进行“双师型”(教师和工程师)人才的培训。

最后,我们还在日常教学工作过程中对教师的教学工作精益求精。在新教师入职初期,我们要求新教师都必须参加上海市教委组织的“新教师岗前培训”。在教学方面,提出“先做学生再做老师”的要求,无论新进教师在科研上有多深的造诣,规定新进教师第一学期随老教师听课、辅导,并由专人传、帮、带。第一次开课前需通过内部试讲后才能踏上讲台。

四、课程建设工作

课程教学是学生获得知识,发展能力和素质的重要途径,课程建设是高等学校的专业建设的基础工作,加强课程建设是有效落实培养方案,提高教学水平和人才培养质量的重要保证。

在课程建设方面,我们根据课程的内容和任务,明确出3门专业基础主干课程和3门专业主干课程。对于这几门课程先后进行主干课程、校级精品课程、上海市教委重点课程和上海市精品课程等几轮课程建设工作。经过几年的积累,我们的主干课程已全部成为校精品课程,4门课程为市教委重点课程,3门课程进级上海精品课程行列。除此之外,我们还进行一系列的教学改革工作,《面向行业一线的热力透平类课程教学改革》荣获上海市教学成果三等奖。这些工作有力地支持了培养方案更好的执行。

五、结束语

我校的能源与动力工程专业电力特色鲜明,在多年办学经验和基础上,结合电力行业对人才的要求,在如何培养具有电力特色的能源动力工程人才方面进行以一定的探索,也取得了一定的成效。但同时我们也意识到专业建设工作是一个任重而道远的工作,永远没有终点,如何进行专业建设工作,我们还将继续积极进行探索。

参考文献:

[1]中国教育部.普通高等学校本科专业目录.1987年(第二版),1998年(第三版),2012年(第四版)

篇12

当前,随着我国能源供应的日益紧张,我国能源利用效率问题倍受关注。众所周知,我国的能源利用效率,相比西方发达国家,还有一定的差距。而在反映能源利用品质的研究方面,与西方国家的差距也比较大。如果反映能源利用的品质问题,成为当前业内研究的热点问题。在本文中,笔者结合自身的理论知识和工作实际,探讨了热力学参数在热能与动力工程中的实际应用。

一、热力学参数的概念

热力学的相关理论认为,热力系统中的各种工质,只要状态和环境这两方面的差别很小,哪怕很小的差别,那么对环境也是做功的,可以产生一定的做功能力。不过从一个已知的热力系统的状态,从可逆条件过渡到环境平衡状态,在这个过渡过程中,热力系统对环境做功率会达到最大。热力系统在此状态下,用一个专门的术语概括便叫熵。。

这个概念的提出,醉倒可最追溯到十九世纪4年代卡诺的著作,也就是其著名的卡诺原理。根据卡诺的卡诺原理,热能可划分为两个部分,一是无用部分,一是可用部分,把热能的可用部分引入到工程热力学当中。但是由于当时技术条件的限制,技术水平有限,这一概念并没有引起人们的重视,指导是上世纪三四十年代,才把这一概念应用到热能与动力工程的研究当中。

而在上世纪50年代中,这一概念的名称还是存在争议的,主要包括“做功本领”“做功能力”“可用性”等等,为了统一名称,郎特做了大量的研究工作,最后得以统一,我国把这一概念译作用熵。

在热能与动力工程当中,一般情况下,稳定流动的情况经常出现,在热力设备的稳定流动状态作用下,工质便会进入热力系统中,热力系统中的流入能量与流出的能量是一样的。但是,如果忽略系统出口处、进口处的工质的位能差别与动能差别,则能够改变能量方程式。而如果能量流动过程可逆,则系统就不会出现熵增的状况,在这种情况下,我们便可以得到熵的方程式。

二、热力学参数熵的类型

热力学参数的工质所具有的能量中,较为理想的情况时在技术上可以完全使用,可产生最高额,也就是在“能级”或者“最大可利用度”的情况下。在这种情况下,热力学参数可应用于自然界中所有的能量形式。所以,热力学参数可以分为热量熵、机械功熵、电能熵和化学等不同的类型。

(一)机械功熵

在热能与动力工程中,机械功熵,一般情况下,是指工质与外界之间的相互作用。笔者将通过例子来说明,比如能量的品质,机械功与工质机械能处于同样的能级,这两者不像热量那样,比较容易受到热力学条件的限制,因此,二者最大可利用度搞到10.12%,或能级为1。因此,机械功炯,从数值方面来看,和机械功是相等的。

在热能与动力工程中,一般情况下,以效率高低评价能量转换装置的优劣:装置转换或输出能量与输入能量的比值。

在衡量热功转换的各种指标,热效率是一个关键指标之一,同时,其也是衡量热能与动力工程能源利用效率的常用指标之一,它能够从数量方面,在一定程度上揭示热能动力工程在循环过程中的能源利用程度。实践表明,衡量热功转化,只用热效率这一个指标评价是不科学的、不合理的,比较片面。这主要是因为,系统装置转化效率的高低,不可以完全说明系统装置转换性能与理想的效果之间,与理想装置之间的差距。所以,仅用热效率也就无法准判断装置转化效率的合理性。

不过,从节能环保的角度看,找出热效率与理想装置之间差距,并分析热效率与理想装置之间差距的成因,寻找缩小差距的途径,是热能与动力工程的关键所在。正是因为这个原因,以热力学第二定律的基本前提的效率定义的确定过程,同时也是选择和比较各种形态能量指标的一个过程。

事实上,实际所消耗的能量炯,与实际得到能量烟和所消耗的能量的烟,并不能简单判定,而需要由各类热工装置的功能来确定。由上文中的分析可以得知,任何热力系统或者热工设备其炯效都比1要小,在理想条件下效率值才是1。

由此可以看出,上文中的两种分析热能动力循环过程方法,角度地不同的。热效率法是从能量数量上来分析,按照热力学的相关定律,从输入、损失和有效转换能量的角度分析,建立相应的循环、装置和设备热效率概念,分析各种系统和装置的效率。这种分析方法仅涉及能量转换中数量关系,本质以能量守恒定律为基础的能量数量平衡。

但熵效率法则考虑到热力学的所有定律,从做功能力变化角度分析。我们知道,做功能力概念包括能的质、量,即熵效率分析中,考虑能的数量,同时考虑能的质、量,分析指标做功能力损失数值;该方法实质是以热力学第二定律为基础的熵平衡。

(二)分析比较

热效率分析法、做功能力损失分析法是不同的。由于这两种分析法分析角度不同,因此结论差别较大。比如锅炉效率大于90%时,热效率法分析法认为,锅炉效率较好。但用熵分析法认为,锅炉生产效率有待提高。

在冷凝器中,热效率法从能量平衡入手,排热多、损失大,而熵分析方法热为,排热量虽多,但由于温度低,所以做功能力损不大。通过以上分析,笔者归纳出热效率法与烟效率法的应用原则:

热效率法可计算热能与动力工程装置循环、各部件或各环节中能量利用率、损失部分数量等,比同等条件下循环、热力设备分析效果好。尤其是分析结果,不管是循环热效率,还是热能与动力工程装置总效率,分析的结果均可靠,相关经济指标能说明能量能源的利用情况。因此,在过去,这是唯一循环分析法。截止到目前,该分析方法在热能与动力工程仍然在使用,而且使用的范围还比较广。

由于热效率法无法计算出,比如锅炉中温差传热等,这些具有不可逆性特征产生的做功能力损失,所以,其适用条件也有所限制的。但是从度量热工设备热力学理论来分析,尤其从节能环保的角度来考虑,计算该部分损失,可以说是具有重要意义的。同时,这也是热效率分析法特点之一。

从质量方面看,热效率分析法的结果,可准确找到效率比较低的环节、设备和部件等,包括准确找出效率低下的原因。同时,这是热效率分析法的主要优点。所以,热效率分析法各种热工设备、系统、制冷装置中,热效率法的应用可以说比较广泛。

三、熵在热能与动力工程中的实际应用

目前,熵在热能与动力工程中主要应用在以下方面:

第一,热能与动力工程循环系统热能利用设备的熵损失、热能分配情况的计算;

第二,比热能与动力工程电气设备的热力性能的比较;

第三,余热利用资源的统计;

第四,热能与动力系统的最优分析评定。

篇13

1.热能动力工程的研究方向

热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。目前我国有120多所院校开设有该专业,它由旧本科的九个相关专业合并而成,包括了原来的热力发动机(080311)、热能工程(080501)、流体机械及流体工程(080313)、热能工程与动力机械(080319W)、制冷与低温技术(080502)、能源工程(080506W)、工程热物理(080507W)、水利水电动力工程(080903)、冷冻冷藏工程(081409)专业。

热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。专业通过理论力学、材料力学、工程制图、机械设计、电工与电子技术、工程热力学、流体力学、传热学、控制理论、热工测试技术以及专业方向课程的学习,使我们具备工程热力学、流体力学、传热学和热工测试技术等热能与动力工程领域的基础理论、实验技能和基本专业知识,掌握制冷空调设备、制冷装置、动力机械与动力工程、流体机械等设计、制造和实验研究的基本技术。在此基础上,它是一个宽口径的专业,拓展空间很大,就业方向很广,有电厂热能工程及其自动化方向、工程热物理过程及其自动控制方向、流体机械及其自动控制方向、空调制冷方向等。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。

2.热能工程技术在能源方面需要解决的问题

能源问题在当今社会举足轻重,热能与动力工程专业在国民经济中的地位可想而知。

能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。

风机是一种装有多个叶片的通过轴旋转推动气流的机械。叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动。风机广泛应用于发电厂、锅炉和工业炉窑的通风和引风,矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却等[1]。尤其是在电站,随着机组向大容量、高转速、高效率、自动化方向的发展,电站也对风机的安全可靠性提出了越来越高的要求,锅炉风机在运行中常发生烧坏电机、窜轴、叶轮飞车、轴承损坏等事故,严重危害设备、人身安全,也给电厂造成巨大的经济损失[2]。此外,风机一直是电站的耗电大户,电站配备的送风机、引风机和冷烟风机是锅炉的重要辅机,降低其耗电率是节能的一项重要措施。

3.热能专业中工业炉的发展

工业炉是在工业生产中,利用燃料燃烧或电能转化的热量,将物料或工件加热的热工设备。

中国在商代出现了较为完善的炼铜炉,在春秋战国时期,人们在熔铜炉的基础上进一步掌握了提高炉温的技术,从而生产出了铸铁。1794年,世界上出现了熔炼铸铁的直筒形冲天炉。后到1864年,法国人马丁运用英国人西门子的蓄热式炉原理,建造了用气体燃料加热的第一台炼钢平炉。随着现代化管理水平的提高,计算机控制系统的不断完善,现代连续加热炉也应运而生. 现代连续加热炉炉型可以归入两大类:推钢式炉和步进式炉。两类炉型的根本区别,仅在于炉内的输料方式。

4.炉内燃烧控制技术

其燃烧控制是步进炉的核心技术之一,手动控制已被自动控制方式所取代。目前大规格钢锭推钢式加热炉可选用的燃烧自控方式通常有:

(1)空燃比例连续控制系统,该系统主要由烧嘴、燃烧控制器、空气/燃气比例阀、空气/燃气电动蝶阀、空气/燃气流量计、热电偶、气体分析装置、PLC等组成。工作原理是由热电偶或气体分析装置检测出来的数据传送到PLC与其设定值进行比较,偏差值按比例积分、微分运算输出4-20 mA的电信号分别对空气/燃气比例阀和空气/燃气电动蝶阀的开度进行调节,从而达到控制空气/燃气比例和炉内温度之目的。

(2)双交叉限幅控制系统,该系统主要由烧嘴、燃烧控制器、空气/燃气流量阀、空气/燃气流量计、热电偶等组成。工作原理是:通过一个温度传感器热电偶把测量的温度变成一个电信号,该信号表示测量点的实际温度,该测量点的温度期望给定值是由预存贮在上位机中的工艺曲线自动给定的。根据这两个温度值偏差的大小,PLC自动校准燃气/空气流量阀的开度。该阀通过电动执行机构定位。空气/燃料比控制,借助于孔板和差压变送器来测量空气流量,燃气的流量是借助于一台安装在燃气支管上的质量流量计来测量,使精确的温度控制得以实现。

5.软件仿真锅炉风机翼型叶片

由于锅炉叶轮机械内部流场非常复杂,并带有强烈的非定常特征,进行细致的实验测量非常困难,目前尚没有完善的流体力学理论解释诸如流动分离、失速和喘振等流动现象,这就迫切需要可靠详细的流动实验和数值模拟工作来了解机械内部流动本质。将利用软件对锅炉风机翼型叶片进行二维的数值模拟,研究空气以不同的方向流入翼型叶片入口所造成的流动分离。根据数值模拟的一般步骤:创建二维模型,进行网格划分,设定边界条件和区域,输出网格,再利用求解器求解,对不同空气来流攻角角下的流动进行二维数值模拟。在得到模拟结果后,对不同攻角下模拟所得到的速度矢量图进行比较分析,得出锅炉风机翼型边界层分离和攻角的关系。(作者单位:辽宁工程技术大学)

参考文献:

[1] 安连锁.泵与风机[M].北京:中国电力出版社,2001.

精选范文
友情链接