发布时间:2023-09-21 17:34:15
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇基因工程在畜牧业上的应用范例,将为您的写作提供有力的支持和灵感!
生物技术作为一种先进的科技手段,其主要是指在现代生命科学与其他基础性科学的条件下,通过预先设计对生物原料进行加工或改造生物体,从而生产出人类所需的产品。生物技术是以生物学为基础,将生物科学与工程技术相结合,能够有效控制生物控制系统,涉及生物工程、蛋白质工程和基因工程等一系列技术,属于高新实用技术的集合体。总体而言,生物技术的发展与应用,为现代科技科研的发展与进步提供了重要的平台,有利于促进科技的更高层次的发展。
1兽医领域中生物技术的应用
生物技术属于一门综合性较强的学科,其是指人们加工动植物体和微生物等物质原料,为社会提品服务,包括发酵技术和现代生物技术等。一般兽医领域中生物技术的应用可从动物育种、动物疫病诊断与防治、饲料资源开发、畜禽环境净化等方面进行具体分析。
1.1动物育种
生物技术在动物育种中的应用,主要是胚胎技术、DNA技术、克隆技术和转基因等的应用,其具有较强的针对性,能够对传统人工育种的形式加以改善,加快培育和品种优选的时间,缩短培育的周期,提高育种质量,实现分子级的培育效果。例如通过生物技术可提取特殊基因,在插入基因簇的基础上开展生物的遗传性再造,这样能够对品种的某一特性加以改变,优化品种或改造种群。然后利用相关的生物技术,有效进行检测与诊断,对遗传改造效果进行科学分辨,保留达到预期的小组,提高育种过程的速度与准确性,提高畜牧业的生产能力。
1.2动物疫病诊断与防治
运用生物技术来诊断与防治动物疫病,其主要是通过该技术培育基因工程兽用疫苗,其培育时间比常规疫苗生产时间要短,并且疫苗具有更加强大的效果和更多的种类,降低因污染或残毒而导致的生物污染几率。一般来说,常见的包括预防禽痘病毒的核酸疫苗、基因缺失疫苗、活病毒载体重组疫苗等。随着生物技术的不断发展,许多新型有效的诊断方法用于畜禽的疾病诊断中,尤其是多种分子生物学诊断方法,如聚合酶链反应法、核酸探针法、免疫印迹法、限制酶分析法等。
1.3饲料资源开发
动物的养殖需要以饲料为基础,其直接关系到畜牲畜的成长和畜牧业的经济效益;而生物技术的应用发展有效推动了畜牧业与农业的技术变革,为饲料资源的研发提供了有力条件。将生物技术应用在饲料研发中,能够促进饲料营养成分的提高,减少因饲料短缺而产生的压力情况,为畜牧业的良性发展提供基础。如生物技术在发酵饲料中的应用,其对传统饲料来源加以改变,降低饲料成本,提高畜禽的适应性和抵抗力,减少畜禽的发病率。澳大利亚的部分科学家已经研制出新的首蓓,其含有十分丰富的蛋白质,去除相关基因之后可作为新型的高蛋白质含量的饲料。
1.4畜禽环境净化
由于养殖业大多较为集中,因此畜舍中会散发出含有氨气的难闻气味,这些物质会严重威胁到对人畜的健康,因此需要采用科学的措施来防治这一情况。如由于畜舍中含有大量氨气,导致肉鸡情况的出现,或者是引发猪的呼吸道疾病。科学家利用生物技术提取莫哈欠丝兰中的糖化合物,从而减少畜舍内含有的粪臭素、氨气和硫化氢,促进牲畜血液中含氧成分的增强,避免鸡产生腹水症的现象,提高猪的生产性能。
2兽医领域中生物技术的发展趋势
DNA重组技术作为现代生物技术的核心内容,其操作对象主要是遗传物质、基因或细胞机体。随着生物技术的发展,其为畜禽类疾病的诊疗与疫苗的研发等提供了技术支持,有利于畜禽类疾病的预防,减少人类部分疾病的产生。当前基因治疗仍然是动物医学的重要研究方向,如利用何种方式认识和利用基因等,其需要以动物疾病模型为依据研究与分析基因治疗问题,从而完善兽医临床的相关理念。此外,生物制药也是现代生物技术的发展方向,抗生素的耐药性已经成为十分严重的问题,畜牧生产者对抗生素的广泛应用,在很大程度上促进了新耐药菌株的传播,引发了部分人畜共患的疾病,给医疗保健系统造成了严重的经济负担。因此生物类医药的应用是未来药物的使用准则,其有利于预防疾病与疫苗接种,对兽药的研制具有较好的应用价值。现代生物技术具有良好的优越性,是未来医药行业的必然发展趋势,但是如何简化分析方法、降低技术的使用成本及操作难度,仍然是该项技术在实际发展中需重点解决的难题。
3结语
综上所述,生物技术作为一种综合性的高新技术,其多应用于动物育种、动物疫病诊断与防治、饲料资源开发、畜禽环境净化等方面,有效推动了兽医领域的发展。当前我国在研发生物技术层面相对落后,尤其是动物育种和饲料研发等方面的应用,但是我国正在不断提高对该项技术的认识,今后其在牲畜养殖方面的应用将会变得更加广泛和普及。
[参考文献]
1. 生物技术在农业生产上的应用
通过利用动植物的特定基因,可以实现用更少的土地种植更多的作物,同时减少化学农药的使用。利用生物技术,可以在恶劣的气候环境下生产作物。利用生物技术还可以改善食品的营养和口感。生物技术在农作物中的应用,最初通过遗传工程获得而进入市场的作物是玉米、大豆和棉花,它们经转基因处理后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌中获得基因,经遗传改良后具有防虫害的能力。除此之外,还有许多经转入特定基因的玉米品种,能同时抗除草剂和一些虫害。引入特定基因,能够改变动植物的品质。例如,科学家在番茄中植入抗成熟的基因,可以延长番茄的货架期。在植物中引入对人体无害的抗虫基因,可以防止病虫为害,减少农药的使用,在水稻中介入产生维生素A的基因,可以提高稻米的营养价值。
2.生物技术可促进畜牧业发展
生物技术在畜牧业上的应用,一方面有助于提高畜禽的生命力以及消灭竞争者,并通过基因工程获得促进畜禽生长的物质,如生长激素以及生长调节剂;另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,降低饲料作物中难消化的木质素含量等。
生物技术给人类带来的益处还包括生态环境。利用生物技术提高现有农业生态系统的生产力,可以降低农业向原始、自然、半自然生态系统扩张的要求。因此,它有助于保存、保护地球上仅有的自然生态系统及其资源,有助于人类再利用基因资源开发新的产品。
3.生物技术对环境和土壤的有益作用
中图分类号:S814.8 文献标识码:A DOI:10.11974/nyyjs.20160230105
生物技术是门十分古老的科学,从很早以前人们就已掌握的发酵、酿酒技术到近代抗菌素的应用,说明这门技术伴随人类已经几千年了。直到现代,限制性内切酶的发现、基因体外重组以及分子克隆技术的建立给这门古老的科学带来了光明的前景。现在,生物学、医学、兽医、植物、环保等许多学科和领域的研究者都在竭力使生物技术与各自所研究的课题相联系,并取得了很多令人鼓舞的结果。
1 生物技术在动物育种中的应用
在牲畜的日常育种中十分普遍的用到了生物技术,包括克隆技术、转基因、胚胎技术、DNA技术等,通过生物技术的应用能够改善分子的培育效果,对人工育种的措施加以改善,生物技术的运用不但在一定程度上将动物的培育周期缩短了,还具有很强的针对性。大大的减少了选择品种以及培育的时间,还有效的增强了育种的水平。
2 在饲料资源的开发中应用生物技术
不管是哪种动物的养殖,都离不开饲料,可以说,它和畜牧业的经济效益以及牲畜的成长息息相关,生物技术的不断进步,在一定程度上推动了科技水平的发展,也带动了饲料资源的研发。在饲料的研发工作中大量的运用生物技术,能够很好的提高饲料的营养成分,所以说,生物技术在一定程度上还可以减少由于我国饲料的短缺而导致的压力情况,为我国畜牧业的良好发展和进步打下了坚实的基础。在澳大利亚,有一些科学家们研发出了一种新型的首蓓,这种首蓓所富含的蛋白质非常多,将相关的基因去除后,能够作为一种高蛋白质含量的新型饲料。
3 生物技术在诊断和防治动物疫病中的应用
在防治动物疫病方面,运用生物技术培育的基因工程兽用疫苗与常规疫苗的生产相比生产周期更短,疫苗的种类更多,效果更强大,并且降低了由于残毒和污染而造成的生物污染的机率。常见的有预防禽痘病毒的活病毒载体重组疫苗、基因缺失疫苗、核酸疫苗等等。在畜禽疾病诊断方面,随着生物技术发展而产生的限制酶分析法、免疫印迹法、核酸探针法以及聚合酶链反应法等多种分子生物学的诊断方法都是畜禽疾病有效的诊断方法。
4 在净化畜禽环境中应用生物技术
因为养殖业大多都十分集中,所以畜舍中所散发的气味十分难闻还含有氨气等对人体以及牲畜有害的物质,因此,必须采取相关的措施对这种情况加以预防和制止。现阶段容易出现的肉鸡的情况,还有一些猪出现呼吸道疾病的情况都是由于畜舍内含有大量的氨气而造成的。科学家们从沙漠植物莫哈欠丝兰中提取的糖化合物,能够让舍内硫化氢、氨气、粪臭素等减少增强牲畜血液中含氧成分,在一定程度上使猪的生产性能有了一定的提高,也有效的减少了鸡出现腹水症的几率。
5 发展趋势
5.1 基因治疗的研究是未来动物医学乃至人类医学的重要发展方向
通过建立动物疾病模型分析和研究基因治疗各种层面上的问题,在兽医临床上的应用方兴未艾,通过对基因治疗的认知和利用促进兽医学临床研究的发展这一理念也相对成熟。采取何种方式去认识基因、如何合理利用基因,在基因治疗发展上显得尤为重要。
5.2 现代生物技术的另一个重要的方面就是生物制药
根据世界卫生组织对我国传染病威胁的评估结果表明,抗生素耐药性已成为严重问题。畜牧生产者广泛使用抗生素加速了新耐药菌株的传播,引发了一些人畜共患病,尤其是人类的食物传染病,并导致医疗保健系统重大的经济负担。所以,用生物类药物对抗生素进行转向替代并且改进控制手段(如疫苗接种和预防疾病)是畜牧业未来使用药物的准则,这对于兽药研制非常重要且又具有很好的应用价值。
6 结束语
相对于发达国家来讲,我国对于生物技术的研发工作还相对比较落后,在饲料的研发以及动物的生产中生物技术的应用还不够成熟,然而,我国现阶段已经提高对生物技术的认识,相信以后在牲畜的养殖上生物技术的应用将会越来越广泛。
生物技术在农作物中已有广泛的应用。最初通过遗传工程获得改良而进入市场的作物是:玉米、大豆和棉花。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良作物的同时,这种作物的收益潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害,并在农业上的应用。除此之外,还有许多经转特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。
生物技术在畜牧业上应用所获得的益处与在农作物上相同。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)获得了经遗传改良的绵羊,这种绵羊比普通绵羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量来提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。澳大利亚植物学家达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。
生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以降低农业向原始的、自然的、半自然的生态系统扩张,因此,它有助于人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源去开发新的产品。
1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有抵抗作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。
在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的,因为制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。
同样,人们可以利用真菌来提高土壤养分的有效性。美国转基因作物研究者温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长,真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。
生物技术带来的不利
从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。
这种情形可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦,近年来在英国已有这方面的报道,特别是当引发人体过敏反应的基因转入农作物时,例如:坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
一、生物技术给农业发展带来机遇
广义上讲,生物技术是利用有机体、死细胞、活细胞以及细胞内含物,采用特殊的过程生产出特殊的产品应作到农业、医药以及环境修复治理中,尤其是70年代基因工程的出现,它能改变、取代物种的基因。
生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。
生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。
生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。
生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。
在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。
生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。
同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。二、利用生物技术发展农业应注意克服的问题
从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。
生物技术可能引起生产方式和人类健康的退变。这种情奖品可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。近年来在英国已有这方面的报道。特别是当能引发人体过敏反应的基因转入农作物时,例如,坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。
生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。
生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。
生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。
在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。
生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。
同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。
二、生物技术带来的不利
从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。
生物技术可能引起生产方式和人类健康的退变。这种情奖品可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。近年来在英国已有这方面的报道。特别是当能引发人体过敏反应的基因转入农作物时,例如,坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。
生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。
生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。
生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。
在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。
生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。
同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。
二、生物技术带来的不利
从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。
生物技术可能引起生产方式和人类健康的退变。这种情奖品可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。近年来在英国已有这方面的报道。特别是当能引发人体过敏反应的基因转入农作物时,例如,坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
一、生物技术给农业发展带来机遇
广义上讲,生物技术是利用有机体、死细胞、活细胞以及细胞内含物,采用特殊的过程生产出特殊的产品应作到农业、医药以及环境修复治理中,尤其是70年代基因工程的出现,它能改变、取代物种的基因。
生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。
生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。
生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。
生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。
在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。
生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。
同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。二、利用生物技术发展农业应注意克服的问题
从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。
生物技术可能引起生产方式和人类健康的退变。这种情奖品可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。近年来在英国已有这方面的报道。特别是当能引发人体过敏反应的基因转入农作物时,例如,坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
基因工程,即DNA重组技术,是指对不同生物的遗传基因,根据人类的需求或意愿进行基因的切割后,通过转入受体的方式,使其产生人类期望产物。基因工程在技术上使得人类一定程度上可以客服物种的界限,定向培养出自然界已知不存在的生命形态,以此来满足人类社会的不同需求。其在农业生产中已得到广泛的应用,如根据人类对作物的需要将特定基因转入受体植物基因组中,起到改良品质、增加产量及抗病虫害、抗除草剂的目的,其中应用最广的抗冲虫剂苏云金芽孢杆菌(Bt)伴孢晶体基因已被转入棉花、玉米、烟草等多种植物基因组中,并获得不错的效果。基因工程在畜牧业上也有应用,如将鼠类有关促进角蛋白形成的基因转入绵羊基因组,经改良的绵羊比普通绵羊产毛量提高6%左右[1]。
1.2细胞工程
细胞工程是指应用细胞生物学和分子生物学方法,借助工程的实验方法和技术,在细胞水平上改造生物遗传特性和生物学特性,以此获取特定的细胞产品或新生物体。如植物体细胞杂交可以将两个来自不同植物的体细胞融合成一个杂种细胞,并且把杂种细胞培育成新的植物体,袁隆平通过体细胞杂交技术获得具有远缘杂种优势的超级杂交水稻,亩产可达1600公斤。
1.3酶工程
酶工程是指在生物反应装置中,利用酶所具有的生物催化功能将相应的原料转化的一门技术,包括微生物细胞发酵产酶、动植物细胞培养产酶、酶的提纯与分离纯化、酶和细胞原生质体固定化、酶的修饰和改造及酶反引器等研究方向,其应用范围也涵盖了食品、轻工、化工、能源、医学等多个学科和领域。1.4发酵工程发酵工程是指将微生物学、生物化学和化学工程的基本原理有机的结合起来,利用微生物的生长和代谢来制造各种产物的工程技术。最早的发酵工程是在20世纪40年代随抗生素工业的兴起而得到迅速发展的,特别是二战期间的美国利用发酵工程技术大规模的生产青霉素,使得这一技术得到了长足的进步和发展[2]。
2现代生物技术在食品加工中的应用
随着现代生物技术的发展,越来越多的新技术、新方法被应用到食品加工行业中来,特别是基因工程,作为现代生物技术的产物,短短的十几年内其在食品加工制造领域的应用得到了长足的发展和进步,产生了显著的社会、经济效益。通过特定基因的转入使得农作物能够抵抗病虫害、旱涝灾害,大大降低了生产成本,提高了粮食产量,一定程度上为人类解决因人口增加而产生的食物短缺问题提供了有力手段。同时、利用基因工程手段可以大幅度的提高酶的催化活力,将影响产酶和酶催化活力的基因转入受体中,可获得基因菌,以此来产生具有较强催化能力能催化特性的酶类满足食品加工的要求。应用微生物发酵技术生产发酵产品,充分利用了生物技术的手段借助微生物的特殊功能生产有用的物质,或者将微生物直接应用于食品加工的技术体系中,手段包括菌种选育、菌种生产、代谢产物发酵、特种微生物利用技术等。发酵工程在食品加工领域所取得成果包括从新食品研发配料、食品加工催化剂、饮料稳定剂、D-氨基酸及其衍生物制造及废弃物利用和食品品质检测等。其应用主要在以下几个方面(1)用现酵工程改良传统发酵食品、如双酶法糖化工艺取代酸法水解生产味精,或采用固定化酵母连续发酵技术进行啤酒的生产可明显的缩短发酵周期提高啤酒产量。(2)优化近酵产品。如运用固定化醋酸菌酿制食醋,既可以缩短发酵周期,又可将酯化能力提高9~12倍。(3)缩短发酵产品的开发周期。如单细胞蛋白(SCP)的制备等[3]。目前世界范围内,现代生物技术应用于食品加工中并创造总产值已达到2000亿美元,涵盖了维生素、氨基酸、酵母制剂、微生物多糖、环状糊精、脂肪酸等产品的开发与检测。
转基因动物技术从诞生的那天起,就在改良畜禽生产性状、提高畜禽抗病力,以及利用转基因畜禽生产非常规畜牧产品(如人类药用蛋白)等方面显示了广阔的应用前景。尽管转基因动物技术的实际应用还有许多关键性的技术问题需要解决,但科学家们还是对其寄予了厚望。随着基因工程技术的不断发展,转基因动物技术将会不断得到完善,从而在未来的社会生产中大显身手。
一、转基因技术的定义
将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术。通俗的讲:转基因技术就是指利用分子生物学技术,将某些生物的基因转移到其他物种中,改造生物的遗传物质,使遗传物质得到改造的生物在性状、营养和消费品质等方面向人类需要的目标转变。
二、转基因动物技术的定义
所谓转基因动物,是用实验的方法,把外源基因导入到动物体内,这种外源基因与动物本身的染色体整合,这时外源基因就能随细胞的分裂而增殖,在体内得到表达,并能传给后代。世界上第一只转基因动物巨鼠,是将大白鼠生长激素导入小白鼠的受精卵中,再将这个受精卵移入借腹怀胎的母鼠子宫中,产下的小白鼠比一般的大一倍。这只在遗传学上具有重大意义的转基因动物的研究培育成功,展现出诱人的光明前景。
目前常用的动物转基因技术可以分为:(1)融合法,包括细胞融合,微细胞介导融合等;(2)化学法,包括DNA-磷酸钙沉淀法、DEAE-葡聚糖法、染色体介导法等;(3)物理法,包括显微注射法、电脉冲法、细胞冻存法等;(4)病毒感染法,包括重组DNA病毒感染、重组RNA病毒感染等。但真正成熟并可以稳定生产转基因动物的方法只有三种,即核显微注射DNA法、介导法和核移植法等基因转移方法。
三、转基因动物技术的研究成果
1.利用转基因动物技术提高畜禽抗病力
利用转基因技术有可能在较短时间内培育出抗病力强的畜禽品种或种群。我国湖北畜牧所与同济医科大学合作,已经获得表达外源hDAF的猪7头。使用转基因技术不仅可以加快动物改良进程,使选择效率提高,改良机会增多,而且不会受到有限繁殖的限制,是一项极有前途的研究领域。1986年,中国科学家第一次把生长激素基因成功地转移到金鱼体内,以后又成功地把人类、小鼠和其他鱼类的基因转移到多种鱼体内。美国科学家也成功地把某种生长基因转移到另一种鱼体内,转基因鱼生长速度加快了,体型变大了。这就是人们称谓的了“兰色革命”。
在对畜禽类病原体基因组结构进行深入研究的基础上,可将病原体致病基因的反义基因导入畜禽细胞,使侵入畜禽机体的病原体所产生的mRNA不能表达,从而起到抗病作用。1988年,有人将小鼠抗流感基因转入了猪体内,使转基因猪增强了对流感病毒的抵抗能力。
2.利用转基因动物技术改造动物粪便改善环境
携带细菌基因的转基因猪可产生更清洁,污染更少的绿肥。这些基因,可帮助猪除去食物中的磷酸盐,从而有助减少猪畜牧业中产生的对农业有害的废物。
在加拿大圭尔夫大学的猪研究小组成员Serge Golovan说:“植物含有许多有机磷,而普通猪不能使用它。”没吸收的磷流散在环境中,危害溪流中的生物,产生温室气体。
转基因猪经过遗传修饰,在唾液中产生肌醇六磷酸酶,从而可以吸收植物中的磷,而普通猪是不能消化磷的。对转基因猪产生的肥料进行分析发现,他们比普通猪的排磷量减少了75%。
圭尔夫大学研究小组使用来自大肠杆菌的肌醇六磷酸酶基因,将该基因插入到猪基因组中,猪的唾液中产生这种酶。这种污染性小的猪所排泄的磷比食用肌醇六磷酸酶的猪要少得多。
3.利用转基因动物技术生产“动物药厂”
利用转基因动物生产蛋白质、造药,是全新的生产模式。与细菌、细胞等生物工程制药相比,转基因动物的乳汁,可以方便收集,且不损伤动物;目的蛋白质,已经过动物体内加工和修饰,不必再进行后加工。而以往微生物、细胞等生物工程基因产物,要有后加工。用转基因动物生产,也不需投入大量资金建厂、添设施、雇用人员等。
曾培育出世界上第一只克隆羊“多利”的英国罗斯林研究所,近日又取得了一项重大的科学突破:该研究所的科学家成功培育出世界上第一批能下“神奇鸡蛋”的小鸡。这种经过基因改造的小鸡所下的蛋能用来制造治疗癌症和其他疾病的药物。这一重大科学突破无疑为大规模生产药物提供了非常广阔的前景。科学家用于研究的小鸡名为“依沙褐壳蛋鸡”,这种法国品种鸡每年可下约300颗鸡蛋。经过基因改造后的“依沙褐壳蛋鸡”,其DNA中含有人为加入的人类基因,当母鸡生下蛋后,科学家就能从鸡蛋的蛋白中提取用来制造药物的蛋白质。
4.利用转基因动物技术生产玩赏动物
利用转基因动物技术可以生产如同猫一样大的小马,如同鼠一样大的兔子,以及各种不同毛色和花纹的观赏动物。
2003年,美国得克萨斯的一家公司宣布,经过转基因技术他们已经研制出能发荧光的小型热带鱼――“荧光鱼”。这种“光芒四射”的红色荧光鱼,是利用转基因技术得到商标注册的第一种商业性荧光宠物鱼。改基因后的斑马鱼散发出粉红色荧光,远看像金鱼一样。目前,公司以GloFish的商标对红色荧光鱼进行了注册,这标志着转基因荧光鱼可以被当作家庭宠物出售。
斑马鱼是一种常见的观赏鱼,身上有黑白相间的条纹。荧光斑马鱼被分别转入了水母绿色荧光蛋白或者珊瑚虫红色荧光蛋白的基因,在紫外线的照射下,能够发出绿光或红光。荧光鱼作为观赏鱼在市场上销售,是第一种上市的转基因动物。
5.利用转基因动物技术改进动物品质
将外源基因导入家畜,能改进动物品质,使家畜朝人类希望的目标靠拢,如肉质改善、饲料增效、个体增大、体重增加、奶量提高、脂肪减少等。例如将长瘦肉的基因导入猪细胞中,猪就成为瘦肉型;将促乳汁分泌的基因导入牛、羊细胞中,这些转基因牛、羊乳汁猛增;还有科学家将貂的长皮毛基因导入羊细胞中,培育出长出类似貂毛毛皮的羊。这些羊易养,繁殖快,且“羊貂皮”面积数倍于貂皮,将使“貂皮”时装进入寻常百姓家。
美国科学工作者在德克萨斯的豪斯顿农场试验育成了世界首批基因工程牛。这是一种含不饱和脂肪少的瘦肉型牛,而且能产出适于喂养婴儿的牛奶的奶牛。
这项在豪斯顿农场的研究始于20世纪80年代末,1989年3月他们获得了第一头转基因牛,这一牛犊经检测含有一种人雌性激素受体基因。研究者进行这项开创性试验的目的在于希望带有人雌性激素基因牛能加速生长。
在前一项试验后的几年中,他们仍采用转基因的方法又培育出了两头新类型牛,这两头转基因牛能产出胰岛素生长因子。实验者的目标是想利用外加的生长因子使牛长出更多的肌肉以提高肉类产量。进一步的试验表明实验场新出生的牛已携带有被导入的基因,其表型性状变化也实现了预期目标。
四、转基因动物开发存在的问题及前景展望
到目前为止,人类开发转基因动物已经历了20多年。从取得的初步成果看,转基因动物的研究成果在提高生产能力,改善肉和奶的质量,生产生物医药产品,研究人类疾病模型,特别是在治疗人类的疑难病症方面都显示出了广阔的应用前景。转基因动物已深刻地影响到农业、畜牧业、医药业等许多重要领域,同时也推动了生命科学的发展。
然而,转基因动物,特别是转基因家畜的外源基因整合率和表达率较低,一些转基因动物多病、死亡率高和不育现象等严重地制约着转基因动物的开发利用,这一切正是我们在研究过程中迫切需要解决的问题。另外,转基因动物产品安全性问题及法规的制定尚处于探索阶段。
尽管存在着各种问题,由于转基因动物技术在生命科学、临床医学、食品工业、畜牧业生产和环境保护等重要领域的巨大的适用价值,各国政府在该领域的支持力度有增无减,相关的专家学者对解决这些难题多持乐观态度,普遍认为转基因技术是今天和未来高科技领域的佼佼者。
参考文献:
(二)畜牧业技术创新是提高畜牧业生产水平的需要畜牧业是利用饲草繁殖饲养家畜以取得畜产品的生产部门。畜牧业生产领域劳动效率和水平的提高,无不与技术创新有关。传统畜牧业不注重科学技术创新,在生产方面只注重草地和劳动力的投入,因而劳动效率低,也容易造成环境污染和资源浪费,而我们通过技术创新,可以把新技术用于生产领域,大大提高生产效率和水平。例如,我们可以通过生物基因工程、细胞工程、遗传工程等技术创新,为畜牧业培养出优质高产、适应自然能力和利用自然资源能力强的优良品种,提高畜牧业生产效率和水平,也可以通过电子技术、原子能技术、遥感技术等方面创新,提高畜牧业现代化水平。我们考察畜牧业发展的历史,就可以发现一个规律,那就是,畜牧业生产效率和水平的提高,离不开畜牧业技术创新,离开畜牧业技术创新,畜牧业生产水平根本不可能提高。所以,为了迅速提高畜牧业生产效率和水平,必须不断进行技术创新。
(三)畜牧业技术创新是提高畜牧业竞争力的需要不但畜牧业生产条件改善、生产效率和水平提高以技术创新为条件,而且畜牧业竞争力的提高也离不开技术创新。畜牧业竞争力的高低取决于畜产品竞争力的高低,畜产品竞争力的高低取决于畜产品加工部门的技术水平高低,而畜产品加工部门技术水平高低取决于畜产品加工部门技术创新能力,所以,畜牧业竞争力的高低取决于畜牧业技术创新水平。内蒙古畜牧业发展的历史充分验证了畜牧业竞争力与畜牧业技术创新水平之间的密切关系,在改革开放以前,内蒙古畜牧业技术创新水平比较低,与此相对应内蒙古畜牧业竞争力也比较低下,而在改革开放后,由于内蒙古涌现一批知名畜产品加工企业(如蒙牛、伊利),畜产品加工技术创新能力迅速提高,于是,畜产品竞争能力大幅度提高。内蒙古畜产品加工产业有了很大发展,但是,畜产品加工产业与发达国家相比,差距还很大,发达国家由于畜产品加工技术创新能力强,畜产品加工产品种类品种多,能够满足各种不同消费者的需求,而内蒙古畜产品加工产品种类和品种还远远不能满足消费者需求,极需要提高畜产品加工技术创新能力,以提高畜牧业竞争力。
二、落后的畜牧业技术对畜牧业发展的制约
内蒙古畜牧业科技发展虽然取得了巨大成就,但是由于社会经济发展程度、牧区经济基础及社会综合条件的限制,内蒙古畜牧业的生产技术发育程度和技术进步机制还存在很多问题和不足,这种状况,极大地阻碍了畜牧业发展。具体来就,表现在以下几个方面:
(一)技术手段落后因所处自然环境局限,畜牧业以放牧为主要手段。从诸种畜牧业饲养方式的投入产出效益比来看,这种方式有效地利用了自然资源,投入的活劳动和物化劳动都远远低于其它生产手段。但就畜牧业自身条件看,适当的人工饲料(包括加工过的天然饲料)补给,可以大大提高饲草料的转换率,增加草资源的利用效益,解决草畜矛盾,加大牲畜的个体产出量。而内蒙古畜牧业主要以放牧为主,对人工饲料的补给在大部分地区只限于在牲畜无法采食到天然牧草时进行,而没有按牲畜生理育成周期补饲,这种状况近几年有所好转,青贮饲料的推广范围已占全区旗县的90%以上,牲畜补饲、青贮饲料种植技术也有较好的推广,但仍需进一步提高生产技术,并将其推广和普及。由于人工饲料补给不足,牧民过多地在草场放牧,造成内蒙古草原资源逐年退化、面积日益缩小、生态恶化,草地急剧消失的严峻危机,“三化”(退化、沙化、盐渍化)草地面积不断增大,严重影响了畜牧业发展。
(二)机械化水平低下畜牧业机械化是以先进的畜牧技术和生物技术为基础,以现代工业技术为支撑,以各种机械为手段,科学组织畜牧业生产的过程。畜牧业机械化是畜牧业技术创新的重要标志。畜牧业创新主要包括工程技术创新和生物技术创新两个方面。而以畜牧业机械为主的工程技术是实施生物、畜牧技术的直接手段。只有采用工程技术才能保证生物技术充分发挥作用和科学的畜牧措施得以实施。先进畜牧业技术的推广应用,必然要有与之配套的畜牧业机械来完成。人工草地建设、草地改良、牧草收获加工、草地灭虫灭鼠等重大畜牧业增产技术和环境建设技术应用,只有先进畜牧业机械才能大面积进行。而内蒙古牧区长期存在忽视牧业机械推广的现象,在主要牧区除了割草和剪毛的机械化程度稍高外,其它部门的机械化水平低下,甚至没有机械;这种状况严重制约畜牧业的发展。
(三)科技队伍力量薄弱由于内蒙古教育落后,再加上内蒙古现阶段存在城乡差距,受牧区生活条件限制,造成内蒙古目前畜牧业科研队伍力量薄弱。而更为严重的是,失学率有进一步上升的趋势。这种状况造成牧民群体中拥有的科学技术人员很少。此外,由于牧区生活条件的限制,城镇畜牧科技人员没有进入牧区的积极性,造成牧区畜牧科技人员很难增加。科技人员缺乏,很难保证牧区科技服务体系完备,目前内蒙古牧区畜牧、兽医、草原经营等服务站大都只普及到县(旗)一级,比较先进的牧区也只普及到乡(苏木)。乡级服务站的技术人员也十分短缺。大部分站由乡(苏木)长充任站长,隶属于政府部门,自我发展自我完善的能力不足,设备简陋,服务条件很差,改良、检疫等技术性稍强且十分需要普及的工作也得依赖县级站。在生产和居住都呈分散状态的牧区,这种服务网络难以对生产进行有效的引导和服务,畜牧业技术推广和创新对技术人员有很强的依赖性,而目前技术力量薄弱,技术服务较差,必然影响畜牧业发展。
(四)加工方面技术落后畜牧业生产要顺利进行,除了要有畜牧业生产方面的技术之外,还必须有畜产品加工、流通方面的技术和设施,这样才能保证畜牧业生产顺利进行,而内蒙古畜牧技术结构单一,不但畜牧业生产方面的技术不全,而且畜产品加工技术落后,严重影响了畜牧业发展。畜牧业生产要顺利进行,必须要求畜产品有较高的质量,满足消费者需求,能够顺利地出售,而畜产品达到较高质量,是以先进畜产品加工技术为基础的。随着经济发展和人民生活水平的提高,人们对畜产品提出了更高的要求,而在畜产品加工技术落后的情况下,加工企业根本不能生产出满足消费者日益增长的畜产品,例如,乳品行业是内蒙古竞争力较强的行业,但是与国内其它先进企业相比,机器设备比较落后,技术水平低,研发能力差。国外乳品行业,由于其技术水平高,能够根据不同消费者的不同需求生产产品,消费对象细化到不同层次、不同习惯、不同口味的消费者,不同习惯、不同口味的消费者都能买到自己需要的产品,如国外酸奶、奶粉的品种都有上百个,相比之下,包括伊利在内的内蒙古乳品企业,其产品种类还十分单一,还不能满足消费者的不同层次的需求。畜产品加工企业技术落后,必将影响其竞争力,进而影响畜牧业发展。
三、推进畜牧业技术创新的措施
针对内蒙古畜牧业发展中存在的问题,我们应该根据区情采取措施,加强技术创新,以促进内蒙古畜牧业发展。
(一)发展多种畜牧业技术手段为了改变畜牧业生产手段单一的状况,必须改变旧的畜牧业技术推广体制,放活科研推广机构,放活科技人员,使科研机构和科技工作面向市场,促进经济增长。现有的科研机构必须由科研事业型向科技企业型、实体型和民营型转变,推进科研、推广、示范、生产一体化。鼓励科技人员创办民营科技实体,使民营科技企业成为一支更需要的新生科技力量。鼓励高级技术人员带头发展科技中介组织,发展壮大科技经纪人队伍,使他们在科技与生产之间发挥桥梁和纽带作用。社会公益型科研单位也要发挥人才技术优势,创办经营实体,提高自我发展能力。科技推广机构内部要深化人事和工资制度改革,按需上岗,按岗聘任职称、职务。实行基本工资和效益工资相结合的办法,使科技人员的收入与工作水平和业绩挂钩,与技术开发、成果转化的贡献挂钩,改变过去畜牧科技单一落后的状态,改变过去畜牧业生产方面只注重草资源使用,不注重保护的状态。为此,在畜牧业生产方面,不但要有效利用自然条件,合理放牧,而且还要增加人工饲料的补给,提高饲草料的转换率,处理好人工饲料补给和天然草场利用之间的关系,尤其要保护好天然草场,遏制草原资源退化、面积逐渐减少的趋势。
(二)提高畜牧业机械化水平发展畜牧业机械化,要有新思路,采用新措施,建立新机制。为此,必须进一步健全和完善畜牧机械社会化服务体系、推广体系、监督体系、产业化服务体系等,加快畜牧机械服务社会化、市场化进程。鼓励牧区经济组织和牧民个人购买大中型拖拉机及其配套机具,发展各类专业性畜牧业服务组织和专业户、畜牧机械租赁公司、畜牧机械作业中介组织及畜牧机械使用者协会,进行畜牧业机械化、专业化经营,社会化、市场化服务。强化苏木(乡镇)畜牧机械管理服务站在畜牧业机械社会化服务方面的组织协调、技术推广和作业安全管理职能,并逐步向畜牧机械中介组织转变,为畜牧业产前、产中和产后提供全程的机械化服务。畜牧机械推广要坚持畜牧业机械与常规技术、高新技术相结合,科学研究与成果推广相结合,配合畜牧业新技术措施的实施,加强畜牧机械科研新成果和新型机械设备的推广应用,要围绕发展高产、高效、优质畜牧业,大力推广先进适用的畜牧业机械化技术,要建设畜牧机械实验规范基地,进行新型畜牧机械的实验规范,通过多种方式引导牧民购买实用畜牧机械,开拓畜牧销售市场和作业市场。
(三)提高牧区居民科技文化水平畜牧业水平提高的根本途径,并不是一蹴而就,而是一个复杂的多层次发展过程,是一个现代生产要素的引入和技术进步的过程,在这一升级过程中,科学技术是最根本的动力因素。我们应努力在传统畜牧业生产过程中,引入科学技术,为此,必须大幅度增加牧民中科技人员的数量,按发达地区和国家的经验,要增加农牧民中科技人员数量,普遍提高农牧民的文化程度和在牧民中推广普及科学技术,大力提高牧民的文化水平和科学技术水平,应该采取多种形式和措施,加强草原牧区基础教育,消除文盲,国家和政府采取各种支持鼓励的财政税收政策措施,推动草原牧民自觉主动学习掌握和使用先进专业技术知识,逐步把他们培养成发达国家牧民那样重科技知识的现代草原牧民。
对于环境保护这一工作来说,国家在水利、卫生等领域不断增加资金的投入,从而建立起了水利和卫生的环境检测体系。在畜牧养殖业上,国家对于个别养殖基地实行了产品安全计划和无公害的基地建设。但是,对于其他更多的养殖基地来说,由于体制机制、实际情况的限制,基础设施的建设不完善甚至是缺失,导致产品安全监测工作无法正常开展。
1.2没有监测管理部门
在环境监测管理体系中,目前,有农业环保科研所、农垦环境监测中心、环境监测站及渔业监测中心等机构,在环境的保护工作中发挥着重要的作用。相比之下,在畜牧养殖方面,缺少相关的专门性机构进行整体上的监测管理。部分经济比较发达的地区自行建立起畜禽的无害化处理中心,开展兽药、饲料、产品的监督工作;对于更多的经济欠发达地区,环境保护的检测、研究、管理工作是比较滞后的。
2畜牧养殖中主要的污染来源
2.1畜禽粪便污染
畜牧养殖中,畜禽粪便中有机物的含量十分高,经过发酵就会产生多种有害气体,甚至具有一定的毒性,常见的例如:甲烷、硫化氢、氨气、粪臭素、二氧化碳等。这些粪便的危害具体表现为以下3个方面:①粪便直接对自然环境产生影响;②粪便会有助于蚊子、苍蝇等害虫的生长,从而大量传播疾病;③粪便自身存在的有害物质,能够通过食物链的方式间接危害人畜的健康。
2.2药物残留污染
为预防传染病,通常会使用药物对畜禽进行寄生虫病的治理。这些药物只有少部分会留在畜禽体内,其余大部分会流失在体外。存在于体外的药物,会有一部分由于没有分解而具有危害性,它们进入水源、土壤、甚至畜禽体内,形成反复污染,不仅直接影响到畜禽的健康,也会间接对人体和环境造成危害。
2.3饲料带来污染
①在畜禽食用的饲料中,含有植酸磷物质,它们并不能被畜禽所吸收,因此会被排出体外,从而造成了磷污染。②饲料中的氨基酸经过畜禽降解后排出体外,会造成氮污染。③为了促进畜禽的生长,饲料中往往加入了骨粉、血浆粉、动物下脚料等,随畜禽排出体外,会造成环境污染,同时,对人体有危害。④饲料中的抗生素、激素直接影响到肉类和奶类的安全,从而危害人体。
3防治畜牧养殖环境污染的措施
3.1树立环保意识,加强监督管理
相关领导和部门应该立足于畜牧养殖业的稳定和发展,树立以人为本的理念。为了保障人们的健康、保护环境,应该减少养殖过程中的污染,生产无公害的产品。在日常工作中,政府的主要职责在于组织,相关部门的主要职责在于协调,工商部门的主要职责在于市场管理,质监部门的主要职责在于监督。只有这样,才能够各司其职,全面落实监管措施。
3.2增加资金投入,做好基础建设
一方面,在原有的畜禽无害化处理中心的基础上,不断完善兽药、饲料、产品的监督工作。另一方面,要增加资金的投入,建立环境保护的监测管理机构,对必须使用的仪器设备进行购买,对专业技术人员进行培训,对养殖场、饲料厂、产品加工、市场进行动态监管。
3.3利用科学技术,进行综合防治
畜牧养殖业发展的过程中,除了经济利益,还要关注环境效益。这就要求在建设畜牧业的时候,走生态畜牧业的道路,利用科技进步的产物,同时提高人员素质。例如:①在动物疾病诊断上,可以采用聚合酶反应技术或基因工程。②在畜禽的种群选育上,可以应用转基因技术或逐代选育的方法。③在饲料的营养价值方面,可以利用微生物的新陈代谢或者菌体的繁殖。④通过生物方法,来防治病虫害。
1.抗菌肽的分类
迄今为止从不同生物体内诱导的抗菌肽已不下200种,仅从昆虫体内分离获得的就多达170余种。根据抗菌肽的结构,可将其分为5类:(1)单链无半胱氨酸(Cys)的抗菌肽,或由无规则卷曲连接的两段а-螺旋组成的肽。该类包括天蚕素Cecropins,Magainins等。Magainins最初是从非洲爪蟾的皮肤中发现的,它是爪蟾的皮肤在一定的环境压力下分泌出的抗感染和促进伤口愈合的成分,由两个紧密相连的肽链组成,每一个肽链有23个氨基酸,低浓度便可抑制许多细菌和真菌生长[7]。(2)富含某些氨基酸残基但不含Cys的抗菌肽。如富含脯氨酸(Pro)或甘氨酸(Gly)残基的抗菌肽。如从猪肠内分离的抗菌肽PR39中Pro含量占49%[6]。鞘翅肽Coleoptericin和半翅肽Hemiptericin的全序中富含Gly[8]。(3)含一个二硫键的抗菌肽,该二硫键的位置通常在肽链C端。如爪蟾皮肤细胞中产生的Brevinins[9]。(4)有两个或两个以上二硫键,具有β折叠结构的抗菌肽。如绿蝇防御素(Phormindefensin),分子内有6个Cys形成3个分子内二硫键,肽链C末段是带有拟β转角的反向平行的β片层[10]。实验证明,分子中的二硫键在其抗菌作用中至关重要。(5)由其他已知功能较大的多肽衍生而来的具有抗菌活力的肽。
2.抗菌肽的作用及机理
2.1抗菌肽的抗菌作用及其机理抗菌肽分子可以在细菌细胞质膜上穿孔而形成离子孔道,造成细菌细胞膜结构破坏,引起胞内水溶性物质大量渗出,而最终导致细菌死亡。抗菌肽分子首先结合在质膜上,接着其分子中的疏水段和两亲性α-螺旋也插入到质膜中,最终通过膜内分子间的相互位移,抗菌肽分子聚集形成离子性通道,使细菌失去了膜势而死亡[10-14]。但是,Gazit[15]等得出的实验结果表明,抗菌肽只是结合到了单位膜的表面上,并未插入膜中,更未形成通道。然而,抗菌肽的作用靶部位是细菌细胞质膜,以及抗菌肽的作用结果是导致细菌细胞质膜通透性增大等基本内容是确切无疑的,这也正是抗菌肽与青霉素等传统抗生素对细菌作用机制不同的本质所在。2.2抗菌肽的抗病毒作用及其机理研究发现烟芽夜蛾幼虾的血淋巴对6种DNA、RNA病毒有明显的抑制作用,使病毒感染力迅速降低,而且这种抗病毒活性具有广谱性。Mariam[16]试验表明来源于爪蟾的抗菌肽Magainins及其它Magainins类抗菌肽具有抗疱疹病毒-HSV的作用,还发现人的嗜中性粒细胞防御素(HNP-1)对一种疱疹病毒有抑制作用。此外,蜂毒素和天蚕素也可以在亚毒性浓度下抑制艾滋病毒HIV-1的基因表达,从而抑制减少HIV-1的增殖。这表明抗菌肽对于当今人类的顽症———艾滋病也有抑制作用。
2.3抗菌肽的抗寄生虫作用及其机理抗菌肽可以有效地杀灭产生人类及动物寄生虫病的寄生虫,如疟疾、Chagas氏病、莱什曼病等。目前发现一种合成的天蚕素-蜂毒素杂合体对莱什曼原鞭毛虫有损伤作用,起作用的靶目标是细胞质膜,它可以快速降低H-OH+的通透性,破坏膜电势,质膜形态也受到损坏。Shahabuddin[17]研究发现昆虫抗菌肽对感染蚊子的疟原虫发育的不同时期有不同的作用,主要对疟原虫的卵囊期和子孢子期造成明显的损伤。
2.4抗菌肽对肿瘤细胞作用及其机理国内外已对抗菌肽杀伤肿瘤细胞的作用进行了广泛研究,发现抗菌肽对体外培养的癌细胞的作用主要是使癌细胞膜上形成孔洞,内容物外泄,线粒体出现空泡化,嵴脱落。核膜界限模糊不清,有的核膜破损,核染色体DNA断裂,并抑制染色体DNA的合成,细胞骨架也受到一定程度的损伤[18,19]。通过对荷瘤小鼠的研究证明,抗菌肽能显著抑制ECA腹水瘤荷瘤小鼠腹水的积累;对S180肉瘤和U14宫颈癌的抑瘤率亦达30%-50%[20]。抗菌肽还可以调动机体的免疫机能,从体液免疫方面来抵抗癌瘤的入侵。
3.抗菌肽基因的融合表达
抗菌肽的天然产量低,合成或从机体中提取步骤复杂、产率低、价格相当昂贵,利用基因工程技术生产抗菌肽具有重要意义。抗菌肽所携带的碱性氨基酸使其对蛋白酶非常敏感,必须采用融合表达策略以抵消其碱性并降低其对宿主细胞的毒性。
谢维等合成了家蚕抗菌肽CMIV基因,并将其克隆到金黄色葡萄球菌A蛋白和IgG亲合的结构域ZZ的融合表达载体中,得到Pezz318-CMIVV质粒,以此质粒转化E.coliHB101,得到ZZ-CMIV融合表达的蛋白,用CBr切割后,得到CMIV肽。李秀兰等[21]对天然抗菌肽CMIV的氨基酸序列作了50%的改动,根据E.coli偏爱的密码子人工合成了肽基因片断,重组到测序载体,再将此片断重组到表达载体Pet28上进行表达,融合蛋白经CNBr裂解后,具有与天然抗菌肽相同的生物活性。吴映雅等将柞蚕抗菌肽D基因连接在牛成纤维细胞生长因子cDNA的上游,在酵母中成功地得到了表达,表达产物具有抗菌活性和牛成纤维细胞生长因子的抗原性。Kevin等[22]HNP(humanneutrophilpeptide1)和CEME(syntheticcecropin/melittinhybrid)分别与GST(glutathione-S-transferase)、ORRF、IgG结合序列及SPA(staphylococcalproteinA)在E.coli或S.aureus中融合表达,结果在S.aureus中虽实现了与SPA的融合分泌表达,但表达产量较低;Zhang等[23]选择RepA蛋白的序列作为抗菌肽的融合表达伴侣,并插入Histag等序列作为纯化亲和位点,实现了在E.coli中的融合表达。ChristsnenB等研究中得到的融合抗菌肽的抗菌活性比其任何一个供体抗菌肽的活性都高。
4.抗菌肽转基因研究
王志兴等把大麦α-淀粉酶的信号肽序列和抗菌肽CecropinB基因或HhivaA基因构成嵌合基因,并把此基因导入马铃薯,结果加信号肽序列的CecropinB转基因植株发青枯病延迟,病情指数降低。Yarus等[24]用显微注射法将牛气管抗菌肽基因转入小鼠,转基因鼠在牛气管抗菌肽基因控制序列的驱动下成功的表达了牛气管抗菌肽,在鼠乳中的牛气管抗菌肽对大肠杆菌具有抗菌活性。Reed等研究了以IL-2启动子/增强子控制转基因鼠中抗菌肽的合成及随后对布氏杆菌的抑制作用。Reed[25]构建了这样一个DN断:Shivala片断,SV40多腺苷酸化/剪切信号肽基因片断,此片断加到鼠IL-2基因5’侧-593─+110区域。在受精卵精前核时将此融合基因注入受精卵(微注射法),得到26系小鼠。RT-PCR检测:有两系转基因鼠,当其脾淋巴细胞置于3.25mg/kg的conA(刀豆蛋白,一种抗原诱导物)时,可以诱导产生成熟的ShivalamRNA。用一定量的布氏杆菌接种时,有两系小鼠遭到攻击。四星期后,在转基因鼠脾脏组织布氏杆菌比非转基因鼠少得多(P<0.05)。DavidWinder等[26]把编码Ceropin或Melittin的基因放置在MLV(鼠白血病病毒)的启动子下,转染到EJ细胞(人膀胱癌细胞),然后把这些细胞注入到裸鼠内,发现这些肿瘤细胞停止生长或生长减弱DavidWinder等用PCR扩增,Prepromelittin(PPM前蜂毒素原),Premelittin(PM前蜂毒素)和Prececroppin(PC前抗菌肽)三种核酸片断,均置于MLV启动子下构建融合基因转染进EJ细胞。三种类型的EJ细胞分别注入裸鼠后,测定50d后的肿瘤生长情况,无抗菌肽基因片断的EJ细胞(对照组)致瘤率为70%,带Cecropin基因片断的EJ细胞致瘤率只有39%,PPM为50%,PM为65%,其抑制肿瘤的效果明显。
5.抗菌肽的应用前景
目前,大部分植物抗菌肽是从植物种子中分离获得的,它们可以保护植物组织和种子不受真菌病原菌的侵害,但是植物抗菌肽对大部分细菌无抑制活性。因此,依靠基因工程的方法用其它真核生物的抗菌肽基因来转化农作物,培育抗病新品种是当前国内外研究的一个热点。
动物抗菌肽和干扰素、补体一样是机体非特异性天然防御系统的重要组成部分。机体受损伤或病原微生物入侵时,能迅速产生抗菌肽来杀伤入侵者,它对正常真核细胞几乎没有作用。另外,因为抗菌肽的合成速度非常快(假定核糖体上肽键合成速率不变,抗菌肽的产生比IgM要快100多倍),[27]而且小肽的扩散比大的蛋白质和免疫细胞更加迅速,作用更显灵活,所以Boman曾指出,抗菌肽是机体的一种理想的一线防御物。与普通抗生素相比,抗菌肽的“抗菌谱”更广,除了抗细菌外,有的抗菌肽还能作用于真菌、原虫、有包膜的病毒及癌细胞(对癌细胞的选择性作用可能与其细胞骨架的改变有关),同时能加速免疫和伤口愈合过程。这预示抗菌肽在治疗及预防癌症和抗病毒、抗感染等方面具有良好的应用前景。更为重要的是,由于抗生素的滥用导致菌株产生了抗性,人们需要寻找新的抗菌药剂。抗菌肽这种从生物体中获得的物质恰巧具有独特的抗菌机理,不是像一般的抗生素那样通过阻断生物大分子的生物合成来发挥作用,因而极有希望开发成为一类新型的广谱高效抗菌药物。
随着研究工作的进一步深入,可以预见,抗菌肽及其基因工程在医药、卫生、食品工业及农业等方面将会发挥更为重要的作用。另外,有些抗菌肽分子中含有D-氨基酸,这也为研究D-氨基酸如何在核糖体上合成多肽提供了一个理想的模式体系。
6.研究展望及存在问题
抗菌肽是哺乳动物防御系统的一个重要组成部分,具有热稳定、水溶性好、广谱杀菌甚至有的能杀真菌、原虫等优点,而且许多抗菌肽在100℃加热10min条件下仍能保持一定活力,且对较大的离子强度和较低或较高的pH都有较强的抗性,而对真核细胞几乎无作用,仅作用于原核细胞和发生病变的真核细胞,并且与抗生素通过阻断大分子生物合成的作用机制完全不同,病源菌不易对其产生耐药性,由此显示了它具有独特的研究和应用价值。近20年来,人们对昆虫抗菌肽已进行了比较系统的理论和应用研究,但有关畜禽抗菌肽基因工程应用研究方面的报道较少。从哺乳动物抗菌肽特有的性质,显示了它具有以下几个方面在畜牧生产上的研究和应用前景。研究展望及存在问题
6.1药用前景随着传统抗生素的广泛及长期的应用,许多病源菌对它们产生了耐药性,而具有广谱抗菌且有独特的抗菌机制的抗菌肽显然在这方面的应用研究中具明显优势。随着对抗菌肽结构与活性的关系、抗菌肽作用机制及其基因表达调控机制认识的不断深化,设计一种高效的、有利于人类健康的抗菌肽作抗生素替代品是完全可行的。
6.2转基因研究及应用仔猪腹泻、奶牛炎及各种病毒性疾病如猪瘟、鸡新城疫等一直是棘手的疾病,不利于畜牧业的发展。借鉴已成功的昆虫抗菌肽转基因工程,如转基因蚊子、转基因马铃薯、转基因水稻等,把特异的抗菌肽基因转入畜禽特定细胞让其表达,从而产生抗病新品种,不失为一条发展畜牧生产的新思路,前景深远。
6.3抗菌肽基因表达调控及抗菌肽添加剂研究研究表明,[28]抗生素添加剂的使用严重破坏了动物肠道的微生物平衡,并易在动物体内残留,严重影响了畜产品的品质和人类的健康。用基因工程方法生产环保型抗菌肽添加剂,或者,通过日粮因素调控抗菌肽基因的表达而达到畜产品无抗素化值得进一步研究。
然而,由于抗菌肽分子小,分离提纯存在一定的困难,故天然资源有限。化学合成和基因工程法获得抗菌肽是主要手段,但化学合成抗菌肽成本高,而通过基因工程在微生物中直接表达抗菌肽基因,则可能对宿主有害而不能获取表达产物。所以,对抗菌肽的结构、构效关系及作用机理还需进一步研究。7.结束语
抗菌肽是生物体对外界病原物质侵染而产生的一系列免疫应答反应产物,它的出现为人们寻找理想的抗菌药物提供新的领域,尤其是当今许多抗生素产生了耐药性,因此抗菌肽具有巨大的应用潜力。基因工程技术的发展,极大的促进了抗菌肽的研究和开发,通过抗菌肽基因的克隆与表达而大量生产成为可能。虽然抗菌肽目前还不能直接应用于养殖业,但抗菌肽独特的作用机理不易产生耐药性的特性将吸引科研工作的不断深入,可以相信抗菌肽将在动物养殖和提高畜产品品质方面发挥重要作用。
参考文献
[1].HancockREW.TheLancet,1997,349(9049):418
[2].STEINERHD,HULTMARKA。,ENGSTR¨OMH,etal.Sequenceandspecificityoftwoantibacterialtwoantibacterialproteinsinvolvedininsectimmunity[J].Nature,1981,292:246-248.
[3].CAMMUEBP,DEBOLLEMF,SCHOOFSHM,etal.Gene-encodedantimicrobialpeptidesfromplants[J].CibaFoundSymposium,1994,186:91-106.
[4].LAMBERTYM.InsectimmunityisolationfromthelepidopteeranHeliothisvirescensofanovelinsectdefensinwithpotentantifungalactivity[J].JbiolChem,1999,274:9320-9326
[5].李文楚,黄自然.昆虫抗菌肽及其基因工程、转基因动物[M].广州:广东科学技术出版社,1996.118-128.
[6].郑青,鲍时翔,姚汝华,等.新型抗菌肽基因设计、合成及在酵母中表达Ⅰ———杂合抗菌肽基因的设计与合成[J].华南理工大学学报,1998,26(3):60-63.
[7].ZaslofM,etal.ProcNatlAcadSciUSA,1987,84:5449~5455.
[8].BAgerberth,JYLee,etal.EuropeanJournalofBiochemistry,1991,202:849~854.
[9].陈留存,王金星.生物工程进展,1999,19(5):55~59.
[10].饶贤才,胡福泉,等.生命的化学,2001,21(5):357~359.
[11].MarchiniD,etal.[J].InsectBiochemMolBiol,1993,23(5):591-598.
[12].RadermacherSW,etal.[J].JneurosiRes,1993,36(6):657-662.
[13].LockeyTD,eral.[J].EurJBiochem,1996,236(1):236-271.
[14].SaberoalG,.etal.[J].BiochemBiophysActa,1994,1197(2):109-131.
[15].GazitE,etal.[J].Biochemistry,1994,33(35):10681-10692.
[16].MariamE.etal.[J].InternationalJofAntimicrobialAgents,1999,13:57-60.
[17].ShahabuddinM,etal.[J].ExperimentalParasitogy,1998,89(1):103-112.
[18].王芳,等.[J].生物化学与生物物理进展,1998,25(1):64-67.
[19].贾红武,等.[J].蚕业科学,1996,22(4):62.
[20].许玉澄,等.[J].动物学研究,1998,19(4):263-268.
[21].李秀兰等.家蚕抗菌肽CMIV基因结构改造及表达产物的研究[J].中国生物化学与分子生物学报,1999,15(3):
387-391.
[22].KevinLP,MelissaHB,RoberEW.RecombinantDNAproceduresforproducingsmallantimicrobialcationicpeptideinbacteria[J].Gene.1993,134:7-13.
[23].ZhangL,FallaT,WuM,etal.Determintsofrecombinantproductionofantimicrobialcationicpeptidesandcreationofpeptidevariantinbacteria[J].mun.1998,247:674-680.
[24].YarusS,RosenJM,ColeAM,etal.Productionofactivebovinetra-chealantimicrobialpeptideinmilkoftransgenicmice[J].ProcNatlAcadSciUSA.1996,93:14118-14121.
[25].RddeWA,ElzerPH,EnrightFM,etal.Interleukin2promoer/enhancecontrolledexpressionofasyntheticcecropin-classlyticcpeptideintransgenicmiceandsubsequentresistancetoBrucellaSabortus[J].TransgenicResearch.
1997,6:337-347.
[26].DavidW,WaterH,GunzburJ,etal.Expressionofantimicrobialpeptideshasanantitumoureffectinghumancell[J].Biochem