发布时间:2024-01-13 17:04:33
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇量子计算的作用范例,将为您的写作提供有力的支持和灵感!
中图分类号:TP39 文献标识码:A文章编号:1007-3973 (2010) 02-106-01
自1646年第一台电子计算机问世以来,其芯片发展速度日益加快。按照芯片的摩尔定律 ,其集成度在不久的将来有望达到原子分子量级。在享受计算机飞速发展带来的种种便利的同时,我们也不得不面临一个瓶颈问题,即根据量子力学理论,在芯片发展到微观集成的时候,量子效应会影响甚至完全破坏芯片功能。因此,量子力学对计算机技术发展具有决定性作用。
1.1量子力学简介
量子力学是近代自然科学的最重要的成就之一. 在量子力学的世界里,一个量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述,这就是它与经典力学最根本的区别。
1.2量子力学与量子计算机
量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的()。当计算机芯片的密度很大时(即很小)将导致很大,电子不再被束缚,产生量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过量子力学的障碍,而且可以开辟新的方向。
量子计算机就是以量子力学原理直接进行计算的计算机.保罗•贝尼奥夫在1981年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1以及它们的叠加。
2量子计算机的优点
近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在。
2.1存储量大、速度高
经典计算机由0或1的二进制数据位存储数据,而量子计算机可以用自旋或者二能级态构造量子计算机中的数据位,即量子位。不同于经典计算机的在0与1之间必取其一,量子位可以是0 或者1,也可以是0和l的迭加态。
因此,量子计算机的n个量子位可以同时存储2n个数据,远高于经典计算机的单个存储能力; 另一方面量子计算机可以同时进行多个读取和计算,远优于经典计算机的单次计算能力。量子计算机的存储读取特性使其具有存储量大、读取计算速度高的优点。
2.2可以实现量子平行态
由量子力学原理可知,如果体系的波函数不能是构成该体系的粒子的波函数的乘积,则该体系的状态就处在一个纠缠态,即体系的粒子的状态是相互纠缠在一起的。而量子纠缠态之间的关联效应不受任何局域性假设限制,这使两个处在纠缠态的粒子而言,不管它们离开有多么遥远,对其中一个粒子进行作用,必然会同时影响到另外一个粒子.正是由于量子纠缠态之间的神奇的关联效应, 使得量子计算机可以利用纠缠机制,实现量子平行算法,从而可以大大减少操作次数。
3量子计算机发展现状和未来趋势
3.1量子计算机实现的技术障碍
到目前为止,世界上还没有真正意义上的量子计算机,它的实现还有许多技术上的问题。
量子计算机的优越性主要体现在量子迭加态的关联效应. 然而,环境对迭加态的影响以及迭加态之间的相互作用会使这种关联效应减弱甚至丧失,即量子力学去相干效应.因此应尽量减少环境对量子态的作用。同时,万一由于相干效应引入了错误信息,必需能及时改正,这需要进一步的研究和实验。
另一方面,量子态不能复制,使得不能把经典计算机中很完善的纠错方法直接移植到量子计算机中来.由于量子计算机在计算过程中不能对量子态测量, 因为这种测量会改变量子态, 而且这种改变是不可恢复的,因此在纠错方面存在很多问题。
3.2量子计算机的现状
由于上述两种原因,现在还无法确定未来的量子计算机究竟是什么样的, 目前科学家门提出了几种方案.
第一种方案是核磁共振计算机. 其原理是用自旋向上或向下表示量子位的0 和1 两种状态,重点在于实现自旋状态的控制非操作,优点在于尽可能保证了量子态和环境的较好隔离。
第二种方案是离子阱计算机. 其原理是将一系列自旋为1/2 的冷离子被禁锢在线性量子势阱里, 组成一个相对稳定的绝热系统,重点在于由激光来实现自旋翻转的控制非操作其优点在于极度减弱了去相干效应, 而且很容易在任意离子之间实现n 位量子门。
第三种方案是硅基半导体量子计算机. 其原理是在高纯度硅中掺杂自旋为1/2的离子实现存储信息的量子位,重点在于用绝缘物质实现量子态的隔绝,其优点在于可以利用现代高效的半导体技术。
此外还有线性光学方案, 腔量子动力学方案等.
3.3量子计算机的未来
随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。
参考文献:
[1]胡连荣. 速度惊人的量子计算机[J].知识就是力量
[2]付刚.“量子计算机”解密[N].中安在线-安徽日报
中图分类号:O41 文献标识码:A 文章编号:1671-7597(2013)15-0001-02
量子物理是人们认识微观世界结构和运动规律的科学,它的建立带来了一系列重大的技术应用,使社会生产和生活发生了巨大的变革。量子世界的奇妙特性在提高运算速度、确保信息安全、增大信息容量等方面发挥重要的作用,基于量子物理基本原理的量子信息技术已成为当前各国研究与发展的重要科学技术领域。
随着世界电子信息技术的迅猛发展,以微电子技术为基础的信息技术即将达到物理极限,同时信息安全、隐私问题等越来越突出。2013年5月美国“棱镜门”事件的爆发,引发了对保护信息安全的高度重视,将成为推动量子物理科学与现代信息技术的交融和相互促进发展的契机。因此,充分认识量子物理学的基本原理在现代信息技术中发展的基础地位与作用,是促进现代信息技术发展的前提,也是丰富和发展量子物理学的需要。
1 量子物理基本原理
1)海森堡测不准原理。在量子力学中,任何两组不可同时测量的物理量是共扼的,满足互补性。在进行测量时,对其中一组量的精确测量必然导致另一组量的完全不确定,只能精确测定两者之一。
2)量子不可克隆定理。在量子力学中,不能实现对各未知量子态的精确复制,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,无法获得与初始量子态完全相同的复制态。
3)态叠加原理。若量子力学系统可能处于和描述的态中,那么态中的线性叠加态也是系统的一个可能态。如果一个量子事件能够用两个或更多可分离的方式来实现,那么系统的态就是每一可能方式的同时迭加。
4)量子纠缠原理。是指微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,另一个粒子状态随即发生相应变化。换言之,存在纠缠关系的粒子无论何时何地,都能“感应”对方状态的变化。
2 量子物理与现代信息技术的关系
2.1 量子物理是现代信息技术的基础与先导
物理学一直是整个科学技术领域中的带头学科并成为整个自然科学的基础,成为推动整个科学技术发展的最主要的动力和源泉。量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,它不仅解释了微观世界里的许多现象、经验事实,而且还开拓了一系列新的技术领域,直接导致了原子能、半导体、超导、激光、计算机、光通讯等一系列高新技术产业的产生和发展。可以说,从电话的发明到互联网络的实时通信,从晶体管的发明到高速计算机技术的成熟,量子物理开辟了一种全新的信息技术,使人类进人信息化的新时代,因此,量子物理学是现代信息技术发展的主要源泉,而且随着现代科学技术的飞速发展,量子物理学的先导和基础作用将更加显著和重要。
2.2 量子物理为现代信息技术的持续发展提供新的原理和方法
现代信息技术本质上是应用了量子力学基本原理的经典调控技术,随着世界科学技术的迅猛发展,以经典物理学为基础的信息技术即将达到物理极限。因此,现代信息技术的突破,实现可持续发展必须借助于新的原理和新的方法。量子力学作为原子层次的动力学理论,经过飞速发展,已向其他自然科学的各学科领域以及高新技术全面地延伸,量子信息技术就是量子物理学与信息科学相结合产生的新兴学科,它为信息科学技术的持续发展提供了新的原理和方法,使信息技术获得了活力与新特性,量子信息技术也成为当今世界各国研究发展的热点领域。因此,未来的信息技术将是应用到诸如量子态、相位、强关联等深层次量子特性的量子调控技术,充分利用量子物理的新性质开发新的信息功能,突破现代信息技术的物理极限。
2.3 现代信息技术对量子物理学发展的影响
量子信息技术应用量子力学原理和方法来研究信息科学,从而开发出现经典信息无法做到的新信息功能,反过来,现代信息技术的发展大大地丰富了量子物理学的研究内容,也将不断地影响量子物理学的研究方法,有力地将量子理论推向更深层次的发展阶段,使人类对自然界的认识更深刻、更本质。近年来,随着量子信息技术领域研究的不断深入,量子信息技术的发展也使量子物理学研究取得了不少成果,如量子关联、基于熵的不确定关系、量子开放系统环境的控制等问题研究取得了巨大进展。
3 基于量子物理学原理的量子信息技术
基于量子物理原理和方法的量子信息技术成为21世纪信息技术发展的方向,也是引领未来科技发展的重要领域。当前量子物理学的基本原理已经在量子密码术、量子通信、量子计算机等方面得到充分的理论论证和一定的实践应用。
3.1 量子计算机——量子叠加原理
经典计算机建立在经典物理学基础上,遵循普通物理学电学原理的逻辑计算方式,即用电位高低表示0和1以进行运算,因此,经典计算机只能靠以缩小芯片布线间距,加大其单位面积上的数据处理量来提高运算速度。而量子计算遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息。计算方式是建立在微观量子物理学关于量子具有波粒两重性和双位双旋特性的基础上,量子算法的中心思想是利用量子态的叠加态与纠缠态。在量子效应的作用下,量子比特可以同时处于0和1两种相反的状态(量子叠加),这使量子计算机可以同时进行大量运算,因此,量子计算的并行处理,使量子计算机实现了最快的计算速度。未来,基于量子物理原理的量子计算机,不仅运算速度快,存储量大、功耗低,而且体积会大大缩小。
3.2 量子通信——量子纠缠原理
量子通信是一种利用量子纠缠效应进行信息传递的新型通信方式。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。从信息学上理解,量子通信是利用量子力学的量子态隐形传输或者其他基本原理,以量子系统特有属性及量子测量方法,完成两地之间的信息传递;从物理学上讲,量子通信是采用量子通道来传送量子信息,利用量子效应实现的高性能通信方式,突破现代通信物理极限。量子力学中的纠缠性与非定域性可以保障量子通信中的绝对安全的量子通信,保证量子信息的隐形传态,实现远距离信息转输。所以,与现代通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,量子通信创建了新的通信原理和方法。
3.3 量子密码——不可克隆定理
经典密码是以数学为基础,通过经典信号实现,在密钥传送过程中有可能被窃听且不被觉察,故经典密码的密钥不安全。量子密码是一种以现代密码学和量子力学为基础,利用量子物理学方法实现密码思想和操作的新型密码体制,通过量子信号实现。量子密码主要基于量子物理中的测不准原理、量子不可克隆定理等,通信双方在进行保密通信之前,首先使用量子光源,依照量子密钥分配协议在通信双方之间建立对称密钥,再使用建立起来的密钥对明文进行加密,通过公开的量子信道,完成安全密钥分发。因此量子密码技术能够保证:
1)绝对的安全性。对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,且合法的通信双方可觉察潜在的窃听者并采取相应的措施。
2)不可检测性。无论破译者有多么强大的计算能力,都会在对量子的测量过程中改变量子的状态而使得破译者只能得到一些毫无意义的数据。因此,量子不可克隆定理既是量子密码安全性的依靠,也给量子信息的提取设置了不可逾越的界限,即无条件安全性和对窃听者的可检测性成为量子密码的两个基本特征。
4 结论
量子物理是现代信息技术诞生的基础,是现代信息技术突破物理极限,实现持续发展的动力与源泉。基于量子物理学的原理、特性,如量子叠加原理、量子纠缠原理、海森堡测不准原理和不可克隆定理等,使得量子计算机具有巨大的并行计算能力,提供功能更强的新型运算模式;量子通信可以突破现代信息技术的物理极限,开拓出新的信息功能;量子密码绝对的安全性和不可检测性,实现了绝对的保密通信。随着量子物理学理论在信息技术中的深入应用,量子信息技术将开拓出后莫尔时代的新一代的信息技术。
参考文献
[1]陈枫.量子通信:划时代的崭新技术[N].报,2011.
[2]曾谨言.量子物理学百年回顾[J].北京大学物理学科90年专题特约专稿,2003(10).
[3]李应真,吴斌.物理学是当代高新技术的主要源泉[J].学术论坛,2012.
[4]董新平,杨纲.量子信息原理及其进展[J].许昌学院学报,2007.
[5]周正威,陈巍,孙方稳,项国勇,李传锋.量子信息技术纵览[J].中国科学,2012(17).
[6]郭光灿.量子信息技术[J].中国科学院院刊,2002(5).
1 引言
量子算法解决问题的概念最早由舒尔在上世纪末引入,因其在计算复杂性理论革命性的成果,量子计算受到欢迎,但在当时认为实际建造一个量子计算机是不可能的,随后科学家发现了量子纠错等理论,希望通过这些理论实现量子计算机。文章主要讨论量子信息处理与超导量子比特物理实现,就少数重要方面讨论猜测量子计算未来方向。
2 量子计算机发展的七个阶段
开发一个量子计算机涉及几个重叠且互相连接的阶段,首先必须能控制量子系统的量子比特的有足够的长的退相干时间供系统去操作和读出,在第二阶段,小量子算法可以在逻辑量子比特上进行,作为一个实用的量子计算,这前两个阶段中,必须满足下面的五个标准[1]:
(1)可规模化的很好两能级系统(量子比特);
(2)量子比特具有良好的制备初态的能力;
(3)与量子逻辑门操作的时间相比,量子比特具有相对较长的退相干时间。
(4)量子比特能够用来建造通用量子逻辑门;
(5)具有对量子比特进行测量的能力。
从上面的标准可以看出,量子比特的相干性是非常重要的。如果量子比特的相干性受到破坏,量子计算就会变成经典计算。第三阶段以后要求系统能够实现量子纠错,在第三阶段,实现量子非破坏测量和控制,量子非破坏测量可以利用奇偶校验纠正一些错误。第四个阶段实现更长时间的逻辑量子比特记忆,目标是实现量子存储器,量子纠错的实施,使得系统的相干性比任何组件的相干时间都长,通过量子纠错存储的逻辑量子比特的退相干时间大大超过单个量子比特退相干时间,但这个目标还未在任何实际系统中实现。最后的两个阶段是多逻辑量子比特算法和容错型量子计算,最终目标是实现容错量子信息处理,有能力在一个具有主动纠错机制逻辑量子比特做所有单量子比特操作,并且能够执行多个逻辑门之间的操作。量子信息处理的七个阶段发展。每个进步需要掌握前面的阶段,但每个也代表了一个持续的任务,必须协同别的阶段。第三阶段中的超导量子比特是唯一固态量子计算实施,目的是实现第四阶段,这个也是目前研究的重要的环节。下面我们就介绍下超导电路。
3 超导电路哈密顿量设计
超导电路(图1)基于LC振荡器,超导量子比特的操作是基于两个成熟的现象:超导性和约瑟夫森效应。超导量子比特可以描述为一个电感为约瑟夫森结,电容C和一个电感L组成的并联电路。电路中电子流的集体运动的为通过电感的通量Φ,相当于在弹簧机械振荡器质心位置。不同于纯LC谐振电路的,约瑟夫森结把电路变成一个真正的人工原子,可以选择性的从基态跃迁到激发态,当作一个量子比特。约瑟夫森结和电感并联,甚至可以取代电感,几个作为人工原子非线性振荡器组成的量子比特耦合振荡腔时,可以获得多量子比特与多腔相互作用系统的有效哈密顿量[2]的形式为
哈密顿量中指标为j表示非谐振模式的量子比特耦合指标m表示谐振腔,符号a,b和ω分别代表振幅和频率,在适当的驱动信号作用下,系统可以执行任意的量子操作,操作速度取决于非线性影响因素和,通常单量子门操作时间为5到50ns和二量子比特纠缠控制在50到500ns,忽略了腔的非简谐振动的影响。适当设计的电路,尽量的减少由于量子比特周围电介质的影响而引起的损耗,同时减少能量的辐射到其他电路环境,使得量子比特相干时间为100μs,这使得相干时间内成百上千操作成为可能。
4 目前主要的问题
目前实验规模相对较小,只有少数量子比特相互作用,且所有的系统都会在纠缠情况下发生耗散,影响系统的相干性,要实现下一阶段量子信息处理,需要通过纠错增加相干时间,因为只有在保持量子记忆状态的情况下,才能进行后来的算法计算,这要求建立新的系统,并且计算时通过利用连续测量和实时反馈进行量子纠错进而保存量子信息。
使用当前的方法来纠错,会大幅增加计算复杂性,一个比特信息往往需要几十个甚至成千上万的物理量子比特实现纠错的功能,这个对于控制和设计哈密顿量是一个巨大的挑战。此外,根据五个基本原理,在各个阶段都需要其他的硬件增加,以求得能够向下一个阶段实现,但发展到一个阶段并不是简单的大规模生产相同类型的电路和量子比特的问题。
目前制造含有大量单元晶片在实际中并不困难,毕竟超导量子比特最大的优点是目前制作晶片的技术非常的成熟。尽管如此,设计构建和操作一个超导量子计算机对于半导体集成电路或超导电子学提出了实质性的挑战,由于电路元件之间的相互作用可能会导致加热或抵消,不同部件之间的相互干扰会引发问题,引发比特错误或电路故障。
还有我们必须知道怎么设计多量子比特和控制系统的哈密顿量,这个超出当前的能力,描述一个系统纠缠的哈密顿量时,需要测量的数据指数级增大,将来必须设计构建和操作超过几十个自由度系统,这样的话,量子计算的力量,经典情况下不能被模拟出来,这也许表明大型量子处理器应该由可以单独测试和表征小模块构成。
5 量子计算的未来设计
可能要花多长时间来实现超导电路完善,未来发展中,量子纠错理论可能大大改良电路复杂度和性能限制,理论上是存在几种不同的方法,但在实际中仍然相对不成熟。
首先是量子纠错编码模型,信息编码寄存在纠缠物理量子比特中,假设发生错误,通过收集量子比特的信息,监测特定量子比特的集体属性,然后在信息发生不可逆转的损坏之前,通过特殊的门撤销之前的错误。
另一种方法是表面代码模型,大量相同的物理量子比特被连接在矩形网格中,通过特定的四个相邻的量子比特之间的联系,可以快速进行量子非破坏测量,防止整个网格发生错误。这个方法的吸引力在于只需要数量很少的不同类型的元素,一旦这个基本单元是成功的,后续的发展阶段可能只是通过相对简单的设计就能实现,而且容错率较高,即使在当前的容错水平也能达到百分之几。
第三个方法是嵌套模块模型,这里最基本的单元是逻辑记忆量子比特组成的寄存器,这个寄存器能够在进行存储量子信息的同时并进行量子纠错,另外寄存器中存在一些额外的量子比特为可以与内存其他模块通讯。通过量子比特的通信的纠缠,可以分发纠缠,最终在模块间执行通用计算。在这里,操作之间的通信部分允许有相对较高的错误率。
其他方法可能包括量子科学那些与现有标准根本不同的一些方法,上面描述的方案都是基于“量子比特寄存器模型”,需要在构建较大的能够容纳很多二能级系统的希尔伯特空间,但在原子物理领域非计算态的利用已经超出二能级的水平,被用来作为一个三比特门超导电路的捷径,在现有不引入新的错误的情况下,多能级非线性振荡器的使用能够取代多量子比特方程,这提供了一种新的设计思路。
6 结语
超导电路实现量子信息处理已经取得显著进展,同时量子纠错不在仅仅限制在理论上,复杂的量子系统真正进入一个未知的领域,但即使这个阶段成功,未来依然会有很多的挑战,经过不断的探索,实用的量子信息处理未来可能成为现实。
水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。
钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。
将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。
(二)在金属及合金材料方面的应用
过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。
量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。
二、在能源研究中的应用
(一)在煤裂解的反应机理和动力学性质方面的应用
煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。
量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。
(二)在锂离子电池研究中的应用
锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。
锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。
随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。
三、在生物大分子体系研究中的应用
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。
参考文献:
[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994
[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12
[3]李北星,程新.建筑材料学报,1999,2(2):147
[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973
[5]程新,陈亚明.山东建材学院学报,1994,8(2):1
[6]闵新民.化学学报,1992,50(5):449
[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262
[10]SatoruK,MikioW,ShinighiK.ElectrochimicaActa1998,43(21-22):3127
一、计算机科学与技术的发展趋势
(一)计算机科学与技术实现了智能化的超级计算
可能你不知道,超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。总之,计算机科学与技术实现了智能化的超级计算。
(二)计算机科学与技术实现了分子计算机
大家都知道,分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。也就是说计算机科学与技术实现了分子计算机。
(三)计算机科学与技术实现了纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子算机也会像现在的马达一样,存在于家中的各种电器中,那时问你家里有多少计算机,你也数不清,你的笔记本,书籍都已电子化。再过十几、二十几年,可能学生们上课用的不再是教科书,而只是一个笔记本大小的计算机,不同的学生可以根据自己的需要方便地从中查到想要的资料所以有人预言未来计算机可能像纸张一样便宜,可以一次性使用,计算机将成为不被人注意的最常用的日用品。
(四)计算机科学与技术实现了量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态。使信息沿着聚合物移动。从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
二、计算机科学与技术的发展趋势总结
计算机科学与技术的发展,将朝着向信息的智能化发展。计算机技术的大多数领域以应用学科和工程学科的出现为标志,这些学科的职责是促进与实践有关的认识的发展,这些学科常吸收更为基础的学科,提高就能有实践的进步,在对计算机技术研究中,发现常有另外一条路径,这个过程存在着强烈的相互作用,有关半导体是如何运行的理论也建立了起来,这是用它们能够使计算机技术的实践中普遍存在的问题得到解决,或者说是促进实践的发展。能实现或更困难一些。显然,选择机制在计算机技术的实践进化和认识进化之间明显地提供了一种双向的连接,推动计算机技术的快速发展。参考文献:
只是模拟设备
在“D-波”中是用一个个超导线路来模拟量子或原子自旋,系统必须冷却到接近绝对零度。自旋有“上”自旋、“下”自旋和“上下叠加”自旋。在“D-波”线路中,用电流方向来模拟自旋。
“D-波”是否真的在用量子效应运行?苏黎世联邦理工大学理论物理学院教授马提亚・特罗亚和南加州大学洛杉矶分校的同事一起,对那里的量子系统进行了测试。经过测试,研究小组得出的结论是不能一概而论:一方面,他们证明了“D-波”确实是利用量子效应运行的;而另一方面,研究人员也说:“‘D-波’只是一个模拟设备,一台用于解决最优化问题的样机。对它更准确的描述是,一台可编程的量子模拟实验机。”特罗亚说:“毫无疑问‘D-波’不是一台通用量子计算机。”
量子效应持续极短
为了对“D-波”进行测试,研究人员写了数千个复杂性不等的问题,把每个问题在3个系统上各运行了一千次。一个系统是“D-波”,另两个是在传统计算机上进行的最优化问题模拟程序:一个考虑量子效应,另一个不考虑。对于每个任务,研究人员记录下各系统给出正确答案的频率。结果“D-波”的表现和考虑了量子效应的模拟程序相同,而有别于没考虑量子效应的模拟程序。
面对这样的结果,研究人员也感到吃惊,因为“D-波”的量子相干持续时间极为短暂,只有几十亿分之一秒,而通常要解决一个最优化问题需要的时间是这一时间的500倍。大部分专家认为,“D-波”的量子效应简直不能发挥任何作用。不过特罗亚解释说,“让量子效应在所有时间都保持相干也是没有必要的”。
速度不比传统计算机快
0 引言
自1946年第一台电子计算机诞生至今,共经历了电子管、晶体管、中小规模集成电路和大规模集成电路四个时代。计算机科学日新月异,但其性能却始终满足不了人类日益增长的信息处理需求,且存在不可逾越的“两个极限”。
其一,随着传统硅芯片集成度的提高,芯片内部晶体管数与日俱增,相反其尺寸却越缩越小(如现在的英特尔双核处理器采用最新45纳米制造工艺,在143平方毫米内集成2.91亿晶体管)。根据摩尔定律估算,20年后制造工艺将达到几个原子级大小,甚至更小,从而导致芯片内部微观粒子性越来越弱,相反其波动性逐渐显著,传统宏观物理学定律因此不再适用,而遵循的是微观世界焕然一新的量子力学定理。也就是说,20年后传统计算机将达到它的“物理极限”。
其二,集成度的提高所带来耗能与散热的问题反过来制约着芯片集成度的规模,传统硅芯片集成度的停滞不前将导致计算机发展的“性能极限”。如何解决其发热问题?研究表明,芯片耗能产生于计算过程中的不可逆过程。如处理器对输入两串数据的异或操作而最终结果却只有一列数据的输出,这过程是不可逆的,根据能量守恒定律,消失的数据信号必然会产生热量。倘若输出时处理器能保留一串无用序列,即把不可逆转换为可逆过程,则能从根本上解决芯片耗能问题。利用量子力学里的玄正变换把不可逆转为可逆过程,从而引发了对量子计算的研究。
1 量子计算的基本原理
1.1 传统计算的存储方式
首先回顾传统计算机的工作原理。传统电子计算机采用比特作为信息存储单位。从物理学角度,比特是两态系统,它可保持其中一种可识别状态,即“1”或者“()”。对于“1”和“0”,可利用电流的通断或电平的高低两种方法表示,然后可通过与非门两种逻辑电路的组合实现加、减、乘、除和逻辑运算。如把0~0个数相加,先输入“00”,处理后输入“01”,两者相“与”再输入下个数“10”,以此类推直至处理完第n个数,即输入一次,运算一次,n次输入,n次运算。这种串行处理方式不可避免地制约着传统计算机的运算速率,数据越多影响越深,单次运算的时间累积足可达到惊人的数字。例如在1994年共1600个工作站历时8月才完成对129位(迄今最大长度)因式的分解。倘若分解位数多达1000位,据估算,即使目前最快的计算机也需耗费1025年。而遵循量子力学定理的新一代计算机利用超高速并行运算只需几秒即可得出结果。现在让我们打开量子计算的潘多拉魔盒,走进奇妙神秘的量子世界。
1.2 量子计算的存储方式
量子计算的信息存储单位是量子比特,其两态的表示常用以下两种方式:
(1)利用电子自旋方向。如向左自转状态代表“1”,向右自转状态代表“0”。电子的自转方向可通过电磁波照射加以控制。
(2)利用原子的不同能级。原子有基态和激发态两种能级,规定原子基态时为“0”,激发态时为“1”。其具体状态可通过辨别原子光谱或核磁共振技术辨别。
量子计算在处理0~n个数相加时,采用的是并行处理方式将“00”、“01”、“10”、“11”等n个数据同时输入处理器,并在最后做一次运算得出结果。无论有多少数据,量子计算都是同时输入,运算一次,从而避免了传统计算机输入一次运算一次的耗时过程。当对海量数据进行处理时,这种并行处理方式的速率足以让传统计算机望尘莫及。
1.3 量子叠加态
量子计算为何能实现并行运算呢?根本原因在于量子比特具有“叠加状态”的性质。传统计算机每个比特只能取一种可识别的状态“0”或“1”,而量子比特不仅可以取“0”或“1”,还可同时取“0”和“1”,即其叠加态。以此类推,n位传统比特仅能代表2n中的某一态,而n位量子比特却能同时表示2n个叠加态,这正是量子世界神奇之处。运算时量子计算只须对这2n个量子叠加态处理一次,这就意味着一次同时处理了2n个量子比特(同样的操作传统计算机需处理2n次,因此理论上量子计算工作速率可提高2n倍),从而实现了并行运算。
量子叠加态恐怕读者一时难以接受,即使当年聪明绝顶的爱因斯坦也颇有微词。但微观世界到底有别于我们所处的宏观世界,存在着既令人惊讶又不得不承认的事实,并取得了多方面验证。以下用量子力学描述量子叠加态。
现有两比特存储单元,经典计算机只能存储00,01,10,11四位二进制数,但同一时刻只能存储其中某一位。而量子比特除了能表示“0”或“1”两态,还可同时表示“0”和“1”的叠加态,量子力学记为:
lφ〉=al1〉+blO〉
其中ab分别表示原子处于两态的几率,a=0时只有“0”态,b=0时只有“1”态,ab都不为0时既可表示“0”,又可表示“1”。因此,两位量子比特可同时表示4种状态,即在同一时刻可存储4个数,量子力学记为:
1.4 量子相干性
量子计算除可并行运算外,还能快速高效地并行运算,这就用到了量子的另外一个特性――量子相干性。
量子相干性是指量子之间的特殊联系,利用它可从一个或多个量子状态推出其它量子态。譬如两电子发生正向碰撞,若观测到其中一电子是向左自转的,那么根据动量和能量守恒定律,另外一电子必是向右自转。这两电子间所存在的这种联系就是量子相干性。
可以把量子相干性应用于存储当中。若某串量子比特是彼此相干的,则可把此串量子比特视为协同运行的同一整体,对其中某一比特的处理就会影响到其它比特的运行状态,正所谓牵一发而动全身。量子计算之所以能快速高效地运算缘归于此。然而令人遗憾的是量子相干性很难保持,在外部环境影响下很容易丢失相干性从而导致运算错误。虽然采用量子纠错码技术可避免出错,但其也只是发现和纠正错误,却不能从根本上杜绝量子相干性的丢失。因此,到达高效量子计算时代还有一段漫长曲折之路。
2 对传统密码学的冲击
密码通信源远流长。早在2500年前,密码就已广泛应用于战争与外交之中,当今的文学作品也多有涉猎,如汉帝赐董承的衣带诏,文人墨客的藏头诗,金庸笔下的蜡丸信等。随着历史的发展,密码和秘密通讯备受关注,密码学也应运而生。防与攻是一个永恒的活题,当科学家们如火如荼地研究各种加密之策时,破译之道也得以迅速发展。
传统理论认为,大数的因式分解是数学界的一道难题,至今也无有效的解决方案和算法。这一点在密码学有重要应用,现在广泛应用于互联网,银行和金融系统的RSA加密系统就是基于因式难分解而开发出来的。然而,在理论上包括RSA在内的任何加密算法都不是天衣无缝的,利用穷举法可一一破解,只要衡量破解与所耗费的人力物力和时间相比是否合理。如上文提到传统计算机需耗费1025年才能对1000位整数进行因式分解,从时间意义上讲,RSA加密算法是安全的。但是,精通高速并行运算的量子计算一旦问世,萦绕人类很久的因式分解难题迎刃而解,传统密码学将受到前所未有的巨大冲击。但正所谓有矛必有盾,相信届时一套更为安全成熟的量子加密体系终会酝酿而出。
3 近期研究成果
目前量子计算的研究仍处于实验阶段,许多科学家都以极大热忱追寻量子计算的梦想,实现方案虽不少,但以现在的科技水平和实验条件要找到一种合适的载体存储量子比特,并操纵和观测其微观量子态实在是太困难了,各界科学家历时多年才略有所获。
(1)1994年物理学家尼尔和艾萨克子利用丙胺酸制出一台最为基本的量子计算机,虽然只能做一些像1+1=2这样简单的运算,但对量子计算的研究具有里程碑的意义。
(2)2000年8月IBM用5个原子作为处理和存储器制造出当时最为先进的量子计算机,并以传统计算机无法匹敌的速度完成对密码学中周期函数的计算。
(3)2000年日本日立公司成功开发出“单电子晶体管”量子元件,它可以控制单个电子的运动,且具有体积小,功耗低的特点(比目前功耗最小的晶体管约低1000倍)。
(4)2001年IBM公司阿曼顿实验室利用核磁共振技术建构出7位量子比特计算机,其实现思想是用离子两个自转状态作为一个量子比特,用微波脉冲作为地址。但此法还不能存储15位以上的量子单元。
(5)2003年5月《Nature》杂志发表了克服量子相关性的实验结果,对克服退相干,实现量子加密、纠错和传输在理论上起到指导作用,从此量子通信振奋人心。
在超导体系,研究团队打破了之前由谷歌、NASA(美国国家航空航天局)和UCSB(加州大学圣塔芭芭拉分校)公开报道的9个超导量子比特的操纵,实现了目前世界上最大数目(10个)超导量子比特的纠缠,并在超导量子处理器上实现了快速求解线性方程组的量子算法。
系列成果已发表在国际权威学术期刊《自然光子学》,即将发表在《物理评论快报》上。
传统电子计算机要算15万年的难题,量子计算机只需1秒
1981年,美国物理学家费曼指出,由于量子系统具有天然的并行处理能力,用它所实现的计算机很可能会远远超越经典计算机。1994年,麻省理工学院的Peter?Shor教授提出分解大质因数的高效量子算法,量子计算引发了世界各国的强烈兴趣。
“由于量子比特是0和1的叠加态,在原理上具有超快的并行算和模拟能力,计算能力随可操纵的粒子数呈指数增长。这一特点使得量子计算可为经典计算机无法解决的大规模计算难题提供有效解决方案。”潘建伟说,“比如,300位10进制那么长数,用我们目前万亿次的传统电子计算机拿来算的话,大概需要算15万年。但如果能够造出一台量子计算机,它计算的频率也是万亿次的话,只需要1秒钟就可以算完。从这个角度上讲,量子的并行计算能力是非常强大的。”
此外,一台操纵50个微观粒子的量子计算机,对特定问题的处理能力可超过超级计算机。
那哪些算特定问题呢?
朱晓波说:“比如说大数字分解,这个是用于现在加密的一个标准的算法。那么你如果能解一个大数字分解,就能解密现在很多的加密算法。如果很多加密算法都失效了,国家金融安全、军事安全等都会受到严重影响。还有,量子计算机做到一定规模之后,很有可能实现大数据的快速搜索,以后在解决搜索问题的时候就具有巨大的优势。”
据专家介绍,根据各物理体系内在优势及其在实现多粒子相干操纵和纠缠方面的发展现状和潜力,目前,国际学术界在基于光子、超冷原子和超导线路体系的量子计算技术发展上总体较为领先。
研究仍处早期,我国计划在年底实现大约20个光量子比特的操纵
多粒子纠缠的操纵作为量子计算的核心资源,一直是国际角逐的焦点。在光子体系,潘建伟团队在多光子纠缠领域始终保持着国际领先水平,并于2016年底把纪录刷新至十光子纠缠。在此基础上,团队此次利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。
潘建伟说:“实验测试表明,该原型机的‘玻色取样’速度不仅比国际同行类似的之前所有实验加快至少2.4万倍,同时,通过和经典算法比较,也比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10~100倍。”
这是历史上第一台超越早期经典计算机的基于单光子的量子模拟机,为最终实现超越经典超级计算能力的量子计算这一国际学术界称之为“量子称霸”的目标奠定了坚实的基础。
“量子计算领域有几个大家共同努力的指标性节点:第一,展示超越首台电子计算机的计算能力;第二,展示超越商用CPU的计算能力;第三,展示超越超级计算机的计算能力。我们实现的只是其中的第一步,也是一小步,但是是重要的一步。”潘建伟说。
“朝着这个目标,我们研究团队将计划在今年年底实现大约20个光量子比特的操纵,将接近目前最好的商用CPU。”陆朝阳说。
但由于高精度量子操控技术的极端复杂性,目前量子计算研究仍处于早期发展阶段。“像经典计算机那样具有通用功能的量子计算机最终能否研制成功,对整个科学界还是个未知数。”潘建伟说。
在信息安全、医学检测、导航等方面,量子技术未来将极大地改变生活
随着大数据时代的到来,对计算能力的需求可以用一个词来形容,就叫做“贪得无厌”。同时,计算能力的强弱也对社会的发展起着至关重要的作用。当人们能够把数据里面有效的数据结果都通过计算给提取出来的话,每一个数据才会成为真正的财富。
谈到量子计算机未来的应用前景,潘建伟充满信心:“我认为量子技术领域目前主要有几个方面离实用非常近:量子通信主要是用在保密方面,它可以大大提高信息安全水平。除此之外,量子计算可能很快在某些特定计算方面超越目前传统的超级计算。这些技术在医学检测、药物设计、基因分析、各种导航等方面也将起到巨大的作用,会给我们的生活带来极大的改变。比如,我们现在的天气预报只能预报几天,因为如果要预报第六天、第七天,计算的时间可能需要100天,而100天后再来预测第六七天的天气就没什么意义了。”
据潘建伟介绍,在我国即将启动的量子通信和量子计算机的重大项目里,对光、超导、超冷原子等方向上都已经做了相应的布局。
“在以后的10到15年里,量子技术领域的竞争将是非常激烈的。比如英国启动了国家量子技术专项、欧盟启动了量子旗舰专项、美国在论证相应的计划。包括谷歌、IBM、微软等在内的一些美国公司也都介入到相关研发了。”潘建伟说。
延伸阅读
多个状态同时叠加 不可分割不可克隆 量子世界里,真的很神秘
量子是什么?量子是最小的、不可再分割的能量单位。这个概念诞生于1900年,物理学家普朗克在德国物理学会上公布了他的成果,成为量子论诞生和新物理学革命宣告开始的伟大时刻。
分子、原子、电子,其实都是量子的不同表现形式。可以说,我们的世界是由量子组成的。
中国科学技术大学教授朱晓波说,在宏观世界里,物体的位置、速度等运动规律,都可以通过牛顿力学精确地测算。但在量子微观世界里,有着与宏观世界截然不同的规则。
量子的神秘之处首先体现在它的“状态”。在宏观世界里,任何一个物体在某一时刻有着确定的状态和确定的位置。但在微观世界里,量子却同时处于多种状态和多个位置的“叠加”。
量子力学的开创者之一、奥地利物理学家薛定谔曾用一只猫来比喻量子态叠加:箱子里有一只猫,在宏观世界中它要么是活的,要么是死的。但如果在量子世界中,它同时处于生和死两种状态的叠加。
量子的状态还经不起“看”。也就是说,如果你去测量一个量子,那么它就会从多个状态、多个位置,变成一个确定的状态和一个确定的位置。如果你打开“薛定谔的箱子”,猫的叠加状态就会消失,你会看到一只活猫或一只死猫。
如果说一个量子已经很“奇怪”,那么当两个量子“纠缠”在一起,那种不确定性更强了。根据量子力学理论,如果两个量子之间形成了“纠缠态”,那么无论相隔多远,当一个量子的状态发生变化,另一个量子也会超光速“瞬间”发生如同心灵感应的变化。
虽然直至今天,人类仍然还没搞清楚量子为何如此神秘,但国际主流学界已经接受了量子这种特殊性的客观存在。更重要的是,人们可以利用量子的奇异特性开发创新型应用,比如量子通信和量子计算。
人类正被数据淹没,却饥渴于知识。面临浩瀚无际而被污染的数据,人们呼唤从数据中来一个去粗取精、去伪存真的技术。而数据挖掘就是从大量数据中识别出有效的、新颖的、潜在有用的,以及最终可理解的知识和模式的高级操作过程,所以数据挖掘也可以说是一个模式识别的过程,因此模式识别领域的许多技术经过一定的改进便可以在数据挖掘中起重要的作用。计算智能(Computational Intelligence-CI)方法是传统人工智能(Artificial Intelligence,AI)的扩展,它是模式识别技术发展的新阶段[1]。
科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代”。创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志[2]。量子计算智能导论作为信息科学、计算机科学、智能信息处理、人工智能等相关专业的研究生专业课程,已经在越来越多的高等学校开设。
由于量子计算智能是一门跨越包括物理学、数学、计算机科学、电子机械、通讯、生理学、进化理论和心理学等学科在内的深奥科学,因此量子计算智能导论的教学内容和侧重点的安排目前仍处在探索阶段,尤其作为研究生课程如何使得学生在掌握深奥理论的基础上结合实际应用,将理论转化为技术与工具,从而提高动手能力,这是每个研究生专业课任课老师的核心探索所在,因此就要求老师在授业解惑的同时关注前沿,以该学科的前沿领域为教学指引,进而更好的培养研究生主动探索知识的能力。
1教材选择
一本好的教材为教学起到了画龙点睛的作用,因此教材的选择即是老师对教学内容,教学目标和教学方法的选择。我们选择教材,期望该教材由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。由于量子计算智能导论为全校研究生的专业课程,而量子计算智能是一门多学科交叉的综合型学科,因此我们要考虑到来自学校不同专业背景,以及在物理,数学,工程优化和进化理论基础有限的两难困境,所以首先选择了一本关于量子计算的英文原版书作为教材之一,Michael Nielsen等人所著的《Quantum Computation and Quantum Information》[3],2003年高等教育出版社出版,该书全面介绍了量子计算与量子信息学领域的主要思想与技术。到目前为止,该领域的高速进展与学科交叉的特性使得初学者感到困惑而不易对其主要技术与结论有综合性的认识,而该书特色在于对量子机制和计算机科学给予了指导性介绍,使得那些没有物理学或计算机科学背景的学生对此也易于接受,为学生提供了详实的关于量子计算的物理原理和基本概念;另外考虑到这门课程面向研究生,无论将来他们是直接就业还是继续深造,都要注重实践动手能力的培养,要能够将自己所学的书本知识转化为技术和工具,去解决实际的工程和科研问题,因此我们还选择了另外一门书,由李士勇教授所著的《量子计算与量子优化算法》[4],哈尔滨工业大学出版社于2009年出版,该书着重讲解了量子优化算法,为实际工程应用提供了新的思路,并启发大家在量子计算机没有走出实验室的今天,如何利用现有的数字式计算机构造具有量子特性的快速算法。当然考虑到全校研究生的专业知识背景不同,我们也推荐了中南大学蔡自兴教授等编著,2004年由清华大学出版社出版的《人工智能及其应用:研究生用书(第三版)》[5],该书是蔡自兴为主讲教授的国家精品课程人工智能的配套教材,该本书中系统全面的讲解了高级知识推理、分布式人工智能与艾真体、计算智能、进化计算、群智能优化、自然计算、免疫计算以及知识发现和数据挖掘等近年的热点智能方法,从而辅助学生了解人工智能,以及人工智能如何发展到计算智能,使得学生全面认识学科的发展和传承性,为今后学习量子计算智能打下坚实的理论基础。
2教学内容
本课程从量子计算的基本概念和原理出发,重点讲解量子计算基础和基本的量子算法;并从量子优化算法拓展开来。该门课程我们安排了46学时,具体安排如下:第1章,量子力学基础(2学时);第2章,量子计算基础(4学时);第3章,基本量子算法(4学时);第4章,Grover量子搜索算法的改进(4学时);第5章,量子遗传算法(8学时);第6章,量子群智能优化算法(8学时);第7章,量子神经网络模型与算法(8学时);第8章,量子遗传算法在模糊神经控制中的应用(8学时)。
3教学方法
3.1理论与实践相结合的教学方法
量子计算智能导论是一门多学科交叉的综合型学科。选课的同学来自全校,各个的专业背景不同,但是大家的共同需求是一样的,就是从课程中掌握一种用于解决实际问题的工程技术,但是工程技术的掌握也需要理论的支撑,因此我们在教学实践中总结出了一套方法,具体做法是将教学内容划分为:理论型和实践型。
理论型教学指的是发展完善的量子计算基本原理和方法。其内容包括:量子位、量子线路、量子Fourier 变换、量子搜索算法和量子计算机的物理实现等。而其中量子位、量子线路以及量子算法都是以量子相对论为基础的,这也是量子计算的本质原理,而较之我们熟悉的数字式计算机和计算方式有着本质的区别。我们在教学中由浅入深,通过PPT授课,采取理论与实例相结合的讲授方式。下面给出了一个我们在教学中的实例:将量子计算问题形象化。具体内容如下。
让我们想象一下下面这个问题。我们要找一条穿过复杂迷宫的路。每次我们沿着一条路走,很快就会碰到新的岔路。即使知道出去的路,还是容易迷路。换句话说,有一个著名的走迷宫算法就是右手法则――顺着右手边的墙走,直到出去(包括绕过绝路)。这条路也许并不很短,但是至少您不会反复走相同的过道。以计算机术语表述,这条规则也可以称作递归树下行。现在让我们想象另外一种解决方案。站在迷宫入口,释放足够数量的着色气体,以同时充满迷宫的每条过道。让一位合作者站在出口处。当她看到一缕着色气体出来时,就向那些气体粒子询问它们走过的路径。她询问的第一个粒子走过的路径最有可能是穿过迷宫的所有可能路径中最短的一条。当然,气体颗粒绝不会给我们讲述它们的旅行。但是 量子算法以一种同我们的方案非常类似的方式运作。即,量子算法先把整个问题空间填满,然后只需费心去问问正确的解决方案(把所有的绝路排除在答案空间以外)。这样以来,一个枯燥晦涩的量子算法就被很形象的解释,因此增强了学生的记忆也加深了理解,从而提高了学生的学习兴趣。
实践型教学指的是正在发展中的量子计算智能方法的热点问题。其内容包括:量子遗传算法,混沌量子免疫算法,量子蚁群算法,量子粒子群算法,量子神经网络模型与算法,和这些算法在实际工程优化中的应用。这部分内容属于本学科的前沿,但也是热点问题,因此这部分我们在教学中忽略理论推导,重点强调实际操作,在PPT课件中增加仿真实例的讲解;并在课下布置相应的上机操作习题,配合上机实践课程,锻炼学生的动手能力,同时也引导学生去关注这些前沿,从而培养他们的科研素养。
为了体现该门课的教学特点,我们在考核方式上,采取考试与报告相结合的方式,其中理论部分我们采取闭卷考试,占总考评分数的40%;实践部分采取上机技术报告考核,内容为上机实践课程布置的大作业,给出详实的算法流程图和仿真结果与分析,占总考评分数的40%;出勤率占总考评分数的20%。
3.2科研素养的培养与实践能力的提高
科研素养的最核心部分,就是一个人对待科研情感态度和价值观,科研素养的培养不仅使学生获得知识和技能,更重要的是使其获得科学思想、科学精神和科学方法的熏陶和培养。正如温总理说的那样:“教是为了不教,学是为了会学”,当学生将课本内容遗忘后,遗留下来的东西即是他们所具备的科研素养。因此,在教学中,我们的宗旨也是提高学生的科研素养,量子计算智能导论是一门理论和实践紧密结合的学科,该学科的发展日新月异,在信息处理领域的关注度也越来越高。在教学实践中,我们采用了上机实践和技术报告相结合的教学方式。掌握各种量子计算智能方法的原理和流程是这门课程教学的首要任务,因此学生结合各自研究方向实现量子智能算法在实际科研任务中的优化问题求解。在上机实践中,学生不仅要掌握该智能算法的流程而且重点关注学生对
自己科研任务的建模,学会系统分析问题,建立合理的数学模型,并给出理论分析。上机实践验收中,我们不但考察其结果展示,更增加了上机实践的技术报告,用来分析模型建立的合理性,从而培养学生对待科研问题的分析素养和建模素养。在技术报告中,我们要求学生给出几种可供参考的建模模型,并分析各自的优势,和选择这一解决方案的依据。由于量子计算智能导论是面向研究生开设的课程,在教学中,我们更佳关注其分析问题的能力,和解决问题的合理性的思考能力,从而培养学生的科研素养。
4结语
把教学当做一门艺术,是我们作为高校老师毕生追求的目标,如何做到重点讲透,难点讲通,要点讲清,这也是我们多年教学中一直关注的关键点。我们在教学中反对“灌输式”,强调“启发式”,以实际应用先导教学是非常可取的,也收到了良好的效果。量子计算智能导论是一门综合型交叉学科,且面向研究生开设,因此在教学实践中,我们十分重视学生科研素养的培养。通过上机实践和技术报告的形式引导学生积极动手,积极思考。希望这些教学中的点滴供同行们交流探讨。
参考文献:
[1] 焦李成,刘芳,缑水平,等. 智能数据挖掘与知识发现[M]. 西安:西安电子科技大学出版社,2006.
[2] 田新华. 跟踪国际学术前沿迎接量子信息时代:《量子计算与量子优化算法》评介[J]. 科技导报,2010,28(6):122.
[3]Michael A. Nielsen ,Isaac L. Chuang. Quantum Computation and Quantum Information [M]. 北京:高等教育出版社,2003.
[4] 李士勇,李盼池. 量子计算与量子优化算法[M]. 哈尔滨:哈尔滨工业大学出版社,2009.
[5] 蔡自兴,徐光v. 人工智能及其应用:研究生用书[M]. 3版. 北京:清华大学出版社,2004.
Exploration on Introduction to Quantum Computational Intelligence
LI Yangyang, SHANG Ronghua, JIAO Licheng
量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。
一、在材料科学中的应用
(一)在建筑材料方面的应用
水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。
钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。
将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。
(二)在金属及合金材料方面的应用
过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。
量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。
二、在能源研究中的应用
(一)在煤裂解的反应机理和动力学性质方面的应用
煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。
量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。
(二)在锂离子电池研究中的应用
锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。
锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。
随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。
三、在生物大分子体系研究中的应用
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。
参考文献:
[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994
[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12
[3]李北星,程新.建筑材料学报,1999,2(2):147
[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973
[5]程新,陈亚明.山东建材学院学报,1994,8(2):1
[6]闵新民.化学学报,1992,50(5):449
[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
虽然中国高性能计算已经取得了里程碑性的成绩,但是科研工作者的脚步不会停止。他们已经在思考未来的发展方向在哪里,并将目光瞄向了“天然的超级计算机”―量子计算机。
“杞人忧天”的物理学家们与量子计算机的诞生
量子计算机的诞生和著名的摩尔定律有关,还和“杞人忧天”的物理学家们有关。
众所周知,摩尔定律的技术基础是不断提高电子芯片的集成度(单位芯片的晶体管数)。集成度不断提高,速度就不断加快,我们的手机、电脑就能不断更新换代。
20世纪80年代,摩尔定律很贴切地反映了信息技术行业的发展,但“杞人忧天”的物理学家们却提出了一个“大煞风景”的问题: 摩尔定律有没有终结的时候?
之所以提出这个问题,是因为摩尔定律的技术基础天然地受到两个主要物理限制。
一是巨大的能耗,芯片有被烧坏的危险。芯片发热主要是因为计算机门操作时,其中不可逆门操作会丢失比特。物理学家计算出每丢失一个比特所产生的热量,操作速度越快,单位时间内产生的热量就越多,算机温度必然迅速上升,这时必须消耗大量能量来散热,否则芯片将被烧坏。
二是为了提高集成度,晶体管越做越小,当小到只有一个电子时,量子效应就会出现。此时电子将不再受欧姆定律管辖,由于它有隧道效应,本来无法穿过的壁垒也穿过去了,所以量子效应会阻碍信息技术继续按照摩尔定律发展。
所谓隧道效应,即由微观粒子波动性所确定的量子效应,又称势垒贯穿。它在本质上是量子跃迁,粒子迅速穿越势垒。在势垒一边平动的粒子,当动能小于势垒高度时,按照经典力学的说法,粒子是不可能越过势垒的;而对于微观粒子,量子力学却证明它仍有一定的概率贯穿势垒,实际上也的确如此。
这两个限制就是物理学家们预言摩尔定律会终结的理由所在。
虽然这个预言在当时没有任何影响力,但“杞人忧天”的物理学家们并不“死心”,继续研究,提出了第二个问题:如果摩尔定律终结,在后摩尔时代,提高运算速度的途径是什么?
这就导致了量子计算概念的诞生。
量子计算所遵从的薛定谔方程是可逆的,不会出现非可逆操作,所以耗能很小;而量子效应正是提高量子计算并行运算能力的物理基础。
甲之砒霜,乙之蜜糖。它们对于电子计算机来说是障碍的量子效应,对于量子计算机来说,反而成了资源。
量子计算的概念最早是1982年由美国物理学家费曼提出的。1985年,英国物理学家又提出了“量子图灵机”的概念,之后许多物理学家将“量子图灵机”等效为量子的电子线路模型,并开始付诸实践。但当年这些概念的提出都没有动摇摩尔定律在信息技术领域的地位,因为在相当长的时间内,摩尔定律依然在支撑着电子计算机的运算速度的飞速提高。
直到今年,美国政府宣布,摩尔定律终结了。微电子未来的发展是低能耗、专用这两个方向,而不再是追求速度。
由此可见,基础研究可能在当时看不到有什么实际价值,但未来却会发挥出巨大作用。
量子计算机虽然好,研制起来却非常难
量子计算机和电子计算机一样,其功用在于计算具体数学问题。不同的是,电子计算机所用的电子存储器在某个时间只能存一个数据,它是确定的,操作一次就把一个比特(bit,存储器最小单元)变成另一个比特,实行串行运算模式;而量子计算机利用量子性质,一个量子比特可以同时存储两个数值,N个量子比特可以同时存储2的N次方数据,操作一次会将这个2的N次方数据变成另外一个2的N次方数据,以此类推,运行模式为一个CPU的并行运算模式,运行操作能力指数上升,这是量子计算机来自量子性的优点。量子计算本来就是并行运算,所以说量子计算机天然就是“超级计算机”。
要想研制量子计算机,除了要研制芯片、控制系统、测量装置等硬件外,还需要研制与之相关的软件,包括编程、算法、量子计算机的体系结构等。
一台量子计算机运行时,数据输入后,被编制成量子体系的初始状态,按照量子计算机欲计算的函数,运用相应的量子算法和编程,编制成用于操作量子芯片中量子比特幺正操作变换,将量子计算机的初态变成末态,最后对末态实施量子测量,读出运算的结果。
一台有N个量子比特的量子计算机,要保证能够实施一个量子比特的任意操作和任意两个量子比特的受控非操作,才能进行由这两个普适门操作的组合所构成的幺正操作,完成量子计算机的运算任务。这是量子芯片的基本要求。如果要超越现有电子计算水平,需要多于1000个量子比特构成的芯片。目前,这还无法实现。这种基于“量子图灵机”的标准量子计算是量子计算机研制的主流。
除此以外,还有其他量子计算模型,如单向量子计算、分布式量子计算,但其研制的困难程度并没有减小。另外,还有拓扑量子计算、绝热量子计算等。
由于对硬件和软件的全新要求,量子计算机的所有方面都需要重新进行研究,这就意味着量子计算是非常重要的交叉学科,是需要不同领域的人共同来做才能做成的复杂工程。
把量子计算机从“垃圾桶”捡回来的量子编码与容错编码
实现量子计算最困难的地方在于,这种宏观量子系统是非常脆弱的,周围的环境都会破坏量子相干性(消相干),一旦量子特性被破坏,将导致量子计算机并行运算能力基础消失,变成经典的串行运算。
所以,早期许多科学家认为量子计算机只是纸上谈兵,不可能被制造出来。直到后来,科学家发明了量子编码。
量子编码的发现等于把量子计算机从“垃圾桶”里又捡回来了。
采用起码5个量子比特编码成1个逻辑比特,可以纠正消相干引起的所有错误。
不仅如此,为了避免在操作中的错误,使其能够及时纠错,科学家又研究容错编码,在所有量子操作都可能出错的情况下,它仍然能够将整个系统纠回理想的状态。这是非常关键的。
什么条件下能容错呢?这里有个容错阈值定理。每次操作,出错率要低于某个阈值,如果大于这个阈值,则无法容错。
这个阈值具体是多大呢?
这与计算机结构有关,考虑到量子计算的实际构型问题,在一维或准一维的构型中,容错的阈值为10^-5,在二维情况(采用表面码来编码比特)中,阈值为10^-2。
目前,英国Lucas团队的离子阱模型、美国Martinis团队的超导模型在单、双比特下操作精度已达到这个阈值。
所以,我们的目标就是研制大规模具有容错能力的通用量子计算机。
量子计算机的“量子芯”
量子芯片的研究已经从早期对各种可能的物理系统的广泛研究,逐步聚焦到了少数物理系统。
20世纪90年代时,美国不知道什么样的物理体系可以做成量子芯片,摸索了多年之后,发现许多体系根本不可能最终做成量子计算机,所以他们转而重点支持固态系统。
固态系统的优点是易于集成(能够升级量子比特数目),但缺点是容错性不好,固态系统的消相干特别严重,相干时间很短,操控误差大。
2004年以来,世界上许多著名的研究机构,如美国哈佛大学、麻省理工学院、普林斯顿大学,日本东京大学,荷兰Delft大学等都做了很大的努力,在半导体量子点作为未来量子芯片的研究方面取得了一系列重大进展。最近几年,半导体量子芯片的相干时间已经提高到200微秒。
国际上,在自旋量子比特研究方面,于2012年做到两个比特之后,一直到2015年,还是停留在四个量子点编码的两个自旋量子比特研究上,实现了两个比特的CNOT(受控非)。
虽然国际同行关于电荷量子比特的研究比我们早,但是至今也只做到四个量子点编码的两个比特。我们研究组在电荷量子比特上的研究,2010年左右制备单个量子点,2011年实现双量子点,2012~2013年实现两个量子点编码的单量子比特, 2014~2015年实现四量子点编码的两个电荷量子比特。目前,已研制成六个量子点编码为三个量子比特,并实现了三个比特量子门操作,已经达到国际领先水平。
超导量子芯片要比半导体量子芯片发展得更快。
近几年,科学家使用各种方法把超导的相干时间尽可能拉长,到现在已达到了100多微秒。这花了13年的基础研究,相干时间比原来提高了5万倍。
超导量子计算在某些指标上有更好的表现,比如:
1.量子退相干时间超过0.1ms,高于逻辑门操作时间1000倍以上,接近可实用化的下限。
2.单比特和两比特门运算的保真度分别达到99.94%和99.4%,达到量子计算理论的容错率阈值要求。
3.已经实现9个量子比特的可控耦合。
4.在量子非破坏性测量中,达到单发测量的精度。
5.在量子存储方面,实现超高品质因子谐振腔。
美国从90年代到现在,在基础研究阶段超导领域的突破已经引起了企业的重视。美国所有重大的科技公司,包括微软、苹果、谷歌都在量子计算机研制领域投入了巨大的力量,尽最大的努力来争夺量子计算机这块“巨大的蛋糕”!
其中,最典型的就是谷歌在量子计算机领域的布局。它从加州大学圣芭芭拉分校高薪引进国际上超导芯片做得最好的J. Matinis团队(23人),从事量子人工智能方面的研究。
他们制定了一个目标―明年做到50个量子比特。定这个目标是因为,如果能做49个量子比特的话,在大数据处理等方面,就远远超过了电子计算机所有可能的能力。
整体来看,量子计算现在正处于“从晶体管向集成电路过渡阶段”。
尚未研制成功的量子计算机,我们仍有机会!
很多人都问,实际可用的量子计算机究竟什么时候能做出来?
中国和欧洲估计需要15年,美国可能会更快,美国目前的发展确实也更快。
量子计算是量子信息领域的主流研究方向,从90年代开始,美国就在这方面花大力气进行研究,在硬件、软件、材料各个方面投入巨大,并且它有完整的对量子计算研究的整体策划,不仅各个指标超越世界其他国家,各个大公司的积极性也被调动了起来。
美国的量子计算机研制之路分三个阶段:第一阶段,由政府主导,主要做基础研究;第二阶段,企业开始投入;第三阶段,加快产出速度。
量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。
一、 在材料科学中的应用
(一)在建筑材料方面的应用
水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。
钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1 ,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca 钙矾石、含Ba 钙矾石和含Sr 钙矾石的Al -O键级基本一致,而含Sr 钙矾石、含Ba 钙矾石中的Sr,Ba 原子键级与Sr-O,Ba -O共价键级都分别大于含Ca 钙矾石中的Ca 原子键级和Ca -O共价键级,由此认为,含Sr 、Ba 硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。
将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。
(二) 在金属及合金材料方面的应用
过渡金属(Fe 、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。
量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。
二、在能源研究中的应用
(一)在煤裂解的反应机理和动力学性质方面的应用
煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。
量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子, 如低级芳香烃作为碳/ 碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian 98 程序中的半经验方法UAM1 、在UHF/ 3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3L YP/ 3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。 转贴于
(二)在锂离子电池研究中的应用
锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。
锂离子电池又称摇椅型电池,电池的工作过程实际上是Li + 离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago 等[8] 用半经验分子轨道法以C32 H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago 等[9 ] 用abinitio 分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li - C 和具有共价性的Li - Li 的混合物。Satoru 等[10] 用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。
随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。
三、 在生物大分子体系研究中的应用
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘, 进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。
参考文献:
[1]程新. [ 学位论文] .武汉:武汉工业大学材料科学与工程学院,1994
[2]程新,冯修吉.武汉工业大学学报,1995,17 (4) :12
[3]李北星,程新.建筑材料学报,1999,2(2):147
[4]闵新民,沈尔忠, 江元生等.化学学报,1990,48(10): 973
[5]程新,陈亚明.山东建材学院学报,1994,8(2):1
[6]闵新民.化学学报,1992,50(5):449
[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1
[8]Ago H ,Nagata K, Yoshizaw A K, et al. Bull.Chem. Soc. Jpn.,1997,70:1717
这两位物理学家用突破性的实验方法,使单个粒子动态系统可被测量和操作。他们独立发明并优化了测量与操作单个粒子的实验方法,而实验中还能保持单个粒子的量子物理性质,这一物理学研究的突破在之前是不可想象的。
通过巧妙的实验方法,阿罗什和瓦恩兰的研究团队都成功地测量和控制了非常脆弱的量子态,这些新的实验方法使他们能够检测、控制和计算粒子。
单个粒子极难俘获
在基本粒子所处微观层面上,单个粒子一方面难以与周围环境分离,另一方面是一旦与周围环境相互作用,随即失去量子特性;另外,如果两个粒子相互作用,即使两者分离,互动作用会继续存在。瑞典皇家科学院也认为,单个粒子很难从周围环境中隔离观测,一旦它们与外界发生交互,通常会失去神秘的量子性质,从而无法观测到量子物理学中很多奇特现象。
相当长一段时期内,量子物理学理论所预言的诸多神奇现象,难以在实验室环境下直接“实地”观测和验证,只存在于研究人员的“思维实验”中。
评委会认定,两位诺贝尔获奖者“开启量子物理学实验新时代的大门,显示不必损毁量子粒子个体,就可以直接观测它们”。
两位获奖者的实验方法有很多相似之处,瓦恩兰困住带电原子或离子,通过光或光子来控制和测量它们;而阿罗什却让原子通过一个陷阱,从而控制和测量被困光子和光的粒子。
微观与宏观世界有何不同
物理世界分成宏观和微观两个层面,宏观是人眼能见到,能够操纵的现实世界,而微观层面则由极小无比的量子构成,在微观世界中的量子,有着宏观世界无法想象的特性。
对此,物理学界有一个很著名的说法:“薛定谔的猫”,是关于量子理论的一个理想实验的体论。其中,猫相当于微观世界里的量子,可以同时存在于两个不同的状态中,如“死”与“活”,只有进入宏观世界时,这种状态才会被打破。
在量子世界中,量子可以同时处于A地和B地,但在宏观世界中,一个人无法同时存在于左边的屋子和右边的屋子里。
目前,获奖的物理学家就在挑战这种极限,试图在微观和宏观之间挂钩,物理学家们的想法是,把微观的系统尽可能做大,先控制一个离子的叠加状态,然后控制几个,再几十个,希望有朝一日,能够足够大到进入宏观层面。
如何在微观世界“捕粒子”
法国与美国的这两位科学家一同得奖,是因为他们有一个共同性,即能够操纵微观世界里的单个量子。戴维·瓦恩兰所做的工作,是用激光冷却带电的离子,令其处于温度极低的状态,能量也降到最低,这样,原先能量和状态极其不稳定的离子就被“囚禁”了,然后就可以用激光操纵这些单个离子的内部状态。
戴维·瓦恩兰做的系统称为“离子井”,就好像把离子陷在井里一样,目前他在这项研究取得的成果,处于世界最高水平。
而获奖的法国科学家塞尔日·阿罗什则采用了另一种方式,即微波为主,激光为辅的方式来操纵单个原子的量子状态,其系统被称为“微波枪”。
阿罗什与瓦恩兰的研究成果能够检测、控制和计算粒子。以前,粒子被测量和操作只有理论上能够办到。毕竟单个粒子很难从周围环境中隔离观测,一旦它们与外界发生交互,通常会失去神秘的量子性质,使得量子物理学中很多奇特现象无法观测到。
两位获奖者通过实验,能够直接观察单个粒子却不对其产生破坏,开辟了量子物理学实验领域的新时代。
量子光学研究向应用发展
量子光学领域自上世纪80年代之后开始迅速发展。塞尔日·阿罗什和戴维·瓦恩兰两位获奖者在这一领域均研究多年,两位获奖者首次让这个领域的研究向应用层面发展,让新一代的超级量子计算机的诞生有了初步的可能。
科学界认为,下一代计算机将是建立在量子层面的,它将比传统的计算机数据容量更大,数据处理速度更快。未来的量子计算机,将彻底改变我们的日常生活,实现对当今的经典计算机“史无前例的超越”。
这些研究也在极端精准的光子钟领域有着重大贡献。光子钟是世界上最精准的钟,比目前的最精准的铯原子钟还要精确好几百倍。这种精密测量技术将对未来的“时间”概念提出新的标准。
这些研究成果还将在航空航天、GPS导航和军事国防等领域产生深远影响。现今,我国的量子光学在某些方面处于世界领先水平,如实现了量子层面较远距离的“瞬间转移”,但采用的技术总体上还较为简单,不过有些大学已经开始引入“离子井”这样复杂高尖端的系统。(摘编自《新京报》)
档案:
塞尔日·阿罗什是法国人,现居巴黎,1944年9月11日出生于摩洛哥,1971年他从法国第六大学获得博士学位,现为法兰西学院教授兼量子物理学会主席,同时他也是法国、欧洲和美国物理学会会员。阿罗什的获奖,使法国获得诺贝尔奖的科学家达到了55人。阿罗什主要研究领域是量子光学和量子信息科学。