发布时间:2023-12-09 18:19:45
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇生物材料的前景范例,将为您的写作提供有力的支持和灵感!
随着现代工业的发展以及各种污染气体排放量的增加,使得地球上的环境被污染的越来越厉害。地球是我们唯一家园,我们应该想尽一切办法去保护地球的环境。现在政府已经开始采取措施治理工厂废气的排放,但是,在我们日常生活当中想要减少废气的排放,还是需要我们去共同努力的,比如减少汽车尾气的排放。汽车排放的尾气会对环境造成污染,主要是因为汽车燃料是石油制品。只要我们能找到适合的燃料去替代石油制品,那就能p少污染性的气体的排放,同时还不影响人们对于汽车的使用。于是,生物柴油应运而生。本文试图分析生物柴油,了解生物柴油具有的优点,浅谈生物柴油具有的应用前景:
一、生物柴油相较于普通的柴油的突出优点
(一)不会污染环境
生物柴油之所以被称为生物柴油,是因为它从生产到被分解,都不会涉及到任何的化学成分。我们现在的环境被污染,也主要是各种化学成分造成的。生物柴油本身在燃烧分解的时候不会产生任何的化学气体,这当然就不会对环境造成威胁。生物柴油在被分解之后,产品是水。水排放到大自然当中,是不会对我们赖以生存的环境造成任何威胁的。排放的水可以渗入地下,还有可能会使得地下水变得更加丰富。还有,排放的水蒸发到空气中,还可以增加空气的湿润程度,增加降雨量。
(二)生产的原材料比较普遍、易寻找
之前的柴油是石油裂解制成的,但是,石油是不可再生资源,而且,地球上的石油的含量是有限的。原材料的有限导致柴油的制作成本比较高,一旦石油出现问题,柴油也会出现问题的。但是,生物柴油是使用生物材料制成的,如植物的秸秆等。这些材料都是十分常见的,而且还都是可再生的。使用这样的材料制作生物柴油,会降低柴油的生产成本,原材料的可再生和易于寻找,也使得生物柴油的使用变得更加的广泛。
(三)有利于土壤优化
一般生产生物柴油的原材料是油菜籽。油菜的生长期是有限的,当可以种植油菜的时候,种植油菜,但是,油菜的生长期过了以后,还可以种植其他的农作物,这样的轮番种植,可以保持土壤的肥力,有利于优化土壤。
(四)副产品仍具有经济效益
对于生产生物柴油的原材料来说,只是将果实用来榨取油脂,其他的部位根本不用来生产生物柴油。但是,这并不代表其他部位就是没用的。其他的部分也可以被晒干,用来当做食草性动物的饲料。还有,如果不想晒干,就可以在收完果实之后,直接将其他部分翻到土壤下面。土壤里面的微生物会将植株本身进行降解,腐烂的植株对于土壤来说也是一种肥料,可以增加土壤的肥力。
(五)可以增加农民的经济收益
近年来,随着多元化经济的发展,使得农民也不只是再依靠种植粮食作物来获得收益了。因为制造生物柴油需要种植大量的油菜,这时候就可以号召一部分农民来种植油菜。生产生物柴油的公司自然会收购油菜,这也是在给农民增加经济收益。
从上世纪90年代开始,石油资源枯竭与环保问题开始得到人们的关注,在西方国家,纷纷开始转战新能源的研究,在这一背景下,生物柴油成为发展重点,截止到目前,人们已经可以从大豆、棕榈油、蓖麻、油菜、废油脂中提取生物柴油。
二、生物柴油会有怎样的发展前景
相较于之前的柴油来说,生物柴油有着不可比拟的优点。因此,生物柴油一定会在市场上占有一席之地。
(一)取代原有的燃料。为了响应保护环境的号召,各个国家对环境的治理力度会越来越大。这样的大背景之下,会使得原来的柴油被淘汰。但是,很多机器的运行还是需要燃料来提供动力,这时候生物柴油正好弥补这个空缺,成为新的提供动力的燃料。
(二)会被越来越多的企业认可。现在很多人可能还会对生物柴油产生怀疑,可能会觉得生物柴油无法产生那么大的动力。但是,相信随着时间的发展,生物柴油一定会被更多的人认识,会被更多的人接受并使用的。
三、结束语
不管对于什么样的东西,只要是对人类有好处的,人类都是愿意接受的。通过对生物柴油的特点进行分析,可以看出,无论是从环境方面,还是从经济利益方面,生物柴油对我们人类都是有很大好处的。要相信,生物柴油还是有很大的发展前景,尽管现在还只是在小范围的使用,还只是小范围的人群能够接受。但是,好东西是不怕经受考验的。相信经过时间的证明,会让所有的民众都接受生物柴油,并且都使用生物柴油。
参考文献:
[1] 刘扩金,王介妮,曹磊昌,韩生.碱性离子液体催化制备生物柴油研究进展[J].材料导报.2013(S1).
碳纳米材料是近年来的研究热点,随着人们对碳纳米材料研究的深入,其在生物医学领域的应用也在拓展,本书综述了在碳纳米材料在生物医学中的应用前景、研究进展以及面临的主要挑战。
第1部分 介绍了碳纳米材料在生物医学中的应用,含第1-11章:1.碳纳米材料在生物医药中的应用前景,基于纳米柱、纳米金刚石以及纳米炸弹的物理化学性质,2.作为药物载体的碳纳米材料;3.功能性碳纳米材料在光热疗法、细胞毒性以及药物传递中的应用;4.具有特殊结构的碳纳米管在生物医药中的应用;5.水溶性的阳离子型富勒烯衍生物的光动力治疗;6.基于碳纳米管场发射X射线的微焦点计算机断层扫描技术在医学成像中的应用;7.义齿基托材料:纳米管/聚合丙烯酸甲酯复合树脂;8.石墨烯在生物医学中的应用;9.仿生石墨烯纳米传感器;10.功能性碳纳米点在生物医学中的应用;11.纳米金刚石材料在生物医学中的应用。第2部分 介绍了纳米科技在生物医药方面的应用:从碳纳米材料到仿生体系,含第12-18章:12.三维碳纳米結构的仿生工程;13.Janus纳米结构在生物医药中的应用;14.蛋白质纳米图案构筑;15.水溶胶粘合剂的仿生设计:从化学到应用,16.利用仿生膜测量脂质双分子层的渗透率;17.用于药物检测的荧光纳米传感器;18.仿生表面细胞工程。
本书的第一作者Mei Zhang是美国Case Western Reserve University的研究人员,主要从事碳纳米材料方面的研究,在Science等国际顶级期刊发表过多篇论文。本书可作为生物医药工程以及材料科学与工程等相关专业研究人员的参考书。
王兆刚,博士研究生
(中国科学院半导体研究所)
1应用于生物医学中的纳米材料的主要类型及其特性
1.1纳米碳材料
纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。
碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。
1.2纳米高分子材料
纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。
1.3纳米复合材料
目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。
此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。
2纳米材料在生物医学应用中的前景
2.1用纳米材料进行细胞分离
利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。
2.2用纳米材料进行细胞内部染色
比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。
2.3纳米材料在医药方面的应用
2.3.1纳米粒子用作药物载体
一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。
磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。
2.3.2纳米抗菌药及创伤敷料
Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。
2.3.3智能—靶向药物
在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。
2.4纳米材料用于介入性诊疗
日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。
2.5纳米材料在人体组织方面的应用
纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。
目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。
纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。
瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。
纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。
参考文献
[1]Philippe P,Nang Z L et al.Science,1999,283:1513
[2]孙晓丽等.材料科学与工艺,2002,(4):436-441
[3]赖高惠编译.化工新型材料,2002,(5):40
[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214
[5]崔大祥等.中国科学学院院刊,2003,(1):20-24
[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133
[7]胥保华等.生物医学工程学杂志,2004,(2):333-336
[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510
[9]刘新云.安徽化工,2002,(5):27-29
[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71
关键词:纳米材料生物医学应用
1应用于生物医学中的纳米材料的主要类型及其特性
1.1纳米碳材料
纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。
碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。
1.2纳米高分子材料
纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。
1.3纳米复合材料
目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。
此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。
2纳米材料在生物医学应用中的前景
2.1用纳米材料进行细胞分离
利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。
2.2用纳米材料进行细胞内部染色
比利时的DeMey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。
2.3纳米材料在医药方面的应用
2.3.1纳米粒子用作药物载体
一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。
磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。
2.3.2纳米抗菌药及创伤敷料
Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。
2.3.3智能—靶向药物
在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。
2.4纳米材料用于介入性诊疗
日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。
2.5纳米材料在人体组织方面的应用
纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。
目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。
中图分类号:S858文献标识码:B文章编号:1007-273X(2018)04-0012-02
当前国际动物疫病现状呈现复杂化,形势不容乐观。新兴复合型科技研究产物应用于动物疾病的诊断、治疗预防等环节迫在眉睫。纳米材料及技术由于具有新颖的物理、化学和生物学特性,已被研究应用于生命科学领域。纳米材料具有其独特的功能和优势,越来越多研究人员将纳米技术引入到动物疾病防控领域,如致病菌的快速检测、疾病的诊治等方面,并己取得了一定的效果。
1纳米材料及纳米技术研究概况
1.1纳米材料特点
纳米材料主要表现为表面与界面效应、小尺寸效应和宏观量子隧道效应等。实际应用效果包括表面积大、表面活性高、催化效率高、安全性稳定、吸附能力优良、低毒性等特点。
1.2纳米材料研究进展
纳米材料是纳米科学发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料在生物医学中检测诊断、药物治疗以及健康预防方面均取得了一定的发展。军事医学院邱志刚[1]试验发现,水中的纳米氧化铝可以促使耐药基因从大肠杆菌转入沙门氏菌的效率提高200倍。即使以往很难发生耐药基因转移的不同种类细菌,在氧化铝纳米粒子的作用下耐药基因也发生了转移。由此可见,应用氧化铝纳米粒子大大加快了细菌获取耐药基因的速度。
1.3纳米技术
纳米技术是在纳米尺度下对物质进行制备、研究。在药物研究领域,由于纳米材料和纳米产品性质的特异性和优越性,用该技术建立新的药物控释系统可起到提高药物在体内的吸收效果、改善药物的输送、替代病毒载体、催化药物化学反应的作用。研究引入了微型领域,为寻找和开发新兽药、结合转基因技术用于动物试验研究[2],研制合成理想的药物提供强有力的技术支撑。
2纳米材料在动物疾病防治中的应用
随着生命科学、生物信息学等新兴复合型学科的迅速发展,纳米材料借助其特殊的结构效应在动物疾病防治领域展示出广阔的应用前景。医学起源于疾病诊断,对动物疾病没有很好的诊断就不可能有很好的预防和治疗。目前随着科技的发展,动物疾病诊断技术得到了前所未有的发展,各种检验诊断手段、仪器已是各式各样。利用纳米材料的特性去化验检测样品材料,可借助纳米材料极高的传感灵敏效应对疾病进行早期诊断,便于疾病防治。
2.1纳米分子信息成像和诊断
分子信息影像是生物医学和分子诊断学中的一门重要学科,可用于检测,考察机体内外组织中的分子细胞形态结构变化[3,4]。而纳米探针由于具有高亮、光学稳定、光谱吸收范围广等特点,可用于定量准确监测生物机体内部分子的理想工具,连接于小分子的肽、抗体以及核酸分子来进行疾病检测,靶向定位于目标细胞分子内部。Wu等[5]研究发现,基于量子点的肿瘤标记Her2的免疫荧光标记,比常规荧光染料标记不同的靶细胞表面受体、细胞骨架、核抗原和其他细胞器更有效。同时也发现了生物结合的胶体量子点在细胞标记、细胞示踪、DNA检测和体内成像方面很有价值。Gao等[6]进行了体内量子点成像和肿瘤定位的动物研究,观察到量子点在肝、脾、脑、心、肾和肺中的吸收、滞留和分布有逐渐减少的规律,在裸鼠前列腺癌异种移植瘤的研究中,量子点在瘤组织内特异性蓄积呈现出亮红色。
2.2纳米金及其检测技术
纳米金即指金的微小颗粒。其直径在1~100nm,具有高电子密度介电特性和催化作用。可与多种生物大分子结合,且不影响其生物活性。新型的纳米抗菌复合材料具有作为新的抗菌剂或者是抗菌包装材料的高效伤口敷料的可行性[7],可以用作高效的抗微生物制剂在生物应用中具有广阔的发展前景。纳米金PCR是基于常规PCR基础上,结合纳米技术而发展起的新型检测技术。刘阳等[8]根据副溶血弧菌(VP)的toxR基因序列,设计一对特异性引物,建立纳米金PCR检测方法,结果表明能扩增得到与试验设计相符的208bp(VP)的特异性条带,且与其他细菌无交叉反应。与普通PCR法进行比较,该方法检测灵敏度比普通PCR高10倍。而与传统的细菌分离鉴定法相比,纳米金PCR检测大大提高检测效率且具有灵敏度高、特异性强等优点。
2.3作为药物运输载体
和传统的注射或口服给药途径不同,运用纳米材料可定点靶向进行药物运输,对于药物剂量控制和疾病的预防及治疗具有重要意义。使用纳米材料运输药物可有效提升药物运输效率,降低毒性反应。越来越多的科研人员开始关注并构建用于药物输送的纳米载体,这些药物载体在肿瘤疾病的诊断治疗中具有广阔的前景。如Chen等[9]将pH敏感材料环糊精和低分子量的聚乙烯亚胺整合成纳米载体,并负载寡聚核酸,该载体可以有效地转染肺腺癌细胞,并对肿瘤生长有良好的抑制作用[10]。