发布时间:2023-12-16 09:23:36
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇建筑能效可视化范例,将为您的写作提供有力的支持和灵感!
5月21日,中粮集团旗下的中粮工程科技有限公司(下称中粮工科)与施耐德电气在上海签署了合作框架协议。根据协议,中粮工科在其总包项目中将选用施耐德电气全系列配电及工业自动化方案,中粮工科和施耐德电气将共同开发推广粮油加工、粮食仓储物流信息系统和能源管理系统,以帮助中粮工科增强自身实力及品牌影响力,同时助力中粮集团提升企业综合竞争力,促进全产业链战略落地,为中国食品饮料工业升级转型树立典范。
施耐德电气一直以来是以全球能效管理专家的形象被大家所熟悉,而在食品饮料行业,施耐德电气作为配电及自动化领域的领导者,能够提供完整的行业解决方案,与全球各大食品饮料巨头保持着良好的合作关系。施耐德电气具体可以为食品饮料行业提供哪些服务?食品行业是如何实现价值链可视化管理的?带着这些疑问,本刊记者采访了施耐德电气中国食品饮料行业全国经理何晓柯先生。何晓柯先生自2005年加入施耐德电气以来,担任了多个管理职位,现在致力于为食品饮料企业提供可视化的全价值链管理工具,帮助客户实现食品安全,卓越运营,精益能效及可持续发展。
记者:我们知道,施耐德电气的业务涉及石油天然气、海事、医疗等众多领域,并且2008年奥运会、2010年世博会贵公司也都有参与,请您介绍下施耐德电气可以为食品饮料行业提供哪些服务?
何晓柯:食品饮料行业是施耐德电气全球十大重点投资行业之一。在食品饮料行业我们致力于为客户打造可视化的运营管理平台,从优化生产运营,提高能源效率到配电、过程自动化、机器自动化、楼宇监控及数据中心的各个环节。在食品安全管理上,从原材料的采购运输到生产过程及最后的分销运输我们可以提供全程的管理及监控方案。
比如在食品饮料的生产过程中,生产线上配备的自动化控制与生产监控系统将保障生产流程符合食品安全法规,相应的门禁安全系统与视频监控系统则将实现对整个生产过程的控制管理,杜绝人为因素对食品安全造成的干扰。
若把食品通路看成完整的价值链,从源头的原材料到终端的销售,整个流程都需要一套完整的信息化系统来支撑食品安全,施耐德电气拥有的管理平台可以提供从农场到餐桌的全价值链可追溯,与施耐德电气EcoStruxureTM能效管理平台结合,使消费者能够了解自己所购买产品的原料及生产细节,以实现整条价值链的可视化监管。
记者:您刚才介绍到价值链的可视化管理,那么可视化管理指的是什么?目前在中国企业中应用状况如何?
何晓柯:可视化管理能够让管理者有效掌握企业各类信息,基于大量的信息和辅助分析做出最优决策,实现管理上的透明化、精细化与可视化,这样的管理效果可以渗透到企业生产运营、供应链管理、客户管理等各个环节。
在中国,很多食品企业是采购一条链,生产一条链,下游的分销运输及ERP系统也是一条链,人事财务又是在其他部门。对管理者来说都是单独的板块,而没有建立内在联系形成有机的整体,这就是为什么很多食品饮料巨头目前都提出产业链整合。在这个过程中,把物理层面的工厂、生产线放在一起相对容易,但是要让这些分立的系统产生协同效应却很难。在管理上缺乏可视化工具,造成了企业60%的时间在“灭火”,而在考虑长治久安问题上花费的时间却很少。国外成熟的业务模式仅花费20%时间“灭火”,将60%的时间用在持续改进,剩下的20%则用在长期战略规划上,这正是当前我国食品饮料工业在管理理念上需要改进的。
记者:针对食品饮料行业价值链的可视化管理方式,施耐德电气有什么具体的技术方案?
何晓柯:我们在食品饮料行业重点打造的管理平台是EcoStruxureTM,该平台全面整合了施耐德电气在电力、工业、建筑楼宇、数据中心及安防五大领域的专业经验,为食品饮料行业客户提供专业的解决方案。从物理层面上可以细分为两个部分,一个是上层的管理平台,一个是下层的子系统。子系统包括生产过程的控制、电力的分配、安全的监控、楼宇的控制以及数据中心的运营。子系统可在上层的管理平台统一调度下结合为有机的整体,满足客户的可视化需要。借助EcoStruxureTM能效管理平台开放、灵活的优势,施耐德电气可实现“从农场到餐桌”的完整价值链解决方案,为企业管理层提供可持续发展决策工具,打造可视化、透明化、一体化的信息流和管理平台,帮助食品饮料企业打造全产业链竞争优势,获得不断降低的能耗指数及持续改进的生产效率。
记者:价值链的可视化管理方式确实是整个食品行业所缺乏的。但中国的食品饮料企业也面临着困境,一方面是食品安全要求提升,另一方面是企业成本的提高,而且还要应对市场上的恶性竞争。如何看待这一问题?
何晓柯:的确,当前企业面临一系列的困境。一方面是产品销售越来越困难,竞争越来越厉害,消费者口味越来越多样,还有渠道通路对厂商的成本压力也越来越大,另外一方面是原材料价格当前持续上涨,造成企业的盈利空间越来越小。所以有效持续提高企业利润的办法必然是降低成本提高效率。成本主要包括以下几方面,原材料成本,能源成本,生产成本。施耐德电气正是致力于降低客户的能源成本,提高生产效率,以此提高客户的整体利润率。我们提供给客户一个全局的解决方案,而不仅仅单独关注于某一块。从流程设计上我们必须从整体的规划上来考虑,而这恰恰是中国食品饮料工业面临的一个很大的挑战。
据媒体报道,目前已有江苏、浙江、山东、广西等26个省市调整了上网电价浮动范围,部分地区交易电价“顶格”上浮20%。
限电形势下的挑战和机遇
在“限电潮”、“涨价潮”、能耗双控等多重压力下,部分企业的生产经营面临困境。如何应对限电限产和能耗双控?如何以低成本实现用能效益优化?这些问题已成为企业需要长期面对的严峻挑战。
今年9月,国家发改委印发《完善能源消费强度和总量双控制度方案》。《方案》提出,积极推广综合能源服务、合同能源管理模式,持续释放节能市场潜力和活力。
综合能源服务是以降低用户能耗水平以及用能成本为目标,结合市场、政策以及技术发展现状和趋势,综合利用分布式发电技术、节能技术以及信息化技术等为用户提供能源优化服务的新型能源服务模式。随着国家能源体制改革的深化,国内能源结构不断调整和清洁替代,综合能源服务以其高度智能化和信息化的特征,能够满足新形势下能源生产、交易和利用等过程的服务升级需求,在能源服务领域有广阔的发展前景。
针对新一轮能源结构调整和能源技术变革趋势,远光软件基于对能源电力行业的深刻洞察,自主研发了远光综合能源服务平台,助力提升能源生产及利用效率,实现绿色低碳发展。
远光综合能源服务平台是以物联网为载体,以大数据、人工智能等技术为基础,提供综合能源供应、销售、消费服务的综合服务云平台。平台以能源用户为中心,提供信息采集、能效分析、节能服务、需求响应、能源托管、能源交易等服务,为综合能源服务商的客户服务、业务创新、商业模式创新等提供支持,可支撑企业综合能源、园区综合能源、智慧城市综合能源运营。
应用案例:如何打造节能降耗智慧园区?
走进远光软件园,打开手机即可获取光伏发电量、储能状态等数据,实现智能用电。在园区的智慧能源大屏里,园区能耗、实时负荷、储能收益、配电运行状态等信息都能实时汇集,并通过大屏幕清晰地展现出来......这便是远光综合能源服务平台在智慧园区的应用场景。
在远光软件园,远光综合能源服务平台被应用于园区储能、光伏发电、汽车充电桩管理等多个方面,并基于物联网技术实现建筑能耗、机电设备运行状态、电能质量数据、建筑内部环境数据的全面监视和数据可视化展示,实现园区用能的智能化、数字化和可视化管理,有效降低园区用能成本,优化能源利用效率,促进节能减碳。
1.光伏电站——节能减排,低碳创收
远光软件园的屋顶分布式光伏发电站,可利用面积1238平方米,总装机容量为107.665kWp,选用 305Wp 单晶硅组件共353块,采用组串式逆变器2台。系统年均发电量为105845kWh,可减少二氧化碳排放105.53吨。
平台将光伏电站所发电力优先供给机房服务器使用,减少用电成本,节约峰值电费。此外,平台采取“自发自用,余电上网”或“绿电交易”模式将剩余电力自动送入公共电网系统,既增加了企业收益,又促进了能源绿色环保可再生使用,可谓是减碳创收利器。在停电时,光伏与储能可以构建离网运行的“光储微网”,通过智能调度满足用户重点负荷的用电需求。
2.储能电站——不惧限电,保驾护航
远光软件园安装的电力集装箱储能装置采用40尺的集装箱作为载体,内置1套总容量为774KWH的再生锂电池储能系统、1台250KW双向变流器、1套能量管理系统和相关辅助系统。
综合能源服务平台对储能设备的运行状态、能量、环境等进行监控和优化,一方面可适应国家削峰填谷的工业用电措施,在夜晚较低电价时段储能,在白天高电价时段使用,可以为公司节省大量用电成本;另一方面可作为紧急备用电源使用,在停电时能够和园区光伏组成“光伏微网”,通过离网运行支撑园区重要负荷运转。免除由于拉闸限电、台风灾害或其他原因导致突发断电带来的不便。
3.充电桩——合理引导,有序用电
平台利用综合能源服务业务与充电业务的智-云-边-端深度融合,实现车、桩、网的有序调度。平台支持运营方启动有序充电优惠活动和有序充电调度实施,支持园区参与V2G等需求响应活动。
平台结合历史负荷数据以及变化趋势曲线,进行充电运行策略引导,对园区实行充电管控。例如,平台及时价格优化策略,引导外部车辆和员工避开充电高峰。
4.建筑能效综合管理——管控优化,开源节流
平台基于建筑能耗分析模型对建筑能耗数据进行全面分析,包括能耗趋势分析、对比分析、用能指标分析和能效对标等功能,在能效指标以及对标的基础上,全面分析建筑用能问题和节能方向,支撑建筑能效优化。
园区在能源监视和能效分析的基础上,基于平台的能效优化算法以及能源调度策略,实现建筑内空调、照明以及电源等机电设备优化运行与控制,提高建筑整体能效水平,降低建筑用能成本。同时,平台能够为用户提供移动端的应用,包括能耗监视、统计分析、能耗预警和能耗报警功能,支持用户随时了解建筑能源信息和能源异常,及时对建筑能源运行进行管理和优化。
英文摘要:EIB system makes lighting, dimming, blinds, scene control, electricity load control, security, intelligent heating system and become a complete bus system, which can automatically adjust based on the state of the bus equipment changes in the external environment, to safety, energy conservation, human effects, and can increase or modify the system functions according to user's requirements in future use.
中图分类号: TU113.6
长期以来,智能照明在国内一直被忽视,大多数建筑物仍然沿用传统的照明控制方式,部分智能大厦采用楼宇自控(BAS)系统来监控照明,但也只能实现简单的区域照明和定时开关功能。相比之下,智能照明系统体现出强大的优越性,它在智能建筑中的应用越来越广泛。
智能照明控制系统,就是根据某一区域的功能、每天不同的时间、室外光亮度或该区域的用途来自控制照明。其中最便捷的一点就是可进行预设,即具有将照明亮度转变为一系列设置的功能。相对商业楼宇而言,大学校园里的大功率动力和制冷设备比重较少,照明灯具则相对比重更多。使用照明控制系统,更能体现其在节能与管理方面的优势,提高学校的科学管理水平。校园的建设也要适应网络时代的发展,引入智能化的概念。
智能照明控制系统的优越性
1.1 达到良好的节能效果,延长灯具寿命
节能是照明控制系统的最大优势。传统的楼宇公共区域照明工作模式,只能是白天关灯,晚上开灯。而采用了智能照明控制系统后,我们可以根据不同场合、不同的人流量,进行时间段、工作模式的细分,把不必要的照明关掉,在需要时自动开启。同时,系统还能充分利用自然光,自动调节室内照度。
1.2 改善工作环境,提高工作效率
智能照明控制系统具有开关和调光两种控制方法,可以有效地控制各种照明场所的平均照度值,从而提高照度均匀性。同时,系统能根据不同的时间段,人们的不同需要,自动调节照度。
1.3 实现多种的照明效果
多种照明控制方式,可以使同一建筑物具备多种艺术效果,为建筑增色不少。现代建筑物中,照明不单纯地为满足人们视觉上的明暗效果,更应具备多种的控制方案,使建筑物更加生动,艺术性更强,给人丰富的视觉效果和美感。
1.4 提高管理水平
智能照明控制系统是以自动控制为主、人工控制为辅的系统。在一般的情况下,不需要有人的参与,照明系统自动实现开关和调光功能。既大大减少了管理人员的数量,也排除了由于人为因素而出现的不定时开关,影响学校的正常教学、生活秩序的情况出现。
1.5 较好的投资收益效果
智能照明控制系统在节能和节省灯具使用的同时,有效节省了电费与管理费用的支出。根据一般的办公大楼运营的经验来看,节能效果能达到40%以上,一般的商场、酒店、地铁站等节能效果也能达到25%-30%;学校在这方面还没有得到具体的统计数据,但根据分析,效果还是令人满意的。
2、I-bus系统介绍
传统的控制和布线方式,往往需要敷设大量的导线,形成越来越复杂的电气安装系统,一方面造成了设计与施工的难度,另一方面大大降低了系统的可靠性、易用性,为促使传统的电气安装系统转向智能、灵活的方式。EIB智能安装系统作为欧洲安装总线标准利用一条双绞线作为控制总线,使照明、调光、百叶窗、场景控制、用电负荷控制、安保、供热系统实现智能化,并成为一个完整的总线系统,可依据外部环境的变化自动调节总线中设备的状态,达到安全、节能、人性化的效果,并能在今后的使用中根据用户的要求增加或修改系统的功能,方法是连接计算机重新编程,而无须重新敷设电缆,真正成为灵活的电气安装系统,这是传统的电缆敷设方式所无法做到的。
3、系统硬件组成
智能开关控制,所采用的总线元件均为模块式元件。开关模块为双值输出AT/S4.16.1,有4个无电源的16A触点,可对4个独立的负载回路进行合断控制,分别安装在大学校园的几十个照明箱里。开关模块可对图书馆的各种灯具进行开关控制。
中央控制站通过EIB总线与照明控制器之间可直接通讯,通讯速率为9600bps。中央控制中心装有电话开关TS/AP,如需要可加装电话控制盒实现电话网络远程控制。通过中央计算机的编程设置,可对任何回路进行开关控制,各回路状态通过LCD显示。并在必要时通过电话开关送出设备故障报警、状态信号。
4、 系统软件
在中央控制室,设一台智能照明中央监控计算机,安装监控软件、编程软件,操作人员可以在中文图形化显示的界面进行监控和操作,监视整个智能照明系统的运行状态,在照明设备平面布置图上以形象直观的方式实时动态地显示各区域的照明设备使用状况。
5、I-bus智能系统的安装方式
I-bus智能安装系统使得灯光控制方式有如下三种方式:
(1)自动方式。结合时间继电器和感光模块,把感光模块设定一个值(200lux),当光线的亮度低于这个值后,需要控制的灯会依次全部打开。当外界光线的亮度高于这个设定值后,这套系统会自动把剩余的灯全部关掉。
(2)手动方式。按区域来控制,在控制室EIB系统有三个五联控制器,在相应的面板上都有标志,当按下面板的左键,就给一个关信号,相应区域的灯就会关掉,当按下面板的右键,就给一个开信号,相应区域的灯就会打开。
(3)可视化软件控制。在中央控制室里把PC机和这套系统相连,在PC机上安装这套系统的可视化软件,可以实时显示区域灯的状态,也可以在PC机上控制这些灯的状态,比如开启灯、关闭灯。在校园里可视化软件也是按区域控制。
这些功能根据实际需要可以调整,而且设置非常简单,工作人员可以自己设置,设置好以后,系统以后会自动完成这些功能。通过RS232接口完成计算机和EIB总线的连接,完成对总线元件的参数进行设置或更改,也可对系统进行程序修改或编程。
中图分类号:TB
文献标识码:A
doi:10.19311/ki.16723198.2017.15.089
0引言
当下国家经济增长较快,带动了社会各行业的能源耗费比例不断增加,能耗危机引起国家经济发展受到负面影响。据统计,建筑能耗比例逐年增加,可达到社会总能耗的20%左右。建筑施工中,资源耗费同时产生大量污染物,进而引起了较为严重的环境恶化,充分提高节能减排工作的落实成为当下主要任务。政府对相关政策、标准的颁布起到了一定作用,借助BIM技术实现建筑节能设计更加关键,该设计模式是提高建筑合理性,改造传统建筑能耗^高的主要方法。
1BIM技术节能设计概述
1.1BIM技术特点
作为建筑信息管理的模型,BIM技术包含大量信息,可借助数字信息实现仿真模拟工作,包括建筑体三维模型的建立,继而实现工程项目的材料、力学和结构的综合设计工作。
1.1.1可视化三维模型
BIM技术可以保证三维模型的搭建,借助可视化效果图进行后续分析,通过有限数据实现报表的生成作业,进而提高相关设计工作、施工和后期维护等过程的有效管理,对应各个专业的人员调动、节点决策等满足可充分满足施工要求。
1.1.2面向对象的参数化设计
BIM技术可有效处理对象参数化的合理设计,可根据相关规则进行约束化设计,提高设计的协调合理性、模拟优化效果,是BIM技术应用的重要价值。
1.1.3多元化信息输出
BIM数据库可导出对应多种信息形式,协助相关专业进行数据变更,及时进行模型优化、升级操作,一定程度上提高了设计工作的作业效率。
BIM软件是建立在BIM核心的模拟软件,具有建模、分析多层功能要求。前者是建筑信息模型的基础,分为四类,即欧特克公司的Re-vit建筑、结构和机电系列,奔特力建筑、机构和设备系列、Graphisoft公司的ArchiCAD以及达索公司的CATIA;后者则是利用BIM建筑模型信息,进行日照、热工、建筑环境等方面的分析模拟。
1.2节能设计现状
与国外节能设计发展较快的国家相比,国内建筑节能设计的起步较晚。存在推广速度慢、发展效果一般的不足。主要原因在于:第一,社会大众更加关注技能科技的发展,过于重视研究结果的节能能力,对设计方案自身效果存在偏差过大的不足。第二,建设团队对节能设计概念的理解不足,仅针对技术、设备表面工作进行节能处理,相关细节的设计存在明显不足。第三,设计与技术方法无法实现相对应的要求。国家建筑设计的节能已经取得一定成果,但是仍存在部分技术无法合理利用的局面。当下,国家建筑行业的设计理念、技术水平发展空间较大,需要加强工程现场的全面考察,设计人员需要保证与时俱进,提高创新性设计工作的落实。
2BIM技术在节能设计中的应用
2.1BIM技术集成化设计
建筑施工中,集成化设计工作需要借助BIM技术实现,可提高设计工作的动态管理,实现生态节能目标。为设计阶段的相关作业人员打下良好基础,可充分避免各专业交叉工作存在错误等问题。BIM技术在设计工作中,可提供可视化、系统化的模型。相关信息可充分体现形式、性能等基本要求,保证节能建筑与设计工作紧密结合,实现全面控制的目标。
2.2前期场地和布局设置
建筑设计中,相关设计人员需要全面了解场地状况,结合物理条件、空间状况进行调整,为后期场地分析打下良好基础。
第一,气候条件分析。建筑工程作为人类活动的主要载体,需要保证其与当地气候环境相符合。通过合理的气候条件分析,可以避免后期生活工作的不适感。BIM技术对场地气候条件的分析主要包括以下几个方面:(1)利用建筑环境分析软件ECOTECE中的Werther Tool工具对气象进行数据分析和转换,同时进行焓湿图的气象分析,进一步了解建筑环境;(2)根据当地太阳高度角的变化,对太阳辐射的各个角度进行分析比对,计算出辐射量确定相应构件的设计情况。
第二,场地地形分析。根据现场实际情况,分析地形以及地貌特点,采取BIM技术与GIS技术对建筑场地的地形进行数据分析,其中包括空间、高度、坡度等因素,主要目的是为设计者提供丰富的素材与设计依据。设计人员可以通过地形透视图了解现场场地的地势起伏与变化,从而进行建筑设计。
2.3BIM技术设计方法分析
BIM技术的节能设计主要体现在工程项目的朝向、形体选择两方面。
2.3.1朝向的选择
建筑施工项目中,朝向一般是指采光位置的设置,朝向合理可避免后期耗能过高的状况。体现在两方面要素:太阳能辐射热量的利用、通风状况的增加。大量工程实践表明,朝向影响要素较多,需要结合BIM技术进行综合分析。如借助BIM技术的能耗分析,可实现方案的直观对比,在满足节能要求的基础之上,实现对朝向的合理控制。然后利用BIM技术中的ArchiCAD里建立会所的体量模型进行能量分析,并利用最先进的自动模型几何分析功能,直接将建筑模型转换为建筑能量模型,直观地观察热块能量模型,再选择最佳的设计方案。
2.3.2辅助建筑的形体选择
建筑物的形体十分关键,可通过形体合理设计实现节能的控制管理,对项目后期实用效果、经济效果的发挥具有积极影响。借助BIM技术对各种因素进行综合分析,如气候条件,可帮助设计人员及时将形体建设作为重点考虑要素,避免耗能高状况的发生。例如,在南方地区,夏季炎热潮湿,建筑物应加强通风散热部分的设计,以确保住户居住的舒适性。这时,可以利用BIM加大建筑开口面积或底层架构确保建筑物通风顺畅。也可以利用BIM调节室内采光,提高建筑的节能性,降低能源消耗。
2.4BIM技术在详细设计阶段的要求
第一,辅助围护结构的设计。利用BIM技术降低建筑实际的能源消耗,通过裁量分析与数据对比,分析出相应材料的能耗数据,从而选择节能效果最优化的结构形式。
第二,节能玻璃的选择。工程实践表明,建筑材料中,节能玻璃的设置十分关键,工程项目中,一般由三成能量是通过玻璃实现传导作用,玻璃设置合理可充分避免后期能量p失状况,是当下研究热点。当下研究中较为常见的包括中空玻璃。BIM技术中的Archi-CAD技术可对中空玻璃进行快速选型,对应玻璃洞口、方向、尺寸的相关参数可实现有效评估,必要时可进行材料种类的更换,对比不同方案实现能耗最低化的合理设置。
2.5安装模型的设计
将BIM技术引入模型设计的安装施工中,可实现直观有效的指导作业。施工环节中,借助时间维度的融合,提高模型的合理性,便于安装进度的精确化工作,可达到预期可视化要求。工程进度表的设置中,借助模型可实现进度精确化、可视化的效果。调整对应进度表要求,便可实现给排水工程的规划分析,提高整体把握效果,便于后期安装、设计工作的顺利进行。同时是避免设计变更操作的主要方法,对当下建筑节能系统的给排水设计具有直接影响作用。给排水设计模型与传统土建模型不一样,是建立在土建模型基础之上的系统,如果发生给排水系统的局部修改,将会导致楼层整体平面设计随之变动。为了避免工作量过渡繁重的危害,可借助楼层为基础设计,降低系统内部之间的过渡牵连,时间工程设计更加具有简洁性、整体性、系统性的优势。
3结语
BIM技术借助信息化技术将工程实现了模型化、系统化、可视化设计,提高了信息共享平台的合理搭建,具有高效节能的优势。相关设计人员需要综合BIM技术的整体功能进行分析,避免简单数据处理等行为,需要提高该技术多方面协作的效果。
参考文献
基金项目:“十二五”国家科技支撑计划项目—基于建筑信息模型综合规划设计技术研发应用(2012BAJ09B04)
1 前言
所谓BIM技术,即Building Information Modeling建筑信息模型技术。集几何图形和设计、计算及其相关信息兼备的数字化三维模型。建立跨专业的动态设计关联;做到一次修改,处处更新。提供强大的信息平台,使各种数字化的分析、模拟比较,以及自动图形输出成为可能[1]。
建立基于建筑信息模型的设备设计软件系统框架和数据架构,能够在不同设计阶段、设备系列不同设计计算软件(暖通空调设计、建筑给排水和电气设计计算软件)之间,实现数据共享,避免数据的不一致,减少二次输入,提高设计效率和设计质量。研究与应用智能化、可视化、模型设计、协同等技术,创建建筑、结构和设备设计协同工作平台;积极推进协同设计技术的普及应用,通过协同设计技术改变工程设计的沟通方式,减少“错、漏、碰、缺”等错误的发生,提高设计产品质量。针对实现设备各个专业之间的信息充分互用,提高信息的复用率,从而达到降低设计和管理成本,提高设计和生产效率[2]。
2 建立BIM软件的协同机制
BIM带来的是激动人心的技术冲击,而更加值得注意的是BIM技术与协同设计技术将成为互相依赖、密不可分的整体。协同是BIM的核心概念,同一构件元素,只需输入一次,各工种共享元素数据并于不同的专业角度操作该构件元素。从这个意义上说,协同已经不再是简单的文件参照。可以说BIM技术将为未来协同设计提供底层支撑,大幅提升协同设计的技术含量。BIM带来的不仅是技术,也将是新的工作流及新的行业惯例。
未来的协同设计,将不再是单纯意义上的设计交流、组织及管理手段,它将与BIM融合,成为设计手段本身的一部分。借助于BIM的技术优势,协同的范畴也将从单纯的设计阶段扩展到建筑全生命周期,需要设计、施工、运营、维护等各方的集体参与,因此具备了更广泛的意义,从而带来综合效率的大幅提升[3]。
3 软件操作和图形平台
如果想要进一步提高设备软件的竞争力,就要建立三维的图形平台。因为很多用户采用AutoCAD进行二维图纸的绘制,如果能够成功地将用户二维图纸成功转化为三维效果图,更方便设计人员直观地了解管网和设备的空间布置情况,能及时进行管网和设备的碰撞检查。
采用3D的图形平台,不仅能够吸引设计单位的用户,同时吸引一些施工单位的新用户。设备软件特点包括管网复杂,设备多,尤其设计人员画好二维的CAD图纸,能够转换成三维图,首先检查自己的设计是否合理,同时很方便施工单位查看设计效果,能够及时、有效地和施工单位进行沟通,提高效率。同时还可以增加施工单位新用户,在施工过程中,施工人员有时看不太懂平面图或是理解有误,容易造成施工单位的时间和工程损失,因此施工单位需要购买软件,有效地避免损失,提高效率。
4 加强碰撞检查
在当今设计工程中,在大型公建中设备专业投资已占总工程投资的1/3以上,在设计阶段,分析计算,管道碰撞检查等越来越引起设计者和施工者的关注,在全生命周期内,运行维护管理也是以设备专业为主,包括设备运行能耗监测,设备运行状况管理。结合平台和建筑软件的发展,开展设备软件深层次的开发。
5 改进了传统数据库的管理功能
基于关系型数据库的设备信息管理平台主要收录二维图纸、文字与照片。同一数据库的各类数据之间、不同的管理层级数据库之间、设计变更与数据库之间、设备维修更新设计与数据库之间均存在着严重的“信息孤岛”现象。这种二维、静态、孤立的数据系统从根本上无法实现设备BIM全生命周期管理所需的设备专业设计、设计变更、竣工信息和管理信息的时时更新等功能[4]。
BIM 技术通过统一的三维数据模型,为相关数据建立了丰富的关系数据表,将如上三类信息有机整合在几何模型与构件属性之中,为比对数据、生成明细表、提取构件等查询分析活动建立有效的方式,同时,借助用户的人性化参数实时输入和更新功能,真正实现数据管理及成果表达向三维、动态、交互式的转变。
6 增加多联机
多联机是最近几年发展起来的一种新型中央空调系统,具有节能、舒适、控制灵活等特点,可满足不同规模建筑物的要求。
多联机模块:可完成图纸绘制及系统计算,提供室内、外机数据库的维护和扩充功能。目前库中有大金、海尔、美的、海信、日立等厂家的常用系列及产品类型,并链接有产品实际照片,方便用户选取。应该建立多联机模块,而且数据库中需要更多的产品类别,才能提高市场竞争力。
7 形成完整的生命周期管理平台
3维BIM 系统则可实现建筑和设备各类构件的更新管理与其他非几何信息的植入,二者结合可从全方位对于建筑设备信息进行集成,实现数据、用户界面、应用程序和模拟计算的有效结合,使建筑内暖通空调、给排水和电器专业的管理可预测、可协作、可视化、可分析,并与数字管理相衔接。不仅可为建筑内设备的监控、维修、更新、记录研究服务,对于建筑物冷暖负荷、水力计算等模拟结果和能效分析的可视化提供了可能[5]。
8 结论
集成主要暖通空调、建筑给排水和电气设计软件,同时创建拥有全生命周期的建筑、结构和设备设计协同工作平台;能够提升设计人员的工作效率,专心于方案设计,而不是绘图。提高准确性,实现建筑节能设计,轻松完成协调工作,让所有项目参数者,如设计人员、施工管理人员和项目维护人员进行无障碍的沟通,能够将有关项目信息进行连续积累,避免遗漏和丢失。实现设备各个专业之间的信息充分互用,提高信息的复用率,从而达到降低设计和管理成本,提高设计和生产效率。
参考文献
[1] 邱相武, 赵志安, 邱勇云. 基于BIM技术的建筑节能设计软件开发研究[J].建筑科学, 2012 (06): 24-28
[2] 邱勇云, 邱相武, 赵志安. 基于BIM的暖通3D CAD开发研究[J].暖通空调, 2011 (04): 65-68