发布时间:2023-12-13 15:15:40
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇外辐射的防护方法范例,将为您的写作提供有力的支持和灵感!
[中图分类号] R852.7 [文献标识码] B [文章编号] 1674-4721(2013)07(b)-0193-02
随着医学技术地进步,核医学在临床医学治疗中具有重要的地位。而放射性核素治疗正在不断快速发展中,其中131I在临床放射性核素治疗中具有非常重要的地位,其临床治疗的疗效及安全性已经得到国内外学者的认可。而131I在常规治疗剂量下即具有能量高、活度大等特点,所以接受131I放射治疗的患者对医护工作者造成的外照射也应该受到重视[1]。本文通过研究临床核医学治疗中131I所致辐射剂量,为临床放射防护提供依据,现报道如下。
1 资料与方法
1.1 一般资料
选取2010年4月~2011年4月本院收治的34例甲状腺功能亢进患者,随机分为两组。对照组17例,男性10例,女性7例,年龄34~48岁,平均(41.35±3.62)岁;观察组17例,男性9例,女性8例,年龄33~47对,平均(40.72±3.73)岁。所有患者均经过本院专科医生检查,确诊为甲状腺功能亢进患者,经手术治疗后均接受口服131I的治疗。两组患者的性别、年龄、病情组间比较差异无统计学意义(P>0.05)。两组患者分别由两组医师和护士进行治疗和护理,每组由1名医师和1名护士组成。
1.2 方法
将本组34例接受131I治疗的甲状腺功能亢进患者随机分为两组,分别由两组医师和护士进行治疗和护理,每组由1名医师和1名护士组成,对照组采用常规治疗防护措施,观察组采用综合治疗防护措施,比较两组患者治疗后131I的全身有效剂量和甲状腺有效剂量,以及相应两组医师和护士工作1年所受辐射剂量。
辐射剂量测量方法是依据成人内照射辐射吸收剂量估算值测量患者全身有效剂量,通过头颅CT扫描检测患者甲状腺辐射剂量。临床医师和护士的职业照射测量方法为采用热释光个人剂量计(TLD)和FJ-377型热释光剂量读数器进行剂量读取。医师和护士将辐射剂量计放于工作服左胸前口袋,更替医师和护士时,不更换辐射剂量计,计算医师和护士工作一年累积的所受辐射剂量[2]。
1.3 治疗防护措施
1.3.1 常规治疗防护措施 对照组采用常规放射性防护:上班按规章穿戴特制的衣帽手套以及正确佩戴个人剂量计以及携带报警式剂量计;操作结束离开非密封源工作场所时,按要求进行个人体表及防护用品的放射性表面污染监测,发现污染要及时处理,做好记录并存档。发现放射性职业受照人员的个人剂量达到或超过调查水平时,应及时其查明原因,必要时通告卫生监督部门。
1.3.2 综合治疗防护措施 观察组采用综合治疗防护措施。①内照射防护:对于内照射放射防护主要减少放射元素通过皮肤、消化道和呼吸道进入人体。内照射的防护操作前先通风换气30 min后再进行作业,通风进行至操作完毕。②外照射防护:对于外照射的防护主要是根据三防护的原则,即屏蔽防护、时间防护和距离防护。安装专用防护屏、穿上防护装备、延长查房间隔、与患者保持1 m以上的距离等[3]。③加强个人防护:个人防护用品应该穿戴齐备才能允许工作,操作期间严禁进食、饮水、吸烟、会客等,以防放射性核素通过食、吸、渗三途径进入人体。此外,通过加强核辐射知识的培训来加强个人防护。④适当食用公认的防护食品,如可以可以吃一些目前公认的蘑菇、木耳等防护食品。⑤定期体检:每个月给予相关体检,通过剂量检测仪检查身体内放射物质是否超标,如果发现因放射性物质引发的疾病则及时采取措施进行治疗。
1.4 统计学处理
应用 SPSS 15.0软件进行统计分析,计量资料采用均数±标准差(x±s)表示,组间比较采用t 检验,以P
2 结果
两组患者的甲状腺有效剂量组间比较差异无统计学意义(P>0.05),观察组患者的全身有效剂量低于对照组,差异有统计学意义(P
3 讨论
放射性核素治疗方法在临床放射治疗中具有十分重要的地位,其中131I治疗为代表性的治疗方法。患者通过口服131I,进入人体内的131I随着时间发生衰变,发射出γ射线和β射线,其中起主要治疗作用的为β射线[4]。131I具有合适的半衰期和组织穿透力,且具有较大活度和较高能量,对甲状腺细胞具有很好的抑制作用,其临床疗效和安全性已得到国内外专家的认可。
但是随着131I在临床放射治疗中的普及,对其放射防护也成为一个重要问题。包括患者本身以及作为职业接触的临床医师和护士,在保证患者接受131I临床治疗的疗效的同时,也应重视放射治疗给患者和临床医护工作者带来的安全隐患。本文采用一些列综合防护措施,包括对内照射的防护以及通过屏障防护、时间防护和距离防护进行对131I的外照射的防护[5],研究临床核医学治疗中131I所致辐射剂量,为临床放射防护提供依据。本研究结果显示,两组患者的甲状腺有效剂量组间比较差异无统计学意义(P>0.05),观察组患者的全身有效剂量低于对照组,差异有统计学意义(P
综上所述,采用屏障防护、时间防护和距离防护等综合措施可以有效减少131I对医护人员的辐射[6-8],以及降低患者全身受照射的剂量,从而提高临床接受放射治疗的患者以及核医学工作人员的安全性。
[参考文献]
[1] 赵海敏,杨金兰,张桂清.临床核医学治疗中131I所致辐射剂量的研究[J].中国辐射卫生,2010,19(4):487-488.
[2] 冯泽臣,娄云,马永忠,等.2010 年北京市职业外照射个人剂量监测[J].首都公共卫生,2012,6(2):69-71.
[3] 赵尧贤,吴寿明,宣志强,等.放射性核素治疗工作场所设计及放射防护措施评价分析[J].中国辐射卫生,2010,19(4):420-421.
[4] 张晓懿,涂 彧.甲亢患者131I 治疗后人体周围辐射场剂量分布[J].中国辐射卫生,2013,22(1):36-38.
[5] 丁颖,陆汉魁,朱瑞森,等.大剂量131I治疗甲状腺癌的辐射防护安全性探讨[J].现代护理,2011,5(8):125-126.
[6] 郭洪亮.核医学与超声检查对亚急性甲状腺炎的诊断价值[J].中国当代医药,2012,19(9):233-234.
《辐射剂量与防护》课程的核心知识点包括基础物理量,辐射所致生物效应,外照射剂量与防护,内照射剂量与防护等几大部分的内容,涉及的知识点众多,单凭简单的书本教学,内容空洞,结构单一,学生容易造成概念的混淆,严重影响了后续课程的开展。此外,该课程还包含了相当一部分的数值计算问题,如果仅仅依靠传统的课堂讲授方式,教师花费了大量的时间和精力,学生仍感觉抽象,繁琐,无趣味,达不到教学的效果。该文旨在结合飞速发展的计算机技术,开发基于可视化编程语言VB6.0的教学软件,使得学生在课程教学之外,对该门课程的繁琐的知识体系有系统的理解,并将所学知识和今后遇到的实际问题结合起来,为培养和和训练学生分析和解决问题以及科研能力方面打下基础。
2 《辐射剂量与防护》课程教学软件的设计
考虑到软件的兼容性,实用性和运行的可靠性,该软件采用VB6.0编写。它采用Basic语言,是一种拥有丰富的面向对象的可视化设计工具,简单易学,方便用户二次开发[4-5]。根据本门课程的知识体系特点,该教学软件分为两大主体模块:外照射相关模块和内照射相关模块。为了克服VB中Label控件格式单一的缺点,我们采用picturebox控件和PPT相结合的方法,设计出了灵活多变,界面美观,并能够清晰展示复杂公式的软件界面。
2.1 外照射剂量学模块
外照射剂量模块包括两部分的内容,第一部分介绍了基本辐射量以及它们之间的关系;第二部分为原理示例部分,主要列举了常见射线,X()射线以及中子引起的外照射剂量和防护屏蔽计算。如图1所示,基本物理量界面中分门别类地列出了三大类物理量,即辐射计量学量、辐射剂量学量及辐射防护中的量。同时,还给出了相关辐射量之间的关系式,如果将鼠标放置在某一物理量上,将会显示该物理量的具体概念和定义。此外,软件还给出了各个量之间的转换因子,针对不同的射线和粒子,通过下拉菜单就可以直接选择,非常方便。可以自由输入某一辐射量的数值,进而可以计算任意相关的各个量。通过这样的界面设计,使学生可以对基本辐射量之间的关系一目了然,从而避免概念的混淆。
通过点击主界面的示例按钮,进入例题解析界面。如图2所示,软件中选取日常生活中涉及的实际问题,对常见射线及粒子如、X()、中子等所引起的外照射剂量进行计算,计算时可以随时调用前面的基本物理量界面,同时给出标准答案供学生参考。学生在计算时可以自主选择隐藏和显示答案,既可以对课本理论进行补充,便于学生巩固和加深对所学知识的理解,又可以提升学生自行解决问题的能力。
2.2 内照射剂量学模块
随着核技术应用日益广泛,特别是在医学中的应用,内照射也日益受到人们的重视[6]。内照射剂量估算比外照射剂量计算所涉及的因素更为复杂,例如放射性核素所处的环境状态、物理化学性质、进入人体内途径、个人代谢特点、所采用的计算模式等,都与内照射剂量估算有关,因此,很难进行精确计算。该文参照IAEA-TECDOC-1162文件[7],针对辐射应急情况下,按照其提供的计算方法设计了内照射教学软件,对内照射辐射情况下经由吸入和食入两种途径产生的内照射待积剂量进行快速计算,从而将损伤降低到最小。
1895年德国科学家伦琴发现了X射线,随后其被逐步应用于疾病诊疗的临床实践。伴随核物理与相关学科的发展,放射性核素与射线装置在工农业生产、科学研究中得到了广泛应用,日常生活中公众接触电离辐射的机会也逐渐增多。因此有必要加强核与辐射相关知识的培训与教育,使放射工作人员掌握辐射防护的方法与要求,使普通公众克服核恐怖心理,为我国核电事业发展营造良好的社会舆论环境。本文结合我国核技术产业化的发展及医学生的任务谈谈我们在核医学教学活动中加强核与辐射安全知识教育的教学体会。
1.我国核技术产业发展现状要求加强医学生的辐射安全知识教育
改革开放以来,我国经济迅速走上快车道,能源问题成为制约经济发展的瓶颈,目前我国石油、天然气的年进口量已占全世界年产量的近一半;尽管我国煤炭资源丰富,但仅够用一百年左右,同时燃煤发电产生大量粉尘、温室气体CO、NO与SO,导致气候变暖,诱发酸雨,污染环境。而我国大亚湾、秦山、岭澳等12座核电站的运行实践证实,核能清洁高效,由于加强核电站产生的放射性废物管理与处置,没有造成环境污染,更没有造成核电站周围居民的健康危害。因此国家在未来的20年规划建设近40座核电站[1]。以后,以辐照加工业为代表的核技术应用产业得到迅猛发展,核技术应用产业不久前也被列入国家高技术产业发展专项规划,要求今后5年左右时间达到1000亿元的市场规模[1]。高活度放射源和射线装置的广泛使用要求提高辐射安全和防护管理的水平。这首先要求各级环保和卫生部门加强放射源和射线装置的辐射安全管理,同时也要对公众普及核与辐射安全知识,提高他们的辐射安全和放射卫生防护意识。大学生作为文化水平较高的社会代表,他们对辐射安全知识的了解直接影响着公众的认识水平,因而我们必须加强大学生的辐射安全教育。医科院校的大学生将来大部分在公共卫生管理部门和临床诊疗机构工作,直接面对广大公众,有义务有责任向公众普及辐射防护知识。现在各级卫生监督所放射卫生监督人员大部分毕业于预防医学专业,掌握的核辐射防护知识有限,医院里涉及辐射的科室―放射科、肿瘤放疗科与核医学科医生大部分为影像与临床医学专业毕业生,辐射防护知识水平较低,所以医科大学生在今后的工作实践当中很可能会遇到因管理部门监管不到位、医疗机构辐射防护设施不健全而引发的各种核与辐射事故受害者的临床救治工作。
2.电离辐射的巨大危害
2.1核战争的危害
二战末期,美国在日本广岛和长崎投放的两颗原子弹初步显示了原子武器的巨大威力。广岛原子弹爆炸后,在1―2秒钟内,全市40%的地方变成焦土,92%的地方不能辨出原来的面貌。一年后,广岛市政府宣布118661人死于此次轰炸,到2004年底,死于此次轰炸的人数已超过20万;长崎原子弹爆炸后,眨眼之间毁坏了三分之一个城市,在这次轰炸中,有7.4万人死亡,7.5万人受重伤。
这一切彻底粉碎了日本部分顽固的军国主义分子顽抗到底、东山再起的梦想,迫使日本政府宣布无条件投降;另外,核爆所致的电离辐射远后效应逐步显现,给核爆幸存者带来了无尽的痛苦与灾难。辐射流行病调查证明,战后60多年,陆续有幸存者死于电离辐射诱发的恶性肿瘤,包括白血病、甲状腺癌、乳腺癌、骨肿瘤及各类消化道肿瘤(肝癌、直肠癌与结肠癌)、肾脏及膀胱癌(电离辐射诱发各种癌症的潜伏期长达10―35年)[2]。
2.2常见射线的危害
常见的α、β、γ、中子和重离子照射,包括内照射(放射性核素通过不同途径进入人体,在体内衰变,发出射线,照射人体组织器官)和外照射(射线从体外照射人体),均会引发辐射损伤。外照射时累积吸收剂量高于0.5Gy即可轻度抑制造血机能,使白细胞、血小板与红细胞依次出现程度不等的减少(减少程度因个体辐射敏感性而异)。
辐射照射可影响造血与系统、上皮组织、中枢和周围神经系统、内分泌系统、生殖系统功能,导致骨髓造血机能障碍、细胞和体液免疫能力下降、表皮皲裂、溃疡、甲皱骨关节僵硬而丧失功能、神经体液调节机制紊乱、放射性不育不孕症、放射性白内障、听力丧失或下降、辐射致癌(甲状腺癌、白血病、皮肤癌)、遗传效应、寿命缩短与胚胎效应(如腭裂)[3]。
2.3辐射事故的危害
非战争条件下发生的辐射事故也会产生人员伤亡,迫使我们必须加强辐射安全教育。这里仅举比较典型的两起放射源丢失事故。
2.3.11963年合肥三里庵事故[4]
1963年春节前夕,安徽农学院用于农作物诱变育种的10CiCo放射源疏于管理(露天放置且监护不严),附近村中11岁儿童将其带回家,撬开铅封,成为裸源,随身携带达24h以上,致使该儿童及其兄长分别在入院治疗后2-7天死亡,其叔一大腿因大剂量照射引发的放射性溃疡而被迫截肢,其母及姐妹也分别患急性中度和重度造血型放射病,经治疗虽存活下来,但体质较弱,时患感冒。
2.3.22008年太原辐射事故[5]
2008年4月11日下午1:30左右,位于山西省农科院的旱农辐照中心发生了一起严重的钴源意外照射事故。由于违规使用已经退役的钴源室照射中药粉末,钴源在降落时被层层码放的麻袋卡住,未能落入井内,而操作者误以为源已安全降落,遂由1名职工带领4名搬运工人进入钴源辐照室而受到意外照射。5名受照者中,1例患胃肠型放射病,其他4例患中度至重度骨髓型急性放射病。
3.结合核医学教学内容进行辐射安全知识教育
核医学是将核物理与医学交叉融合形成的边缘学科,是利用放射性核素诊断、治疗疾病和进行医学研究的医学学科。核医学课程的教学内容可分为实验核医学和临床核医学,在教学实践中,我们结合教学内容对同学介绍辐射安全与防护知识,具体做法如下。
3.1核物理基础
对常见的X、α、β、γ与中子射线,电离能力为快中子α>β>γ,射程α<β<γ<快中子,所以我们要求学生在以后使用射线时要针对不同射线的特点采取不同的防护措施。如使用低能α、β核素,因其射程短,只要注意进行内照射防护,不需要特别的外照射防护。γ与快中子射线因为射程长,所以不仅要注意内照射防护,而且要注意外照射防护。热中子能量极低,无需防护。核素检查利用γ射线成像,所以核医学科医护人员要注意外照射防护;X射线与γ射线一样都是电磁波,射程长,所以在放射科工作的人员也要注意外照射防护。高能β射线与物质相互作用可产生韧致辐射,即高速运动的带电粒子经过原子核附近时,受到电场力作用而急剧减速,其部分或全部动能转变为电磁波,作为X射线的一部分,射程长。韧致辐射的发生几率与带电粒子质量的平方成反比,与所照射物质原子序数的平方呈正比,所以α粒子的韧致辐射可忽略不计;高能β射线的韧致辐射效应显著,故对其防护应该采用低原子序数的有机玻璃或铝等屏蔽材料。能量较高X、γ射线由于能量高且不带电荷所以穿透力较强,应采用铅等高原子序数物质。对快中子或高能中子应采用石墨与含硼物质吸收中子降低其速度然后用铅板或水泥混凝土墙屏蔽。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
3.2核仪器与放射性监测
结合核仪器示教让同学们了解到,辐射尽管肉眼看不到,但可用仪器监测。对不同射线用不同的仪器监测,用剂量计可对人体受照剂量进行监控,防止受照人员过量。在实验课上利用本教研室现有仪器,带领学生对本室的不同实验场所进行辐射水平监测,通过实际操作,让同学们对射线有个感性认识。同时结合《电离辐射防护与辐射源安全基本标准》,讲明放射工作场所设备、地面与墙壁表面α、β污染控制水平分别为3.7与37Bq/cm,而对X与γ射线,主要监测空气剂量率是否超标,以确保辐射安全。
3.3放射卫生防护
此部分介绍放射源种类与照射方式、辐射防护的基本原则与措施。射线照射有机体的方式有三种,一为外照射,射线从体外照射生物有机体;二为内照射,放射性核素或其标记物经消化或呼吸道进入生物有机体内,蓄积于不同组织器官,在其内部衰变发出射线照射有机体;三为混合照射,在核事故现场或核战争条件下既有γ射线与中子产生的外照射,有U或Pu裂变产物蓄积体内器官组织产生的外照射。放射源指除研究堆和动力堆参与核燃料循环范畴的材料外,永久密封在容器中或有严密包层并呈固态的放射性材料,一般情况下不会污染环境,破坏其密封材料或包壳则会产生外照射。在使用时应该注意不要破坏它的外壳。非密封放射性物质系非永久密封在包壳里或紧密地固结在覆盖层里的放射性物质,过去称开放源,可污染环境,或进入人体,产生内照射。核医学实验与疾病诊疗时常用非密封的放射性液体或冻干粉,使用时应避免其进入机体产生内照射。放射诊疗实践中应针对具体辐射源与工作条件采取不同防护方法。
放射科X光或CT机房屏蔽不严,可能导致射线部分泄漏,放射科人员应防护漏射线的外照射,外照射防护方法为:时间防护,尽可能缩短辐射操作时间;距离防护,尽可能远离辐射源操作;屏蔽防护,采用尽可能厚的屏蔽材料阻挡射线。核医学工作者可同时受到病人体内放射性药物产生射线的外照射及稀释、注射放射性药物时少量放射性药物经口腔鼻腔进入体内产生的内照射,内照射防护方法为:围封隔离,在四周密封且顶部带通风管道的的辐射操作台上合成或稀释放射性物质;去污保洁,操作时遇到放射性污染物尽快清洗或扫除;个人防护,进行辐射操作时按要求穿戴防护用的衣服、鞋帽与手套、口罩,使个人受照剂量符合国家规定的放射工作人员剂量限值(眼晶体<150 mSv,全身均匀照射<50 mSv,单个组织器官<500 mSv)。核医学诊疗活动不可避免地会产生放射性废物,包括盛放射性物质的玻璃或塑料瓶、注射针管、一次性输液器、退役的粒子源、接受放射诊疗患者的大小便、呕吐物等,对其处置不当,也会使医护员工及公众受到不必要的照射。通常根据放射性废物中所含核素物理半衰期的长短选择不同的辐射性废物处置办法,处理短半衰期核素的放射性废物,常用放置衰变与稀释排放法;处理长半衰期核素的放射性废物,常用地下深埋与浓缩贮存法。
3.4核医学显像
核医学显像即核素显像,将放射性药物(显像剂)引入体内,采集、处理和分析图像后进行诊断疾病。放射性药物引入机体过多会造成药物浓聚器官的辐射损伤,所以在引入的放射性药物的量上要有一定的要求,防止引入过量放射性核素而对病人造成内照射损伤。而且对于核医学科工作人员要尽量减少和引入放射性药物的病人接触而导致的外照射。
核素治疗是经口服或注射方式向体内引入放射性药物,它们根据自己的生物、物理与化学特性,选择性地蓄积于病变组织或器官,使放射性核素与病变细胞紧密结合,利用浓聚于细胞组织内的核素衰变产生的射线杀伤细胞。我们引入的放射性药物类型、种类要选择恰当。防止过量的放射性核素对机体正常组织细胞的损伤是核素治疗要遵循的基本原则。
3.5放射分析实验中的辐射安全教育
放射性实验应在专门的实验室进行,为此本教研室专门设置了放射性操作区,全校所有的放射性教学科研实验均在此进行。我们在放射操作区入口按要求张贴了电离辐射警示标志,提醒在此从事放射性实验的师生注意辐射安全。实验前,对学生进行放射性实验相关规章制度教育,使学生了解这些规章制度制定的依据及其遵守的必要性。本室目前开展的各类放射分析实验都要使用一些放射性液体,对此,我们要求学生注意射线的种类、能量和活度,例如:放射免疫实验中主要用的是I,要进行外照射与内照射防护。放射自显影实验常用H、P低能β核素,尤其H这种长半衰期的核素,应避免让其通过呼吸道、皮肤毛孔、伤口进入体内产生内照射。P发射的β射线能量较高,对眼晶体可能造成损伤,需戴铅玻璃眼镜防护。同时,为避免学生由于操作不熟练或意外情况造成实验卓台面或实验室地面表面放射性污染,我们通常给学生配备衬有三层吸水纸的搪瓷盘,这样放射性液体即可残留在吸水纸上,最后将其作为放射性固体收集处理。另外,在进行开放性放射操作时,必须尽可能打开所有的排气扇,以利放射性核素扩散,减少呼吸道、口腔的核素吸入量。
4.联系核事故阐述电离辐射危害,克服核恐怖心理
前面我们谈到日本广岛长崎核战争的巨大危害,难免使学生产生核恐怖心理。广大公众由于不了解核辐射损伤的机制,也不可避免地恐核。尤其是最近日本强烈地震引发福岛核事故,进一步加剧了这种核恐慌心理,也使公众高度关注核电站安全防护问题。对此,我在电离辐射生物效应教学中介绍了Chernobyl核事故概况,1986年4月26日,前苏联Chernobyl核电站4号机组发生了核爆炸事故。该核电站位于乌克兰基辅西北130千米的普里皮亚特河畔的普里皮亚季镇,其第四号机组于1983年12月投入运行。由于反应堆物理结构和关闭系统设计存在严重缺陷,以及低功率工程实验时操作失误,安全系统被切断,导致短期内反应堆内蒸汽压力过大,爆炸起火,使堆内放射性物质总量的3.5%外泄到环境中,总释放量12×10Bq, 其中Cs0.09×10Bq,Cs 0.06×10Bq,I 2×10Bq,惰性气体6×10Bq,产生的放射性灰尘相当于日本广岛核爆的100倍,它们沉降在乌克兰西部、欧洲国家及全球。事故后10天,火被扑灭,停止释放放射性物质。事故发生时现场有操作工177人、建筑工人268人。本次事故受照0.8Gy者237人,有134人被确诊为急性放射病。因急性放射病复合β粒子皮肤烧伤火热烧伤死亡28人,另2人死于现场(烧伤或压伤),1人死于冠状动脉血栓形成,此为近期效应。事故发生后20年(1986―2006),根据世界卫生组织与联合国原子辐射效应科学委员会,以及事故后由俄罗斯、乌克兰与白俄罗斯三国核能机构与卫生部门共同组成的研究事故后果的学术组织――Chernobyl论坛进行的辐射流行病调查表明,事故发生时处于18岁以内的3000多名青少年(其中大部分为15岁以内的少年儿童)由于长期大量饮用被事故释放的I污染的牛奶而罹患恶性肿瘤――甲状腺乳突状瘤,同时有200多名事故发生时15―46周岁的育龄期妇女患程度轻重不等的放射性不孕症,另外有30多例病人因摄入放射性灰尘照射患心血管疾病[6],这是该事故的主要辐射远后效应。由此可见,与日本核战争相比,尽管此事故放射性物质释放量较大,但由于苏联政府在事故发生次日――4月27日临晨开始,在周围30平方千米范围内分三批迁移11.6万居民,同时对参与现场应急抢险人员发放KI片,因此大大较少了放射病的发生率。让学生认识到核事故危害尽管巨大,但其危害还是局部的可控的,只要积极应对,仍可缩小危害,因此大可不必恐惧。同时,我国从1985年第一座大亚湾核电站运行以来25年的核反应堆营运实践表明,核电是安全清洁可靠的。针对日本岛核事故,我们讲清此次事故U裂变产物――I的释放量尽管超标达一万倍,但根据联合国原子能机构IAEA推荐的标准(I在放射工作场所与露天水源的允许活度分别为0.33Bq/cm与22Bq/L)测算,仍属危害程度最小的Ⅴ放射源[7],这样强度的放射性碘远小于一次甲状腺显像剂量(5―30mCi), 对日本以外的公众尤其是我国居民健康不会造成任何影响。
通过上述理论教学和实验操作中的亲身体验,我校医学生辐射安全意识得到较大幅度提升。随着包括核电在内的核技术应用产业的快速发展,全社会要提高辐射安全和防护意识,管理部门要加大对放射性同位素及射线装置的监管力度,我们也要适应形势需要,加大对医学生的辐射安全教育力度,为我国核技术产业产业持续稳定发展及保护公众身体健康储备相关人才。
参考文献:
[1]我国核工业从适度发展变到加快发展新华网(2006)1月13日综述.
[2]刘树铮主编.医学放射生物学.北京:原子能出版社,1998.6,(第二版):464-471.
[3]强永刚主编.医学辐射防护学.北京:人民卫生出版社,2008.12,(第一版):63-81.
[4]杨秀珍,欧克仁,于海忠,刘远兴,季其仁.四例急性放射病人和九例小剂量辐射损伤者及其子女远期效应的医学观察, 1978年全国科学大会奖项目,见《1978年全国科学大会会议论文集》,北京:科学技术出版社,1978.
[5]陈英,杜杰,张学清等.太原“4.11”钴源事故受照者生物剂量估算及照后一年细胞遗传学随访,辐射防护,2010,30,(4):201-207.
[6]World Health Organization.Health Effects of the Chernobyl Accident and Special Health Care Programmes,Report of the UN Chernobyl Forum Expert Group“Health”.WHO Press,Geneva,2006.
[7]国家环保总局2005年第62号公告.放射源分类办法.
苏州美康医用防护设备公司的1.0mm铅当量[6]性腺防护衣,面积50cm×125cm,重17.6磅(7.98kg)(17.6磅1.0mmPb铅当量防护衣在为新生儿防护时,不影响新生儿检查状态,能够正常完成检查)。
1.2辐射剂量监测设备
美国兰道尔公司的INLIGHT200型光致发光剂量仪。
1.3CT扫描设备
德国西门子单排螺旋CT,SOMA-TOMBLANCE。采用低剂量新生儿扫描模式[7]。扫描参数见表1。
1.4实验方法
将30例行头颅CT检查的新生儿的性腺部位用1.0mm铅当量铅衣防护,然后将光致光检测芯片分别放置于防护衣内外,其中男性以目测位置为测量位置,女性以两髂前上棘和耻骨联合上缘三点连线的倒三角区域[8]为测量位置,防护衣环状包绕患儿,上至胸廓上口,下至患儿双脚,进行CT扫描,结束后,测量防护衣内外辐射剂量值,对结果进行评价。
1.5统计学方法
应用SPSS18.0进行数据分析,先行正态分布检验,属于正态分布用配对t检验,不属于正态分布,用秩和检验,P<0.05为有显著性差异。
2结果
在头颅CT扫描中,防护衣外的辐射剂量均值约为0.115mGy。防护衣内的性腺部位辐射剂量均值约为0.041mGy,防护后性腺部位辐射剂量降低了约64%经统计学软件分析,防护衣内外辐射剂量值分布符合正态分布,采用配对t检验,防护衣内外辐射剂量值差异有统计学意义。新生儿头颅CT扫描时,正确使用1.0mm铅当量辅助防护器具能有效降低辐射剂量值。在辅助防护之下,新生儿性腺部位所接受的辐射剂量值低于0.1~0.2mGy[9]。
3讨论
辐射防护已经逐渐成为现代影像医学重要的组成部分,从1895年X射线发现至今,影像学飞速的发展,数字摄影(DigitalX-rayphotography)、计算机断层扫描〔Computedtomographyscan(CT)〕、血管减影成像(Vascularsubtractionimaging)、介入治疗(Interven-tionaltherapy),一系列依赖于X射线而服务于病人的检查手段的出现使医学影像成为了疾病诊断和治疗的重要手段。但是,越来越多的研究表明,频繁的接受放射检查以及不合理的使用放射检查会导致随机性致癌危险度的增加。CT检查是一项高辐射剂量检查手段,在世界范围内,1997-2007年统计,CT检查年频率占整个放射诊断年检查频率的8%,但CT检查所贡献的患者年集体有效剂量占整个放射学检查年集体有效剂量的42%[10]光致光辐射探测技术(OSLOpticallyStimulatedLuminescence)是指探测晶片在受到辐射照射以后产生电子空穴对,被探测晶片的晶格缺陷所捕获,当这些被捕获的离子对在受到外界激发后会发射出光,其发射光的强度与所受辐射的强度与激发的强度成正比。光致发光技术是非破坏性的,相比较于热释光技术(ThermoluminescenceTechnique)具有理化环境稳定性好,灵敏度高、量程宽泛、可重复测量、数值精确等优势[11]。本次研究中,我们通过正确使用合适的防护器具、低剂量扫描模式、单排螺旋CT(单排螺旋CT的辐射值低于多排螺旋CT)、严格选择病患(不违背医学伦理)所测出的辐射值中,可以发现,在新生儿性腺未有辅助防护时,表面辐射剂量值最高可达0.25mGy,ICRP(国际辐射防护委员会)26号报告[12]指出:性腺是辐射诱发基因突变和染色体畸变而引起遗传缺陷所涉及的组织,医疗照射防护的基本要求是使患者所受的辐射剂量,特别是性腺,不得大于为获得有关诊断资料或产生所希望的治疗效果所需要的剂量[13]。
一、受照方式
1.分次照射 同一剂量的照射,在分次给予的情况下,其损伤效应低于一次给予的效应,分次越多,每次间隔时间越长,则损伤效应就越小,反之则越大。
2.照射部位 由于机体不同部位对辐射的敏感性不同,所以即使在照射剂量和剂量率都相同的条件下,照射机体的不同部位引起的损伤效应也是不同的。全身损伤程度以照射腹部最严重,其次是盆腔、头部、胸部和四肢,因妇女腹部盆腔、为重要的生殖器官所在,儿童处在生长发育期,做好妇女儿童的放射防护更值得重视。
3.照射方式 照射方式分为内照射、外照射和混合照射。在其他因素相同的情况下,多向照射引起的损伤效应比单向照射严重。
以前体检中让中小学生做胸透是有历史原因的:过去我国还没普及婴儿出生时接种卡介苗,做胸透主要目的是检查孩子有无先天性心脏病和肺结核,而随着我国新生儿普及接种预防结核杆菌感染的卡介苗后,结核病发病率大大降低,而且它也不再是过去说的“不治之症”,所以孩子常规体检取消胸透是完全可以的。
4.照射面积 辐射损伤效应很大程度上取决于照射面积的大小。当其他条件相同时,受照射的面积越大,损伤越显著。
二、受检者的防护
重视受检者的防护,减少一切不必要的照射,可以预防或减少X射线检查给公众及其后代带来的潜在性危害,提高X射线诊断的效应有着重要意义。我们要贯彻X射线应用正当化的原则,合理应用X射线。
1.X射线工作者对所有X射线检查申请,均应认真复核,对不符合正当化判断的申请有权退回。
2.掌握适应症 有关临床医师必须掌握各种医学影像技术的特点及适应症,不得盲目申请X射线检查。同时必须注意防止提出价值不大的重复性X线检查申请。
3.有关临床医师必须在X射线检查申请单中写明受检者的主要病史和已有的检查结果,指出X射线检查的目的和检查部位等,以便X射线工作者复核并正确实施检查。
三、放射防护基本方法
1.外照射防护基本方法 外照射防护的基本方法是:时间防护、距离防护和屏蔽防护。
1.1屏蔽防护 屏蔽防护就是在辐射源与人体之间设置能够吸收辐射的屏障物,以减少辐射对人体的照射剂量。运用各种防护设施与个人防护用品,妇女拍摄腹部X光片时应用铅橡遮皮遮挡子宫及卵巢,儿童拍片时应用铅橡皮遮挡下腹部。骨科手术术中摄片应做好不在检查范围部位防护。由于目前卫生体制、机制的不到位,致使部分医疗单位趋利行为导致重复检查,增加X线的检查率和量。这是引起我们重视的主要问题,各级卫生行政部门和管理单位应制定相应的法律法规,杜绝重复检查和过检的现象发生,提倡影像资源共享。在实际工作中,应根据具体情况综合利用时间防护、距离防护和屏蔽防护这三种基本方法。目前影像数字化的应用给予放射防护带来美好前景。
1.2时间防护 受照射剂量与受照时间成正比,受照时间愈长,所受累积剂量愈大。所以,在一切接触电离辐射的操作中,应以尽量缩短受照时间为原则。尽量缩短接触射线的时间。
影像医师提高自己的诊断技术和操作技能,采用小照射野,缩短曝光时间,避免不必要的长时间照射。
1.3距离防护 增加人体到辐射源的距离,可减少其受照剂量,即为距离防护。尽量延长病人与X射线管间的距离。人体受到的照射剂量与距离的平方成反比,即距离增加一倍,剂量率减少到原来的1/4。
2.妇女和儿童X射线检查的防护
2.1对儿童进行X射线摄影时,应采用短时间曝光的摄影技术。对婴幼儿摄影时,一般不应使用滤线器。
2.2妇女妊娠早期,特别是在妊娠8-15周时,非急需不得实施腹部尤其是骨盆部位的X射线检查。
2.3严格限制对带环妇女进行X射线透环检查的频率,带环后第一年不得超过2次,以后每1-2年不得超过一次。
2.4严格掌握乳腺X射线检查的适应症,对20岁以下妇女更应慎重。乳腺X线诊断必须有受过专门训练的医师承担。应使用钼靶X射线机,并配合先进技术和稀土增感屏进行检查,使一次检查最大剂量当量不高于10m4、除临床必须的X射线透视检查外,应对儿童采用X射线摄影检查,特别是新生儿。
2.5对儿童进行X射线摄影时,应严格控制照射野,必须注意非检查部位的防护。有好多基层医院影像医师对调整束光器掌握得不够好,往往将大的照射野对准病人,这是我们不能轻视的问题。
四、对影像医师的要求
1.移动式和携带式X射线机摄影时,X射线工作人员必须离管头和受检者2米以上,并对周围人员采取防护措施。
2.除了临床必须的透视检查外,应尽量采用摄影检查,以减少受检者和工作人员的受照剂量。
3.在透视前必须做好充分的暗适应。在不影响诊断的原则下,应尽可能采用高电压、低电流、厚过滤和小照射野进行工作。
4.用X射线进行各类特殊检查时,要特别注意控制照射条件和重复照射,对受检者和工作人员都应采取有效防护措施。
5.X射线工作者必须熟练掌握业务技术和射线防护知识,配合有关临床医师做好X射线检查的临床判断,注意掌握其范围,正确、合理地使用X射线诊断。
6.摄影时,工作人员应严格按所需的投照部位调节照射野,使有用线束限制在临床实际需要的范围内,并对受检者的非投照部位采取适当的防护措施。对携扶者也应采取相应的防护措施。
7.在放射科临床教学中,对学员必须进行射线防护知识的教育,并注意他们的防护;对示教病例严禁随意增加曝光时间。
8.摄影时,工作人员必须在屏蔽室等防护设施内进行曝光,除正在接受检查的受检者外,其他人员不应留在机房内。
9.进行X射线摄影检查时,X射线工作人员应注意合理选择胶片,并重视暗室操作技术,以保证摄影质量,避免重复照射,目前数字化X线检查可大大减少X线量。