当前位置: 首页 精选范文 海洋环境监测技术

海洋环境监测技术范文

发布时间:2023-12-11 10:00:38

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇海洋环境监测技术范例,将为您的写作提供有力的支持和灵感!

海洋环境监测技术

篇1

一、发展历史

上世纪四、五十年代人们发现在海岸担任探测和警戒任务的雷达总是受到来自海面不明原因的“干扰”。有研究人员发现“数十米波长的电磁波与海洋表面的相互作用,将产生Bragg绕射现象”。原来那些干扰是波长等于无线电波波长一半、传播方向平行于(接近或远离)雷达发射波束方向的海浪与无线电波“谐振”散射所产生的回波。研究揭示了上述“干扰”的物理来源,使地波雷达超视距探测海面状态成为可能。1968~1972年,在NOAA工作的D.E.Barrick定量解释了海面对无线电波的一阶散射和二阶散射的形成机制,为高频雷达探测海洋表面状态建立了坚实的理论基础。Barrick创造性地运用一组交叉环/单极子天线(三个接收通道)即可获取大面积海流的分布信息。他的紧凑式雷达天线技术大大降低了地波雷达购置和安装成本,直接导致了高频地波雷达的规模化推广应用,为海洋学家和沿岸防灾减灾及环境保护提供了新型观测手段。

二、工作原理

无线电波朝海面发射时,在海水表面会存在一种电磁波传播模式,称为地波(Ground Wave)是一种表面波(Surface Wave),因此高频地波雷达也叫做高频表面波雷达(HF Surface Wave Radar)。在中波和短波段海水表面的地波传播衰减很小,而且地波在一定程度上会沿着弯曲的地球表面传播,到达地平线以下很远的地方,即实现超视距传播。因此利用地波超视距传播特性进行探测的高频地波雷达也称为地波超视距雷达(Over-The-Horizon Radar),探测距离根据发射功率和频率的不同通常可达到200~500km。另外两种类型的超视距雷达分别是天波超视距雷达和利用大气波导特征的微波雷达,前者通过电离层对高频无线电波的反射实现对数千公里外目标的探测,后者可以对一两百公里外的目标进行探测。

地波雷达海况探测的基础类似于晶格对X射线的Bragg散射,入射的两条射线(相同波源)被原子散射,在特定的观察方向上,如果两条射线的波长差为2的整数倍,那么将会观察到亮条纹;如果波长差比2的整数倍多,那么两射线能量相消,观察到的是暗条纹。

真实的海面不会是简单正弦波列,但是可以用类似于Fourier变换的方式把一个真实的海面分解成为千千万万简单正弦波列成分的叠加,这些正弦波列有不同幅度、周期、初相和传播方向。那么这无数列正弦海浪成分是否都对电磁波产生散射呢?当然都会!但是并非所有的成分都产生相同的贡献,贡献最大的海浪成分还是图1所示的那类正弦波列,即满足,并且波矢量方向位于电磁波入射平面内的正弦海浪。对于岸基雷达探测,即L = / 2,也就是波长等于雷达电波波长一半的海浪会对电波产生最强的后向散射(图1)。

综上所述,虽然海面由无数的波浪组成,但岸基地波雷达主要只对特定的海浪感兴趣:

A. 波长等于电波波长的一半;

B. 传播方向要么接近雷达,要么远离雷达。

海面上满足上述条件的海浪总是存在,因此雷达总可以收到较强的海面回波,这也是前面所说当初人们发现海面上总是存在雷达“干扰”的原因!

我们知道运动的物体可以对入射波产生多普勒效应,电磁波照射到动态的海面上时,回波也会由于多普勒效应而产生相对于雷达发射频率的偏移。对回波信号进行谱分析就会发现,回波谱峰相对于雷达载频有多普勒频偏,其特点有二:

1. 同时存在正、负频偏,频谱图上的正、负谱峰称为左、右Bragg峰;

2. 左、右Bragg峰的频率偏移量基本相同,且主要只与雷达工作频率有关。

导致这两个特点的因素正好与上述产生主要散射的海浪特点相对应:特点1对应上述特征B,特点2对应上述特征A。在理解特点2时需要明白海洋重力波传播的一个基本结论:海面上确定波长的重力波,其传播相速度也是确定的。相速度确定的话,它对电磁波所产生的多普勒频移就是确定的了,也就有了上述特点。

上面所说的是没有海水流动的情形。由于各类物理、化学过程的作用,海面上总是有海流存在,海流作为海水的整体运动,会在上面所说的由波浪传播相速度所导致的较大固定频移的基础上再附加一个由流速所导致的微小频偏,这个附加频偏对左、右Bragg峰的影响是相同的:远离雷达的流速分量使左、右Bragg峰均向负频率方向偏移,接近雷达的流速分量使它们向正频率方向偏移。

地波雷达就是通过测量这个附加频偏从而获知海面海流速度的。当然一部雷达只能测量到海流的径向分量,要获得矢量海流,要么用两部以上的雷达从不同方向探测,要么就需要结合海洋动力学模型进行推算。

三、发展现状及面临问题

(一)发展现状。海洋动力学参数(海面风、浪、流)的探测是高频地波雷达的一种主要用途。高频地波雷达可以以十分钟的时间分辨率连续获取数万平方公里海面的海洋状态参数分布,这是任何其它探测手段无法做到的。目前国际海洋界已普遍接受高频地波雷达能有效探测流场的观点,国内外主要地波雷达的海流探测已达到可用于常规业务化海洋观测的水平。而在海浪、风场参数的探测方面,地波雷达处于研究开发阶段,距离实际应用尚有一定的距离。主要困难在于提取海浪和风场参数所依据的回波信号比较弱(比海面的主要散射回波低20~40dB),容易受噪声和干扰的影响,相应的反演理论和技术也处于研究探索阶段。通过雷达实时选频系统选择干净频率、应用噪声抑制、多频率雷达探测和抗干扰技术可以在一定程度上缓解这一问题。

(二)抗干扰问题。地波雷达工作在短波段,而短波段是高频通信、广播和各类大气、天电噪声等比较集中的频段,同时在高频段中低端,电离层干扰是严重影响雷达探测性能的主要干扰。对于以目标探测为主的高频地波雷达,电离层干扰常常会导致一两百公里开外的目标基本无法探测。

(三)雷达结果的应用规范问题。海态探测用高频地波雷达输出的是时间上连续的大面积流场、风场和浪场的分布,时间分辨率一般为十分钟到一个小时,所提供的信息在时间、空间和采样方式所对应的物理含义上与其它测量方式(如浮标、船测、航空测量以及卫星遥感等)存在很大的不同。地波雷达距离制订明确的应用规范还存在较大距离。

(四)小型阵列条件下的目标探测问题。由于小型阵列的方位分辨率低、民用地波雷达发射功率低以及前述的噪声和干扰(包括海洋回波的干扰)等问题,对目标尤其是小目标和机动目标的检测概率、虚警率、定位和跟踪精度等方面都存在需要克服的一系列问题。

参 考 文 献

篇2

Abstract: the high quality of the Marine environment is a very precious wealth, it can improve the quality of Marine biological reproduction, also can help human life health. China's Marine monitoring career after about 30 years' development, the initial set up complete Marine monitoring system, monitoring of the increasingly rich content, also adopted the new technology of monitoring, effectively improve the quality of the Marine environment. This paper carefully describes the Marine environment monitoring, and the importance of the current the most widely used monitoring technology was introduced.

Keywords: Marine environment; monitoring

中图分类号:[P76] 文献标识码:A 文章编号:

1.前言

当前各国的海洋技术空前发展,围绕海洋进行的竞争越来越激烈,据海洋专家预测,21世纪海洋将成为各国争夺的核心资源,它能帮助各国提高自身的经济、政治及军事地位,因为海洋的总体面积占据了地球表面积的71%,众多矿物能源、海水能源以及生物能源蕴含其中,这些实际上能直接或者间接创造经济效益,而且,对海洋资源的开发和利用能够帮助减轻陆地资源的重要途径,对人均资源占有量达不到世界人均资源占有量的中国,更要注重海洋环境监测工作,一方面能够最大限度保护海洋环境不被污染,为海洋生物提供一个安全的生活环境,提高其繁殖的质量和数量,而且有利于人类生存环境的优化;另一方面加强对海洋环境的监测,可以为海洋能源开发提供监测数据等,同时因为我国的海洋灾害高发的地区,因此加强海洋预报预警监测,尽量趋利避害,维护海洋环境,保持生态平衡。

2.海洋环境的监测技术

2.1实时监测岸基海洋环境装置

实时监测岸基海洋环境装置是一种实时采集地区海洋环境预报数据的系统,它的主要作用是:对岸基海洋的环境进行实时监测,有利于人们及时了解岸基海洋的环境状况。应用实例有:1991年美国国家海洋大气局在佛罗里达州坦帕湾安装了物理海洋学实时系统,能够实时获得该海湾的水深、风向、潮汐、潮流以及海面油膜移动等数据和状态,这些监测得来的数据对海上船只航行、海面油污移动或者海难搜救起到重要作用。平均每年给坦帕湾创造了超过200万的经济效益。

2.2海洋污染检测技术

目前,许多先进的海洋国家都是通过海洋调查进行水质、污染物、沉积物以及生物等项目的监测。实施海洋污染监测主要依靠高灵敏度的分析仪器,检测出的污染物能够精确到微克量或微微克量。海洋生物污染监测包含生态系统梯度分析法、指示生物法以及群落结构法等。现阶段,利用这些海洋污染检测法,探清了河口和海洋生物体内所含毒性物质的结构、痕量元素、蛋白质的解毒功能等;另外探测贝类、鱼类缺氧相关的碳循环和营养盐循环等,并根据监测结果建立了以某些贝类生物作为水质达标的标准。

由于近年来,海洋污染越来越严重,所以海洋污染检测技术得到广泛应用。尤其是对沉积物的监测技术,倍受重视。因为沉积物通常是处于海底,其稳定性较好,污染物的含量及成分可以准确地反映出海洋被污染的程度。检测出的数据还可以供海洋质量评价作为参考材料。实际的应用案例有:南加利福尼亚大学研制出深海着陆器采用程控装置,它可自动沉降海底,定期采集水界面的样本与该范围内的沉积物,供实验室进行海底沉积的化学营养物质分析。

2.3卫星遥感技术

随着计算机卫星技术的发展,卫星遥感监测技术已经广泛应用于海洋环境监测,并取得良好成效。应用的技术配置具体包含有多光谱扫描仪、海洋水色成像仪、沿岸带水色扫描仪和合成孔径雷达等。一般陆地卫星的多光谱扫描仪是用于沿海悬浮泥沙含量和其扩散状态的监测;用于工业排污与生活污水的监侧。应用实例有:在1972~1977年间出现了3次大范围海上溢油问题,采用海洋水色成像仪与沿岸带水色扫描仪用于悬浮物浓度或者海域叶绿素的分析,实现全天24h的海洋油污实时监测,具体监测溢油的分布范围、油膜厚度、移动扩散状况和溢油量等。而合成孔径雷达可以自动生成油污染图像,能对热污染与城市污水排放成图,还能帮助追查突发溢油事件的污染源。

3.4航空油污监测技术

近十年来来,随着石油工业的发展,海上石油运输行业也形成一定规模,由此也引发了石油、原油泄漏等问题,针对这种情况,航空油污监测技术的应用逐渐成熟起来。这项技术具有反应快速等优点,在海洋环境监察及执法取证等方面成效显著。在上个世纪90年代初,英、法、美、日、丹麦等国家在固定海域联合投放了大概25~30台型号、功能不一的航空污染监测系统,而且这些国家的海域管理部门都配置了油污监测的实时预报系统,对本国的监测点实施24h不间断的实时监侧,不仅起到有效测量油溢海区的面积、油膜的厚度以及油溢量等,还能精确鉴别污染物种和污染来源,帮助对非法排污者进行有效取证。

4.结语

海洋环境监测技术在全球海洋观测系统中占有重要地位,随着以上各项海洋环境监测技术的普及应用,其功能作用将得到充分发挥,有效地保护了海洋环境。

【参考文献】

[1]辽宁省海洋环境监测总站[J].水产科学. 2011(12)

[2]郝菁.海洋要素垂直剖面测量系统控制电路研究[D].中国科学院研究生院(海洋研究所)2007

篇3

2基层海洋站缺少应急监测能力,影响北海区应急监测时效性

目前,北海区海洋环境突发事件应急监测业务由中心站和海区中心承担,应急监测队伍抵达现场的航渡时间较长等问题,成为影响应急监测时效性的重要制约因素。同时,由于中心站和海区中心的海洋环境监测业务工作繁重,近年北海区绿潮、赤潮、水母等海洋生态灾害和溢油事故发生频率居高不下,应急监测工作对日常业务工作的冲击较大。亟须完善基层海洋站的应急监测能力,发挥其区位优势,就近开展对突发环境事件的应急监测,以提高监测的时效性,实现3h内海洋监测技术平台达到海洋生态灾害现场并开展工作。

3基层海洋环境监测站职能定位

3.1外业样品采集职能定位

外业样品采集是海洋环境监测工作的重要组成部分,目前海洋环境监测机构一般是由本单位自己完成外业样品采集。外业样品采集人力资源占用量大、耗时长、易受海况和天气影响,是影响海洋环境监测工作效率的主要环节。基层海洋站承担海洋环境监测的外业样品采集任务,能发挥各海洋站的区位优势和人员优势,由海洋站承担就近沿岸浅海的监测站点采样工作,可大幅度减轻中心站、海区中心的现场监测采样工作压力,降低监测成本,提高监测效率。由于海洋环境监测外业样品采集工作相对独立,采样操作有《海洋监测规范》(GB17378—2007)和《海洋调查规范》(GB12763—2007)可依据,工作流程和技术要求明确。监测单位采用外包的形式完成海洋环境监测的样品采集工作也符合计量认证的要求。因此,基层海洋站承担其他单位的海洋环境样品采集工作在监测质量控制方面也是可行的。美国、加拿大等国有志愿者采集养殖区水样,邮寄至检测单位分析的环境监测方式。根据目前的海洋环境监测业务需求和海洋站人员、装备条件,添置采水器、采泥器、浮游生物调查网具等样品采集仪器,配备手持GPS、绞车、样品箱等采样配套器材,形成海水、沉积物、浮游生物和底栖生物等生态监测样品采集能力,可开展海洋环境趋势性监测、海洋功能区环境监测、海洋环境监管监测等业务的样品采集工作。

3.2内业样品分析及现场监测职能定位

部分海水监测指标的样品不易保存,需要进行现场分析。针对此类样品,可采用现场监测仪器和室内分析相结合的工作方式。目前多参数水质分析仪等现场监测设备在pH、溶解氧、叶绿素a、浊度等指标的监测方面技术较成熟,设备性能稳定,易于使用和保养,且仪器购置费用较低。配备多参数水质分析仪,海洋站可完成pH、溶解氧、叶绿素a、浊度、盐度等水质要素的现场监测。海水硝酸盐、亚硝酸盐、铵盐、磷酸盐、硅酸盐等营养盐监测指标,《海洋监测规范》要求其样品保存时间不大于24h,而目前在线监测技术不能满足规范质量要求,需要进行现场样品分析。如果由于中心站或海区中心不在一地,则采样工作完成后当天需要样品运输和交接耗时较长。配备常规水质项目采样、预处理设备、分析仪器和多参数水质分析仪等现场监测设备,形成常规水质监测能力,满足水文气象、海水水质常规监测、资源与环境承载力监测的基本需求。近期需要具备的监测项目有海水pH、溶解氧、化学需氧量、叶绿素a、盐度、水色和透明度等。

3.3应急监视监测职能定位

近年来,北海区赤潮、绿潮及溢油灾害等突发环境事件频发,应急监测工作繁重。以2013年为例,北海区发生赤潮14次;绿潮灾害影响到山东日照、青岛、威海和烟台市沿海[3],影响海域岸线近1000km;青岛东黄输油管线发生爆燃事故,造成胶州湾溢油污染。每年北海区海洋环境监测机构承担的应急监测都在100航次以上。大量的应急监测任务给日常监测,业务工作量已近饱和的海区中心和中心站造成较大的压力,有时不得不推迟日常监测,以完成应急监测任务。有些环境事件发生海域距海区中心或中心站较远,监测队伍抵达现场路途远,航渡时间长,降低应急反应效率。当前的海洋环境保护形势亟须基层海洋站承担起海洋环境应急监测职能。目前影响基层海洋站开展环境应急监测任务的主要限制因素有两方面:一是缺乏应急监视监测的技术设备,二是缺乏从事海洋环境监测方面的专业技术人员。根据海洋站现有技术条件,通过配备采水器、赤潮生物采样网具和油指纹样品采集器材、样品瓶及GPS等相关配套设备,即能满足赤潮、绿潮应急观测和样品采集能力的需要。专业人员可通过短期培训和中心站技术指导等方式,解决应急监测技术人员缺乏的问题。海洋站应急监视监测能力的建设目标应是具备就近应对1个环境突发事件的现场应急监视任务,具备独立开展溢油、绿潮、赤潮等环境突发事件的现场监视监测的能力,为形成北海区3h应急监测圈,提升海区环境监测覆盖能力奠定基础。

3.4基层监测机构辅助监测业务职能定位

建设通用实验室,为中心站、海区中心提供通用实验分析平台,提高北海区海洋环境监测体系的整体业务能力。发挥基于海洋站现有基础设施优势,开展海洋环境监测实验室改造,打造专业化通用实验室。每个海洋站完成通用实验室改造面积不小于150m2,以满足海洋站开展监测工作的需求,并为海区中心、中心站就近开展常规项目现场样品分析提供实验条件,将海洋站实验室打造成北海区海洋环境监测现场分析的通用实验室。建设远程生物鉴定信息采集终端,配备光学显微镜和显微照相系统等相关技术器材,具备海洋生物样品鉴定信息采集录入及远程传输能力。发挥中心站、海区中心的技术优势和基层海洋站区位优势,解决目前海洋环境突发事件应急监测中生物种类鉴定的技术困难,提高北海区监测体系生物样品的鉴定能力。

篇4

1 近海环境监测概述

所谓近海环境监测是指针对靠近陆地的近海海域进行环境变动的监测,随着现代海洋技术的发展,海洋环境保护、海洋资源开发以及相关的海洋科学研究都得到了迅速的发展,尤其是关于海洋环境的监测技术,通过安装在海洋洋底的各种环境信号传感器和浮于洋面的环境信号探测浮标,对近海、深海等海域环境的各种变动信息进行收集,并实时或准时的传送到位于陆地上的海洋环境监测中心,而海洋环境监测中心则通过对收集来的各种信息进行分析,计算出准确的海洋现实环境,并制定科学、有效的应对方案。

随着现代通信技术以及计算机技术的广泛应用,海洋环境监测技术已经成为一项集中多种尖端技术为一体的系统化技术体系,实现了自动化、实时化以及连续化的监测,利用洋底的传感器和洋面的浮标收集海洋环境信息,诸如盐分度、温度等数据,并利用浮标上的数据发射器采用现代卫星通信、移动通信等现代信息传递技术,将海洋环境变动信息传送到陆地上的监测中心,在整个海洋环境监测系统中,通信技术起着至关重要的桥梁作用,已成为海洋环境监测领域中重要研究的对象之一。

2 近海环境监测通信系统组成

现代近海环境监测系统主要由海洋底部和洋面的监测终端设备、融合通信技术的数据转发平台以及位于陆地的海洋环境监控平台组成,如图1所示。其中监测终端设备包括位于洋底和洋面的各种传感器、数据发射器的浮标,以及位于洋面以下一定深度的声学解调器,可以对海洋的洋流方向、温度变化、盐分度变化、波浪强度等数据进行采样收集;融合通信技术的数据转发平台装有可移动的通信装置和水上声学解调器,以及定位设备和供电装置,用于接收水下监测设备传来的声波信号,并通过移动通信装置的GSM、GPRS、CDMA、WCDMA、TD-SCDMA公共网络进行发送,成为连接海洋监测终端和陆地监控终端的桥梁;而位于陆地的监控终端则有移动信息接收平台和计算机中心组成,负责对转发平台发送过来的各种监测信息的接收,并利用计算机中心的计算机系统对这些监测信息进行分析、处理和显示。

3 近海环境监测通信系统技术特点及相关通信技术

3.1 近海环境监测通信系统技术特点

⑴水上无线通信。该系统的通信分为水上和水下两部分,水上采用的是现代移动网络通信技术,与传统的卫星转播通信技术、电台广播通信技术相比,现代移动网络通信技术在近海环境监测中有着很大的优势,尤其是随着现代3G移动网络通信技术的发展,使得传输数据的种类、速度和质量都得到了明显提升。与应用最多的卫星转播通信技术相比,大大降低了经济成本;与电台广播通信技术相比,其传播距离更远,信号衰减更少。

⑵水下无线通信。而在水下,该系统的无线通讯采用水声调制解调通信技术,与传统的水下光纤通信技术以及电磁波脉冲通信技术相比,声波信号强度更好,而且声波信号也是目前水下传输信息的主要媒介,比如应用十分广泛的声呐系统。此外,声波信号也是实现水下远程信息传输的最可靠方式。

⑶海洋环境监测信息收集。该系统采用位于洋底的各种信息传感器,以及漂浮于洋面的具有信息收集功能的特制浮标来收集海洋环境监测信息,相比于单纯的洋底信号传感器和洋面浮标,以及船舶或潜标等单站监测方式,它实现了海洋环境监测的立体化、连续化,获取的信息更准确、更广范,通过监控终端操纵安装在洋底、洋面以及不同深度的传感器,可以实时获取近海、远海等不同海域的环境监测数据,实现大覆盖面、多采样点的海洋环境监测数据。

3.2 近海环境监测系统相关通信技术

⑴水上移动网络通信技术。现代近海环境监测通信系统的水上移动网络通信技术主要包括第二代的GSM(2G)、GPRS(2.5G),第三代的WCDMA(3G)、TD-SCDMA(3G)等移动网络通信技术,以及正待普及推广的TD-LTE-advanced(4G)通信技术。

其中GSM技术主要以及短信息的形式进行简短数据的双向传输,通过两个或两个以上的GSM模块实现相互间的短信息发送和接收,开发相对简单,但是对于需要传送大量信息的海洋环境监测中,其传输成本较高,传输数据类型也较单一;而GPRS技术引入现代互联网传输技术,可以实现快速登录、长时间在线,其数据类型和传输速度都得到了扩展和提高;而WCDMA、TD-SCDMA则是在GPRS技术的基础上进一步优化了数据类型和传输速度,其传输速率可达几百kb/s,并且利用无缝漫游技术很好的实现了各种移动网络与互联网的融合,使得图片、数字、视频等各种信息可以高质量的传输。

⑵水下水声通信技术。水下水声通信技术是用于海洋环境监测数据传输的重要技术之一,其工作原理是先通过位于海洋不同深度、不同位置的各种传感器、浮标,将海洋环境的有关监测数据(数字、声音、图像等信息)转换成特定的电信号,再通过换能器将电信号转换成类似声波的声信号,声信号可以在海水中很好的传播,再通过位于洋面的接收换能器将声信号转回电信号,电信号再经移动网络传送到陆地监控终端的移动信息接收平台,经该平台破译电信号后即可得到数字、声音、图像等原始数据。

4 基于移动网络通信技术的监测系统应用

现代移动网络通信技术在海洋环境监测中应用范围非常广泛,有海洋应急监测和定点连续监测。

4.1 海洋应急监测

海洋应急监测主要包括对海啸预警、溢油、赤潮以及其他海洋污染或海洋灾害事件的检测。近海环境监测系统将收集到的各种海洋环境变动信息及时发送给海洋管理部门的相关技术人员和管理人员,技术人员和管理人员凭借对监测数据的分析结果,制定合理的应对措施。海洋应急监测一般是用于对海洋多发的、具有一定破坏性的事件的监测,其覆盖范围较广、分散较大,一般用于整个海域的监测。

4.2 定点连续监测

定点连续监测一般是指对近海或深海中具有一定意义的特殊地点进行长时间的连续跟踪监测,比如架设石油钻井平台的地点、海洋洋盆与大陆架的连接地带或洋流路径点等对海洋环境可以产生明显影响的关键点。一般是在关键点安装传感器或海洋浮标,利用现代移动网络通信技术实时的把这些地点的监测数据传送到位于陆地的监控中心,以实现对海洋环境的连续监测,确保及时发现这些地点的海洋环境变动,从而制定有效的措施,保证生产的顺利进行和沿海居民的生命财产安全。

综上所述,海洋环境监测是现代海洋产业发展的关键技术之一,尤其是近海海洋环境的监测技术,不仅关乎到海洋产业的发展,还关乎到沿海居民的生命和财产安全。利用现代移动网络通信技术开发出的海洋环境监测系统,不仅可以做到对各个海域环境的实时、连续、高质量的监测,而且还大大降低了经济成本。在实际的操作中,应用移动网络通信技术的近海环境监测系统也取得了很好的成绩,随着新一代4G移动网络通信技术的普及和推广,相信在不远的未来,海洋环境监测系统中的各种技术会得到更好的发展。

[参考文献]

[1]胡展铭,姜文博,江伟伟,陈元,陈伟斌.通信技术在近海环境监测中的应用[J].海洋环境科学,2012,04:613-615.

篇5

2004年青岛市在海洋环境监测站的建设方面主要突出了以下几点工作:一是进一步推进了机构建设。为了进一步明确海洋行政主管部门进行海洋环境监测和预报的职能,今年,我市在原来海洋环境监测站的基础上成立了青岛市海洋环境监测预报中心,该中心的建立使我市的海洋环境监测、预报职能以及海洋环境质量公报的职能得到进一步明确。二是大力提高了能力建设。为了保证我市海洋环境监测工作的开展,今年,我局在进行了实地调研的基础上,咨询有关专家,制定了实验室建设方案,对已有实验室进行了改造装修,并将实验室建设面积扩大到400多平方米,目前青岛市的海洋环境监测预报中心在技术设备上已建立六个实验室,拥有430多万元的仪器设备。为了提高现有科技人员的工作能力,选派了8名技术人员参加了技术培训,人员培训率达57%。

二、进一步加大了海洋环保经费的投入,确保海洋环保工作任务的圆满完成

2004年青岛市用于海洋环境保护工作的经费累计达到1043.2万元。其中,奥帆赛区的海洋浮标系统建设投入573.2万元,海洋环境监测仪器设备投入350万元,海洋环境监测经费投入120万元。海洋浮标系统主要包括三套浮标系统、一套波流测量系统和一套常规单要素监测系统。监测仪器设备上添置了液相色谱仪、气相色谱仪、原子吸收分光光度计等精密仪器。在监测上主要的投入为:海洋环境监测经费38.5万元,渔业环境监测经费11.5万元,奥帆赛区海洋水文、水质监测预报系统建设可行性研究前期经费35万元,青岛文昌鱼水生野生动物市级自然保护区建区监测、调查经费10万元,海洋环境执法检查和巡视以及“白泥”污染治理前期调研的经费5万元,各区(市)海洋及渔业环境监测经费约20万元。

三、我市开展的环保工作

(一)制定了地方性海洋环境保护法规、制度、规划、标准并做到了严格执行

1、进一步完善了青岛市海洋环境保护法规

为保护和改善我市海洋生态环境,合理开发利用海洋资源,推动我市海洋环境保护管理工作健康发展,今年我市完善了一系列青岛市地方性海洋环保法制法规。起草并送审了《青岛市无居民海岛利用与保护管理办法(草案)》;按照市政府的立法工作计划,完成了《青岛市海洋环境保护管理条例》立法调研和草案的编写工作、完成了《青岛市渔业资源增殖管理办法》、《青岛市胶州湾海域管理规定》的起草工作。

2、以制度和规划来规范和指导海洋环保工作的开展

为了促进我市海洋环保工作的科学化、规范化、制度化,结合《中华人民共和国行政许可法》的施行,制定了《海洋与渔业系统实施〈行政许可法〉办法》;结合青岛市海洋环保工作的实际需要,开展了海洋环境保护规划编制的前期调研,在青岛市编制的《海洋功能区划》的基础上,委托中国海洋大学拟定了《青岛市海洋环境保护规划编制方案》。准备运用系统工程的方法,以实现海洋经济的可持续发展为目标,以海洋生态保护为重点,以海域环境容量控制陆源污染物和海上污染物入海总量为手段,进行《青岛海洋环境保护规划》及海洋环境管理的对策研究,为海洋环境保护工作提供科学依据,实现海洋经济和区域经济的健康、持续、和谐发展。

3、制定了标准并做到了严格执行

为了推广生态养殖,减少因养殖而造成的海洋环境污染损害,2004年青岛市重点制定了《青岛市无公害食品日本对虾生态养殖技术规范》、《青岛市无公害食品刺参池塘养殖技术规范》、《青岛市无公害食品菲律宾蛤仔底播增养殖技术规范》等10个技术标准,并严格执行了已有的现行标准。

(二)认真组织落实海洋环境监测预报、海洋信息、海洋工程、保护区等方面的工作

1、建设了海洋水文、水质监测暨预报系统,准确提供了海洋环境预报信息

为了保证2008年奥帆赛的顺利举办,满足国际帆联关于奥帆赛对海洋水文的专业需求和对水质的要求,青岛市积极组织开展奥帆赛区海洋环境监测预报系统建设工作,完成了海洋水文数据通信系统改造扩容和“波浪骑士”浮标的电池更新改造工作,初步完成了小麦岛海洋环境监测站的技术改造,进行了通讯试验。自2004年8月1日起每天小麦岛监测站的部分海洋环境监测信息,并应奥帆委的要求,在雅典奥运会期间和残奥会期间同步向奥帆委提供小麦岛监测站逐时海洋环境监测信息。

2、海洋环境保护信息工作全面加强

为了提高海洋环境保护、海洋环境监测工作对政府、公众等各方面的服务作用,今年海洋环境保护的信息工作得到长足发展。主要工作有:为了让公众及时了解海水浴场的海洋环境状况,暑期在新闻媒体、浴场显示屏上每天了海水浴场的现场监测数据;向国家海洋局、国家海洋信息中心、省海洋与渔业厅等部门报送了12篇海洋环保信息;筹建了青岛市海洋与渔业网海洋环保专栏,专栏内将定期有关海洋环境保护的各类信息,目前该网站已投入试运行,市民可以上网查看;在各类报纸上了20多篇青岛市的海洋环保信息;在中央电视台、青岛电视台、广播电台等新闻媒体上了青岛市人民政府与国家海洋局共同开展奥运会帆船赛场海洋环境保护合作安排等内容的大量海洋环保工作信息。

3、强化了对海洋、海岸工程建设项目的监督管理

随着海洋环保法律法规的不断完善,以及《胶州湾及邻近海岸带功能区划》的实施,青岛对涉海工程项目的管理已逐步完善。今年对7项涉海工程项目进行了环境影响评价的初审、审批,对在建涉海工程项目进行了跟踪检查,开展了施工期监测,实施了对涉海工程的全过程管理。

4、自然保护区的建设和管理工作得到有效开展

2004年,青岛文昌鱼水生野生动物市级自然保护区获市政府批准建立,该保护区的建立推动了我市的水生野生动物保护工作进入一个新的阶段。开展了大公岛省级自然保护区的管理工作,联合有关部门加强了对保护区海域的执法检查,及时发现、制止各种违法行为,有效地保护了保护区的环境和资源。开展对保护区的资源环境调查,在综合调研的基础上开始选划长吻虫珍稀动物保护区和胶州湾特别保护区。

5、海洋标准计量工作

严格执行国家制定的关于海洋方面的标准,根据国家标准公布青岛市近岸海域环境质量总体状况。

(三)开展海洋环境保护的监督管理,依法保护海洋生态环境

1、进一步强化了海洋执法监督和巡查力度

加强了海上执法队伍的建设,加大海上执法的力度,认真贯彻《海洋环境保护法》等法律法规,对涉海工程项目实行严格控制和监督检查,建立起了海洋与渔业环境监视举报信息网和联动共管机制,重点打击破坏海洋生态环境及海洋资源的违法行为。我们今年开展了保护海洋国土“蓝箭专项执法行动”,有效地保护了我市近岸海域的生态环境。在“海盾2004”专项执法行动中,查出了多起围填海和海洋污染案件,并对相关责任人给予处罚。

开展海域使用、海洋生态保护执法检查,查处沿海一线的乱圈、乱占等违法养殖行为,对与青岛市海洋功能区划相抵触和违规破坏海岸自然景观的海水养殖建设项目坚决予以打击,爆破清理了在青岛前海一线非法筑造的3000余平方米鲍(参)池。通过执法行动维护了法律的尊严,规范了海域使用秩序,树立了海洋执法部门依法管海的权威,受到社会各界的好评。

严厉打击了非法采挖海砂行为,保护了我市的海洋资源和海洋生物栖息地。在海砂执法检查中,我们坚持长期检查和阶段性突击检查相结合,专项执法与联合执法相结合,做到常抓不懈,从严打击。自开展示范工作以来,共查处了多起船舶非法采砂行为。

2、强化了海洋赤潮防灾减灾工作

我们开展了赤潮防灾减灾和应急监测工作,编制并实施了《青岛市赤潮监控方案》,建立了青岛市赤潮监视信息网,成立了全市海洋赤潮防灾减灾领导小组。为避免赤潮对2008年奥帆赛带来不利影响,我市编制并开始实施了《青岛奥帆赛场及邻近海域赤潮防治行动项目建设方案》。主要内容包括赤潮监测预警、应急处置、应急反应预案等内容。

3、进一步强化了海洋环境监视监测工作力度

我市已经建立了青岛市海洋环境监测预报中心,新建了常规、微生物、病毒及生化等实验室,先后开展了近岸海域养殖区的环境监测和水产品产地环境监测与评价工作、养殖产品药残监测和贝类残毒监控等工作,初步发挥了监测机构为奥帆赛区服务的职能。制定并实施《2004年青岛市海洋环境监测工作方案》,开展了近岸海域海洋环境污染现状与趋势监测,海水浴场泳期环境监测预报、胶州湾底部重点底播养殖功能区等海域海洋环境监测和小麦岛污水处理厂、青岛碱厂、团岛污水处理厂排污口监视性监测及邻近海域环境状况监测,重点加强对奥运帆船赛区的监测,目前,各项监测已按计划要求完成任务。《2004年青岛市近岸重点海域海洋环境监测评价报告》也已编制完成。

4、如期了青岛海洋环境质量公报

今年上半年,按照国家海洋局的要求,以2003年青岛市海洋环境监测结果为依据,对海洋环境质量状况进行了综合分析和评价,完成了2003年青岛市海洋环境质量公报的编制工作,并进行了,同时将质量公报上报了市政府、国家海洋局等上级部门和相关单位,为社会各界和广大公众进一步了解海洋环境质量状况提供了保证。

5、开展监测机构计量认证

青岛市的海洋环境监测预报中心在技术设备上已建立了六个实验室,拥有430多万元的仪器设备,其中2名技术人员获得了省技术监督局实验室内审员资质,并组织多人参加了培训;我市的海洋环境监测与预报中心与国家海洋局北海预报中心和北海监测中心采取合作共建的模式,实行边监测边建设边发展的原则,目前主要工作依托北海分局预报中心和监测中心来开展。与省计量认证委员会签订了计量认证咨询合同,由对方指导进行计量认证申请工作,正在积极申请进行我市海洋环境检测、渔业养殖水质的监(检)测和水产品产前、产中、产后全过程监控能力的计量认证资质,

(四)开展海洋环境保护的宣传工作

为了提高全社会海洋与渔业法律意识,保护海洋环境。在“两会”召开之际和“海洋节”开幕前夕,我们通过青岛日报、招商周刊等新闻媒体,以“提高海洋综合管理水平,履行海洋行政管理职能”、“大力发展高效渔业、加快渔业现代化进程”等为标题,分别以6个整版的篇幅进行报道,宣传效果明显。我们采取多种形式,利用重大节庆活动和深入基层召开环保知识宣讲现场会等广泛宣传环保知识。利用电视、报刊等新闻媒介,对严重的违规行为予以曝光。我们还多次在开展海洋和渔业环境监测时,邀请记者进行现场采访,向群众直观、详细地介绍监测的方法、过程,以及环境监测对海水养殖的重要作用,起到了良好的宣传效果,提高了全民海洋与渔业生态环保意识。

(五)积极开拓海洋环境保护工作的新领域

1、开展了我市首例海洋生态污染损害整治恢复工程项目

根据历年对胶州湾东岸青岛碱业公司排污口附近海域的监测结果,在征求我市海洋环境保护咨询委员会专家意见的基础上,制定了《关于治理胶州湾东部海域“白泥”污染的方案》,提出在政府的扶持下,由污染单位进行“白泥”污染治理的建议,力求通过“白泥”污染治理探索出一条适合我市实际的海洋生态恢复的路子。目前,市政府正在组织有关部门和专家对该建议的可行性进行论证。

2、建立了我市范围内的第一个野生动物保护区——文昌鱼自然保护区

自去年开始筹建青岛文昌鱼水生野生动物市级自然保护区以来,我局开展了一系列文昌鱼自然保护区的申报工作。委托海洋大学编制了《青岛文昌鱼水生野生动物市级自然保护区论证报告》;组织专家对论证报告进行了评审,并通过了评审;协调了市环保局、市规划局、青岛海事局、部队等有关单位的意见,并获得了相关单位的支持;将建立该自然保护区的建议提报了市长办公会,并获得了市领导的支持;今年又按照《自然保护区条例》中“地方级自然保护区的建立需经省政府批准”的要求,将建立该自然保护区的建议提报了省政府及省海洋与渔业厅、省环保局等相关单位,获得了省政府及有关单位的支持。8月10日青岛市政府正式批复同意建立青岛文昌鱼水生野生动物市级自然保护区,该保护区为野生动物类型,保护区面积61.81平方公里。文昌鱼保护区的建立标志着该保护区申报工作的完成,建设、管理工作的开始,成为我市范围内(包括陆地)建立的第一个野生动物保护区。

四、我市积极开展开创性工作

1、推进了国家级海洋环境监控区建设

为做好奥帆赛区海洋环境保障工作,青岛市政府和国家海洋局积极磋商,于今年7月8日,在青岛国际新闻中心签署了《共同开展奥运帆船赛场海洋环境保护工作合作安排》。通过双方的合作,将进一步加大奥帆赛场及附近海域的海洋生态环境监督和整治,为使青岛承办一届最出色的奥帆赛,实现“绿色奥运、科技奥运、人文奥运”的总体目标将产生积极作用。这是全国沿海地方政府首次与国家海洋局合作共同开展海洋环境保护工作。

协议签署后,为保证该项合作的顺利开展,我局又会同国家海洋局北海分局就合作具体方案进行了认真地论证,编制并上报了《奥帆赛场及邻近海域国家级海洋环境监控区实施方案》,准备在国家海洋局和青岛市政府同意后,尽早组织实施。

2、在国内首次开展了大面积赤潮的监测、科研及防治项目

为从根本上改善我市前海海域环境质量,杜绝赤潮的发生,根据青岛市政府的指示精神,我局会同国家海洋局北海分局等科研单位编制和上报了《青岛奥帆赛场及邻近海域赤潮防治行动项目建设方案》,准备在前段赤潮研究和监控的基础上,整合和优化我市赤潮研究、监控资源和力量,联合开展“奥帆赛场及邻近海域赤潮防治行动项目”,该项目目前已经立项。

我们针对目前青岛近海赤潮发生特点和发展趋势,在奥帆赛场及邻近海域布设37个站位,进行了大面积的监测,监测项目包括水环境、沉积物环境、生物环境指标。据此,我们编制了《青岛奥运帆船赛区及邻近海域海洋环境质量状况》和《浮山湾海洋环境质量状况》专题报告。

另外,我们还强化了海洋赤潮的日常监督监视工作,组织项目承担单位不定期地对奥帆赛区的重点区域实施了不间断的监视和监测,并对近岸海域发生的两起赤潮现象进行了应急跟踪监测监视,对赤潮可能发生的概率和发展趋势进行了分析预测。

友情链接