发布时间:2024-01-13 17:04:33
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇量子计算的作用范例,将为您的写作提供有力的支持和灵感!
中图分类号:TP39 文献标识码:A文章编号:1007-3973 (2010) 02-106-01
自1646年第一台电子计算机问世以来,其芯片发展速度日益加快。按照芯片的摩尔定律 ,其集成度在不久的将来有望达到原子分子量级。在享受计算机飞速发展带来的种种便利的同时,我们也不得不面临一个瓶颈问题,即根据量子力学理论,在芯片发展到微观集成的时候,量子效应会影响甚至完全破坏芯片功能。因此,量子力学对计算机技术发展具有决定性作用。
1.1量子力学简介
量子力学是近代自然科学的最重要的成就之一. 在量子力学的世界里,一个量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述,这就是它与经典力学最根本的区别。
1.2量子力学与量子计算机
量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的()。当计算机芯片的密度很大时(即很小)将导致很大,电子不再被束缚,产生量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过量子力学的障碍,而且可以开辟新的方向。
量子计算机就是以量子力学原理直接进行计算的计算机.保罗•贝尼奥夫在1981年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1以及它们的叠加。
2量子计算机的优点
近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在。
2.1存储量大、速度高
经典计算机由0或1的二进制数据位存储数据,而量子计算机可以用自旋或者二能级态构造量子计算机中的数据位,即量子位。不同于经典计算机的在0与1之间必取其一,量子位可以是0 或者1,也可以是0和l的迭加态。
因此,量子计算机的n个量子位可以同时存储2n个数据,远高于经典计算机的单个存储能力; 另一方面量子计算机可以同时进行多个读取和计算,远优于经典计算机的单次计算能力。量子计算机的存储读取特性使其具有存储量大、读取计算速度高的优点。
2.2可以实现量子平行态
由量子力学原理可知,如果体系的波函数不能是构成该体系的粒子的波函数的乘积,则该体系的状态就处在一个纠缠态,即体系的粒子的状态是相互纠缠在一起的。而量子纠缠态之间的关联效应不受任何局域性假设限制,这使两个处在纠缠态的粒子而言,不管它们离开有多么遥远,对其中一个粒子进行作用,必然会同时影响到另外一个粒子.正是由于量子纠缠态之间的神奇的关联效应, 使得量子计算机可以利用纠缠机制,实现量子平行算法,从而可以大大减少操作次数。
3量子计算机发展现状和未来趋势
3.1量子计算机实现的技术障碍
到目前为止,世界上还没有真正意义上的量子计算机,它的实现还有许多技术上的问题。
量子计算机的优越性主要体现在量子迭加态的关联效应. 然而,环境对迭加态的影响以及迭加态之间的相互作用会使这种关联效应减弱甚至丧失,即量子力学去相干效应.因此应尽量减少环境对量子态的作用。同时,万一由于相干效应引入了错误信息,必需能及时改正,这需要进一步的研究和实验。
另一方面,量子态不能复制,使得不能把经典计算机中很完善的纠错方法直接移植到量子计算机中来.由于量子计算机在计算过程中不能对量子态测量, 因为这种测量会改变量子态, 而且这种改变是不可恢复的,因此在纠错方面存在很多问题。
3.2量子计算机的现状
由于上述两种原因,现在还无法确定未来的量子计算机究竟是什么样的, 目前科学家门提出了几种方案.
第一种方案是核磁共振计算机. 其原理是用自旋向上或向下表示量子位的0 和1 两种状态,重点在于实现自旋状态的控制非操作,优点在于尽可能保证了量子态和环境的较好隔离。
第二种方案是离子阱计算机. 其原理是将一系列自旋为1/2 的冷离子被禁锢在线性量子势阱里, 组成一个相对稳定的绝热系统,重点在于由激光来实现自旋翻转的控制非操作其优点在于极度减弱了去相干效应, 而且很容易在任意离子之间实现n 位量子门。
第三种方案是硅基半导体量子计算机. 其原理是在高纯度硅中掺杂自旋为1/2的离子实现存储信息的量子位,重点在于用绝缘物质实现量子态的隔绝,其优点在于可以利用现代高效的半导体技术。
此外还有线性光学方案, 腔量子动力学方案等.
3.3量子计算机的未来
随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。
参考文献:
[1]胡连荣. 速度惊人的量子计算机[J].知识就是力量
[2]付刚.“量子计算机”解密[N].中安在线-安徽日报
中图分类号:O41 文献标识码:A 文章编号:1671-7597(2013)15-0001-02
量子物理是人们认识微观世界结构和运动规律的科学,它的建立带来了一系列重大的技术应用,使社会生产和生活发生了巨大的变革。量子世界的奇妙特性在提高运算速度、确保信息安全、增大信息容量等方面发挥重要的作用,基于量子物理基本原理的量子信息技术已成为当前各国研究与发展的重要科学技术领域。
随着世界电子信息技术的迅猛发展,以微电子技术为基础的信息技术即将达到物理极限,同时信息安全、隐私问题等越来越突出。2013年5月美国“棱镜门”事件的爆发,引发了对保护信息安全的高度重视,将成为推动量子物理科学与现代信息技术的交融和相互促进发展的契机。因此,充分认识量子物理学的基本原理在现代信息技术中发展的基础地位与作用,是促进现代信息技术发展的前提,也是丰富和发展量子物理学的需要。
1 量子物理基本原理
1)海森堡测不准原理。在量子力学中,任何两组不可同时测量的物理量是共扼的,满足互补性。在进行测量时,对其中一组量的精确测量必然导致另一组量的完全不确定,只能精确测定两者之一。
2)量子不可克隆定理。在量子力学中,不能实现对各未知量子态的精确复制,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,无法获得与初始量子态完全相同的复制态。
3)态叠加原理。若量子力学系统可能处于和描述的态中,那么态中的线性叠加态也是系统的一个可能态。如果一个量子事件能够用两个或更多可分离的方式来实现,那么系统的态就是每一可能方式的同时迭加。
4)量子纠缠原理。是指微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,另一个粒子状态随即发生相应变化。换言之,存在纠缠关系的粒子无论何时何地,都能“感应”对方状态的变化。
2 量子物理与现代信息技术的关系
2.1 量子物理是现代信息技术的基础与先导
物理学一直是整个科学技术领域中的带头学科并成为整个自然科学的基础,成为推动整个科学技术发展的最主要的动力和源泉。量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,它不仅解释了微观世界里的许多现象、经验事实,而且还开拓了一系列新的技术领域,直接导致了原子能、半导体、超导、激光、计算机、光通讯等一系列高新技术产业的产生和发展。可以说,从电话的发明到互联网络的实时通信,从晶体管的发明到高速计算机技术的成熟,量子物理开辟了一种全新的信息技术,使人类进人信息化的新时代,因此,量子物理学是现代信息技术发展的主要源泉,而且随着现代科学技术的飞速发展,量子物理学的先导和基础作用将更加显著和重要。
2.2 量子物理为现代信息技术的持续发展提供新的原理和方法
现代信息技术本质上是应用了量子力学基本原理的经典调控技术,随着世界科学技术的迅猛发展,以经典物理学为基础的信息技术即将达到物理极限。因此,现代信息技术的突破,实现可持续发展必须借助于新的原理和新的方法。量子力学作为原子层次的动力学理论,经过飞速发展,已向其他自然科学的各学科领域以及高新技术全面地延伸,量子信息技术就是量子物理学与信息科学相结合产生的新兴学科,它为信息科学技术的持续发展提供了新的原理和方法,使信息技术获得了活力与新特性,量子信息技术也成为当今世界各国研究发展的热点领域。因此,未来的信息技术将是应用到诸如量子态、相位、强关联等深层次量子特性的量子调控技术,充分利用量子物理的新性质开发新的信息功能,突破现代信息技术的物理极限。
2.3 现代信息技术对量子物理学发展的影响
量子信息技术应用量子力学原理和方法来研究信息科学,从而开发出现经典信息无法做到的新信息功能,反过来,现代信息技术的发展大大地丰富了量子物理学的研究内容,也将不断地影响量子物理学的研究方法,有力地将量子理论推向更深层次的发展阶段,使人类对自然界的认识更深刻、更本质。近年来,随着量子信息技术领域研究的不断深入,量子信息技术的发展也使量子物理学研究取得了不少成果,如量子关联、基于熵的不确定关系、量子开放系统环境的控制等问题研究取得了巨大进展。
3 基于量子物理学原理的量子信息技术
基于量子物理原理和方法的量子信息技术成为21世纪信息技术发展的方向,也是引领未来科技发展的重要领域。当前量子物理学的基本原理已经在量子密码术、量子通信、量子计算机等方面得到充分的理论论证和一定的实践应用。
3.1 量子计算机——量子叠加原理
经典计算机建立在经典物理学基础上,遵循普通物理学电学原理的逻辑计算方式,即用电位高低表示0和1以进行运算,因此,经典计算机只能靠以缩小芯片布线间距,加大其单位面积上的数据处理量来提高运算速度。而量子计算遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息。计算方式是建立在微观量子物理学关于量子具有波粒两重性和双位双旋特性的基础上,量子算法的中心思想是利用量子态的叠加态与纠缠态。在量子效应的作用下,量子比特可以同时处于0和1两种相反的状态(量子叠加),这使量子计算机可以同时进行大量运算,因此,量子计算的并行处理,使量子计算机实现了最快的计算速度。未来,基于量子物理原理的量子计算机,不仅运算速度快,存储量大、功耗低,而且体积会大大缩小。
3.2 量子通信——量子纠缠原理
量子通信是一种利用量子纠缠效应进行信息传递的新型通信方式。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。从信息学上理解,量子通信是利用量子力学的量子态隐形传输或者其他基本原理,以量子系统特有属性及量子测量方法,完成两地之间的信息传递;从物理学上讲,量子通信是采用量子通道来传送量子信息,利用量子效应实现的高性能通信方式,突破现代通信物理极限。量子力学中的纠缠性与非定域性可以保障量子通信中的绝对安全的量子通信,保证量子信息的隐形传态,实现远距离信息转输。所以,与现代通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,量子通信创建了新的通信原理和方法。
3.3 量子密码——不可克隆定理
经典密码是以数学为基础,通过经典信号实现,在密钥传送过程中有可能被窃听且不被觉察,故经典密码的密钥不安全。量子密码是一种以现代密码学和量子力学为基础,利用量子物理学方法实现密码思想和操作的新型密码体制,通过量子信号实现。量子密码主要基于量子物理中的测不准原理、量子不可克隆定理等,通信双方在进行保密通信之前,首先使用量子光源,依照量子密钥分配协议在通信双方之间建立对称密钥,再使用建立起来的密钥对明文进行加密,通过公开的量子信道,完成安全密钥分发。因此量子密码技术能够保证:
1)绝对的安全性。对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,且合法的通信双方可觉察潜在的窃听者并采取相应的措施。
2)不可检测性。无论破译者有多么强大的计算能力,都会在对量子的测量过程中改变量子的状态而使得破译者只能得到一些毫无意义的数据。因此,量子不可克隆定理既是量子密码安全性的依靠,也给量子信息的提取设置了不可逾越的界限,即无条件安全性和对窃听者的可检测性成为量子密码的两个基本特征。
4 结论
量子物理是现代信息技术诞生的基础,是现代信息技术突破物理极限,实现持续发展的动力与源泉。基于量子物理学的原理、特性,如量子叠加原理、量子纠缠原理、海森堡测不准原理和不可克隆定理等,使得量子计算机具有巨大的并行计算能力,提供功能更强的新型运算模式;量子通信可以突破现代信息技术的物理极限,开拓出新的信息功能;量子密码绝对的安全性和不可检测性,实现了绝对的保密通信。随着量子物理学理论在信息技术中的深入应用,量子信息技术将开拓出后莫尔时代的新一代的信息技术。
参考文献
[1]陈枫.量子通信:划时代的崭新技术[N].报,2011.
[2]曾谨言.量子物理学百年回顾[J].北京大学物理学科90年专题特约专稿,2003(10).
[3]李应真,吴斌.物理学是当代高新技术的主要源泉[J].学术论坛,2012.
[4]董新平,杨纲.量子信息原理及其进展[J].许昌学院学报,2007.
[5]周正威,陈巍,孙方稳,项国勇,李传锋.量子信息技术纵览[J].中国科学,2012(17).
[6]郭光灿.量子信息技术[J].中国科学院院刊,2002(5).
1 引言
量子算法解决问题的概念最早由舒尔在上世纪末引入,因其在计算复杂性理论革命性的成果,量子计算受到欢迎,但在当时认为实际建造一个量子计算机是不可能的,随后科学家发现了量子纠错等理论,希望通过这些理论实现量子计算机。文章主要讨论量子信息处理与超导量子比特物理实现,就少数重要方面讨论猜测量子计算未来方向。
2 量子计算机发展的七个阶段
开发一个量子计算机涉及几个重叠且互相连接的阶段,首先必须能控制量子系统的量子比特的有足够的长的退相干时间供系统去操作和读出,在第二阶段,小量子算法可以在逻辑量子比特上进行,作为一个实用的量子计算,这前两个阶段中,必须满足下面的五个标准[1]:
(1)可规模化的很好两能级系统(量子比特);
(2)量子比特具有良好的制备初态的能力;
(3)与量子逻辑门操作的时间相比,量子比特具有相对较长的退相干时间。
(4)量子比特能够用来建造通用量子逻辑门;
(5)具有对量子比特进行测量的能力。
从上面的标准可以看出,量子比特的相干性是非常重要的。如果量子比特的相干性受到破坏,量子计算就会变成经典计算。第三阶段以后要求系统能够实现量子纠错,在第三阶段,实现量子非破坏测量和控制,量子非破坏测量可以利用奇偶校验纠正一些错误。第四个阶段实现更长时间的逻辑量子比特记忆,目标是实现量子存储器,量子纠错的实施,使得系统的相干性比任何组件的相干时间都长,通过量子纠错存储的逻辑量子比特的退相干时间大大超过单个量子比特退相干时间,但这个目标还未在任何实际系统中实现。最后的两个阶段是多逻辑量子比特算法和容错型量子计算,最终目标是实现容错量子信息处理,有能力在一个具有主动纠错机制逻辑量子比特做所有单量子比特操作,并且能够执行多个逻辑门之间的操作。量子信息处理的七个阶段发展。每个进步需要掌握前面的阶段,但每个也代表了一个持续的任务,必须协同别的阶段。第三阶段中的超导量子比特是唯一固态量子计算实施,目的是实现第四阶段,这个也是目前研究的重要的环节。下面我们就介绍下超导电路。
3 超导电路哈密顿量设计
超导电路(图1)基于LC振荡器,超导量子比特的操作是基于两个成熟的现象:超导性和约瑟夫森效应。超导量子比特可以描述为一个电感为约瑟夫森结,电容C和一个电感L组成的并联电路。电路中电子流的集体运动的为通过电感的通量Φ,相当于在弹簧机械振荡器质心位置。不同于纯LC谐振电路的,约瑟夫森结把电路变成一个真正的人工原子,可以选择性的从基态跃迁到激发态,当作一个量子比特。约瑟夫森结和电感并联,甚至可以取代电感,几个作为人工原子非线性振荡器组成的量子比特耦合振荡腔时,可以获得多量子比特与多腔相互作用系统的有效哈密顿量[2]的形式为
哈密顿量中指标为j表示非谐振模式的量子比特耦合指标m表示谐振腔,符号a,b和ω分别代表振幅和频率,在适当的驱动信号作用下,系统可以执行任意的量子操作,操作速度取决于非线性影响因素和,通常单量子门操作时间为5到50ns和二量子比特纠缠控制在50到500ns,忽略了腔的非简谐振动的影响。适当设计的电路,尽量的减少由于量子比特周围电介质的影响而引起的损耗,同时减少能量的辐射到其他电路环境,使得量子比特相干时间为100μs,这使得相干时间内成百上千操作成为可能。
4 目前主要的问题
目前实验规模相对较小,只有少数量子比特相互作用,且所有的系统都会在纠缠情况下发生耗散,影响系统的相干性,要实现下一阶段量子信息处理,需要通过纠错增加相干时间,因为只有在保持量子记忆状态的情况下,才能进行后来的算法计算,这要求建立新的系统,并且计算时通过利用连续测量和实时反馈进行量子纠错进而保存量子信息。
使用当前的方法来纠错,会大幅增加计算复杂性,一个比特信息往往需要几十个甚至成千上万的物理量子比特实现纠错的功能,这个对于控制和设计哈密顿量是一个巨大的挑战。此外,根据五个基本原理,在各个阶段都需要其他的硬件增加,以求得能够向下一个阶段实现,但发展到一个阶段并不是简单的大规模生产相同类型的电路和量子比特的问题。
目前制造含有大量单元晶片在实际中并不困难,毕竟超导量子比特最大的优点是目前制作晶片的技术非常的成熟。尽管如此,设计构建和操作一个超导量子计算机对于半导体集成电路或超导电子学提出了实质性的挑战,由于电路元件之间的相互作用可能会导致加热或抵消,不同部件之间的相互干扰会引发问题,引发比特错误或电路故障。
还有我们必须知道怎么设计多量子比特和控制系统的哈密顿量,这个超出当前的能力,描述一个系统纠缠的哈密顿量时,需要测量的数据指数级增大,将来必须设计构建和操作超过几十个自由度系统,这样的话,量子计算的力量,经典情况下不能被模拟出来,这也许表明大型量子处理器应该由可以单独测试和表征小模块构成。
5 量子计算的未来设计
可能要花多长时间来实现超导电路完善,未来发展中,量子纠错理论可能大大改良电路复杂度和性能限制,理论上是存在几种不同的方法,但在实际中仍然相对不成熟。
首先是量子纠错编码模型,信息编码寄存在纠缠物理量子比特中,假设发生错误,通过收集量子比特的信息,监测特定量子比特的集体属性,然后在信息发生不可逆转的损坏之前,通过特殊的门撤销之前的错误。
另一种方法是表面代码模型,大量相同的物理量子比特被连接在矩形网格中,通过特定的四个相邻的量子比特之间的联系,可以快速进行量子非破坏测量,防止整个网格发生错误。这个方法的吸引力在于只需要数量很少的不同类型的元素,一旦这个基本单元是成功的,后续的发展阶段可能只是通过相对简单的设计就能实现,而且容错率较高,即使在当前的容错水平也能达到百分之几。
第三个方法是嵌套模块模型,这里最基本的单元是逻辑记忆量子比特组成的寄存器,这个寄存器能够在进行存储量子信息的同时并进行量子纠错,另外寄存器中存在一些额外的量子比特为可以与内存其他模块通讯。通过量子比特的通信的纠缠,可以分发纠缠,最终在模块间执行通用计算。在这里,操作之间的通信部分允许有相对较高的错误率。
其他方法可能包括量子科学那些与现有标准根本不同的一些方法,上面描述的方案都是基于“量子比特寄存器模型”,需要在构建较大的能够容纳很多二能级系统的希尔伯特空间,但在原子物理领域非计算态的利用已经超出二能级的水平,被用来作为一个三比特门超导电路的捷径,在现有不引入新的错误的情况下,多能级非线性振荡器的使用能够取代多量子比特方程,这提供了一种新的设计思路。
6 结语
超导电路实现量子信息处理已经取得显著进展,同时量子纠错不在仅仅限制在理论上,复杂的量子系统真正进入一个未知的领域,但即使这个阶段成功,未来依然会有很多的挑战,经过不断的探索,实用的量子信息处理未来可能成为现实。
水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。
钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。
将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。
(二)在金属及合金材料方面的应用
过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。
量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。
二、在能源研究中的应用
(一)在煤裂解的反应机理和动力学性质方面的应用
煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。
量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。
(二)在锂离子电池研究中的应用
锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。
锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。
随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。
三、在生物大分子体系研究中的应用
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。
参考文献:
[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994
[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12
[3]李北星,程新.建筑材料学报,1999,2(2):147
[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973
[5]程新,陈亚明.山东建材学院学报,1994,8(2):1
[6]闵新民.化学学报,1992,50(5):449
[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262
[10]SatoruK,MikioW,ShinighiK.ElectrochimicaActa1998,43(21-22):3127
一、计算机科学与技术的发展趋势
(一)计算机科学与技术实现了智能化的超级计算
可能你不知道,超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。总之,计算机科学与技术实现了智能化的超级计算。
(二)计算机科学与技术实现了分子计算机
大家都知道,分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。也就是说计算机科学与技术实现了分子计算机。
(三)计算机科学与技术实现了纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子算机也会像现在的马达一样,存在于家中的各种电器中,那时问你家里有多少计算机,你也数不清,你的笔记本,书籍都已电子化。再过十几、二十几年,可能学生们上课用的不再是教科书,而只是一个笔记本大小的计算机,不同的学生可以根据自己的需要方便地从中查到想要的资料所以有人预言未来计算机可能像纸张一样便宜,可以一次性使用,计算机将成为不被人注意的最常用的日用品。
(四)计算机科学与技术实现了量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态。使信息沿着聚合物移动。从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
二、计算机科学与技术的发展趋势总结
计算机科学与技术的发展,将朝着向信息的智能化发展。计算机技术的大多数领域以应用学科和工程学科的出现为标志,这些学科的职责是促进与实践有关的认识的发展,这些学科常吸收更为基础的学科,提高就能有实践的进步,在对计算机技术研究中,发现常有另外一条路径,这个过程存在着强烈的相互作用,有关半导体是如何运行的理论也建立了起来,这是用它们能够使计算机技术的实践中普遍存在的问题得到解决,或者说是促进实践的发展。能实现或更困难一些。显然,选择机制在计算机技术的实践进化和认识进化之间明显地提供了一种双向的连接,推动计算机技术的快速发展。参考文献: