发布时间:2023-12-15 10:08:25
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇含氟化物污水处理方法范例,将为您的写作提供有力的支持和灵感!
目前,我国电解铝年产量已经突破2400万吨,居世界首位,且电解铝年产量仍以10%的速度递增[1]。在电解过程中,多种氟化盐在高温作用下熔融为电解质,氧化铝与电解质在电流作用下析出金属铝,而电解质中的氟化盐发生化学反应生成氟化氢,氟化碳和氟化硅等氟化物气体,这些气体氟化物是电解铝生产过程中的特征污染物,若不加以控制和净化会对空气造成严重的污染[2-3]。同时,在电解过程中会造成部分氟化物粉尘飞扬,这些氟化物随烟气排放一定程度地污染周围环境。另外,电解铝企业在生产过程中会产生大量的固体废弃物,如废槽衬、碳渣、生活垃圾等,这些固体废弃物对于企业周围环境污染也起着促进作用。鉴于此,作者根据多年工作经验对电解铝企业污染源进行分析,并给出有针对性的治理措施。
1 电解铝污染物分析
1.1 电解铝生产系统
在电解铝生产过程中,以碳素体和铝液分别作为阳极和阴极,在直流电和950℃~970℃作用下,碳素阳极与氧发生反应生产一氧化碳和二氧化碳而不断消耗,故需要对碳
素阳极进行定期补充;阴极产物为铝液,铝液从电解槽内通过出铝抬包抽出进入混合炉和铸造机制成铝锭。在电解过程中,电解槽中会溢出大量的氟化物气体、氟化物粉尘、二氧化硫和其他粉尘颗粒,这些产物是电解铝企业主要污染物。资料显示,电解铝企业氟化物污染物产率为20~35kg/t-Al,且电解铝企业中的99%以上的污染物均在电解铝过程中产生。电解铝生产系统流程和污染物产生过程见图1所示。
1.2 污染物分析
(1)有害气体污染,电解铝企业环境污染最主要的因素便是电解铝生产过程中产生的有害气体。当前,国内外铝炼冶多采用冰晶石和氧化铝熔融电解法来获得单质铝,在电解过程中因物质分解、挥发等过程产出大量的有害气体和有害粉尘,具体为:电解原料中的冰晶石和氧化铝中含有大量的氟化物,在电解槽高温和电流作用下氟化物发生化学反应生成氟化氢,氟化碳和氟化硅等氟化物气体;在电解槽内,部分含氟颗粒随电解质挥发和氟化物升华而散出,这部分含氟颗粒形成粉尘散布于生产车间直至随空气排出;以游离态存在的氟离子与阳极碳结合生成的氟化物气体也会对环境造成污染;阳极糊中含有的沥青在电解过程中会产生少量的二氧化硫、硫化氢气体和苯并花等物质;另外,在电解过程中,游离氧与阳极碳素相结合生成二氧化碳和一氧化碳气体,二氧化碳是重要的温室气体,一氧化碳是剧毒物质。电解铝企业在生产过程中会产生氟化氢,氟化碳、二氧化硫、硫化氢等多种有害气体和含氟颗粒,这些污染物若不加以控制势必对周围环境造成严重的污染。(2)固体废弃物污染,在电解过程中,高温电解质会不断渗入电解槽内衬并与内衬组成发生化学反应,生成的新型化合物填充在槽内衬内造成内衬结构破坏,根据电解铝生产实践,电解槽平均3~4年就需要进行一次大修,大修时必须更换槽内衬和槽体耐火材料,废弃的槽内衬含有大量的氟化物和其他有毒物质,耐火材料含氟量较低,故废槽内衬属于高危废物,有关资料显示,电解铝废槽衬、耐火材料等固体废弃物产率为10~40kg/t-Al,若废槽衬处理不当还会造成二次污染,如堆放在露天场地的槽内衬和耐火材料会因雨雪的侵蚀造成氟化物渗入地下造成土壤和地下水污染,在大气侵蚀作用下致使废弃物表面风化产生有毒粉尘污染大气,故废槽内衬和其他废弃固体处理一直是电解铝企业着重解决的固体污染源。(3)水污染,电解铝企业生产废水含有少量的氟化物和氰化物,若不经过净化处理直接排放则会直接影响地下水体水质;另外,企业生产和生活过程中产生的冷却水和生活污水也是电解铝企业周边污染的重要源泉。
2 环境污染应对措施
2.1 气体污染治理
电解过程中产生的氟化物、硫化物和粉尘等环境污染物一般可经过“干法”净化系统进行处理,“干法”净化法的优点是无水化学反应,且产生二次污染可能性较小。“干法”净化法是通过电解铝生产所用氧化铝作为吸附剂吸附烟气中的氟化氢等有害污染气体来完成污染气体的净化,净化系统工艺流程主要包括电解槽集气、吸附反应过程、气固分离过程、氧化铝输送和机械排风等系统。实践证明,“干法”净化已经成为了电解铝企业处理有害烟气的最为有效的方法。
2.2 固体废弃物处理
鉴于槽内衬和耐烧材料属于电解铝企业高危废弃物,应严格按照《危险废物贮存污染控制标准》相关要求进行贮存和管理。生产过程中产生的碳渣可经阳极组装车间进行处理后再利用,残阳极可进行返修再利用;生活废弃物进行统一分类后交由环卫部门进行处理;其他固体废弃物堆放和处理应按照相关要求进行处理。
2.3 水污染处理
对于含有氟化物和氰化物等污染物的水体必须经过净化装置进行净化后方可排放;对于冷却水需建立循环利用系统进行处理,即电解车间、煅烧、生阳极系统等生成的冷却水需经冷却水塔进行处理,铸造车间产生的冷却水经除油、冷却系统进行处理,冷却水经处理后进入循环系统直接利用;生活污水进入污水处理厂进行净化。
3 结束语
电解铝生产过程中产生的废气、固体废弃物等若不加以控制则会对空气、土壤和水体造成污染。加强有害气体、污水和固体废弃物处治理,严格控制污染物排放总量是当前国家对于电解铝企业的硬性要求,同时也是电解铝行业提升自身形象的重要途径。在处理电解铝废弃物处理时,应有选择、有重点地制定治理方案,尽可能地使废弃物回收利用,这样不仅有助于环境保护,也有利于降低企业经营成本。另外,应加强电解铝生产工艺的优化和环保设备的投入,从根源上控制污染物的排放,这也是发展环保型电解铝行业的必经途径。
参考文献
[1]张西林,马超,熊如意,等.对电解铝厂周围氟污染的环境影响评价[J].中国环保产业,2012(10):41-44.
1市区环境空气质量
1.1监测项目
可吸入颗粒物(PM10)、二氧化氮(NO2)、二氧化硫(SO2)、硫酸盐化速率、降尘、CO、O3、TVOC监测。
降水监测项目包括:降雨(雪)量、pH值、电导率、SO42-、NO3-、F-、Cl-、NH4+、Ca2+、Mg2+、Na+、K+。
1.2监测方式
PM10、NO2、SO2、CO、O3、TVOC采用自动监测。
硫酸盐化速率、降尘、降水按《酸沉降监测技术规范》(HJ/T165-)。
1.3监测点位
各项目监测点位见附表1
1.4监测频次
PM10、NO2、SO2、CO、O3、TVOC每日24小时监测。
硫酸盐化速率、降尘每月30±2天监测。
降水逢雨(雪)必测,每天上午9﹕00到次日上午9﹕00为一个采样监测周期。
1.5质量保证
按照《环境空气质量手工监测技术规范》(HJ/T194-)和《环境空气质量自动监测技术规范》(HJ/T193-)有关要求执行。
1.6数据上报
1.6.1通过VPN上报各类数据,数据上报格式按照国家和省的有关文件要求填报。
1.6.2上报时间
空气质量日报(PM10、NO2、SO2、CO、03、TVOC):每日13﹕30—15﹕00前报送日报监测数据;
空气质量每月监测数据:每月5日前(含5日,逢周末顺延),报送上月空气质量监测数据。
降水监测数据:每月3日前(含3日,逢周末顺延),报送上月监测数据。
2辖区水环境质量监测
2.1地表水环境质量常规监测
2.1.1监测项目
河流必测项目:流量、水温、pH值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、六价铬、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、粪大肠菌群、电导率共26项;湖库必测项目:水温、pH值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、六价铬、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、粪大肠菌群、硫酸盐、氯化物、硝酸盐、铁、锰、透明度、叶绿素a、水位共32项。
2.1.2监测点位:共30个,其中国控点位15个,详见附表2。
2.1.3监测频次
国控、跨省界17个断面每月监测一次,其他断面于1、3、5、7、9、11月每月监测一次。
如遇异常情况,必须加密采样一次。
2.1.4监测时间
每月上旬监测,逢法定长假日(春节、十一)监测时间可以延后,最晚不超过每月15日;没有监测数据的,应有相应的文字说明。
2.2饮用水源地监测
包括地表水饮用水源地及地下水饮用水源地。
2.2.1监测项目
地表水水源水:月取水量、《地表水环境质量标准》(GB3838-)表1的基本项目(23项,COD除外)、表2的补充项目(5项)和表3的部分特定项目(前35项),共63项,即:pH值、溶解氧、高锰酸盐指数、氨氮、总磷、氟化物、挥发酚、石油类、粪大肠菌群、生化需氧量、总氮、铜、锌、硒、砷、汞、镉、六价铬、铅、氰化物、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐、铁、锰、三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯、四氯苯、六氯苯、硝基苯、二硝基苯、2,4-二硝基苯、2,4,6-三硝基甲苯、硝基氯苯、2、4-二硝基氯苯。
地下水水源水:月取水量及《地下水质量标准》(GB/T14848-1993)中23项,即pH值、总硬度、硫酸盐、氯化物、高锰酸盐指数、氨氮、氟化物、总大肠菌群、铁、锰、铜、锌、挥发酚、阴离子表面活性剂、硝酸盐、亚硝酸盐、氰化物、砷、汞、硒、镉、六价铬、铅。
2.2.2监测点位
地表水水源地为西大洋水库中心和西大洋水库出口2个,地下水水源地为一亩泉。
2.2.3监测频次:每月监测一次。每年6~7月份按照《地表水环境质量标准》(GB3838-)和《地下水质量标准》(GB/T14848-1993)分别对地表水和地下水饮用水源地进行一次109项和39项水质全分析。
2.3“双三十”重点县(市、区)地表水环境质量监测
2.3.1监测项目
必测项目:pH值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、石油类、挥发酚、砷、硫化物共10项。
选测项目:总氮、总磷、铜、锌、氟化物、硒、汞、镉、六价铬、铅、氰化物、阴离子表面活性剂共12项。
2.3.2监测点位
县孝义河的万安桥、郝关村东。
县大王排渠的大王排渠北六。
县孝义河的兑坎庄桥。
县漕河的县北独乐大桥、东庄店。
2.3.3监测频次
必测项目每月监测一次,选测项目每季度最后一个月监测一次。
2.4生态补偿水质监测
按照省环境保护厅《关于全省七大水系主要河流跨界断面年水质考核目标的通知》(冀环[]1号)和市人民政府办公厅《关于实行跨界断面水质目标责任考核的通知》([]保市府办180号)中的有关规定,继续对我市辖区内主要河流跨县(市、区)、开发区断面开展生态补偿水质监测工作。
2.4.1监测项目
省级断面监测化学需氧量、氨氮;市级断面监测化学需氧量。
2.4.2监测点位见附表3。
2.4.3监测时间及频次
每月监测一次,特殊时期根据环境管理需要临时增加监测频次。
2.5地下水环境质量监测
2.5.1监测项目
pH值、总硬度、溶解性总固体、氨氮、高锰酸盐指数、挥发酚、硝酸盐氮、亚硝酸盐氮、氯化物、硫酸盐、氟化物、氰化物、六价铬、总大肠菌群、浊度、石油类、阴离子表面活性剂、铁、锰、砷、汞、镉、镁、铅共24项。
2.5.2监测点位
省环保厅认证的点位有一亩泉、电化厂、南奇水文站和尚庄4个。
市环保局认定的点位有市粮食局储备库、宝凯电器有限公司电镀分公司、东明树脂化工有限公司、裕北物业管理公司砖厂、市交警支队车管所5个。
2.5.3监测频次
省认证点位每年1、3、5、7、9、11月各监测一次。市认证点位每半年监测一次。
2.6质量保证
按照《地表水和污水监测技术规范》(HJ/T91-)、《地下水环境监测技术规范》(HJ/T164-)及《环境水质监测质量保证手册》(第二版)中有关要求执行。
2.7数据上报
2.7.1通过VPN上报各类数据,数据上报格式按照国家和省的有关文件要求填报。
2.7.2上报时间
地表水环境监测:每月22日前报送当月监测数据。
饮用水源地监测:每月18日前,报送当月监测数据;9月15日前上报地表水109项和地下水39项全分析数据和水质全分析监测报告。
地下水环境监测:监测月22日前报送当月监测数据。
“双三十”重点县(市、区)地表水监测:每月22日前报送当月监测数据和分析报告。
生态补偿监测:每月25日前报送当月监测数据。
2.8水质自动站监测
2.8.1水质自动站监测点位6个:磁河的七级桥、西大洋水库出口、府河的望亭、拒马河的码头、潴泷河的砂窝、白洋淀的采蒲台。
2.8.2监测项目、数据上报时间和上报方式按省环境保护厅和市政府要求执行。
2.8.3质量保证
按照《地表水和污水监测技术规范》(HJ/T91-),《国家地表水自动监测站运行管理办法》(总站水字〔〕182号)及《环境水质监测质量保证手册(第二版)》有关要求执行。每天查看自动监测实时系统中的数据,发现问题及时解决。
3声环境质量监测
3.1功能区噪声
3.1.1监测点位:
1类区东风东路224号宿舍区(原卫生路3号),2类区韩村南路楼群,3类区棉纺厂厂区西南侧,4类区东风路环保局和联盟路第二机床厂5个。
3.1.2监测频次:每季度监测一次,于每季度的第二个月(2、5、8、11月)1-20日进行一次24小时监测。
3.2道路交通噪声
监测点位159个,每个测点监测20分钟的等效声级(dB(A)),L10、L50、L90、车流量及相关指标,每年于春季或秋季监测1—2次。
3.3城市区域环境噪声
监测网格209个,每个网格监测10分钟的等效声级(dB(A)),L10、L50、L90及相关指标,每年于春季或秋季监测1—2次。
3.4质量保证
按照《噪声监测技术规范》有关要求执行。
3.5数据上报
功能区噪声:监测月25日前上报本季度监测数据。
道路交通噪声和区域环境噪声:11月5日前报送当年监测数据。
4辐射环境国控点监测
4.1监测点位
市军校广场。
4.2监测内容
瞬时γ剂量率、累积剂量。
4.3监测频次
每年2次。上半年:5月31日。下半年11月30日。
二、重点污染源监督监测
1国控和省控重点污染源
1.1监测范围
国控、省控重点工业废气污染源监测:
国控企业按年名单,省控暂按年名单执行。
国控、省控重点工业废水污染源监测:
国控企业按年名单,省控暂按年名单执行。
1.2监测内容及项目
1.3监测时间和频次
废水和废气均为每季度至少监测一次,若季度内遇到停产情况,则企业开工后增加监测频次,保证全年至少监测4次。自动监测设备的比对监测每季度一次。季节性生产企业生产期间至少每月监测1次,总监测次数不少于4次。
2“双三十”重点企业
我市“双三十”重点企业天鹅股份有限公司为国控重点源,按国控重点源监督监测要求进行监测。
3城镇污水处理厂
3.1国控城镇污水处理厂
监测内容及项目按年名单(附表6)执行。于1、3、5、7、9、11月各监测一次。在线监测设备的比对监测每季度一次。
3.2省城镇污水处理厂设施运行环境监督监测
根据省环境保护厅《关于印发〈省城镇污水处理厂设施运行环境监督管理实施意见〉的通知》(冀环[]4号)要求,每月对市区内污水处理厂进、出口水质进行一次监督性监测,监测项目为化学需氧量和氨氮。并随机监测县域内30%污水处理厂。同时对安装的在线监测设备进行比对监测。
4质量保证
4.1严格按照《地表水和污水监测技术规范》(HJ/T91-)、《水污染物排放总量监测技术规范》(HJ/T92-)、《固定源废气监测技术规范》(HJ/T397-)、《固定污染源监测质量控制和质量保证技术规范》(HJ/T373-)的要求,对污染源监测的全过程进行质量控制和质量保证。按照《固定污染源烟气排放连续监测技术规范(试行)》(HJ/T75-)等污染源自动监测技术规范的要求进行自动监测设备比对监测。
4.2监测工作应该在稳定的生产状况下进行,监测期间应有专人负责监督工况,并记录监测期间的生产时间和工况负荷等参数。每季度结束后,调查所监测企业的季度生产情况和平均工况,季度生产情况和平均工况的调查区间可视情况调整为上个季度第三个月11日起至本季度第三个月10日止。
4.3每次监测时,监督性监测每个测点监测一天(连续生产企业)或一个生产周期(间歇性生产企业),废水监测4到6次,在一天或一个生产周期内等时间间隔采样,获得各监测项目的日均浓度和日累计废水排放量;废气监测3次,获得各监测项目的小时平均浓度和小时废气排放量。结合工况负荷、生产时间等以及季度和年度的平均工况负荷计算主要污染物排放量、减排工程设施对主要污染物的去除率等。比对监测时,对每个废水自动监测设备手工和自动至少同步采样监测三次,可安排和监督性监测同步进行;对于CEMS,气态污染物(二氧化硫和氮氧化物)和氧量至少获取6对数据(可选取同时间段手工和自动5分钟平均值为1个数据对),颗粒物、烟气流速、烟温至少获取3对测试断面平均值数据。
4.4应严格按照国家环境保护监测分析方法标准执行。
5数据报送
5.1报送内容
污染源监测数据包括污染源基础属性数据、污染源手工监测数据和自动监测设备比对监测数据。
5.1.1污染源基础属性数据包括污染源的基础属性、废水排放口(监测点)基础属性、废气排污设备基础属性、废气排气筒基础属性、废气监测点位基础属性、废水排放口和废气排污设备执行标准、自动监测设备的基础属性等。
5.1.2污染源手工监测数据包括废水手工监测数据、废气手工监测数据、监测期间生产情况和季度生产情况等。
5.1.3自动监测设备比对监测数据指对自动监测设备开展比对试验期间的自动监测数据及同步手工监测数据。
5.2数据上报
采用中国环境监测总站开发的污染源监测数据管理软件,每季度第三个月的20日前报送当季数据至省站。
三、其它监测
1“城市综合整治定量化考核”相关监测
1.1“城考”城市水环境功能区监测
城市水功能区监测点位2个:大车村、望亭。
监测项目:pH、溶解氧、高锰酸盐指数、生化需氧量和氨氮。
监测频次:1、3、5、7、9、11月各监测一次。若监测月内遇到断流或结冰等情况未能监测,则具备监测条件后增加监测频次,保证全年至少监测6次。
1.2“城考”机动车环期检测
机动车(含汽车和摩托车)环保检测的车辆数占机动车注册登记车辆总数的80%以上。对于机动车一年中进行一次以上环保检测的情况,按照一次检测计算;按规定免检的机动车数量可计入环保检测车辆数。
1.3“城考”城市生活污水集中处理率监测
对市排水总公司银定庄污水处理厂、鲁岗污水处理厂、市溪源污水处理厂3个城市集中污水处理厂进、出口水质进行监测,每季一次,一年四次。
1.4“城考”生活垃圾无害化处理率监测
1.4.1市无害化处理场垃圾渗滤液
监测项目:色度、化学需氧量、生化需氧量、悬浮物、总氮、氨氮、总磷、粪大肠菌群、总汞、镉、总铬、六价铬、总砷、总铅
监测频次:每季一次,一年四次。
1.4.2垃圾填埋场地下水水质监测
监测点位:市无害化处理场3眼观察井。
监测项目:pH值、总硬度、溶解性总固体、高锰酸盐指数、氨氮、硝酸盐、亚硝酸盐、硫酸盐、氯化物、挥发酚、氰化物、砷、汞、六价铬、铅、氟化物、镉、铁、锰、铜、锌、粪大肠菌群
监测频次:每季一次,一年四次。
2排污许可证监测、验收监测、监测、仲栽监测、环评现状监测、其它委托监测
监测站办公室接到委托后及时给各监测室下达监测任务单,各监测室按要求完成。
3土壤污染状况调查监测
年3月底前完成我市土壤调查报告初稿,5月底前完成原始记录归档,6月底前配合省厅完成各类报告的编制和图集的绘制以及报告的会审。
4生态监测
于年8月底前向省局提供年度全市(含各县)、及所辖各县的“水资源总量”、“地表水资源量”、“降水量”数据。
5“以奖促治”村庄专项监测
根据年省环境监测工作计划要求,继续对县大册营镇大册村开展监测。
5.1环境空气质量监测
5.1.1监测点位
按年设置点位进行监测。
5.1.2监测项目
可吸入颗粒物、二氧化硫、二氧化氮
5.1.3监测方法
按照《环境空气质量手工监测技术规范》(HJ/T194-)的要求,采用手工监测的方法。
5.1.4监测频次
在5月和10月各选连续的5天,每天于10﹕00和16﹕00进行小时监测。
5.1.5质量保证
按照《环境空气质量手工监测技术规范》(HJ/T194-)的有关要求执行。
5.2水环境监测
5.2.1监测点位
饮用水源地监测点位为大册村公用井北井;村庄河流监测点位为漕河出入境断面。
5.2.2监测项目
饮用水源地监测项目:pH、总硬度、硫酸盐、氯化物、高锰酸盐指数、氨氮、氟化物、总大肠菌群、铁、锰、铜、锌、挥发酚、阴离子合成洗涤剂、硝酸盐、亚硝酸盐、氰化物、砷、汞、硒、镉、六价铬、铅,共23项。
村庄河流监测项目为《地表水环境质量标准》(GB3838-)表1、表2的基本项目29项。
5.2.3监测频次
9月或10月份开展水质监测。
5.2.4质量保证
按照《地表水和污水监测技术规范》(HJ/T91-)、《地下水监测技术规范》(HJ/T164-)以及《环境水质监测质量保证手册(第二版)》的有关要求执行。
5.3土壤监测
5.3.1背景调查
社会和自然概况:重点了解当地经济发展状况,自然地形地貌特征、地质条件、土壤类型、辖区面积、农业用水资源概况、土壤环境背景值等内容。
农作物种植和生产管理现状:主要包括耕地总面积、作物品种、灌溉水源、灌溉用水量、使用化肥及化学品种类和用量,有机肥施用情况等。
5.3.2布点与采样
与年相同。共设12个监测点位,分别为大册村北500米基本农田3个,大册村北700米处养鸡场周边3个,于大册村南60米菜地处3个,大册村南200米新宇造纸厂(分厂)北部农田3个。
采集0~20cm表层土壤。在1m2内5点取样,等量均匀(四分法)混合后为一个样品,采样量为1kg。
5.3.3监测指标
土壤理化指标:土壤pH值、阳离子交换量;
无机污染物:砷、镉、钴、铬、铜、汞、镍、铅、硒、锌等元素的全量;
有机氯农药:根据当地施用农药种类,监测3~5种主要有机氯农药。
5.3.4监测时间
全年开展一次监测。
5.3.5分析方法和评价标准
分析方法参见《全国土壤污染状况调查样品分析测试技术规定》(全国土壤污染状况调查文件汇编三)。
以《土壤环境质量标准》(GB15618-1995)为评价依据;在《土壤环境质量标准》以外的污染物,参照《全国土壤污染状况评价技术规定》(环发[]39号)评价。
5.3.6结果分析
根据调查监测结果,依照评价标准,采用达标评价和污染指数评价相结合的方法,评价土壤环境质量和特征分析。通过土壤环境现状调查监测,提出有针对性的土壤环境污染防治对策和建议。
5.3.7质量保证
按照全国土壤污染状况调查中规定的质量保证措施执行。
5.4报送方式和时间
5.4.1环境质量报告为Word文件,监测数据和评价结果表格式为EXCEL文件,应经过审核,注明拟稿人、审核人和签发人。通过FTP将各类数据上报到省站“常规与旬报”文件夹中,数据名称见下。
环境质量报告文件名为:省××市z
空气质量数据文件名为:省××市a
饮用水源地数据文件名为:省××市y
村镇河流(水库)数据文件名为:省××市w
土壤数据文件名为:省××市s
5.4.2监测数据上报时间
空气质量数据:次月10日前报送上月数据
饮用水源地水质、村镇河流水质、土壤监测数据:10月30日前报送相关数据。
6应急监测
按应急预案执行。
四、编写质量报告
每季第一个月的20日前编写上季度的市环境质量季报,上报市环保局及省环保厅。
3月20日前编写上年度市环境质量报告书简本,上报省环保厅、市政府及市环保局。
6月20日前编写上年度市环境质量报告书详本,上报省环保厅、市政府及市环保局。
当前,农村人畜饮水比较穷困的地区多属半山区、山区,少数民族聚居区和边远贫困地区,交通十分不方便,村寨分散,经济文化比较落后,人畜饮水多采用降水、地面水和及地下水。
1、地面水:地面水多采用江、河水及水库水。江、河水流速及流量受季节和降水量影响较大,其污浊程度和细菌含量较高,水质有明显的季节变化,暴雨时泥沙含量剧增,细菌含量亦急骤增高。山区箐沟水,流速较快,流量一般不大,水质较好。而水库水蓄水量受气候条件及农业用水影响较大,一年之中水位变幅大,水质一般较好,污浊程度较低。这是当前农村人畜饮水多采用的方式之一。
2、地下水:采用地下水时,水源与水位及地形,地质情况有关。因为地下水分浅层地下水、深层地下水、泉水。浅层地下水补给水源较近,短时间内大量取水时,水位急骤下降,限制供水量。水质易受地面污染物污染,与周围环境有密切关系。污浊程度较低,一般无色,硬度偏高,部分地区铁、锰含量超标。深层地下水补给水源较远,水量充沛且较稳定,水质大多无色透明,细菌含量通常符合卫生标准。但往往硬度较高,铁、锰、氟化合物含量超标。泉水水量因地形、地质情况差异很大,水质较好,常含与地层有关的某些化学元素。
3、降水:降水因不同地区降水量各异,水质好坏与当地大气污染程度及收集方法有关,为缺水山区的唯一水源。很多地方基本上就是雨季采用水池、水窖等蓄集降水,以供人畜饮水之用。
二、对农村人畜饮水的水质要求
造成农村饮水安全不达标问题的原因多种多样,但最终都归结到水源不安全问题上,而水源不安全问题主要表现为“水质、水量、方便程度和保证率”四个方面,其中以水质超标为重点问题。为使农村人畜饮水安全得到保障,农村供水的水质必须符合国家现行《生活饮用水水质标准》。水质标准包括物理性状、化学性状、毒理学及细菌学四大类指标。
水的物理性状包括污浊程度、臭和味等各项指标。要求水质从感观上对人体无不良刺激。
水的化学性状包括PH值、总硬度、锰、铁、锌、铜、挥发酚等各项指标。超过一定限量时,将会使水发红发黑,产生异臭、异味,水烧开时产生沉淀,为生活用水所不宜。在农村最常遇到的是地下水含铁、含锰和硬度过高,这时需采取除铁、除锰措施。而降低水的硬度则比较困难,在农村中无法实现,遇到此情况只有另择水源。
水的毒理学指标包括铝、氟化物、氰化物、砷等有害物质,超过卫生标准时将对人体产生危害。所以,含氟量过高的水,不宜作生活饮用水。
水的细菌指标包括细菌总数和大肠菌群,通过消毒措施,使水质达到流行病学上安全,为群众供应卫生的水,是建设农村人畜饮水工程的另一主要目标。
三、提高农村人畜安全饮水的措施
1、加强污染水源治理,合理开采地下水
对地表水和浅层地下水受污染问题,一要加强治理。像化肥厂和化工厂有限公司这些大冶炼,污水处理设备老化,长期排放废水,造成水氨氮超标准,必须限期更新污水处理设备,使排放的废水达到国家要求标准:污染严重的小型乡镇企业,必须强制关停并转产;政府要加强监督,同时征收污水处理费,加快污水处理厂建设。二是采用先进的成井工艺技术,合理开发利用深层地下水。打井利用地下水,必须经过主管部门审批控制,施工要选择有资质的专业打井队,采取先进施工技术和水源保护措施,确保深层水不受破坏,建设好永久性安全用水工程。
2、选择达标水质,建设安全工程
对原来无集中供水工程,或有工程而水量和保证率不达标的村,要重新选择达标水源,建设新的安全用水工程。在选择新水源时,不仅要注重量的问题,而且要对水质做好化验分析,必须达到饮用水标准,选择水源位置要远离污染源,一旦水源确定,要制定水源保护制度,严禁在水源周围建造污染企业,使用化肥、农药等。
通常,活性染料合成完毕,采用盐析法使染料析出。为了提高染料水溶性,都需进行脱盐。膜分离技术以其高效脱盐提纯的优异特点得到广泛使用。膜分离分为超滤、纳滤、微滤和反渗透滤4种。纳滤是介于超滤和反渗透之间的一种压力驱动型膜滤分离过程,可以截留绝大部分活性染料,有效分离去除氯化钠和小分子有机物质。合成结束后,含盐等染料水溶液经膜分离,使氯化钠水溶液通过膜排放,被截留的染料浓缩物喷雾干燥得到粉状较纯染料。但是,由于氟化钠水溶性太低,有可能与染料一起被截留,致使染料中可能含有少量的氟化钠。而作为染料应用的下游企业则更为麻烦。废水中含有大量氟化钠,且其比重大而沉积于废水处理沉淀池底,如何处理氯化钠,迄今未见相关较好方法的资料报道。
中图分类号:TK16 文献标识码:A
1.前言
本套含氟污水处理装置设计处理能力为40m3/h,进水水质F-浓度为500~600mg/L,pH值在4~6呈弱酸性;采用三级中和、斜管沉淀、机械澄清、活性碳过滤、离子交换软化的工艺,通过加入氢氧化钙、絮凝剂及助凝剂形成CaF2沉淀,再经过固液分离后进入活性炭过滤器进行吸附,终达出水水质最到国家一级排放标准。但在实际生产过程中,收集到的事故水F-浓度最高曾达到1989mg/L,pH值达到1.3,大大超出了设计处理能力。针对事故状态下的含氟污水处理问题,我们通过反复摸索,调整处理过程中各种药剂的投加量和控制PH值,有效的降解了高含氟废水中的F-,实现了出水F-浓度≤10mg/L的国家排放标准。
2.工艺流程
2.1 工艺流程简图
2.2反应机理
废水中的F-主要来自前工序生产、冲洗地面或事故状态时排出的氢氟酸和其它无机氟化物(如AlF3 等)。在一级中和反应池中加入浓度为2.5%的石灰乳液(乳液的PH值控制在1213),使废水中的F-与Ca2+反应生成难溶于水的CaF2 ,在絮凝剂的作用下使CaF2形成较大的颗粒而得以沉淀。
反应方程式:2F- + Ca2+CaF2
3.中和反应过程中药剂的调整
正常情况下,中和反应过程中必须有足够浓度的Ca2+。废水的PH值越小,石灰乳的投加量应相应增加。按设计能力,当进水F-浓度在300~500mg/L,处理量为40~45m3/h时,投加2.5%的石灰乳液中和反应30min,PH值控制在7.5-8.0,经过絮凝沉淀和过滤后,出水水质中F-浓度可稳定在8.3~10.0mg/L以内。同时无需调节出水PH值,便可满足国家排放标准。当进水水质波动大时(F-浓度>1000mg/L),经过一次中和反应处理过程,出水中F-浓度很难一次降解合格,约在12.6~14.3mg/L甚至更高,需要循环再处理。针对此种情况,我们在第一中和反应池适当增大了石灰投加量,同时投加5%浓度的盐酸,把pH控制在8.5~9.0,进行了反复的调试,取得了明显的效果。因投加了一定量的盐酸,在中和反应过程中,同时伴随着Cl-与Ca2+反应生成CaCl2的过程。生成的CaCl2极易溶于水,而CaF2 则难溶于水(CaF2 的溶度积常数Ksp=2.7×10-11)。所以反应过程会同时发生同离子效应,利于CaF2的生成。调试过程按进水中F-浓度1200mg/L,pH值2~4,处理量为50m3/h计,石灰、盐酸投加量对F-降解的影响如下表:
石灰、盐酸投加量对F-降解调试统计数据
项 目 加药量1 加药量2 加药量3 加药量4 加药量5
石灰投加量(kg/min) 0.2 0.3 0.4 0.5 0.5
盐酸投加量(kg/min) 0 0 0 0 0
出水中F-浓度(mg/L) 18.8 12.3 10.7 9.4 8.9
石灰、盐酸投加量对F-降解调试统计数据
项 目 加药量1 加药量2 加药量3 加药量4 加药量5
石灰投加量(kg/min) 0.2 0.3 0.4 0.5 0.5
盐酸投加量(kg/min) 0.1 0.15 0.2 0.2 0.2
出水中F-浓度(mg/L) 16.9 15.3 10.2 9.4 7.8
按进水中F-浓度1200mg/L、pH值在24,处理量为50m3/h计。在向中和反应池增加石灰投加量的同时,加入100g/min的盐酸,PH值控制在8.5~9.0之间。在同离子效应的作用下经过30min的中和反应,出水中的F-浓度能有效地得到降解;经计算,Ca(OH)2投加量与HF量比为1.8:1。盐酸与石灰投加量比为0.4:1。进水中F-浓度越高,则石灰和盐酸的投加量需相应增加。经过调整,出水中F-浓度可以稳定在10mg/L以下,取得了明显效果。
4.絮凝及沉淀时间对出水中F-浓度的影响
中和反应后的污水依次溢流至二级、三级反应池、斜管沉淀池、机械澄清池,完成整个沉淀过程。因反应生成的CaF2 颗粒粒径80%在2μm以下难以沉降,因此在二级中和池投加浓度为2%的絮凝剂PAC,投加量控制在0.30.4m3/h;三级中和池投加浓度为0.1%的助凝剂PAM,投加量控制在0.20.3m3/h;在机械搅拌状态下分别停留反应40分钟。PAC有较强的架桥吸附性能,在水解过程中伴随发生凝聚;PAM分子中含有大量的负电基,它们互相排斥而使大分子呈伸展状态,充分露出活性基团,善于起架桥联结,絮凝性能较好。同时PAM会降低悬浮杂质的粘度,会使反应生成的CaF2微粒快速形成大的矾花而易于沉淀。根据浅池理论原理,在斜管沉淀池经过2小时的逆流分离,随着水流使85%以上的固体悬浮物得以有效沉降。絮凝沉降时间对出水中F-浓度的影响如下表:
沉降时间对出水中F-浓度对照
试验次数
项目 1 2 3 4 5 6 7 8
沉降时间(min) 60 120 180 240 300 360 420 480
出水中F-浓度(mg/L) 15.35 12.87 10.19 9.51 8. 86 8.61 8.57 8.52
经过试验得知,随着沉降时间的加长,出水中的氟化钙颗粒得到了有效地沉降。但当沉降到一定时间时,F-浓度逐渐趋于稳定。
5.活性碳过滤
经过絮凝沉淀后的污水,已经除去85%以上的悬浮CaF2颗粒;再经过活性碳过滤,进一步除去剩余5%~10%的悬浮CaF2颗粒,同时改善了污水的色度。
6.结束语
含氟污水处理加药调整是整个处理过程的关键,实际生产中,随着进水水质的变化,通过按1.8:1的比例调整石灰投加量,使F-的去除效果得到明显改善;虽然略增加了盐酸消耗量,但出水水质稳定在10 mg/L以下、达到了国家标准GB 8978-1996《污水综合排放标准》中一级排放标准要求。