当前位置: 首页 精选范文 工程流体力学知识点

工程流体力学知识点范文

发布时间:2024-01-09 11:09:32

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇工程流体力学知识点范例,将为您的写作提供有力的支持和灵感!

工程流体力学知识点

篇1

中图分类号:G641 文献标识码:A 文章编号:1003-9082(2013)12-0220-01

一、重视“绪论”课

在正式绪论课之前,先以“引子”的方式引入流体力学的概念,并列举生活中存在的流体力学现象,例如球类运动,运输行业,长距离体育项目激发学生对流体力学的兴趣,并强调流体力学存在于自身身边,并不是高深的学问,打消学生对学习困难的顾虑。

再列举流体力学在专业中的应用,例如水力学中的管道、渠道等,空气动力学中的气象污染扩散、室内通风等,强调流体力学对于专业来说是一门重要的专业基础课,在流体力学课程的基础上架设的多门专业课如《化工原理》、《水污染控制工程》、《大气污染控制工程》均需要流体力学课程相关理论的支撑,使学生知晓学好流体力学课程的重要性与必要性。

之后再少量列举专业外流体力学的应用,如水力发电、火力发电、心脑血管疾病、石油的开采和运输、航空航天、给排水等向学生传达学好流体力学不仅可以在本专业有所发展,还可以向相关专业进行渗透,进一步激发学生学习的兴趣。

二、教学手段的改革

1.利用辅助教学手段,将抽象教学转换为形象教学

1.1针对流体力学课程制作助教型和助学型两套多媒体辅助教学软件。利用目前国际上比较前沿的软件Fluent(在美国的市场占有率为60%。凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等)、Flash、虚拟现实、录像等手段针对流体力学课程制作助教型和助学型两套多媒体辅助教学软件。

1.2充分利用助学型教学软件,使授课系统化。授课前先将流体力学助学型教学软件下发至每一位学生,要求部分内容自学,部分内容课堂讨论、部分内容自行设计、搭建模型并求解,充分解决传统讲授部分学时占用过大,大部分的学时均被教师用来课堂推导、计算、分析、总结,没有充分调动学生的积极性和主动性的缺点。并将一些涉及到科技前沿应用的知识点、和日常生活非常接近的知识点以及涉及到的相似相近内容体现在助学型教学软件中,增加学生对课程学习的兴趣。

1.3充分利用助学型教学软件,加强学生实践环节训练。流体力学实验不仅涉及到经典的流体力学模型建立、计算、求解、验证还包括可以将各种模型相互组合,组合后验证经典流体力学经典公式、模型在新模型建立及求解过程中的应用。在助学型多媒体课件软件中,设计各种经典流体力学实验环节,规定学生在课余时间自己动手在虚拟的助学型教学软件中进行实验环节,达到使学生锻炼动手动脑能力的目的。另外,还可利用助学型课件软件中的典型模型组合功能,在课余辅导中,让学生自己动手建立模型。

1.4充分利用助教型教学软件,使教学不再枯燥乏味。在流体力学教学过程中,经常会遇到简单口述和简单二维图片无法阐述清楚的内容,在教学过程中辅助老师的讲授进行演示,不仅可以减少教师的无谓劳动也可以增强学生对这些知识点的理解。

2.增加习题课比例,注重实践性习题

之前的教学过程中只是对课后习题中出错率较高的习题进行课堂专门讲解,但经过一段时间的教学探索,发现这样的方式对学生的学习积极性并没有起到大的促进和改善,因此将课堂教学时间的一部分专门开设为习题课,选择有实践性甚至是直接从实践环节总结出的习题,习题给出后,并不由教师直接讲授解题思路与方法,而是选择学生上讲台,一边解题一边向大家介绍自己的解题思路,在解题的过程中有的学生就能够发现自己考虑的不周全的地方,或者下一位学生就能够指出上一位学生的出错点,这样全班学生的思想都被调动起来进行思考,题目也在大家的讨论中得到了正确的解答,学生对于这个知识点的掌握也就更加清楚明了。这样的做法虽然会压缩理论课教学时间,但是学生对于相应概念、公式、理论的理解却更加深入。让学生真正成为课程学习的主体,达到“教”与“学”的同步。

三、考核方式的改革

传统教学模式中,考试卷子可谓“分量最重”,学生对该门课程的掌握程度完全凭借一张试卷中的十几道试题体现,在题目的设置、试卷的审阅、批改过程中难免会遇到平时课堂表现不错但实际考分却并不理想的学生,因此,笔者将《流体力学》课程考核方式设定为40%平时成绩+60%考试成绩组成,平时成绩由课堂随机提问、习题课习题完成情况、作业成绩、课堂出勤率共同组成,强调在随机提问与习题课中,只要积极回答问题就会得到相应的加分,鼓励学生积极参与课堂讨论。考试试卷也由原先的重视计算题和应用题转为多种题型增强多种形式的考核,从多方面考查学生对知识的掌握程度。

也可以通过开卷或大作业形式考核学生灵活运用基本理论分析问题、解决问题的能力,题型可为一些综合性的计算题和分析题,如:简单管网的计算、简单管网系统运行工况的分析等,分值可计算入平时成绩并在平时成绩中占60%~70%的比例。

总之,改革课程考核内容是“流体力学”教学综合改革的又一项重要内容。必须多能力、全方位地考核学生,全面反映学生掌握该课程基本知识的程度和综合运用能力,动手能力。

四、结语

《流体力学》是面向应用型工程技术人才的课程,教师在教学时要注重教学理念的转变,不断进行教学方法的改革,使学生全面学习和掌握知识,进一步提高“工程流体力学”课程的教学水平。

参考文献

[1]朱俊锋,梅群,李一帆. 浅谈土木工程专业工程流体力学课程教学改革[J]. 山西建筑,2010, 36(23): 224~225

篇2

作者简介:韦鲁滨(1962-),男,江苏扬州人,中国矿业大学(北京)化学与环境工程学院,教授;曾鸣(1957-),男,重庆人,中国矿业大学(北京)化学与环境工程学院,教授。(北京 100083)

基金项目:本文系中国矿业大学(北京)课程建设与教学改革项目(项目编号:K120304)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)10-0085-01

“工程流体力学”涉及数学、力学、物理学内容和必要的工程背景。作为矿物加工、化工等学科的专业基础课,“工程流体力学”课程理论性强、概念多、公式烦杂、工程应用广,对学生综合运用知识和联系实际的能力要求较高,是后续专业课程学习、科学研究和工程应用的重要基础。因此,教师在传授课程知识点的同时,更要注重学生学习、综合运用以及科研实践能力的培养。

一、注重课程导论,激发求知兴趣

“工程流体力学”学时少、任务重,教师讲授课程导论时要确保学生在对课程有整体认识的基础上,激发他们对课程的求知欲望和学习兴趣,丰富学生的想象力。流体力学是研究流体运动及其作用的学科,从数学的角度看,流体力学是对有解方程在不同定解条件下的求解;从美学的角度看,流体力学将变化万千的流体世界,按照相对简单的数学规律给予描述,体现了客观世界的内在美与和谐;从物理和工程的角度看,流体力学是一个由一般到特殊,再由特殊到一般的过程,即对现实问题进行简化,提出方程并构造定解条件,应用实验法、解析法和数值模拟法等手段去寻求问题的答案,再回到所设定问题,根据所解的特定问题寻找带有普遍性的规律,从而指导进一步研究和实践的过程。这样的讲授能使学生从不同角度理解流体力学的美与价值。

引入学生感兴趣和当今工程领域的热点问题,分析流体力学知识在其中的应用。如运载火箭整流罩形状变化对火箭飞行过程的作用;鲨鱼皮泳衣对运动员游泳速度的影响等。通过相关问题的讨论,学生了解学习这门课以后,能够运用所学的相关知识解决实际生活和工程实践中的问题,从而增强学生发现问题与解决问题的能力,调动起学生学习的主动性与积极性。

二、注重深入浅出,促进消化吸收

“工程流体力学”的讲授过程要求内容深入浅出、浅显易懂,由静力学到动力学,由理想流体到粘性流体。学生在对简单知识充分了解和掌握的基础上能够更容易接受相关的扩展和推广的知识点。以恒定不可压缩流体的动量方程为例,具体说明深入浅出的授课过程:将问题简化,给出限定条件,即在恒定渐变流的过水断面上列方程;由动力守恒的角度给出质点系的动量方程;假设将流体看成系统,利用拉格朗日观点解释;结合不可压缩流体连续性方程得出:

(1)

其欧拉观点的物理解释为,作用于控制体上的合力等于单位时间流出控制体的动量减去流入控制体的动量;由物理解释可知其在渐变流过水断面,速度分布不均匀的情况下仍然成立;由恒定不可压缩流体总流动量方程对任意封闭管面的控制体均成立,可进一步推广为雷诺输运方程:

(2)

其中,P为任何物理量。

上述循序渐进的过程表明,先对问题进行适当简化,后逐渐由浅入深、层层推进,有助于学生对较难知识点的接收、理解和掌握。

三、注重物理解释,加强理解记忆

“工程流体力学”涉及的数学公式较多,授课过程中若过分强调数学推导会使得学生提不起兴趣且难于理解和记忆,注重相关公式的物理解释可以加强学生对公式的理解程度,便于记忆和应用。如,理想流体恒定元流的伯努利方程一般给出的是欧拉描述法解释,还可给出更为直观的拉格朗日描述法解释:重力作用下的恒定不可压缩理想流体,给定质点的机械能在流动过程中保持不变。

例如,“工程流体力学”中经常涉及的随体导数运算符号,除了解释位移加速度和当地加速度之外,还应将随体导数的应用范围自然延伸,拓展后的物理意义为:追踪观察场中的某一流体质点,单位时间内该质点的物理量在流动过程中的变化。随体导数物理意义可用于不可压缩流体连续性方程的导出,纠正了不可压缩流体密度为常数的错误认识。综上所述,物理解释无论是对学生理解概念和公式,还是对知识的进一步应用都具有较大促进作用。

四、注重详略得当,掌握重点知识

“工程流体力学”涉及范围广,知识点多,若面面俱到地将教材内容一并灌输给学生,会增加他们的学习负担,很难达到很好的教学效果。因此,要在整个教学过程中贯穿“少而精”的原则,对于那些学生已经学过或能够自学理解的内容安排课下自学,对于专业不相关的内容进行适当删减;要重点突出、究其实质,详略对比,使学生能够由此及彼,触类旁通。例如,《工程

流体力学》教材中密度、浮力、压力等知识点在普通物理的课程中已经有所涉及,完全可以安排学生自学;而流体运动的连续性方程、伯努利方程和动量方程作为研究流体运动的核心内容则需要多花精力,详细讲解。在学生已掌握核心内容基础上,知识点的进一步扩展和延伸可以通过对比方式给出,省去复杂的推导过程,使学生遇到相关问题时直接应用即可。例如,动量矩方程可以确定运动流体与边界之间的作用力位置,在介绍动量矩方程时可以简单地与动量方程对比得出,而无需进行过程推演,进而可知恒定不可压缩流体的动量矩方程,其物理意义为:

(3)

合力矩等于单位时间从控制体输出的流体动量矩减去向控制体内输入的流体动量矩。以上过程表明,对于重点知识的掌握有助于相关知识的拓展,因此要详略得当,使学生学习过程更轻松。

五、注重工程背景,培养科研能力

教师在授课过程中一方面要考虑学生对各个知识点掌握,另一方面还要培养学生综合运用知识以及科研和工程实践能力,以便学生在将来的学习和工作中能够学以致用。一个简单的水流经过喷管的过程就涉及伯努利方程、连续性方程和动量方程。因此,要想很好地掌握理论知识,解决实际问题,对工程流体力学知识的综合运用能力必不可少。“工程流体力学”作为矿物加工工程专业的专业课,在矿物分离过程中应用极其广泛,教师在授课过程中应结合选矿应用实例进行讲解,使学生在掌握理论知识的同时体会到在具体问题解决过程中如何分析和建模。例如,跳汰机可看作一个不等断面的连通管,其水流运动是周期性的非定常流,各点运动速度随位置和时间而变,且推动水流运动的源动力也不是恒定的,而是时间的函数;水力旋流器内流体速度切向速度可由强制涡和准自由涡描述,颗粒在水力旋流器离心力场的分离可从颗粒重力场中分离类比推演。通过理论结合实际的方式,培养学生实践中认识问题和解决问题的能力。

六、结束语

“工程流体力学”作为一门专业基础课,既有较强的理论性,又和工程实践紧密结合。因此学好这门课程对学生综合运用、科学研究、工程实践能力的培养都具有重要意义。教师在教学过程中,应充分做到内容、方法和手段相结合,培养学生学习和综合运用的能力,为将来从事科学研究和工程实践打下坚实基础。

参考文献:

篇3

1引言

“流体力学”作为理工科的一门专业基础课和必修课,它的重要性是众所周知的,作为力学分支,其在安全工程专业有着广泛的应用,与泄漏、火灾、爆炸、通风等有着密切的关系,是后续工业通风、消防工程等专业课程学习的重要基础。近年来流体力学学科发生深刻变化,对流体运动认识加深,测量手段更为先进,对流体运动分析和处理的能力空前强大,与工程应用结合更加紧密。然而“流体力学”这门课程概念抽象、数学公式多,在以往课程教学过程中更多重视理论知识的传授,人才培养过程中存在着过分偏重理论知识学习,缺乏对学生工程能力的培养等不足之处。因此,本文借鉴国际流行的CDIO工程教育理念,拟对安全工程专业“流体力学”课程进行教学改革,使理论知识服务于后续的安全知识学习及工作实际,将知识教育和能力培养有机地结合起来,增强学生发现问题、分析问题和解决问题的能力,使学生专业理论知识的学习真正地更好地融入之后的安全工作中。

2CDIO工程教育理念

CDIO是构思(Conceive)、设计(Design)、实施(Imple-ment)和运行(Operate)的简称。“C”构思指系统性的构想、思考,明确产业需求。“D”设计是把将要被实现的计划通过视觉的形式描述出来的活动过程;“I”实施是执行、施行实际的行为,指把设计转变为产品的过程;“O”运行是指产品实现之后(即实施之后)使用其来达到想要的价值的过程。从构思、设计、实施到运行的全过程就是产品的整个生命周期,用它来代表工程的范畴[1]。CDIO教育模式提倡培养具有较高专业理论水平和符合产业需求的综合性应用能力并重的高等工程教育专业学生,这种模式在安全工程专业领域具有一定的借鉴意义[2]。CDIO强调在系统和产品构思、设计、实施、运行的真实工程实践环境中培养学生的工程能力,通过引导学生以主动的、实践的、知识之间有机联系的方式培养学生的工程能力,使学生在创新思维能力、终生学习能力、团队合作能力和工程实践能力等方面得到全面的训练和提高。

3基于CDIO理念的流体力学课程实施

3.1优化教学内容

在教学时,教材的选取是非常重要的,首先要选择一本好的教材,然后围绕教材的内容,进行全方位的内容设计。湖南工学院安全工程专业选用的教材为蔡增基、龙天渝主编的《流体力学泵与风机》,该教材详细介绍了流体力学及泵与风机的基础知识,并配有丰富的习题供学生课后练习巩固,另围绕教学大纲,每章设置了思考题。但教材内容多是从供热通风空调类专业角度出发,内容较多。按照安全专业职业能力与素质需求为导向,结合我校安全工程专业对该课程课时安排较少,学生文科生多,理科基础薄弱的特点、安全工程专业需求及其与后续专业课程之间的关系,课程教学内容分为四部分:(1)流体静力学。掌握流体平衡的规律,对其中与安全工程关系不大的小节进行删除。(2)流体动力学。研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。(3)有关流体静力学和流体动力学在生产和生活中的应用,如孔口与管嘴恒定流、管道恒定流等。注重与工业通风、消防、安全工程中常见的泄漏等问题相结合。(4)泵与风机工作原理及运行知识,重点掌握如何选择泵与风机。由于课时有限,其他知识可通过学生自主学习来完成。内容设置注重培养学生的创新能力、学习能力和分析解决问题的能力,不因课时少而删除其物理背景、力学建模和求解过程等方面的学习,只讲授结果、计算公式、图表等这种短视的做法培养出来的学生只是现成公式的计算机器,面对新的问题将束手无策,学生没有创新能力,没有利用所学知识解决实际问题的能力。只有掌握正确的基本概念和流体运动一般规律,才能认识特殊规律,才能有分析实际问题的能力,才能正确应用和处理流体力学商业软件。

3.2转变教学方法

在课堂教学中注重学生综合思维、系统思维和工程能力的培养。结合传统的教学方法,采用以问题学习的形式,要求学生基于问题学习。(1)首先要讲授该门课程的性质及作用,让学生掌握该课程在整个专业培养中的作用以及工程实践中的具体应用价值,以及该课程与其他课程之间的关系,从而在学生的整体知识架构中建立起清晰的课程逻辑联系[3],培养学生的系统思维能力。(2)各知识点的教学过程采用启发式教学法,先由老师设置问题,让学生带着问题进行学习;学完之后让学生思考学了什么,有什么用;除了基本的教学过程外,在课程中设置一些小专题讨论,培养学生分析问题、解决问题的能力。(3)传统的教学模式由于缺乏对知识的应用,学生通常将通过考试作为学习目标而专注于记忆考试内容。因此在教学中注重相应知识点的讲解的同时,注重对各知识点的应用和拓展,各知识点多方面地与安全工程专业相结合(如在讲述孔口管嘴出留时与危险化学品物质泄漏进而导致火灾、爆炸、中毒事故相结合;讲述流动阻力时与工业通风管道设计、消防水管道设计相结合),强调其对专业的支撑作用,要求理论知识必须服务于安全工作实际,将知识教育和工程能力培养有机地结合起来。

3.3实验教学改革

实验环节是CDIO模式下教学环节的非常重要的组成部分,学生工程能力的培养和综合应用能力的提高,有赖于此环节[4]。实验教学方面通过建设流体力学实验室,将实践教学贯穿于学生的整个学习过程,实现对学生的动手实践能力、技术应用能力、研究创新能力的培养。实验模块分为基础验证类实验模块、综合性实验模块和开放性实验模块。基础验证类实验主要包括雷诺实验、能量守恒验证实验、沿程阻力实验、局部阻力实验、文丘里管实验、流量计实验、离心泵实验等[5]。这些实验过程简单,能帮助学生更好地理解流体力学的基本原理和定律,但缺乏创造性,没有与安全工程专业实际相结合。综合性实验如与工业通风课程相结合,设计一个通风除尘管道模型,学生通过流体力学知识制定实验方案,使用仪器测量风速、压强等相关参数计算通风阻力。让学生把流体力学知识更好地与安全工程专业相结合,解决专业实际问题。综合类型的实验相对较复杂,采用团队协作的方式,通过互相交流讨论解决实验过程中遇到的问题,发散思维,实验结束后进行汇报,培养学生的团队协作能力和沟通能力。开放性实验模块通过建设开放性实验室,为学生参加各类学科竞赛、科技创新活动、自主实验、参与大学生研究性与创新性实验项目、参与教师科研项目提供实践平台。如学生可进行计算机虚拟流体力学实验、利用flunet软件模拟火灾发生时烟气流动过程。开放性实验可锻炼学生创新能力。

4结论

1)安全工程专业“流体力学”课程作为一门学科基础课,其教学改革应以专业能力需求为导向、学生能力培养为目标,引入CDIO理念进行教学改革,可提高学生创新思维能力、系统思维能力、和工程能力的培养,提高学生的工程意识及大工程观。2)基于CDIO理念的“流体力学”课程教学改革应注重学生主体作用的发挥,以学生为主体、教师为主导,采用问题学习的形式进行教学,培养学生用基础理论分析、解决实际问题的能力。3)在“流体力学”课程教学改革中,应注重实验教学环节,实验教学除了基本的基础验证类实验外,组织学生做一些综合性、设计性、开放性实验,教学中注重学生团队协作能力,人际交往能力和创新能力的培养。

参考文献

[1]顾佩华,等.重新认识工程教育一国际CDIO培养模式与方法[M].北京:高等教育出版社,2009.

[2]张景钢.基于CDIO的创新型安全工程培养方式研究[A]//安全科学理论与创新[C].郑州:郑州大学出版社,2016:92-96.

[3]赵庆贤,葛秀坤,毕海普,等.“变焦式”教学法在专业基础课程教学中的应用[A]//第26届全国高校安全工程专业学术年会论文集[C].北京:气象出版社,2014:262-265.

篇4

教育是一个国家的立国之本,我国自春秋战国时期就有先贤孔子开始教书育人。然而在我国传统教学中往往以教师作为主体,重教而轻学,教师在课堂上使出各种方法强化教学效果,而对学生的“学”重视不足,甚至视而不见。对于很多学科而言,这种教学方式对于学生掌握知识情况的改善确实有显著的效果,但是对于《流体力学》课程,这种教学方式影响十分有限。究其原因主要有:1.课程对数学基础要求高;2.概念理解困难,费时;3.公式多且难,学生容易失去学习兴趣。当学生处在课后不学、课上不听或听也听不懂的状态时,教师的诸多课堂教学手段在实施时就像没有观众的表演一样是达不到良好教学效果的。正是由于《流体力学》课程的这种特性,使得教学中的“学”在该课程的教授过程中显得越来越重要。这里的“学”,不应仅仅是传统教学方式中,学生在课堂上被动接受,而应包含课外自主学习。通过对过往学生学习情况的了解,有良好自学习惯和自学方法得当的学生往往《流体力学》课程成绩优于没有自学习惯的学生。正因如此,引导学生养成良好自学习惯和教会学生学会选择恰当的自学方法在《流体力学》的教学中显得尤为重要。为了达到以上教学目的,需对传统教学方法进行如下调整。

一、让学生具有主动自学的意愿

要引导学生主动学习,首先要让学生有自学的意愿,较常用的有以下两种方法。

1.上好第一堂课。

“第一印象效应”是妇孺皆知的一种心理效应,在日常生活中经常用到,如面试者注意仪表,为官者的“下马威”等。这个道理在流体力学教学中同样适用。聪明的教师通常特别注意教授第一堂课,这样更容易引起学生的兴趣,调动学生的积极性。针对工程流体力学的第一堂课,教师最好避免采用过于生硬的公式或太理论化的概念进行教授,可将现实中的一些有趣现象与课程进行联系或提及一些与课程有关且同学们感兴趣的问题。这一点得到很多教师的共识,如上海交通大学的丁祖荣教授在其《流体力学》公开课中就以高尔夫球为什么不采用光滑表面、汽车的形状怎样最优等几个有趣的例子将看不见、摸不着的力与现实生活联系在一起,使得学生对学习流体力学充满期待。“兴趣是最好的老师”,有了兴趣之后学生自然愿意投入精力学习。

2.重点强调“前车之鉴”。

这里的“前车之鉴”当然可以指流体力学考试的一次通过率较低和流体力学成绩普遍偏低的现实,但是事实证明,这种“前车之鉴”对调动学生学习的主动性效果并不显著,反而容易引起部分学生的畏惧心理,不利于学生自学积极性的提高。通常来讲最好的办法就是对比平时喜欢学习和善于自学的同学与平时没有自学习惯且学习态度不端正的同学进行对比,通过两类同学在这门课程上取得的不同学习效果使得学生意识到自学对于流体力学课程的重要性。

当然以上两种方法在增强学生自学意识上第一种效果更佳,但过于依赖学生兴趣会使学生对后续课程的趣味性要求提高,反而不利于理论部分的教学,所以教师在课程上应尽可能将两种方法结合,以期达到最佳效果。

二、让学生学会流体力学课程的自学方法

仅有自学意识和自学动力对于流体力学课程的学习是远远不够的,受制于中国基础教育,我国进入大学学习的学生多半擅长记忆,而不是对公式概念的理解和运用。记忆固然重要,但是仅擅长记忆对于流体力学课程自学而言是远远不够的。于是很多高校教师面临的问题除了专业知识的教授外,还多了本应在中小学教育中教授的自学方法。为了使学生学会力学课程的自学方法,在教学中要注意以下几点。

1.由浅到难。

所谓的由浅到难即留给学生自学的内容难度应由浅到难。有的老师为了提高学生自学能力,只要是自己不感兴趣的章节或自认为不重要的章节统统不讲解,完全留给学生自我消化。这样的方法固然能够极大地促进学生自学能力的提高,然而仅对本身自学能力较强的学生有效。这种教学方式对于重点院校的本科生,其差异性表现不明显,但对于大多数普通院校的学生而言,只有少数学生适应这种教学方式,大多数学生则会因为难度过大而过早丧失学习兴趣。因此教师在教授过程中,可先留一些较简单的问题让学生自学,等学生习惯自学且达到一定自学能力后再将部分较复杂的理论推导留给学生。

2.保证课前预习,课后复习。

自学能力不是一蹴而就,掌握方法就能立即提高的,需要不断地练习。对于流体力学这门课程而言,其学习过程也需要循序渐进,因为流体力学的课程内容包含大量模型简化、理论推导、概念理解、公式运用等需要大脑复杂加工的过程,一次的内容接触不足以使大脑完成所有的任务。因此要保证课程学习质量,对课程内容的反复斟酌是必不可少的过程。通常要使得该课程学习效果最佳,除了上课听教师的讲解外,课前预习和课后复习对于学生而言也是必不可少的。学生课前预习的主要目的是贯穿课堂知识点,整体把握课程内容的难点和自己不容易理解的。为促使学生养成课前预习习惯,教师除了在第一堂课调动学生兴趣外,还可在前一次课堂上布置少量预习任务,要求学生下一次课进行回答,但主要还是依靠学生的自觉性。而课后复习的主要目的是加深学生对课堂教学内容的理解和提高知识运用能力。通常教师可以通过布置练习题的形式达到目的,偶尔可采用小测验的形式对学生学习情况进行测试,通过测试可增强学生课后学习的动力。

3.教会思考,举一反三。

上述两点都是教师使学生了解怎样有效自学的引导手段,而流体力学不同于其他学科自学的真正关键之处则在于教会学生如何思考。

不同于诸多学科,流体力学的学习不仅仅依赖对公式和知识点的记忆,学生对知识点的理解和运用更重要。因此往往有些学生学习很用功,但是遇见问题总是无法自己解决,只能通过背题目的方式应付考试。这种学生就是典型的学习方法不得当,没有学会思考。实际上,学习流体力学知识和其他力学课程类似,大部分知识点都不脱离假设、建模、公式推导和公式运用的流程,学生在学习知识点时只要能够回答出“3W1H”,那么这个知识点就已经掌握了。

那么这“3W1H”到底是什么呢?第一个“W”就是“When could I use it?”什么时候可以用这个知识点?这就意味着学生在学习中一定要先弄清楚运用知识点的前提,力学当中的很多概念都是在一定先决条件下得到的推理,因此对于这些知识点而言,其使用不得违背这些先决条件。第二个“W”就是“What problems could I solve?”我能够解决什么问题,所有的知识都不是万能的,它仅仅只是研究或解决某一类问题的方法或手段,流体力学中的知识点很多体现的是各种物理量之间的关系,而这些关系决定了我们可以解决什么样的问题。第三个“W”是“What situation should I use it?”什么情况下我应该用这个知识点?在运用知识点解决问题的时候,一个问题往往有很多种解决思路,不同的物理量之间有多种表示关系的公式,选用公式的时候一定要找准问题的关键点,最终选择合适的公式或运用正确的知识点解决问题。最后一个“H”,指的是“How should I use it?”我怎么用这个知识点。选择了正确的知识点并不意味着你就会用了,什么地方我们该忽略掉,什么地方要补充其他知识点,都是需要考虑的问题。通过将各知识点进行组合,分析他们的逻辑、数学或物理等关系,最终才能解决要求的问题。举一个简单的例子:假设现要求某处的静水压力,这个题目只涉及单一的知识点。我们首先要分析,静水压力是什么?什么情况下才有?静水压力的求救问题属于水静力学部分的知识点,也就是当液体处于静止状态或相对静止状态时,静水压力才存在。第二步,则要分析静水压力这个知识点能解决什么问题或与其他的物理量之间有什么关系。显然和静水压力相关的有静水压强和作用面积,压强乘以面积即压力,那么我们现在的思路出来了,要解决静水压力的问题首先要了解静水压强和液体作用面积的情况,现在问题变为了考静水压强这个知识点。第三步,什么情况下我应该运用这个知识点?由于这个问题较简单,解题思路清晰,因此对于该题这一步可以跳过。最后就是怎样用这个知识点,根据静水压强的特性,其方向都是垂直于作用面,任一点处各方向上的静水压强大小相等,各点处静水压强大小不同。因此我们知道对于该物体的静水压力不能直接用某一点的压力乘以物体的面积而应该将物体上每一微面积上的静水压强与面积乘积计算得出各微面积上的静水压力再进行矢量加和。这样这个问题的思路就完整了。当然对于这个思路来讲只能保证将所有问题都分析清楚。在实际解题过程中,学生还要在不违背以上各物理量关系的前提下,想想能不能找到简化的方法,如果有,思考为什么可以这样简化,该简化方法有没有局限性。

以上就是我们学习和分析流体力学问题的基本思路。该思路貌似复杂,但当学生按照该过程接受了一定量的练习之后,便可以快速分析出某一流体力学问题的关键。同时,这个过程对于学生的自学也是至关重要的。只有真正学会这样思考的同学,才可能避免题海战术,对任一知识点都可以做到举一反三。这样的自学过程不仅是对学生自学能力的锻炼,而且是对学生分析问题能力的锻炼。而这种综合逻辑分析问题的思路不仅在流体力学学习时需要,对于其他的如数学、大学物理等很多理工科课程也是必不可少的。然而在现有的基础教育和高等教育中往往缺少的就是分析问题方法的教育,更多的是让学生通过数学学习无意识地培养逻辑分析能力。

三、让学生养成自学习惯

自学动力有了,学习方法也掌握之后,要使学习效果得到充分体现就需要学生持之以恒,真正将自学变为自己习惯的一部分。对于这一点而言,主要靠学生本身的自觉性,但是老师也可以给其少量外部刺激,促使学生养成这种习惯,如课后布置作业,定期小测验,甚至可以通过举行类似于结构大赛的流体力学兴趣大赛等形式提高学生学习兴趣,促使其自学。

通过如上教学方法改革,我所带班级的学生对流体力学课程的学习热情普遍提高,同时分析解决问题能力得到增强。但是这种教学方法也存在一个明显的缺点,即过分依赖学生自觉性,对于少部分没有自学习惯且学习态度不好的学生不仅没有促进其学习而且使得个别学生为自己的缺勤找到了充分理由。学生的两极分化现象更加明显,虽然良好率提高了,但课程总淘汰率有小幅提高。

总体而言,该课程的教学方法改革是有意义且有成效的,但其中遇到的某些问题还需进一步深化研究。

参考文献:

[1]李国正.培养自学能力引导学生成长――浅谈自学方法在学习过程中的渗透[J].新课程・上旬,2011,09:144-145.

[2]邓克.机械类专业工程流体力学课程教学方法探讨[J].安徽工业大学学报,2009,06(26):146-147.

篇5

作者简介:张莉(1973-),女,河南商丘人,上海电力学院能源与机械工程学院,教授;李永光(1957-),男,湖南长沙人,上海电力学院科研处处长,教授。(上海 200090)

基金项目:本文系上海电力学院研究生学位课程建设项目(项目编号:YKJ-2012004)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)04-0086-02

2007年,上海电力学院(以下简称“我校”)热能工程二级学科首次招生,“高等流体力学”首次开课,授课人数20余人,随后几年间授课人数逐年增长。2012年我校动力工程与工程热物理一级学科又增设了工程热物理、动力机械及工程两个二级学科,“高等流体力学”授课范围扩大的同时,授课人数也增加到60余人。但是鉴于我校研究生数量较少、研究生培养历史较短以及师资力量相对薄弱等方面的原因,课程教学的教材只能选用已有的教材。在组织教学内容的过程中发现,大多数教材普遍存在一些问题,如过于强调基本理论、对数学知识的要求偏高、工程应用方面涉猎很少,或者有些工程学科专业的相关研究生教材又往往缺乏理论深度,工程应用背景针对性强,有的强调高速气动、有的强调水动叶栅流动、有的强调涡动力学等等。鉴于此,作为行业类非重点高校,在“高等流体力学”课程的教学中有必要结合我校电力特色进行教学内容和教学模式的研究和探讨。

一、课程教材的调研

为了能更好地做好此次教学研究工作,课程组首先对高校相关研究生专业的“高等流体力学”教材进行了调研,分别对清华大学、西安交通大学、上海交通大学、浙江大学、东南大学、华中科技大学、华北电力大学、东北电力大学等国内若干所大学相关课程的教材及内容做了简单分析。

从调研情况看,所有高校都对流体力学的基本理论很重视,主要教学内容均包括了流动的基本概念和基本方程、流体运动学、势流理论、涡旋流动、理想流体流动、粘性流体流动等,目的是使研究生通过学习流体的运动规律,掌握研究流动的方法进而分析解决实际的工程流动问题。同时,各高校的教材和主要教学参考书还注重与自身学科研究方向的结合,课程的某些重点内容与培养方向相接轨,突出了自身的特色。通过调研发现,“高等流体力学”作为研究生学位课,其教学内容在注重理论基础的同时,还必须要与自身的相关学科研究方向相结合,在注重通用理论的基础上,形成自己的特色。

二、我校授课对象的情况分析

做好此次的教学研究工作,还必须对我校的授课对象有一个清楚的认识。目前,“高等流体力学”已列为本校工程热物理、热能工程、动力机械及工程三个二级学科的研究生学位课程。尽管上述三个二级学科涉及能源、动力、机械等宽广的工程领域,但结合我校的电力特色,这三个二级学科主要是为电力行业培养高级的专业人才,而在电力行业中流动现象多存在于流体机械、动力机械、换热设备、容器、管道等部件,因此,在教学内容上应在透彻讲解流体力学微分方程组的基础上,注重联系工程实际,偏重于讲解流体在上述部件中的流动以及与这些部件间的相互作用。

研究生生源的实际情况也是教学过程中需要考虑的因素。到目前为止,我校共招收6届研究生,通过向历届学生了解发现有以下情况存在:部分同学跨专业(如:数学专业、电力系统及其自动化专业、计算机与信息专业等)考入学校,本科阶段没有学习过“工程流体力学”课程;即使是研究生与本科专业背景相同的同学,他们也普遍认为”工程流体力学”较难,硕士入学考试时,大都不选考“工程流体力学”,这也使得他们可能在大三、甚至大二学完以后,再也没有系统地梳理过流体力学知识。由于各高校专业方向的侧重点不同,大部分同学对电力行业内的流体知识也不是特别了解;考入学校的学生多数为调剂生,入学成绩整体不高。这些情况都表明,我校硕士研究生入学时的流体力学知识基础相对比较薄弱,需要在授课过程中讲授深层次新知识的同时,及时地对基础知识进行回顾和提醒。

三、教学内容的组织

基于以上的调研和分析,课程组首先对教材进行了选取,对教学内容进行了组织。

1.教学目标的明确

“高等流体力学”是为工程热物理、热能工程以及动力机械与工程专业研究生设置的专业学位课程。根据专业人才培养的需要,结合长期本科教学的经验,确定了课程的教学目标:通过对流体力学的基本概念、基本方程、理想不可压缩流体的流动、粘性不可压缩流体的流动、层流边界层与紊流流动、理想可压缩流体等内容的学习,深化学生对流体力学基本内容的理解,提高学生的理论水平,为相关专业课程的学习、课题的研究及论文的撰写打好理论基础。

2.教材的选用

“高等流体力学”是动力工程及工程热物理学科的一门传统课程,有很多课程教材可供选用。通过调研比较,西安交通大学有关电力生产的学科研究方向与我校的研究方向比较吻合,其在“动力工程及工程热物理”一级学科中的学位课 “高等流体力学”选择了西安交通大学出版社出版、张鸣远等编著的《高等流体力学》一书作为教材,课程组通过对该书内容的分析,也一致认为张鸣远等编著的《高等流体力学》比较适合我校侧重于电力人才培养的需求,因此决定选用该书作为本校“高等流体力学”课程的教材。与此同时,将调研中搜寻到的各有特点的教材作为参考书目推荐给学生供他们参考使用。

3.教学内容的组织

在进行“高等流体力学”课程教学内容的组织时,结合我校研究生培养方案和学科建设,既照顾到经典流体力学的通用知识,又重视课程知识的针对性、行业应用的特殊性、学生学习的兴趣以及与学校其他研究生课程的关联性。课程内容的组织主要从以下几个方面考虑:

(1)奠定扎实基础。“高等流体力学”是一门系统性、逻辑性较强的课程,作为硕士研究生的学位课,在加深学生对流动所伴随的物理现象的认识、概念的建立及规律分析的同时,还应努力加深学生学科知识分析和研究问题的基本思想和方法的理解和掌握,提高分析和解决流体力学问题的水平及能力。

(2)突出电力生产特色。针对我校研究生的专业背景和学科研究方向,强调本学科与电力生产流程和设备的结合,强化学生应用流体力学知识,认识并解决相关电力工程问题的能力。教学内容应注重理论与实践相结合,保持基础理论知识与工程应用知识的相对平衡。

(3)注重课程的关联性和完整性。在关联性方面,首先与本科阶段的教学内容要有恰当的分工和衔接,其次要避免与其他相关课程之间缺乏衔接;在自身内容体系的完整性方面,既要注意到对数学知识回顾和补充的必要性,又要对工程中不常见的复杂流动概念的介绍有所兼顾。

考虑以上几个方面,课程组将教学内容梳理成五部分,第一部分安排了“矢量运算分析”、“场论知识”的回顾以及曲线坐标、张量分析知识的补充;第二部分“流体力学的基本方程”主要介绍流体力学的基本概念,流体力学的控制方程组以及一些相关的重要定理;第三部分“理想不可压缩流体的流动”介绍平面势流,空间轴对称势流和理想流体中的旋涡运动,其中对平面势流里的复位势、叠加法、镜像法和保角变换法做重点讲解;第四部分“粘性不可压缩流体的流动”中介绍纳维―斯托克斯方程的精确解,小雷诺数流动,层流边界层流动和紊流,其中对工程中应用较多的层流边界层流动和紊流做重点讲解;第五部分“理想可压缩流体的流动”分别介绍一维流动和平面流动,其中对一维流动做重点讲解。

四、教学模式的探讨

学生的学习情况在不断地发生变化,这就需要教师不断根据实际情况,进行教学模式的探讨,充分调动学生学习的主动性和积极性,使他们在有限的学习时间中学习好内容繁多的“流体力学”。

1.教学方法

“高等流体力学”是一门基础课,基本概念和基础理论部分内容较多,涉及的公式推导也比较多,传统的“黑板板书”的教学手段对教学信息的处理和呈现都比较单一,造成学生对于传热学内容的理解和掌握有一定的难度。为此,课程组以教材为蓝本编制了电子课件,教学中采用板书与多媒体相结合的教学模式,突出传统板书中能够清晰讲解复杂理论推导的优点,充分利用多媒体教学信息量大、图像清晰生动的特点。经过一段时间的尝试,这种教学方法既达到了避免研究生在课堂上因长时间精力高度集中而产生疲劳的问题,又有利于他们理解并掌握复杂的流体力学基本理论的教学效果。

2.教学手段

尽管本课程以课堂讲授教学方式为主,但要避免“填鸭式”的讲授,要注重以启发式讲授为主的多种教学方法的综合应用,提高课堂教学的趣味性,以提高学生学习兴趣和主动性。课程组结合本科“工程流体力学”多年的教学经验,在教学过程中注意做到几个注重:注重物理概念与数学方法的有机结合,强调物理含义的数学表示以及数学内容的物理解释;既注意严格的理论推导,又注意叙述的深入浅出;注重教学思路,教学方法,在引进概念介绍方法时,突出解决问题的思维方法及推理要点;注重从与教材不同的角度或思路来讲述同一教材内容,以丰富学生思维和联想能力;注重引导学生围绕课程内容,发现问题、提出问题、解决问题,同时再结合课程组教师的科研积累,搜集并提炼出了大量与电力生产紧密关联的工程案例,通过案例的讨论和分析,增强学生学习理论知识的兴趣,提升课堂教学的互动效果,增强学生运用理论知识分析并解决工程实际问题的能力。

3.辅助教学

仅仅通过课堂上对教材的学习是远远不够的,还必须配套地做大量的习题,才能较好地使学生掌握具有理论性强、公式多、数理基础要求高的“高等流体力学”课程。考虑到我校研究生教学的特点,课程组根据教材的主要内容编写了典型习题集。习题集力图做到习题具有典型性,能够对应教学内容的各个知识点,学生通过习题的练习,能有效地掌握教材中的基本知识。此外,习题集中的习题也尽可能地结合电力生产中的流动问题,帮助学生对专业关联工程问题进行认识和思考,培养学生应用知识的能力。

4.课程考核

课程考核成绩应该能够较为客观地反映学生对课程的整体学习情况。为了全面地反映学生的全程学习过程和最终的学习效果,课程组经讨论明确了课程的总评成绩由平时成绩和期末考试成绩综合评定得出,平时成绩与期末考试成绩的分配比例是2∶8。平时成绩包含作业、考勤、课堂表现等几部分。期末考试采用笔试形式,考试试卷从建立的试卷库中随机抽取。

期末考试是课程考核的重头戏,为了提高学生的学习积极性,同时也为了增强教师的工作责任心,实行考、教分离是一个较好的督促办法。为此,2012年课程组根据课程的教学要求组织编写了试卷库。试卷库中的试题符合教学大纲的要求,内容丰富、形式多样、题型一致,试题表述清楚,要求明确,无偏题、怪题,难易得当,考核的知识点覆盖面宽,能考核学生掌握知识以及应用知识进行综合分析能力的情况。此次编写的试卷库共包含试卷6份,至少够三年使用,随着试卷库的使用,课程组还拟将对试卷库进行不断扩充。

五、结束语

“高等流体力学”的日常教学工作一个任重而道远,为了适应高等流体力学服务于日新月异的学科发展的需求,提高该学位课程的教学效果,更好地为本校研究生人才培养服务,课程组将把教学研究工作不断地持续进行下去,搜集最新最前沿的相关信息以补充教学内容,探讨教学模式以提高教学效果,及时对习题库和试卷题库进行更新。相信只要教师多花一点时间,多动一点脑筋,多找一些教育学生的切入点,因材施教,一定能取得好的教育效果。

参考文献:

[1]张鸣远.高等流体力学[M].西安:西安交通大学出版社,2006.

[2]董守平.高等流体力学[M].东营:中国石油大学出版社,2006.

[3]王献孚.高等流体力学[M].武汉:华中科技大学出版社,2006.

[4]王松岭.高等流体力学[M].北京:中国电力出版社,2011.

友情链接