你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 农业遥感信息技术

农业遥感信息技术范文

发布时间:2023-12-22 10:13:23

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇农业遥感信息技术范例,将为您的写作提供有力的支持和灵感!

农业遥感信息技术

篇1

引言

遥感技术是一种获取地表物体几何和物理性质的技术。早期的遥感图像的解译,通常通过目视判读方法,随着计算机的加速发展,解译方法得到了快速发展,一种使用计算机对原始遥感影像进行图像增强、图像变化、辐射校正、几何校正等一系列的预处理,然后通过相应的遥感处理软件进行进一步精处理,对结果进行处理,最终通过专业技术人员的经验进行解译,直接对解译结果进行处理,生成具有处理特征的遥感影像[1]。目前,遥感可分为高光谱遥感和多光谱遥感。高光谱遥感不仅可以探测到被遮盖的地物,而且可以准确地估计植物生态系统的物理和化学参数的变化,包括土壤水分、土壤特性、植物质、土壤生物化学参数、土地利用动态监测变化等。多光谱遥感是利用具有2个及2个以上光谱通道,采用多种传感器对地物进行同步成像的一种遥感技术;将地物反射的电磁波信息划分为若干个光谱波段,用于接收和记录地物信息[2,3]。当前遥感技术的发展使得遥感应用领域逐渐扩大,有林业遥感、资源遥感、遥感地质、气象遥感、灾害遥感、军事遥感、农业遥感等,尤其在农业遥感领域得到了广泛的应用,从早期的农业墒情监测和农作物面积变化监测,再到农业资源利用监测,以及利用无人机对区域水资源和农业干旱的监测与评价等。

1遥感在农业领域的应用

遥感可以获得大量的信息,多平台和多分辨率,快速、覆盖范围广等,是遥感数据的一个重要的优势。农业遥感技术是遥感技术和农业科学技术相结合形成的,是可以及时掌握农业资源、作物生长以及农业灾害信息等的最佳方式,在调查和评估,以及农业生产的监测和管理中具有独特的作用[4,5]。现代农业遥感发展的新兴技术,可以实时监测湖泊和水库水面的高度以及评价区域水资源和农业干旱,包括作物品种质量监控和鉴定[6-9]。

2农业遥感技术在我国的起步与发展

农业遥感的发展是遥感技术的重要应用领域,中国自20世纪70年代末以来,就已经进行了农业遥感的初步应用。原北京农业大学(中国农业大学的前身)根据国家土壤调查的要求,在中国国家计划委员会的支持下,由中国科教委和农业农村部组织聘请外国专家培训了专门的遥感应用人才队伍,在1983年5月成立了中国国家农业遥感培训中心。此后,我国将遥感技术广泛应用于农作物产量估算、农业气象、土地资源调查与监测和生态环境变化等领域。目前,遥感技术的应用进入了大量的实际应用化的阶段。我国大力开展国际合作与研究,积极探索遥感领域的前沿技术,使得中国成为世界上遥感领域技术先进的国家之一[10,11]。进入20世纪90年代中后期,出现了大量比较成熟的农业遥感软件,包括农业资源调查与监测的软件,由中国科学院农业遥感实验室组织开发的遥感处理软件———土地利用调查与数据处理系统软件;中国农业科学院草原研究所开发的北方草原产量动态监测系统软件等,新的遥感处理软件大大提高了人们的工作效率。近年来,各部门逐渐建立了地方的遥感中心,为国民经济建设提供了大量支持。随着遥感技术的逐渐成熟、数据来源的大量增加,以及计算机软硬件性能的快速提高,使得遥感应用逐渐普及[12]。

3遥感在当前农业应用中的进展

当今农业发展的趋势是精准农业,具有高质量、安全、低耗、高效的特点,精准农业的大量信息采集,如农作物长势监测、作物害虫监测、作物产量预测,土壤水分预报等农业精准信息,为精准农业的农业信息管理提供了依据。虽然国内的遥感在农业方面做了一些工作,但仍处于起步阶段[13-16]。农业遥感在未来应加强应用的深度和广度研究。通过3S技术的结合,在农业生产管理、农业资源、农业工程监理和其它现代农业建设领域,为农业部门的科学决策提供了详实的支持数据。高光谱遥感技术和无人机技术已经成为农业遥感新的研究热点[14]。

3.1高光谱遥感在农业遥感中的应用

由于高光谱遥感不会对农作物造成损害,因而被广泛应用于监测农作物的叶片面积。这弥补了传统遥感技术获取农作物叶面积指数时间过长的缺点,从而获得最准确、损害最小的遥感监测数据。通过高光谱的观测和分析,可以得到更为精确的农作物叶面积指数,形成不同的遥感反演模型。如,使用地物光谱仪测量冬小麦在特定波段范围内的反射率和透射率,使用冠层分析仪对冬小麦进行分析,形成光谱曲线;经过观测,形成遥感反演模型,并将模型估计值与实际观测值进行对比,结果显示,明显提高了遥感反演模型的整体精度。现阶段,我国农业现代化发展的主要方向和目标是精细农业,在农业监测中高光谱遥感技术具有快速高效、准确、无损的特点,已经成为了农业遥感监测中被广泛应用的手段。精细农业可以通过科学、系统的管理方法对农业资源利用进行合理规划,在不污染环境的前提下,通过遥感技术提高农产品产量和质量。考虑到精细农业对数据和信息的需求,传统的分析方法已不能满足现代农业发展的需要。因此,3S技术的综合被应用到农业监测中。高光谱遥感在精准农业的发展中得到了广泛的应用。利用高光谱技术获得更完整和更准确的农作物参数,为农作物的种植与管理提供了有利的保障[18-20]。高光谱遥感技术除了上述内容,在全面的农作物质量监测,通过获取农作物在不同生长时期的数据特征进行全面的预测以及最后的生产,目前主要集中在不同农作物的种植面积和产量以及质量监测过程中的数据访问与存储。虽然高光谱技术已经全面、准确应用于农业中,但还需要进一步的研究。如何将高光谱遥感技术应用于作物机理和农业信息的监测以及完善农业光谱信息数据库,为进一步提高农业信息监测模型的适用性和准确性提供支持[22-26]。

3.2无人机遥感在农业中的研究进展

3.2.1农田空间信息农田空间信息包括地理坐标信息、通过视觉和机器识别获得的农作物分类信息。通过无人机可以识别农田边界来预估种植面积。传统方法进行农田的面积测量,具有时效性差和农田边界位置与实际情况差异大的缺点,不利于精准农业的实施监测。无人机可以准确、有效并且实时获取全面的农田空间信息,具有传统的测量无法比拟的优势。无人机航拍图像可以实现农田基本空间信息的识别,农作物区域面积的计算和种类的识别仅通过数码相机就可以实现。空间定位技术的快速发展,大大提高了农田定位信息研究的精度和深度,随着无人机影像空间分辨率的提高,地形、坡度和高程信息的引入,可以实现较为准确的农田空间信息监测。张宏明等利用无人机DEM数据提取农田灌溉渠道系统,对于灌溉渠道提取完整性达到85.61%[19]。

3.2.2作物生长信息农作物的生长状况可以通过多种信息反映,如产量信息、表型参数以及营养指标来表示。包括植被覆盖度和叶面积指数等,多种信息相互关联,共同代表了作物的生长,与最终产量直接相关[21]。在野外信息监测研究中起着主导作用。

3.2.3作物生长胁迫因子农田墒情监测热红外法是农田土壤含水量监测的常用手段。在高植被覆盖度的地区,通过叶片气孔的关闭,可以有效减少蒸腾引起的水分损失,增加地表感热通量,从而减少地球表面的潜热通量,导致作物冠层温度上升。水分胁迫指数能够反映农作物的水分含量与作物冠层温度的关系。通过传感器的热红外波段可以有效地获得作物冠层温度,进而有效反映农田水分状况。在植被覆盖度比较低的地区,土壤水分可以间接表示下垫面的地表温度变化,由于水的加热温度变化是一个缓慢的过程,因此土壤水分的分布可以间接反映白天下垫面温度的空间分布。裸地对遥感的温度监测是一个重要的干扰因子,在冠层温度监测中较为重要。研究者研究了裸地温度与作物表面覆盖度的关系,确定了裸地引起的冠层温度测量值与真值之间的差距。将修正结果应用于农田水分监测,提高了监测结果的准确性。在实际农田生产经营中,农田漏水也是人们关注的焦点。利用红外成像仪对灌溉渠的渗漏进行监测,准确率达93%[27-29]。

3.2.4病虫害监测通过热红外波段的实时监测,可以有效反映作物病虫害分布的动态变化情况。作物在健康的条件下,蒸腾作用是通过气孔的开闭来调节的,以保持农作物温度的恒定。当发生病害后,叶面会发生病理变化。病原菌植物对植物蒸腾作用的影响比较明显,会造成侵染部分温度的升降。一般情况下,植物易感会导致气孔开度失调,使致病区域的蒸腾作用高于健康区的蒸腾作用;旺盛的蒸腾作用会导致致病区域温度的下降,致病区域的叶片温差明显高于正常叶片的温差,直到坏死部位的细胞完全死亡,叶片会变得枯黄,叶片的蒸腾作用完全丧失。通过健康植株温差始终低于叶片表面的温度的原理[30-33],可以实时监测作物病虫害的变化趋势。

4总结

4.1我国遥感技术在农业应用中的发展

在我国主要粮食主产区,建立了产量估算信息系统,冬小麦遥感产量估算操作系统是RS与GIS技术相结合的产物。可以将整个产量估算的操作环节集成到计算机系统的操作中,具有完整的数字化操作能力,可以输出各种产量估算结果。大量冬小麦产量估算试验结果表明,利用冬小麦遥感产量估算操作系统进行大面积作物产量估算的精度可达95%以上,随着运行年限的逐渐积累,操作系统的生产精度将逐步提高,运行成本将逐年降低。同时,我国迫切需要了解农业种植结构的变化,针对于种植面积计算的要求、监控的增长潜力、建立单位面积产量模型和遥感监测,中国科学院农业研究实验室在GIS技术的支持下开发了一种作物产量估算的实用操作系统。并且,东北的三江平原,南方的太湖平原也相继建立了遥感监测系统,取得了良好的应用效果。

4.2遥感在农业发展中的前景

中国国家科教委将“RS、GIS和GPS综合应用研究”列为国家科技攻关重点项目。到目前为止,遥感信息技术已连续7个“五年规划”被列为国家重点项目,体现了国家对遥感的重视。可以预见,遥感可以有效地应用于农业发展中,使其走上产业化发展的道路[35]。

5结语

随着国家空间基础设施建设的持续推进以及“高分辨率对地观测系统”的深入实施,中国将拥有更多的国产资源调查监测卫星。物联网与大数据、人工智能等技术的发展以及现代农业发展的需要,将使得我国农业遥感技术的研究和应用进一步发展。

5.1农业遥感的应用范围和应用领域的拓宽

篇2

收稿日期:2011-06-04

作者简介:张旭(1990―),男,内蒙古人,中国地质大学(北京)地质学专业大学生。

中图分类号:TP79文献标识码:A文章编号:1674-9944(2011)07-0211-03

1引言

精细农业也被称为因地制宜农业、处方农业。它可以在遥感、地理信息系统和全球定位系统技术支持下,进行抽样调查,获取作物生长的各种影响因素信息(如土壤结构、含水量、地形、病虫害等)。通过进行农田小区作物产量对比,分析影响小区产量差异的原因,获取农业生产中存在的空间和时间差异性,可以根据每个地块的农业资源特点,按需实施微观调控,以充分利用现代化和机械化,精耕细作,获取高的经济效益。

遥感技术是指运用现代光学、电子学探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析、解译揭示出目标物本身的特征、性质及其变化规律的综合性探测技术。其基本原理就是不同物体的电磁波特性是不同的(黄惠珍,2010),通过探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成对远距离物体的识别。

2遥感技术应用于精细农业的必要性

随着科学技术的发展,传统农业因耗能高、产量低,正逐步被新型农业所代替,而精细农业,适应了现代农业产量高、投入少、节约资源、保护环境的要求(姚建松,2009),它的出现,是传统农业向新型农业转型的必然结果,具有历史必然性。

遥感技术是精细农业获得田间数据的核心来源。没有遥感技术的服务,就没有精细农业的发展。由于不同含水量的土壤具有不同的地表温度(谷纪良,2010),不同生长期和不同生长情况的农作物具有不同的波谱发射特征。因此,通过对作物本身及其生长环境的波谱特性研究,可定量测定作物的生长状况和空间变异信息(李新磊等,2010),了解生态环境变化,为及时作出合理化的调整提供最权威的数据资料。因此,精细农业要发展,必然需要遥感技术的应用。

3遥感技术在精细农业中的应用

遥感技术可以客观、准确、及时地提供作物生态环境和作物生长的各种信息。这是精细农业获得田间数据的重要来源。因些,遥感可以在很多方面为精细农业服务。

3.1作物养分诊断与监测研究

作物养分主要包括氮、磷、钾等元素,如果缺乏会导致作物光合作用能力和产量降低。近20年来,利用遥感进行作物养分(尤其是氮)实时监测和快速诊断一直是农业应用研究的热点,其中,高光谱遥感可很好的对作物养分进行诊断和监测(姚云军等,2008)。基本原理就是利用作物氮、磷、钾等含量的变化会引起作物叶片生理和形态结构变化,造成作物光谱反射特性变化的特性。作物养分高光谱诊断与监测方法主要包括多元统计回归方法诊断作物养分含量,基于特定吸收波段内波谱特征参数的作物养分诊断。

3.2农作物播种面积遥感监测与估算

搭载遥感器的卫星或飞机通过田地时,可以监测并记录下农作物覆盖面积数据,通过这些数据可以对农作物分类,在此基础上可以估算出每种作物的播种面积。目前商业销售的遥感图像已经达到1m空间分辨率,在这种高分辨率图像中可以进行精确的农作物播种面积估算。

3.3遥感监测农作物长势与产量估算

作物长势是作物生长发育状况评价的综合参数,长势监测是对作物苗情、生长状况与变化的宏观监测。构建时空信息辅助下的遥感信息技术与作物生理特性及作物长势之间的关系模型便于作物长势监测。利用遥感技术在作物生长不同阶段进行观测,获得不同时间序列的图像,农田管理者可以通过遥感提供的信息,及时发现作物生长中出现的问题,采取针对措施进行田间管理(如施肥、喷施农药等)。管理者可以根据不同时间序列的遥感图像,了解不同生长阶段中作物的长势,提前预测作物产量。自20世纪80年代初开始,中国有关研究部门与高校合作,利用陆地卫星和气象卫星进行大面积作物长势和产量监测的研究与试验。这为我国作物产量的提前预报奠定了科学基础。

3.4作物生态环境监测

利用遥感技术可以对土壤侵蚀、土地盐碱化面积、主要分布区域与土地盐碱化变化趋势进行监测,也可对土壤水和其它作物生态环境进行监测,这些信息有助于田间管理者采取相应措施,合理调配,及时改善作物生态环境,使作物更好地成长。

3.5灾害损失评估

气候异常对作物生长具有一定影响,利用遥感技术可以监测与定量评估作物受灾程度,作物受旱涝灾害影响的面积,对作物损失进行评估,然后针对具体受灾情况,进行补种、浇水、施肥或排水等抗灾措施,减少损失。

4遥感技术在精细农业发展中面临的问题与解决途径

4.1遥感数据库不足

遥感技术在应用于精细农业中,因作物的生态物理参数(如含水量、叶绿素含量、叶面积指数等)各异,生长环境复杂,生长过程中随时间的推移作物与土壤的各种物理化学条件都会变化,这就需要建立大量的数据库,给遥感农业带来了不便。而现有精细农业中的遥感数据库还处于发展阶段,数据量不足,有待进一步完善。

4.2解译水平有待进一步提高

遥感技术在精细农业中的应用尚且处于探索阶段,许多解译方法尚不成熟,如多种田间组分(作物、土壤等)混合光谱的研究等。而现代遥感技术单一解译技术已趋于成熟,但混合光谱的研究才刚刚起步,还需要加强解译水平,完善解译体系。

4.3建立标形植被光谱数据库

深入开展农业应用中标准地物光谱特征研究,总结标准地物在不同条件下光谱变异规律,完善和扩充农业光谱数据库,在应用研究时将目标物与标形地物的波谱特征进行对比,观察波谱图像,总结波谱特征规律,进一步确定目标物的现实特征,进而实施相应手段,提高作物产量。

4.4建立健全解译体系

加大遥感解译的投入力度,建立健全常用地物的解译体系,特别是完善农业遥感中的解译系统,将传统解译与现代信息技术相结合,结合地理信息系统,定位导航系统的发展,将不同地区不同地物的波谱特征纳入解译体系,提高解译水平。

建立标形地物波谱数据库,加强农田水分条件、肥力条件、病虫害等因子在遥感图像中的解译标志,实现农作物征兆信息的智能化提取,上述关键技术的突破,将有助于阐明作物生长环境和收获产量实际分布的相关机理,有助于遥感动态监测定量化,建立作物长势与产量预报定量模型,这对于提高农业田间科学管理(灌溉、施肥或喷洒农药)具有重要意义。

5结语

遥感技术的研究与发展,是促进精细农业发展的重要一步,随着更高分辨率遥感技术的发展,遥感技术在精细农业中的应用必将更进一步。未来精细农业中遥感的定位,将从定性监测逐步转向定量监测,定量遥感将在精细农业中发挥更加重要的作用。因此,加强定量遥感的研究力度,完善定量遥感体系,建立定量遥感农业模型,将为农业遥感发展带来新的活力,必将促进精细农业的蓬勃发展。

参考文献:

[1] 黄惠珍.遥感技术在我国农业生产中的应用[J].科技信息,2010(24):46.

[2] 姚建松.我国精细农业发展前景探讨与研究[J].中国农机化,2009(3):26~28.

[3] 谷纪良.浅谈我国精细农业的应用情况和技术构成[J].消费导刊,2010(8):224.

[4] 李新磊,苏俊.试述现代精细农业的技术构成及其应用[J].中小企业管理与科技,2010(6):79~81.

[5] 姚云军,秦其明,张自力,等.高光谱技术在农业遥感中的应用研究进展[J].农业工程学报,2008,24(7):301~306.

[6] 任丽萍,杜波.精细农业-现代化农业的发展方向[J].黑龙江科技信息,2009(21):145.

[7] 王建强,王丽梅.3S 技术在精细农业发展中的综合应用探讨[J].水利科技与经济,2008,14(3):235~236,244.

友情链接