发布时间:2023-09-21 17:34:17
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇高数指数函数范例,将为您的写作提供有力的支持和灵感!
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合,全国公务员共同天地的思想方法.
3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教学建议
教材分析
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数.
(2)对底数的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
教学设计示例,全国公务员共同天地
课题指数函数
教学目标
1.理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.
2.通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.
3.通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.
教学重点和难点
重点是理解指数函数的定义,把握图象和性质.
难点是认识底数对函数值影响的认识.
教学用具
投影仪
教学方法
启发讨论研究式
教学过程
一.引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.
1.6.指数函数(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?
由学生回答:与之间的关系式,可以表示为.
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.
由学生回答:.
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.
一.指数函数的概念(板书)
1.定义:形如的函数称为指数函数.(板书)
教师在给出定义之后再对定义作几点说明.
1研究问题
幂函数、指数函数、对数函数是三类重要的基本初等函数,因此也是高中数学课程中的基础内容之一.近年来,我们对中国、澳大利亚、芬兰及法国、美国、英国等国家数学课程标准、教科书进行了量化比较研究[1-3].本文是这一系列研究的一部分,主要针对高中数学课程标准中的幂函数、指数函数和对数函数内容,以课程标准中的内容主题及认知要求为切入点,对澳大利亚、加拿大、芬兰、法国、德国、日本、韩国、荷兰、南非、英国、美国、中国这十二个国家高中阶段的数学课程标准进行比较分析.具体来说,本文主要研究以下问题:各个国家幂函数、指数函数、对数函数内容的广度和深度分别是多少,有何特征?这些国家是如何对幂函数、指数函数、对数函数的内容进行设置的?1.1研究对象与方法
研究国家和数学课程标准版本的选取
本文主要选择了五大洲以下12个国家的数学课程标准作为研究对象,具体国别分别是:(亚洲)中国、日本、韩国;(欧洲)法国、芬兰、英国、德国、荷兰;(美洲)美国、加拿大;(非洲)南非;(大洋洲)澳大利亚.这12个国家来自不同的洲,拥有着不同的人文背景和社会环境,经济发达程度也不尽相同,可以很好地展示不同国家数学课程标准的共性与差异.所选取的高中数学课程标准文本材料主要来源于曹一鸣、代钦、王光明教授主编的《十三国数学课程标准评介(高中卷)》[4],选择国际比较样本的主要依据是大部分高中生升学时所必须要求的内容,其别关注理科、工程类学生.具体所选择的版本如下:
1.2研究工具及方法
本文采用定量分析和定性分析相结合的方法,具体的研究方法有定性分析中的个案研究法和比较研究法,以及定量分析中的统计分析法.按照课程论学者泰勒的思想,主要从“内容主题”和“认知要求”两个方面进行研究.
(一)广度
课程广度是指课程内容所涉及的领域和范围的广泛程度.为了便于统计结果,本文利用下面的公式计算课程标准的广度.
G=aimax{ai}
,其中ai表示各个国家的知识点数量总和,即广度值,max{ai}表示所有国家的课程标准广度值中的最大值.
广度的统计涉及到对知识点的界定,由于我国对幂函数、指数函数、对数函数知识点的处理比较系统和详细,本文以我国高中数学课标中幂函数、指数函数、对数函数内容为主,并结合其他国家数学课程标准中的幂函数、指数函数、对数函数内容,逐步形成完善的知识点框架,并统计各个知识点的平均深度值.
(二)深度
课程深度泛指课程内容所需要达到的思维深度.我国课标对知识与技能所涉及的行为动词水平分为了解、理解和掌握三个层次,并详细说明了各个层次对应的行为动词.很多国家的课标并未对教学内容的具体要求上做出明确的划分层次.综合我国对教学内容要求层次的划分方式,并参考新修订的布卢姆教育目标分类学[11],本文提出认知要求维度的分类为:A.了解;B.理解;C.掌握;D.灵活运用.将每个知识点的深度由低到高分为四个认知要求层次:了解、理解、掌握、灵活运用,并规定水平权重分别为 1、2、3、4.然后,利用下面的公式计算课程标准的深度.
S=∑4i=1nidin∑4i=1ni=n;i=1,2,3,4
其中,di=l,2,3,4 依次表示为“了解”、“理解”、“掌握”和“灵活应用”这四个认知要求层次;ni表示儆诘di个深度水平的知识点数,ni的总和等于该课程标准所包含的知识点数总和n,从而得出课程标准的深度.
3高中课标中函数内容比较研究结果
3.1幂函数内容的广度、深度比较结果
3.3对数函数内容的广度、深度比较结果
中国、澳大利亚、日本、韩国和荷兰在对数函数的广度统计中排名靠前.这些国家课标都提及对数的概念及运算,对数函数的概念、图象、性质,反函数的概念.另外,中国还要求反函数的定义域、值域、图象以及对数函数的应用,而澳大利亚、日本、韩国、荷兰对反函数的定义域和值域不作要求.法国、南非处于中间层次.这两个课标都不涉及对数的概念和运算、对数表、对数的应用.在反函数方面,法国只讲解其概念和图象,南非还讲解其定义域、值域.美国、芬兰、德国在对数函数部分的知识点数相差不多,但侧重点不一样.美国侧重于反函数内容,德国侧重于对数的概念和运算,芬兰侧重于对数函数的概念和性质.加拿大和英国排在最后,加拿大只提到了对数函数的概念,而英国在对数函数部分的知识点数为零.
3.4幂函数、指数函数和对数函数的内容设置
从整体上来看,幂函数、指数函数和对数函数是高中阶段要学习的比较重要的基本初等函数,也是刻画现实世界的几类重要模型,另外,幂函数、指数函数和对数函数的学习有助于加深学生对函数概念的理解和应用.有些国家并未把幂函数、指数函数、对数函数作为连续内容出现在课程标准中,说明它们之间并无必要的逻辑关系.
对于幂函数这部分内容,除澳大利亚、芬兰、荷兰、英国、中国提及“幂函数”以外,有些国家并没有提到幂函数,如加拿大、印度、俄罗斯、新加坡、南非、德国.有些国家则以其他函数形式代替:法国以多项式函数出现;日本没有专门的幂函数概念,则是以分式函数、无理函数形式出现,安排在《数学Ⅲ》中,而且三角函数安排在指对数函数之前;韩国也没有专门的幂函数概念,则是以分式函数、无理函数形式出现;美国以根式函数出现.对于幂函数的处理,一直存在着争议,中国之前删除了幂函数的内容,现在又把这部分的内容加回来,有利于完善高中涉及的函数模型,便于学生在利用函数模型解决实际问题时考虑更全面,所以中学生需要对幂函数有初步的认识.像美国以根式函数、法国以多项式函数、日本以分式函数和无理函数、韩国以分式函数和无理函数等其他具体函数形式代替幂函数内容,这样处理的好处不仅在于具体实用,便于数学模型的建立,而且与高等数学的联系紧密,这一点值得我们借鉴.
指数函数和对数函数部分的概念原理无论在表述上还是数量上,各国都不尽相同.除芬兰是单独讲解指数函数和对数函数以外,大部分国家都是先学习指数函数,然后利用反函数或互逆关系来引出对数函数,这样使得对数函数的学习变得容易了.其中,澳大利亚把指数函数和对数函数进行对比学习,没有利用互为反函数来解释;法国在指对数函数上求导数等.还有一些国家注重和生活情境相联系,如德国、荷兰.英国在名称上有所不同,以“指数型函数”名称出现.美国强调利用指对数函数进行建模.针对指对数函数的具体说明如下.
4结束语
我国从2003年进行高中数学课程改革,到目前已经进行了十余年的实践,并取得显著成效,通过国际比较研究来审视我国高中数学课程改革的特色和不足,从而为接下来我国高中数学课程改革的推进提供参考.虽然中国在课程的基本理念中提到要发展学生的数学应用意识,但落实在具体的函数模型应用方面,只强调“体会”层次.如对于幂函数的处理,美国以根式函数、法国以多项式函数、日本以分式函数和无理函数、韩国以分式函数和无理函数等其他具体函数形式代替幂函数内容,这样处理的好处不仅在于具体实用,便于数学模型的建立,而且与高等数学的联系紧密,这一点值得我们借鉴.
参考文献
[1]康h媛,曹一鸣,XU Li-hua,David Clarke. 中、澳、芬数学课程标准中内容分布的比较研究[J]. 教育学报,2012(1):6266.
[2]康h媛,曹一鸣. 中英美小学初中数学课程标准中内容分布的比较研究[J]. 课程・教材・教法,2013(4):118122.
[3]宋丹丹,曹一鸣.高中课程标准中函数内容的国际比较研究[J].数学通报,2014(12):17,16.
[4]曹一鸣, 代钦,王光明. 十三国数学课程标准评介(高中卷)[M]. 北京:北京师范大学出版社,2013.
[5]董连春,Max Stephens. 澳大利亚全国统一高中数学n程标准评述 [J]. 数学教育学报,2013(4): 1620.
[6] 康h媛,Fritjof Sahlstrm. 芬兰高中课程改革及高中数学课程标准评介[J]. 数学教育学报,2013(4):1115.
[7]金康彪,贾宇翔. 韩国高中数学课程标准评介[J]. 数学教育学报, 2013(5): 4246.
[8]李娜,曹一鸣,Lyn Webb. 南非国家高中数学课程与评价标准评介 [J]. 数学教育学报, 2013(4): 610.
[9]曹一鸣,王立东,PaulCobb. 美国统一州核心课程标准高中数学部分述评[J]. 数学教育学报, 2010(5): 811.
[10]中华人民共和国教育部. 普通高中数学课程标准(实验)[S]. 北京:人民教育出版社,2003.
常见题型:①三角函数的图象与性质;②化简和求值;③三角形中的三角函数;④最值.本文对高考重点、常考题型进一步总结,强化规律,解法定模,便于同学们考试中迅速提取,自如运用.
考点1.三角函数的求值与化简
例1 已知cosα=17,cos(α-β)=1314,且0
(Ⅰ)求tan2α的值.(Ⅱ)求β.
解:(Ⅰ)由cosα=17,0
tanα=sinαcosα=43,于是tan2α=2tanα1-tan2α=2×431-(43)2=-8347
(Ⅱ)由0
又cos(α-β)=1314,sin(α-β)=1-cos2(α-β)=1-(1314)2=3314
由β=α-(α-β)得:cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)
=17×1314+437×3314=12,所以β=π3.
突破方法技巧:三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),α+β2=(α-β2)-(α2-β)等.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.
考点2.解三角形:此类题目考查正弦定理,余弦定理,两角和差的正余弦公式,同角三角函数间的关系式和诱导公式等基本知识,以考查基本的运算为主要特征.解此类题目要注意综合应用上述知识.
例2 设函数f(x)=cos(x+23π)+2cos2x2,x∈R.(Ⅰ)求f(x)的值域;(Ⅱ)记ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=3,求a的值.
解:(Ⅰ)f(x)=cosxcos2π3-sinxsin2π3+cosx+1=-12cosx-32sinx+cosx+1
=12cosx-32sinx+1=sin(x+56π)+1,f(x)的值域为[0,2]
(Ⅱ)由f(B)=1得sin(B+56π)+1=1即sin(B+56π)=0又因0
突破方法技巧:
(1)内角和定理:三角形内角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值均为正值任两角和都是钝角任意两边的平方和大于第三边的平方.
(2)正弦定理:asinA=bsinB=csinC=2R(R为三角形外接圆的半径).注意:①正弦定理的一些变式:(i)a:b:c=sinA:sinB:sinC;(ii)sinA=a2R,sinB=b2R,sinC=c2R;(iii)a=2RsinA,b=2RsinB,c=2RsinC;②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理:a2=b2+c2-2bccosA,cosA=b2+c2-a22bc等,常选用余弦定理鉴定三角形的形状.
(4)面积公式:S=12aha=12absinC.
特别提醒:(1)求解三角形中的问题时,一定要注意A+B+C=π这个特殊性:A+B=π-C,sin(A+B)=sinC,sinA+B2=cosC2;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.
考点3.求三角函数的定义域、值域或最值:此类题目主要有以下几种题型:(1)考查运用两角和的正弦公式化简三角函数式,以及利用三角函数的有界性来求值域的能力.(2)考查利用三角函数的性质, 诱导公式、同角三角函数的关系式、两角差的公式,倍角公式等基本知识,考查运算和推理能力.(3)考查利用三角函数的有界性来求最大值与最小值的能力.
例3 已知函数f(x)=(1+cotx)sin2x+msin(x+π4)sin(x-π4).
(1)当m=0时,求f(x)在区间[π8,3π4]上的取值范围;(2)当tanα=2时,f(α)=35,求m的值.
解:(1)当m=0时,f(x)=sin2x+sinxcosx
=12(sin2x-cos2x)+12=22sin(2x-π4)+12
又由x∈[π8,3π4]得2x-π4∈[0,5π4],所以sin(2x-π4)∈[-22,1],
从而f(x)=22sin(2x-π4)+12∈[0,1+22].
(2)f(x)=sin2x+sinxcosx-m2cos2x=1-cos2x2+12sin2x-m2cos2x
=12[sin2x-(1+m)cos2x]+12
由tanα=2得sin2α=2sinαcosαsin2α+cos2α=2tanα1+tan2α=45,
cos2α=cos2α-sin2αsin2α+cos2α=1-tan2α1+tan2α=-35,所以35=12[45+(1+m)35]+12,得m=-2.
突破方法技巧:
三角函数的最值主要有以下几种类型:①形如y=Asin(ωx+φ)、y= asinx+bcosx的,充分利用其有界性去求最值;②形如y=sinx+cosx+sinxcosx的,换元去处理;③形如y= asinx+bsin2x的,转化为二次函数去处理;④形如y= 2-cosx2-sinx 的,可采用反表示的方法,再利用三角函数的有界性去解决,也可转化为斜率去通过数形结合解决.
考点4.三角函数的图象和性质:此类题目要求同学们在熟练掌握三角函数图象的基础上对三角函数的性质灵活运用.会用数形结合的思想来解题.
例4 已知函数f(x)=23sinxcosx+2cos2x-1(x∈R)(Ⅰ)求函数f(x)的最小正周期及在区间[0,π2]上的最大值和最小值;(Ⅱ)若f(x0)=65,x0∈[π4,π2],求cos2x0的值.
解:由f(x)=23sinxcosx+2cos2x-1,得f(x)=3(2sinxcosx)+(2cos2x-1)=3sin2x+cos2x=2sin(2x+π6),f(x)的最小正周期为π
f(x)=2sin(2x+π6)在[0,π6]上单调递增,在[π6,π2]上单调递减,
又f(0)=1,f(π6)=2,f(π2)=-1,f(x)在[0,π2]上的最大值为2,最小值为-1.
(2)由(1)知f(x0)=2sin(x0+π6),又f(x0)=65,sin(2x0+π6)=35,
由x0∈[π4,π2],2x0+π6∈[2π3,7π6]从而cos(2x0+π6)=-1-sin2(2x0+π6)=-45
cos2x0=cos[(2x0+π6)-π6]=cos(2x0+π6)cosπ6+sin(2x0+π6)sinπ6=3-4310
突破方法技巧:
研究复杂三角函数的性质,一般是将这个复杂的三角函数化成y=Asin(ωx+φ)的形式再求解,这是解决所有三角函数问题的基本思路.
【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)26-0084-01
高职阶段数学教学的意义不仅仅体现在继续升学的方面,更重要的是能提高学生发现、分析与解决问题的能力,培养学生的逻辑思维能力、抽象思维能力与空间想象能力,帮助学生学会理性思考、理性判断,为专业课程的学习奠定坚实有力的基础。
高职数学知识点丰富,而函数概念是众多数学概念中最重要的概念之一,是高职数学的重点和难点。在课堂教学过程中,有不少学生反映函数的概念太抽象,从初中开始就是自己的“老大难”,以至于只要看到与函数有关的内容就害怕,宁愿选择回避。
函数的思想充分体现了集合、对应、映射等基本数学思想,这与中学数学中的数、式、方程等有密切联系。教师在函数教学中应该从概念的本质属性、概念的内涵和外延入手,加强概念形象理解,培养学生良好的思维习惯。
一 函数概念的定义
传统定义:设有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数。
近代定义:设A,B都是非空集合,f:xy是从A到B的一个对应法则,那么从A到B的映射f:AB就叫作函数,记作y=f(x)。
对函数概念的理解,函数的两个定义本质是相同的,只是叙述概念的出发点不同。传统定义是从对应的观点出发,而近代定义是从集合、映射的观点出发。定义都是文字和符号的连接,学生在理解时缺乏直观的认识,往往一知半解,此时需要让学生以自己独特的角度对函数概念形成理解,也有助于加深记忆。
如将函数y=f(x)的三要素与实际生活相联系,把“自变量x”看成是“待加工的货物”,把“因变量y”看成是“加工完成的产品”,把“对应法则f ”看成是“加工时的工序”,把“()”看成是“工厂的大门”。如此学生以自己的理解,将理论与现实中的实物联系起来。
二 函数的定义域和值域
在函数y=f(x),x∈D中,自变量x的取值范围的集合D就是函数的定义域,而与x的值对应的y值就是函数值,函数值y的集合就是值域。
函数的定义域和值域考查的形式有很多,无论是选择题、填空题,还是解答题都会出现,是考试常考的内容,在求定义域、值域时我们会碰到各种不同类型的函数表达式,有些是我们熟悉的,有些相对比较复杂。同学们在遇到不熟悉的函数表达式时往往不知道应从何处下手。其实存在的问题都是心理紧张因素造成的,我们要理清思路,按部就班,掌握五大基本初等函数(反、对、幂、三、指)定义域、值域的特殊条件会有助于问题的解决。
第一,在求函数的定义域时,可以按照下面这几种方法来快速有效地判断和求解:(1)函数是整式时,自变量x可以取任意值,也就是定义域为全体实数所组成的集合。(2)函数是分式函数时,一定要注意,分母不能为0,那么定义域就是除使分母为零以外的一切实数所组成的集合。(3)如果函数是偶次根式时,就要注意被开方数不能为负;是奇次根式时,被开方数可以是任意实数。(4)当函数为指数函数和对数函数时,应尽量记住函数的大致图像,关注其在平面直角坐标系中的大体分布。(5)当函数为三角函数时,更应考虑其图像,特别注意正切函数其定义域与直线斜率的关系。(6)若函数中包含了若干个基本初等函数的四则运算,那么该函数的定义域很可能就是各基本初等函数的定义域的交集。
第二,值域的求法较之定义域的求法要复杂得多,更没有现成的结论,它必须通过不同的途径分析、观察、计算等才能求出不同函数的值域,通常有以下一些方法。(1)如果遇到的是熟悉的、学过的函数,可通过观察其图像直观判断出值域。(2)如果遇到不熟悉的、较复杂的函数,可通过“多点法”作出草图客观判断其值域。(3)通过求出函数的单调性、奇偶性、周期性、有界性等性质,辅助判断其值域。(4)利用换元法把复杂函数转化为熟悉的函数来求值域。(5)部分函数可通过反函数法求定义域来求原函数的值域。
总之,学好函数首先需要弄清函数的概念,真正搞懂什么是函数,掌握基本初等函数的定义、性质、图像,把概念性的知识点转化为自己独有的理解,不但不容易遗忘,而且可以充分发掘学生的想象力和思维能力。
参考文献
[1]杨红.函数概念及表示方法的知识点总结[J].理科考试研究(高中版),2013(5)
[2]张玲艳、熊昌雄.高中函数概念学习的理论基础[J].宜宾学院学报,2007(12)
从别的地区引进优良品种父系的肉羊,并且使其和当地的羊去杂交,能够将地区杂种的优势扩大,发挥杂交一代产生杂种优势是目前我国所推行的先进的经验,同时也是目前我国肉羊产业进行发展主要的趋势。由于陶赛特及其杂交后代比较适应该地区。并且,这一品种的羊可以自行游走进行采食,且发育正常。另外,陶赛特羔羊其增重以及发育速度相对与其他羔羊快,其平均日增重量可以达到110g,同时具有较强的抗病能力。
2育肥羔羊的技术
羔羊的育肥可以选择放牧加上补饲这两种方法,在羔羊出生后的一个月左右,其对于营养方面的需求急速增大,并且母羊的泌乳量已经不能满足羔羊地需求,这一阶段属于羔羊开食关键的阶段。一般情况下,羔羊在出生之后的15 ̄20d之内,应该给羔羊提供一些容易消化且营养丰富的这种优质的饲料,可以选用胡萝卜进行饲喂。在25d之后可以混合饲料喂食。使羔羊消化器官能够正常的发育。其颗粒配方是:16%麸皮和14%小麦以及46%玉米和5%棉粕,还有10%菜粕和5%大豆与4%预混料。
3高产饲料的种植技术
养殖藏羊必须要有优质的饲料作为重要的支撑,只有把人工草地和草地集约化的经营相结合,并且对饲料进行处理并加工,这样才能有效提升饲料的质量,使羊的养殖更加向现代化的养殖发展,从而才可以从根本上使养殖业优质和高产以及高效,这一产业化的目标才能得以实现。可以选择箭笞豌豆与高产燕麦混播这种饲料种植的技术,由于这一饲料种植的技术较为理想,能够满足养殖户对于饲料的种种需求,因此应该选择并大力推广该技术,使每一个养殖户都能通过该种技术养殖好高寒地区的藏羊,使其更加高效。通过相关的试验能够证实,这种方式产鲜草的量能够达到80050kg/hm2,而单一燕麦和鲜草产量22500kg/hm2,相当于每公顷高出了57550kg。