你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 集成电路制造与工艺

集成电路制造与工艺范文

发布时间:2024-01-14 15:51:13

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇集成电路制造与工艺范例,将为您的写作提供有力的支持和灵感!

集成电路制造与工艺

篇1

中图分类号:G642.4 文献标识码:A 文章编号:1002-7661(2015)09-0001.01

随着经济和信息技术的发展,信息技术已经渗透到了国民经济的各个领域。信息技术的基础是微电子技术,集成电路作为微电子技术的核心,是整个信息产业和信息社会最根本的技术基础,也是一个国家参与国际化政治、经济竞争的战略产业。同时我国集成电路发展水平离欧美日等发达国家有很大的差距,尤其是在自主知识产权的集成电路产品方面。要扭转这一局面,高素质的专业技术人才是关键,要改变这种状况,应从本科教育做起。《集成电路工艺》是微电子学专业重要的必修专业课,授课教师必须在充分熟悉半导体物理和半导体集成电路等课程的基础上,结合教学实际中存在的问题,优化整合教学内容,丰富教学手段,探索教学改革措施,培养学生的学习兴趣,提高《集成电路工艺》课程的教学质量。

一、教学内容

微电子科技是高速发展的产业推动型学科,微电子产品制造技术更是日新月异,随着工艺技术的不断发展,《集成电路工艺》课程的教学内容需要不断更新。微电子专业前期开设了半导体物理、半导体器件物理、电路分析基础、数字逻辑电路等电路课程,因而在《集成电路工艺》课程内容设置时将着重培养学生的制造工艺能力,减少器件设计和原理内容的比重,着重讲解制造工艺的内容。

根据教学大纲,《集成电路工艺》课程的教学内容可分五个部分:第一部分介绍硅衬底,主要单晶硅锭的拉制及硅片的制造工艺及相关理论;第二部分氧化与掺杂,介绍热氧化生长二氧化硅工艺,以及通过热扩散和离子注入与退火相结合的在硅片特定区域的定量掺杂工艺;第三部分薄膜制备,介绍化学气相淀积和物理气相淀积两类薄膜制备方法及工艺流程;第四部分介绍光刻工艺,现代光刻技术和刻蚀工艺;第五部分介绍工艺集成与封装测试工艺。课程共设置48学时,选用王蔚等人主编,电子工业出版社出版《集成电路制造技术――工艺与原理》(修订版)一书作为教学教材。在授课过程中,根据重庆邮电大学微电子专业实际情况酌情删减及增加相关知识,重点培养学生对硅芯片制造基本单项工艺的实际动手能力,激发学生对集成电路工艺的兴趣。

二、教学方法和教学手段

《集成电路工艺》这门课程本身强调实验基础,需要结合实验设备,而实验流程不够直观,一味采取灌输式教学,学生势必感到枯燥,甚至厌烦。长期以往,学习积极性必然受挫,学习效果自然大打折扣。采用有效的教学方法并结合先进的教学手段,不仅有利于培养学生获取知识的能动性,而且有利于培养学生独立发现问题、分析问题以及解决问题的能力,实现以教为中心到以学为中心的转变,突出学生在学习过程中的主动性,从而取得好的教学成果。基于《集成电路工艺》课程的特点,在教学手段上以多媒体教学为主,传统黑板板书为辅,同时在课堂上以动画、视频的形式展现半导体集成基本单项工艺和器件工艺制作过程,从而达到提高课堂教学质量的目的。

篇2

自20世纪中期第一个集成电路研发成功之后,我们就进入了微电子技术时代,在半个多世纪的发展中,微电子技术被广泛应用在工业生产和国防军事领域,目前更是在商业领域中获得极大的应用和发展。并且在长期的发展进程中,微电子技术一直是以集成电路为主要的核心代表,也逐渐形成了一定的发展规律,最典型的莫过于摩尔定律。当然,集成电路的应用领域不断扩展也进一步刺激了微电子技术的快速发展。

在新事物的发展进程中,其发展规律和发展趋势势必要与需求相结合,并受需求的影响。微电子技术也不例外。在其发展进程中,微电子制造技术无疑是微电子技术最大的“客户”,正是因为微电子制造技术提出了各种应用需要,才使得微电子技术得到了快速发展。也可以说,微电子制造技术正是微电子设计技术与产品应用技术的“中介”,是将微电子技术设计猜想转化为实物的“桥梁”。但值得一提的是,这个实物转化的过程也会对微电子设计技术的发展产生影响,并直接决定着微电子器件的造价与功能作用。为此我们可以认为,在微电子技术的发展中,微电子制造技术是最重要的核心技术。

2、微电子制造技术的发展与制造工艺

在半个多世纪的发展中,微电子制造技术的应用主要体现在集成电路与分立器件的生产工艺上。集成电路和分立器件在制造工艺上并无太大区别,仅仅只是两者的功能与结构不一样。但是受电子工业发展趋势的影响,目前集成电路的应用范围相对更广,所以分立器件在微电子制造技术应用中所占的比重逐渐减少,集成电路逐渐成为其核心技术。

在集成电路的制造过程中,微电子制造技术主要被应用在材料、工艺设备以及工艺技术三方面上,并且随着产业化的发展,这三方面逐渐出现了产业分工现象。发展到今天,集成电路的制造产业分为了材料制备、前端工艺和后端工艺三大产业,这些产业相互独立运作,各自根据市场需求不断发展。

集成电路的种类有多种,相关的工艺也有差异,但各类集成电路制造的基本路径大致相同。材料制造包括各种圆片的制备,涉及从单晶拉制到外延的多个工艺,材料制造的主要工艺有单晶拉制、单晶切片、研磨和抛光、外延生长等几个环节,但并不是所有的材料流程都从单晶拉制走到外延,比如砷化稼的全离子注入工艺所需要的是抛光好的单晶片(衬底片),不需要外延。

前端工艺总体上可以概括为图形制备、图形转移和注入(扩散)形成特征区等三大步,其中各步之间互有交替。图形制备以光刻工艺为主,目前最具代表性的光刻工艺是45nm工艺,借助于浸液式扫描光刻技术。图形转移的王要内容是将光刻形成的图形转入到其他的功能材料中,如各种介质、体硅和金属膜中,以实现集成元器件的功能结构。注入或扩散的主要目的是通过外在杂质的进入,在硅片特定区域形成不同载流子类型或不同浓度分布的区域和结构。后端工艺则以芯片的封装工艺为主要代表。

3、微电子制造技术的发展趋势和主要表现形式

总体上,推动微电子制造技术发展的动力来自于应用需求和其自身的发展需要。作为微电子器件服务的主要对象,信息技术的发展需求是微电子制造技术发展的主要动力源泉。信息的生成、存储、传输和处理等在超高速、大容量等技术要求和成本降低要求下,一代接一代地发展,从而也推动微电子制造技术在加工精度、加工能力等方面相应发展。

从历史上看,第一代的硅材料到第二代的砷化稼材料以及第二代的砷化稼到以氮化稼为代表的第三代半导体材料的发展,大都是因为后一代的材料在某些方面具备更为优越的性能。如砷化稼在高频和超高频方面超越硅材料,氮化稼在高频大功率方面超越砷化稼。从长远看,以材料的优越特性带动微电子器件及其制造技术的提升和跃进仍然是微电子技术发展的主要表现形式。较为典型的例子是氮化稼材料的突破直接带来蓝光和白光高亮LED的诞生,以及超高频超大功率微电子器件的发展。

微电子制造技术发展的第二个主要表现形式是自身能力的提升,其中主要的贡献来自于微电子制造设备技术的迅速发展和相关配套材料技术的同步提升。光刻技术的发展最能体现出微电子制造技术发展的这一特点。光刻技术从上世纪中期的毫米级一直发展到今天的32nm水平,光刻设备、掩模制造设备和光刻胶材料技术的同步发展是决定性因素。这方面技术的提升直接促使未来微电子制造水平的提升,主要表现在:一是圆片的大直径化,圆片将从目前的300mm(12英寸)发展到未来的450mm(18英寸);二是特征尺寸将从目前主流技术的45nm发展到2015年的25nm。

微电子制造技术发展的第三个表现形式是多种制造技术的融合。这种趋势在近年来突出表现在锗硅技术和硅集成电路制造技术的兼容以及MEMS技术与硅基集成电路技术的融合。由此可以预见的是多种技术的异类集成将在某一应用领域集中出现,MEMS可能首当其冲,比如M压MS与MOS器件集成在同一芯片上。

4、结束语

综上所述,在科技的推动和电子科技市场需求的影响下,微电子技术得到了快速的发展,直接带动了以集成电路为核心的微电子制造技术水平的提升。现如今微电子制造技术已经能够实现纳米级的集成电路产品制造,为电子产片的更新换代提供了良好的材料支持。以当前科技的发展趋势来看,微电子制造技术在未来的电子器件加工中还将会有更大的发展空间,还需要我们加强研究,不断提高微电子制造技术水平。■

参考文献

[1]宋奇.浅谈微电子技术的应用[J].数字技术与应用.2011(03)

篇3

一、引言

微电子技术与国家科技发展密切相关,是21世纪我国重点发展的技术方向。在新形势下,无论军用还是民用方面都对微电子方向人才有强烈需求。高校微电子专业是以培养能在微电子学领域内,从事半导体器件、集成电路设计、制造和相应的新产品、新技术、新工艺的研究和开发等方面工作的高级应用型科技人才为目标的。因此,要求学生不仅要具备坚实的理论基础,还需具备突出的专业能力和创新能力,满足行业的快速发展和社会需求。

目前我国微电子行业中,微电子工艺研究相对于器件和集成电路设计研究工作是滞后的,处于不平衡发展状态,为使行业发展更均衡,需要加强微电子工艺人才的培养。微电子工艺是微电子专业中非常重要的专业课,主要研究微电子器件与集成电路制造工艺原理与技术。微电子器件与集成电路尺寸都是在微米甚至纳米量级,导致在理论学习过程中,学生理解有一定的困难,因此需要通过开设微电子工艺实验课程加深和巩固知识内容,使学生更加直接地接触微电子行业核心技术,了解半导体器件、集成电路生产制造加工的技术方法,从而促进学生对微电子工艺等课程的学习。因此,微电子工艺实验教学可以有效地弥补理论教学的局限性和抽象性,促进学生对理论课的理解和提高学生的动手能力。

二、课程分析

微电子工艺课程要求掌握制造集成电路所涉及的外延、氧化、掺杂、光刻、刻蚀、化学气相淀积、物理气相淀积、金属化等技术的原理与方法,熟悉双极型和M0s集成电路的制造工艺流程,了解集成电路的新工艺和新技术。微电子技术的发展是遵循摩尔定律,快速发展变化的,虽然工程教育要求教学最新最前沿的技术,但微电子设备价格昂贵,运转与维护费用很高,任何高校都很难不断升级换代;而且集成电路制造技术的更新迭代主要是在掺杂技术、光刻技术、电极制造技术方面进行了技术改进,在其他方面还都是相似的,因此,在高校中单纯追求工艺先进的实验教学是不现实的。基于此,结合实际教学资源情况,建设主流、典型工艺技术的工艺实验线,并开展理论联系实践的实验教学是微电子工艺实验室建设的重点。通过实验使学生更牢固地掌握晶体管及简单Ic的整个工艺制造技术,学会测试晶体管重要参数,以及初步了解集成电路工艺制造过程。

黑龙江大学微电子工艺实验室已建立数十年,之前受到设备的限制,所开设的实验都是分立的,不能完全按工艺流程完成器件的制作,没有形成有机整体,学生缺乏对晶体管制作工艺流程的整体认识。经过不断发展和学校的大量投入,目前该实验室拥有一条微电子平面工艺线,主要的设备包括磁控溅射设备、电子束蒸发设备、CVD化学气相淀积系统、光刻机、离子刻蚀机、扩散炉、氧化炉、超声压焊机、烧结炉等。这些设备保证了微电子工艺实验能够按晶体管制作工艺流程顺序完成制作。同时实验室配备了测试环节所必须的显微镜、电阻率测试仪、探针测试台、半导体特性图示仪等检测仪器,通过实验能进一步加深学生对微电子工艺制造过程的了解。实践证明,以上实验内容对学生掌握知识和开拓视野起到十分重要的作用,效果显著。该实验室多年来一直开展本科生教学和本科生毕业设计、研究生毕业设计、各类创新实验项目等教学、科研工作。

三、实验教学的开展

为了达到理论实践相互支撑与关联,通过实验促进理论学习,笔者根据微电子专业特点,开展了微电子工艺实验的教学改革。在原有的微电子平面工艺实验的基础上,建立由实验内容的设置、多媒体工艺视频、实际操作的工艺实验、实验考核方法和参观学习五部分组成的教学方式,形成有效的实践教学,加强了学生对制造技术和工艺流程的整体的认识,培养了学生对半导体器件原理研究的兴趣,使学生对将来从事半导体工艺方面的研究充满信心。

(一)实验内容的设置

实验内容主要包括四部分:

1.教师提供给学生难易不同的器件结构(二极管、三极管、MOS管等),学生可以自主选择;

2.根据器件结构,计算机辅助软件设计器件制作的工艺流程;

3.通过实验室提供的仪器设备完成器件制作;

4.测试器件性能参数。

通过这样设置,既能掌握微电子工艺的基本理论,又能通过实验分析完善工艺参数,使学生完全参与其中。

(二)多媒体工艺视频

为了让学生对集成电路设计和微电子制造工艺有直观的认识。结合实际的实验教学过程,制作全程相关单项工艺技术、流程及设备操作视频演示资料,同时强调工艺制作过程中安全操作和注意事项,防止危险的发生。

(三)实际操作的工艺实验

工艺实验涵盖清洗、氧化、扩散、光刻、制版、蒸镀、烧结、压焊等主要工序,为学生亲自动手制作半导体器件和制造集成电路提供了一个完整的实验条件。学生根据所学的理论知识了解器件结构、确定工艺条件、按照流程完成器件的制作。保证每名学生都参与到器件制作过程中。同时每个单项工序时间和内容采取预约制,实现开放式实验教学。

(四)实验考核方法

在实验教学环节中,实验考核是重要的教学质量评价手段。实验着重对动手能力和综合分析问题的能力及创新能力进行考核。主要考核内容包括:

1.器件工艺设计:考核设计器件制作流程的合理性;

2.工艺实验:考核现场工艺操作是否规范,选用的工艺条件是否合理;

3.测试结果:考核制作器件的测试结果;

4.实验分析报告:考核分析问题和解决问题能力,并最终给出综合成绩。

(五)参观学习

篇4

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2016.01.047

The Research of Experimental Teaching on "Integrated Circuit

Process Foundation" in Independent College

WEN Yi, HU Yunfeng

(University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, Guangdong 528402)

Abstract Combining electronic science and technology applied talents training model in independence colleges, the experimental teaching was discussed on the "integrated circuit process foundation" course. The course was composed of simulation multimedia teaching system, basic semiconductor planar process experiment, process simulation software and school-enterprise cooperation. With the author's teaching practice, the enthusiasm of students was trying to effectively mobilized, and the development of students' learning ability and practical ability to train qualified electronic information applied talents was promoted.

Key words applied talents; integrated circuit process foundation; experimental teaching

0 引言

微电子技术和产业在国民经济中具有举足轻重的地位。高校的电子科学与技术专业以培养微电子学领域的高层次工程技术人才为目标,学生毕业后能从事电子器件、集成电路和集成系统的设计和制造,以及相关的新技术、新产品、新工艺的研制与开发等方面工作。

“集成电路工艺基础”是电子科学与技术专业的一门核心课程,讲授半导体器件和集成电路制造的单项工艺基本原理和整体工艺流程。本课程是电子科学与技术专业课程体系中的重要环节,也是学生知识结构的必要组成部分。通过本课程的学习,学生应该具备一定工艺分析、设计以及解决工艺问题的能力。

集成电路工艺实验作为“集成电路工艺基础”课程的课内实验,是电子科学与技术专业的专业课教学的重要组成部分,具有实践性很强、实践和理论结合紧密的特点。加强工艺实验教学对于培养高质量的集成电路专业人才十分必要。但是集成电路的制造设备价格昂贵,环境条件要求苛刻,限制了工艺实验教学在高校的开展。国内仅少数重点大学能够承受巨大的运营费用,拥有简化的集成电路工艺线或工艺试验线供科研、教学使用。而大多数学校只能依靠到研究所或Foundry厂进行参观式的实习来解决工艺实验问题,这对于学生实践能力的培养是远远不够的。

我院电子科学与技术专业成立于2003年,现每届招收本科生约120人,多年内为珠三角地区培养了大量专业人才。随着集成电路技术日新月异的发展,对从业人员的要求也不断升级,所以工艺实验教学也必须与时俱进。作为独立学院,如何结合自身实际地进行工艺实验室建设、采用多种方法手段开展工艺实验的教学,提高集成电路工艺课程的教学质量,是我们所面临的紧迫问题。本文以“集成电路工艺基础”实验教学实践为研究对象,针对独立学院学生理论基础较为薄弱,动手热情比较高的特点,就该课程教学内容和教学方式进行了探讨。

1 “集成电路工艺基础”的实验教学

“集成电路工艺基础”具有涉及知识面广,教学内容信息量大,综合性强,理论与实践结合紧密的特点,课程教学难度相对较大。同时独立学院相应配套的实验教学设备较为缺乏。为了提高学生对该课程的兴趣,取得更好的实验教学效果,让学生能将理论应用于实践,具有较强的集成电路生产实践和设计开发能力,笔者从如下几方面对实验教学进行了尝试。

1.1 工艺模拟多媒体教学系统

运用传统的教学方法,很难让学生理解抽象的器件结构和工艺流程并产生兴趣。我院购置了清华大学微电子所的集成电路工艺多媒体教学系统,帮助学生对集成电路工艺流程有一个全面生动的认识。该系统提供扩散、氧化和离子注入三项工艺设备的操作模拟,充分利用多媒体技术,将声光电等多种素材进行合理的处理,做到图文声像并茂,力争使抽象的知识形象化,获得直观、丰富、生动的教学效果。该系统涉及大量的集成电路制造实际场景与特殊细节,能较全面地展示Foundry厂的集成电路生产环境和工艺流程。内容丰富、身临其境的工艺模拟能大大提高学生的学习兴趣,帮助学生理解理论知识。

此外,在工艺课程的课堂教学过程中,尝试利用学生自学讨论作为辅助的形式。针对某些章节,老师课前提出问题,安排学生分组准备,自习上网收集最新的与集成电路工艺实验相关的资料,整理中、英文文献,制作内容生动的PPT在课堂上演示并展开讨论,最后归纳总结。这样既培养了学生利用网络进行自学和小组合作作学习的习惯,提高网上查找、整理资料的能力,也为老师的多媒体课件制作提供了素材,丰富了老师的教学内容。

1.2 基础的半导体平面工艺实验

学院一直非常重视电子科学与技术专业的建设问题,在实验室配置方面的资金投入力度比较大。在学院领导的大力支持下,近年来实验室购置了一批集成电路工艺实验设备和仪器,如光刻机、涂胶机、氧化反应室、磁控溅射设备、半导体特性测试系统和扫描电子显微镜等,为集成电路工艺实验教学的开展打下了良好的物质基础 。

在集成电路专业教学中,工艺实验是非常重要的环节;让学生进行实际操作,对于培养应用型人才也是非常必要的。通过调研考察兄弟院校的工艺实验开展情况,结合我院的实际情况和条件,确定了我院电子科学与技术专业的基础半导体平面工艺实验项目,如氧化(硅片热氧化实验)、扩散(硅片掺杂实验)、光刻(硅片上选择刻蚀窗口的实验)、淀积(PVD、CVD薄膜制备的实验)等。

这些设备和仪器,除了用于工艺课程实验教学外,平时还开放给本科生毕业设计、学生创新项目及研究生科研等。通过实际动手操作,使学生能将所学理论知识运用到实际中,既培养了学生的实际操作能力,又引导学生在实践中掌握分析问题、解决问题的科学方法,加深了对集成电路工艺技术和原理的理解。

1.3 工艺仿真软件

现代集成电路的发展离不开计算机技术的支持,所以要重视计算机仿真在课程中的作用。TCAD(Technology Computer Aided Design)产品是研究、设计与开发半导体器件和工艺所必需的先进工具。它可以准确地模拟研究所和Foundry厂里的集成电路工艺流程,对由该工艺流程制作出的半导体器件的性能进行仿真,也能设计与仿真太阳能电池、纳米器件等新型器件。

利用美国SILVACO公司的TCAD产品,笔者为工艺课程开设了课内仿真实验,实验项目包括薄膜电阻、二极管、NMOS等基本器件的设计和工艺流程仿真。通过ATHENA和ATLAS软件教学,指导学生仿真设计基本的半导体器件,模拟工艺流程,从而巩固所学理论知识,使学生将工艺和以前学过的半导体器件的内容融合起来。学生在计算机上通过软件进行仿真实验,既可以深入研究仿真的工艺流程细节,又可以弥补由于设备条件的制约带来的某些实验项目暂时无法开出的不足。

1.4 校企合作

培养应用型人才还必须结合校企合作。珠三角地区是微电子产业的聚集地,企业众多,行业发展前景好。加强校企联系,可以做到合作共赢,共同发展。通过组织学生到半导体生产测试企业参观实习,如深圳方正微电子、珠海南科、中山木林森LED等,让学生亲身体验半导体企业的生产过程,感受集成电路工厂的生产环境,了解本行业国内外发展的概况,从而弥补课堂教学的不足,激发学生学习热情,引导学生毕业后从事相关工作。目前,学院与这些半导体生产测试企业建立了良好的合作关系,每届毕业生都有进入上述企业工作的。他们在工作岗位上表现良好,获得用人单位的好评,既为企业输送了合格人才,也为往后学生的职业规划树立了榜样,拓展了学生的就业渠道。

2 结束语

经过笔者几年来的实践,在“集成电路工艺基础”课程的实验教学中,对教学内容和教学方式进行了改进,形式多样,互为补充,内容全面、新颖,注重学生实践技能的培养,对提高学生整体素质起到了积极作用,实现了教学质量的提高。当然,“集成电路工艺基础”课程的实验教学还有很大的改进空间,我们还需要在实践中不断地改革与探索,将其逐步趋于完善,使其在培养独立学院应用型人才的过程中发挥巨大的作用。

参考文献

[1] 王红航,张华斌,罗仁泽.“微电子工艺基础”教学的应用能力培养[J].电气电子教学学报,2009.31(2).

[2] 王蔚,田丽,付强.微电子工艺课/实验/生产实习的整合研究[J].中国现代教育装备,2012.23.

篇5

中图分类号:TN405文献标识码:A文章编号:1674-098X(2019)09(c)-0070-02

微电子技术作为当今工业信息社会发展最快、最重要的技术之一,是电子信息产业的“心脏”。而微电子技术的重要标志,正是半导体集成电路技术的飞速进步和发展。多年来,随着我国对微电子技术的重视和积极布局投入,结合社会良好的创新发展氛围,我国的微电子技术得到了迅速的发展和进步。目前我国自主制造的集成芯片在射频通信、雷达电子、数字多媒体处理器中已经得到了广泛应用。但总体来看,我国的核心集成电路基础元器件的研发水平、制造能力等还和发展较早的发达国家存在一定差距,唯有继续积极布局,完善创新体系,才能逐渐与世界先进水平接轨。集成电路技术,主要包括电路设计、制造工艺、封装检测几大技术体系,随着集成电路产业的深入发展,制造和封装技术已经成为微电子产业的重要支柱。本文将对微电子技术的制造和封装技术的发展和应用进行简要说明与研究。

1微电子制造技术

集成电路制造工艺主要可以分为材料工艺和半导体工艺。材料工艺包括各种圆片的制备,包括从单晶拉制到外延的多个工艺,传统Si晶圆制造的主要工艺包括单晶拉制、切片、研磨抛光、外延生长等工序,而GaAs的全离子注入工艺所需要的是抛光好的单晶片(衬底片),不需要外延。半导体工艺总体可以概括为图形制备、图形转移和扩散形成特征区等三大步。图形制备是以光刻工艺为主,目前最具代表性的光刻工艺制程是28nm。图形转移是将光刻形成的图形转移到电路载体,如介质、半导体和金属中,以实现集成电路的电气功能。注入或扩散是通过引入外来杂质,在半导体某些区域实现有效掺杂,形成不同载流子类型或不同浓度分布的结构和功能。

从历史进程来看,硅和锗是最早被应用于集成电路制造的半导体材料。随着半导体材料和微电子制造技术的发展,以GaAs为代表的第二代半导体材料逐渐被广泛应用。直到现在第三代半导体材料GaN和SiC已经凭借其大功率、宽禁带等特性在迅速占据市场。在这三代半导体材料的迭展中,其特征尺寸逐渐由毫米缩小到当前的14纳米、7纳米水平,而在当前微电子制造技术的持续发展中,材料和设备正在成为制造能力提升的决定性因素,包括光刻设备、掩模制造技术设备和光刻胶材料技术等。材料的研发能力、设备制造和应用能力的提升直接决定着当下和未来微电子制造水平的提升。

总之,推动微电子制造技术发展的动力来自于应用设计需求和其自身的发展需要。从长远看,新材料的出现带来的优越特性,是帶动微电子器件及其制造技术的提升的重要表现形式。较为典型的例子是GaN半导体材料及其器件的技术突破直接推动了蓝光和白光LED的诞生,以及高频大功率器件的迅速发展。作为微电子器件服务媒介,信息技术的发展需求依然是微电子制造技术发展的重要动力。信号的生成、存储、传输和处理等在超高速、高频、大容量等技术要求下飞速发展,也会持续推动微电子制造技术在加工技术、制造能力等方面相应提升。微电子制造技术发展的第二个主要表现形式是自身能力的提升,其主要来自于制造设备技术、应用能力的迅速发展和相应配套服务材料技术的同步提升。

2微电子封装技术

微电子封装的技术种类很多,按照封装引脚结构不同可以分为通孔插装式和表面安装式。通常来说集成电路封装技术的发展可以分为三个阶段:第一阶段,20世纪70年代,当时微电子封装技术主要是以引脚插装型封装技术为主。第二阶段,20世纪80年代,SMT技术逐渐走向成熟,表面安装技术由于其可适应更短引脚节距和高密度电路的特点逐渐取代引脚直插技术。第三阶段,20世纪90年代,随着电子技术的不断发展以及集成电路技术的不断进步,对于微电子封装技术的要求越来越高,促使出现了BGA、CSP、MCM等多种封装技术。使引脚间距从过去的1.27mm、0.635mm到目前的0.5mm、0.4mm、0.3mm发展,封装密度也越来越大,CSP的芯片尺寸与封装尺寸之比已经小于1.2。

目前,元器件尺寸已日益逼近极限。由于受制于设备能力、PCB设计和加工能力等限制,元器件尺寸已经很难继续缩小。但是在當今信息时代,依然在持续对电子设备提出更轻薄、高性能的需求。在此动力下,依然推动着微电子封装继续向MCM、SIP、SOC封装继续发展,实现IC封装和板级电路组装这两个封装层次的技术深度融合将是目前发展的重点方向。

芯片级互联技术是电子封装技术的核心和关键。无论是芯片装连还是电子封装技术都是在基板上进行操作,因此这些都能够运用到互联的微技术,微互联技术是封装技术的核心,现在的微互联技术主要包含以下几个:引线键合技术,是把半导体芯片与电子封装的外部框架运用一定的手段连接起来的技术,工艺成熟,易于返工,依然是目前应用最广泛的芯片互连技术;载体自动焊技术,载体自动焊技术可通过带盘连续作业,用聚合物做成相应的引脚,将相应的晶片放入对应的键合区,最后通过热电极把全部的引线有序地键合到位置,载体自动焊技术的主要优点是组装密度高,可互连器件的引脚多,间距小,但设备投资大、生产线长、不易返工等特性限制了该技术的应用。倒装芯片技术是把芯片直接倒置放在相应的基片上,焊区能够放在芯片的任意地方,可大幅提高I/O数量,提高封装密度。但凸点制作技术要求高、不能返工等问题也依然有待继续研究,芯片倒装技术是目前和未来最值得研究和应用的芯片互连技术。

篇6

关键词: 电子科学与技术专业;集成电路工艺学课程;教学改革

Key words: electronic science and technology major; IC technology courses; teaching reform

中图分类号:G42文献标识码:A 文章编号:1006-4311(2011)13-0223-01

1 信息时代需要优秀的电子科学与技术专业的人才

电子科学与技术专业具有多学科渗透、应用性强、主要服务于IC行业等鲜明特点。能够从事电子科学与技术领域的研究、设计、开发、应用和管理的高级人才。目前国内开设电子科学与技术专业的学校有:天津大学、电子科技大学、西安电子科技大学、北京理工大学、北京航空航天大学等几十所学校。通过本课程的学习应使学生对集成电路工艺学中的基本概念、基本技术和基本器件有比较全面、系统的认识,培养学生分析和解决工程技术问题的能力,为进一步学习相关专业课打下基础。主要研究氧化、扩散和离子注入等相关技术。使学生掌握光刻、刻蚀和蒸发溅射等的基本概念及基本技术,对集成电路工艺学有比较全面、系统的认识和了解。

2 我校电子科学与技术专业本科人才的培养目标

该专业毕业生应获得以下几方面的知识和能力:①掌握信息科学、电子学和计算机科学学科的基本理论、基本知识;②微电子技术系统及其决策支持与安全防护系统的分析与设计方法和研制技术;③具有使用计算机和仪器设备解决工程问题的能力;④具有创新意识和独立获取新知识的能力。

3 电子科学与技术专业集成电路工艺学课程教学改革探讨

3.1 集成电路工艺学的内涵 集成电路工艺学是利用研磨、抛光、氧化、扩散、光刻、外延生长、蒸发等一整套平面工艺技术,在一小块硅单晶片上同时制造晶体管、二极管、电阻和电容等元件,并且采用一定的隔离技术使各元件在电性能上互相隔离。然后在硅片表面蒸发铝层并用光刻技术刻蚀成互连图形,使元件按需要互连成完整电路,制成半导体单片集成电路。随着单片集成电路从小、中规模发展到大规模、超大规模集成电路,平面工艺技术也随之得到发展。例如,扩散掺杂改用离子注入掺杂工艺;紫外光常规光刻发展到一整套微细加工技术,如采用电子束曝光制版、等离子刻蚀、反应离子铣等;外延生长又采用超高真空分子束外延技术;采用化学汽相淀积工艺制造多晶硅、二氧化硅和表面钝化薄膜;互连细线除采用铝或金以外,还采用了化学汽相淀积重掺杂多晶硅薄膜和贵金属硅化物薄膜,以及多层互连结构等工艺。

3.2 电子科学与技术专业集成电路工艺学课程教学改革措施

3.2.1 教学内容 ①授课体系和重点;课程根据电子科学与技术专业方向的学生培养要求,着重从硅工艺的角度出发,理论方面力求清楚易懂,阐述微电子学基础、半导体物理基础、光电现象和光电效应,重点介绍常用工艺原理、特性和参数。为了更好的运用硅基器件,对各类器件的电路也作了详细的分析,同时给出实际应用系统举例。②所讲授的知识要紧跟科学发展前沿;集成电路工艺学教科书对于迅猛发展的集成电路工艺学来说,既是基本的,又是滞后的,教师授课时如果按教材讲解,往往会带来知识陈旧、讲课形式单一、内容枯燥乏味的后果,造成学生学习积极性下降。因此在教学过程中删掉一些陈旧过时的内容,及时补充和更新教学内容,增添一些现代集成电路工艺学的前沿知识,特别是体现本学科专业特色的一些前沿知识,从而紧跟集成电路工艺学的前沿,给学生提供充分的科学探索和求真的空间。③注重课程与专业应用领域间的联系;专业课可理解为某一学科的基础课程,是通向学科广阔领域的桥梁。它的基本功能是引导学生明确学科专业发展方向,使其在日后的学习工作中能自如的在该学科专业的深度和广度上钻研、拓展。因此在讲授课程各部分内容时,电子科学专业的应用领域紧密相连。例如针对硅片生产应用领域,在课程讲授过程中可适当加入集成电路制造技术的应用热点以及在IC行业中的应用等方面的内容,使该专业的学生了解所学课程内容在该领域的应用、研究热点及发展前景。

3.2.2 教学方法 ①利用现代教育技术的各种多媒体技术和网络技术进行教学,例如投影、幻灯、录像等多媒体资料,充分发挥其信息容量大、方便快捷、形象直观、教学效率高的优势。这样使用这些教学工具,既使教师能方便清楚地讲授专业课中的各种图片资料内容,又省去了教师课堂现场作图的时间,在有限的时间内能讲授更多的内容,提高了讲课的信息量。因此教师要积极制作教学课件、开发利用网络上丰富的信息资源,下载适合学生阅读的科研论文,并推荐给学生参考。这是开拓学生视野,培养学生自学意识和科研意识的有效方法。②采用讲座与讲授相结合的教学方法。在进行基础理论教学的适当时机,安排集成电路方面科技知识的专题讲座,穿插现代集成电路科技知识,使学生既强化基础理论训练,又熟悉了解较多的现代集成电路科技知识,激发学习兴趣,培养学生的科研意识。

3.2.3 教学目标 在集成电路课程改革中,把教学目标从以科学知识教育为主转变为实现科学教育和人文教育的融合,培养敢于创新、善于思索、具有团队协作精神的21世纪新型人才。长期以来,我国大学文、理、工分校,存在着科学教育与人文教育的脱离,造成理工科生的人文文化知识和文科生的科学常识知之甚少。针对电子科学与技术的工科学生,应在进行科学知识教育的同时注重培养其人文精神,例如在讲解集成电路课程中的科学概念、原理、方法时可提到发现科学规律的动机,提到科学家如何通过艰苦的努力甚至牺牲生命取得创新,以及这些成果的应用对社会可能造成的影响等,从而使之潜移默化地对学生进行自然的而不是勉强的人文教育。

篇7

【关键词】智能功率集成电路 无刷直流电机 前置驱动电路 高压驱动芯片

1 智能功率集成电路发展历程

功率集成电路(Power Integrated Circuit,PIC)最早出现在七十年代后期,是指将通讯接口电路、信号处理电路、控制电路和功率器件等集成在同一芯片中的特殊集成电路。进入九十年代后,PIC的设计与工艺水平不断提高,性能价格比不断改进,PIC才逐步进入了实用阶段。按早期的工艺发展,一般将功率集成电路分为高压集成电路(High Voltage Integrated Circuit,HVIC)和智能功率集成电路(Smart Power Integrated Circuit,SPIC)两类,但随着PIC的不断发展,两者在工作电压和器件结构上(垂直或横向)都难以严格区分,已习惯于将它们统称为智能功率集成电路(SPIC)。

2 智能功率集成电路的关键技术

2.1 离性价比兼容的CMOS工艺

BCD(Bipolar-CMOS-DMOS)工艺是目前最主要的SPIC制造工艺。它将Bipolar,CMOS和DMOS器件集成在同一个芯片上,整合了Bipolar器件高跨导、强负载驱动能力,CMOS器件集成度高、低功耗的优点以及DMOS器件高电压、大电流处理能力的优势,使SPIC芯片具有很好的综合性能。BCD工艺技术的另一个优点是其发展不像标准CMOS工艺,遵循摩尔定律,追求更小线宽、更快速度。该优点决定了SPIC的发展不受物理极限的限制,使其具有很强的生命力和很长的发展周期。归纳起来,BCD工艺主要的发展方向有三个,即高压BCD工艺、高功率BCD工艺和高密度BCD工艺。

2.2 大电流集成功率器件

随着工艺和设计水平的不断提高,越来越多的新型功率器件成为新的研究热点。首当其冲的就是超结(SJ,Superjunction)MOS器件。其核心思想就是在器件的漂移区中引入交替的P/N结构。当器件漏极施加反向击穿电压时,只要P-型区与N-型区的掺杂浓度和尺寸选择合理,P-型区与N-型区的电荷就会相互补偿,并且两者完全耗尽。由于漂移区被耗尽,漂移区的场强几乎恒定,而非有斜率的场强,所以超结MOS器件的耐压大大提高。此时漂移区掺杂浓度不受击穿电压的限制,它的大幅度提高可以大大降低器件的导通电阻。由于导通电阻的降低,可以在相同的导通电阻下使芯片的面积大大减小,从而减小输入栅电容,提高器件的开关速度。因此,超结MOS器件的出现,打破了“硅极限”的限制。然而,由于其制造工艺复杂,且与BCD工艺不兼容,超结MOS器件目前只在分一立器件上实现了产品化,并未在智能功率集成电路中广泛使用。

其他新材料器件如砷化嫁(GaAs),碳化硅(SiC)具有禁带宽度宽、临界击穿电场高、饱和速度快等优点,但与目前厂泛产业化的硅基集成电路工艺不兼容,其也未被广泛应用于智能功率集成电路。

2.3 芯片的可靠性

智能功率集成电路通常工作在高温、高压、大电流等苛刻的工作环境下,使得电路与器件的可靠性问题显得尤为突出。智能功率集成电路主要突出的可靠性问题包括闩锁失效问题,功率器件的热载流子效应以及电路的ESD防护问题等。

3 智能功率集成电路的用

从20年前第一次被运用于音频放大器的电压调制器至今,智能功率集成电路已经被广泛运用到包括电子照明、电机驱.动、电源管理、工业控制以及显示驱动等等广泛的领域中。以智能功率集成电路为标志的第二次电子革命,促使传统产业与信息、产业融通,已经对人类生产和生活产生了深远的影响。

作为智能功率集成电路的一个重要分支,电机驱动芯片始终是一项值得研究的课题。电机驱动芯片是许多产业的核心技术之一,全球消费类驱动市场需要各种各样的电动机及控制它们的功率电路与器件。电机驱动功率小至数瓦,大至百万瓦,涵盖咨询、医疗、家电、军事、工业等众多场合,世界各国耗用在电机驱动芯片方面的电量比例占总发电量的60%-70%。因此,如何降低电机驱动芯片的功耗,提升驱动芯片的性能以最大限度的发挥电机的能力,是电机驱动芯片未来的发展趋势。

4 国内外研究现状

国内各大IC设计公司和高校在电机驱动芯片的研究和开发上处于落后地位。杭州士兰微电子早期推出了单相全波风扇驱动电路SD1561,带有霍尔传感器的无刷直流风扇驱动电路SA276。其他国内设计公司如上海格科微电子,杭州矽力杰、苏州博创等均致力于LCD,LED,PDP等驱动芯片的研发,少有公司在电机驱动芯片上获得成功。国内高校中,浙江大学、东南大学、电子科技大学以及西安电子科技大学都对高压桥式驱动电路、小功率马达驱动电路展开过研究,但芯片性能相比于国外IC公司仍有很大差距。

而在功率器件的可靠性研究方面,世界上各大半导体公司和高校研究人员已经对NLDMOS的热载流子效应进行了广泛的研究。对应不同的工作状态,有不同的退化机制。直流工作状态下,中等栅压应力条件下,退化主要发生在器件表面的沟道积累区和靠近源极的鸟嘴区;高栅压应力条件下,由于Kirk效应的存在,退化主要发生在靠近漏极的侧墙区以及鸟嘴区。当工作在未钳位电感性开关(UIS} Unclamped Inductive Switching)状态的时候,会反复发生雪崩击穿。研究表明,NLDMOS的雪崩击穿退化主要是漏极附近的界面态增加引起的,且退化的程度与流过漏极的电荷量密切相关。雪崩击穿时流过器件的电流越大,引起的退化也越严重。

参考文献

[1]洪慧,韩雁,文进才,陈科明.功率集成电路技术理论与设计[M].杭州:浙江大学出版社,2011.

[2]易扬波.功率MOS集成电路的可靠性研究和应用[D].南京:东南大学,2009.

[3]马飞.先进工艺下集成电路的静电放电防护设计及其可靠性研究[D].杭州:浙江大学,2014.

篇8

1.引言

集成电路产业是最能体现知识经济特征的高技术产业[1]。以集成电路为主要技术的微电子产业的高度发展促进了现代社会的电子化、信息化、自动化,并引起了人们社会生活的巨大变革。集成电路布图设计(以下简称版图设计)在集成电路设计中占有十分重要的作用。版图设计是指集成电路中至少有一个是有源元件的两个以上元件和部分或者全部互连线路的三维配置,或者为制造集成电路而准备的上述三维配置[2]。集成电路芯片流片成本高,必须保证较高的成品率,版图设计人员应具有扎实理论基础和丰富的实践经验。典型芯片是经过实践检验性能优越,所以,通过研究已有的典型芯片版图是提高设计能力的有效途径。

版图设计是在一定的工艺条件基础上根据芯片的功能要求而设计的。目前,集成电路的主要工艺有三种,分别是双极工艺、CMOS工艺和BICMOS工艺[3][4]。其中CMOS工艺芯片由于功耗低、集成度高等特点而应用最广泛,所以,研究CMOS工艺芯片版图具有更重要的意义。

本文对CD4011B芯片进行了逆向解析,通过研究掌握了该芯片的设计思想和单元器件结构,对于提高CMOS集成电路设计水平是十分有益的。

2.芯片分层拍照

3.单元结构

4.电路图和仿真

5.结论

本文采用化学方法对CD4011B芯片进行了分层拍照,提取了电路图,仿真验证正确。从芯片的版图分析,该芯片采用NMOS场效应晶体管、PMOS场效应晶体管、PN结二极管和基区电阻等器件单元,四个与非门版图一致且对称布局。该芯片采用典型的CMOS工艺,为了节省面积采用叉指场效应晶体管,输入和输出端采用防静电保护结构。电路为典型的CMOS与非门电路。该芯片的版图布局体现了设计的合理性和科学性。

参考文献

[1]雷瑾亮,张剑,马晓辉.集成电路产业形态的演变和发展机遇[J].中国科技论坛,2013,7:34-39.

[2]汪娣娣,丁辉文.浅析我国集成电路布图设计的知识产权保护——我国集成电路企业应注意的相关问题[J].半导体技术,2003,28:14-17.

[3]朱正涌,张海洋,等.半导体集成电路[M].北京:清华大学出版社,2009.

[4]曾庆贵.集成电路版图设计[M].北京:机械工业出版社,2008.

[5]王健,樊立萍.CD4002B芯片解析在版图教学中的应用[J].中国电力教育,2012,31:50-51.

[6]Hastings,A.模拟电路版图的艺术[M].北京:电子工业出版社,2008.

作者简介:

篇9

IC产业是基础产业,是其他高技术产业的基础,具有核心的作用,而且应用广泛,同时它也是高投入、高风险,高产出、规模化,具有战略性地位的高科技产业,越来越重视高度分工与共赢协作的精神。近些年来,IC产业遵从摩尔定律高速发展,越来越多的国家都在鼓励和扶持集成电路产业的发展,在这种背景下,首钢总公司和NEC电子株式会社于1991年12月31日合资兴建了首钢日电电子有限公司(SGNEC),从事大规模和超大规模集成电路的设计、开发、生产、销售的半导体企业,致力于半导体集成电路制造(包括完整的生产线――晶圆制造和IC封装)和销售的生产厂商,是首钢新技术产业的支柱产业。公司总投资580.5亿日元,注册资金207.5亿日元,首钢总公司和NEC电子株式会社分别拥有49.7%和50.3%的股份。目前,SGNEC的扩散生产线工艺技术水平是6英寸、0.35um,生产能力为月投135000片,组装线生产能力为年产8000万块集成电路,其主要产品有线性电路、遥控电路、微处理器、显示驱动电路、通用LIC等,广泛应用于计算机、程控和家电等相关领域,同时可接受客户的Foundry产品委托加工业务。公司以“协力敬业创新领先,振兴中国集成电路产业”为宗旨,以一贯生产、服务客户为特色,是我国集成电路产业中生产体系最完整、技术水平最先进、生产规模最大的企业之一,也是我国半导体产业的标志性企业之一。

通过工作人员的详细讲解,我们一方面回顾了集成电路相关的基础理论知识,同时也对首钢日电的生产规模、企业文化有了一个全面而深入的了解和认识。随后我们在工作人员的陪同下第一次亲身参观了SGNEC的后序工艺生产车间,以往只是在上课期间通过视频观看了集成电路的生产过程,这次的实践参观使我们心中的兴奋溢于言表。

由于IC的集成度和性能的要求越来越高,生产工艺对生产环境的要求也越来越高,大规模和超大规模集成电路生产中的前后各道工序对生产环境要求更加苛刻,其温度、湿度、空气洁净度、气压、静电防护各种情况均有严格的控制。

为了减少尘土颗粒被带入车间,在正式踏入后序工艺生产车间前,我们都穿上了专门的鞋套胶袋。透过走道窗户首先映入眼帘的是干净的厂房和身着“兔子服”的工人,在密闭的工作间,大多数IC后序工艺的生产都是靠机械手完成,工作人员只是起到辅助操作和监控的作用。每间工作间门口都有严格的净化和除静电设施,防止把污染源带入生产线,以及静电对器件的瞬间击穿,保证产品的质量、性能,提高器件产品成品率。接着,我们看到了封装生产线,主要是树脂材料的封装。环氧树脂的包裹,一方面起到防尘、防潮、防光线直射的作用,另一方面使芯片抗机械碰撞能力增强,同时封装把内部引线引出到外部管脚,便于连接和应用。

在SGNEC后序工艺生产车间,给我印象最深的是一张引人注目的的海报“一目了然”,通过向工作人员的询问,我们才明白其中的奥秘:在集成电路版图的设计中,最忌讳的是“一目了然”版图的出现,一方面是为了保护自己产品的专利不被模仿和抄袭;另一方面,由于集成电路是高新技术产业,毫无意义的模仿和抄袭只会限制集成电路的发展,只有以创新的理念融入到研发的产品中,才能促进集成电路快速健康发展。

篇10

中图分类号: TN431.2?34 文献标识码: A 文章编号: 1004?373X(2014)06?0104?04

依靠减小特征尺寸来不断提高集成度的方式因为特征尺寸越来越小而逐渐接近极限,而三维芯片则是继续延续摩尔定律的最佳选择[1]。理想的三维芯片是在硅片上交替的制造器件层和布线层,由于难度较大,现阶段基本无法实现。目前的三维芯片,本质上是封装技术的一种延伸,是将多个裸晶片(die)堆叠起来,这种技术允许基本电路元件在垂直方向堆叠,而不是仅仅在平面互连。三维芯片的主流技术有两种:SOI技术[2]和纯硅技术[3],TSV最小间距可达6 mm,最小直径可达2 mm,即将走向量产阶段,成为主流技术[4]。

三维芯片优势很多,除了明显的提高集成度之外,更小的垂直互连,还可提高互连速度和减小最长全局连线。同时,连线的缩短会减少长连线上中继器的数量,从而减少功耗[5]。因为堆叠的晶片可以是不同工艺的,三维芯片非常符合片上系统(System?on?Chip,SoC)的需求,生产异构的复杂系统。三维芯片符合未来的高性能计算和多核/众核处理器的需求。目前IBM和Intel都纷纷在众核处理器中试用三维堆叠技术,如IBM的Cyclops系统[6]和Intel的万亿次计算系统[7]。

1 三维互连技术定义

为了能够对三维技术的前景有个更清晰的了解,首先需要确定三维技术的定义,并给众多的技术一个明确的分类[8]。组成电子系统的基本模块为晶体管、二极管、被动电路元件、MEMS等。通常电子系统由两部分组成:基本模块和用于连接它们的复杂的互连系统。互连系统是分级别的,从基本模块之间窄而短的连线到电路块之间的长连线。设计良好的集成电路,线网会分为本地互连线、中层互连线和顶层互连线。电路也是分级别的,则从晶体管、逻辑门、子电路、电路块到最后的带引脚的整电路。如今被称为三维技术的,是一种特别的通孔技术,这种技术允许基本电路元件在垂直方向堆叠,而不是仅仅在平面互连。这是三维集成技术的最显著特征,它带来了单位面积上的高集成度。三维互连技术,指的是允许基本电子元件垂直堆叠的技术。这里的基本电子元件指的是基本电子器件,例如晶体管、二极管、电阻、电容和电感。三维互连技术相关的一些定义见表1。

表1 三维互连技术的定义及特征

3D?Packaging(3D?P):使用传统包装技术的三维集成,例如引线键合(wirebonding),层叠封装(package?on?package stacking)或嵌入PCB板。

3D?Wafer?Level?Packaging(3D?WLP):使用晶圆级封装技术的三维集成,在晶圆制造之后进行,例如倒装封装、fan?in和fan?out重构晶圆级封装。

3D?System?on?Chip(3D?SoC):做为片上系统(System?on?Chip,SoC)设计的电路,但是用堆叠的多层晶片实现的。三维互连直接连接不同晶片上的电路块。这种互连是全局级别的互连,可以允许大量的使用IP块。

3D?Stacked?Integrated?Circuit(3D?SIC):允许三维堆叠栈中的不同层的电路块之间有直接的互连,这种互连是顶层和中层级别的互连线。这种三维堆叠栈由一系列的前段工艺(器件)和后段工艺(互连线)的交替堆叠而成的。

3D?Integrated?Circuit(3D?IC):由各种有源器件直接堆叠而成。这里的互连是本地级的。这种三维堆栈是由器件和互连线混合堆叠而成的。

在上述介绍了很多实现三维互连的技术。其中备受关注的一个是硅通孔TSV技术,这个技术被广泛的用于3D?WLP, 3D?SoC和 3D?SIC的互连线中。

硅通孔(Through Silicon Via,TSV),也叫硅穿孔,是一种穿透硅晶圆的器件层的垂直电连接[3]。具体的说,TSV就是用来连通晶圆上下两边的通孔,在通孔中灌注导体形成连线。灌注的导体可以根据其具体工艺来确定,如导电材料铜、钨以及多晶硅,并用绝缘层(常为二氧化硅)将TSV导电材料与基底隔离开。这层绝缘层也确定了TSV主要的寄生电容及热性能。TSV导体与通孔壁之间镀有一层很薄的阻碍层(如钽),用来阻止导体中的金属原子向硅基底渗透。TSV通孔的形成有Bosch深反应性离子蚀刻(Bosch Deep Reactive Ion Etching,Bosch DRIE)、雷射钻孔(laser drilling)、低温型深反应性离子蚀刻(cryogenic DRIE)和各种湿式蚀刻(等向性和非等向性蚀刻)技术。在通孔形成的工艺上,特别强调其轮廓尺寸一致性,导孔不能有残渣,且通孔的形成必须满足相当高的速度要求。

有很多方法可用于实现基于TSV的3D?SIC和3D?WLP,不过大致都划分为如下工序:硅通孔阶段、晶圆减薄、薄晶圆处理和背部处理、三维键合。这些工序的顺序可能不同,会产生一系列的工艺流程。这些工艺流程可以按照四种特征来分类,具体如下:

(1) 按照TSV过程与器件扩散过程的先后顺序(见图1)。先通孔:通孔工艺在前段工艺(Front?End of Line,FEOL)之前;采用这种技术使用的导电材料需要承受后段工艺的高温热冲击(常大于1 000 oC),所以只能选择多晶硅为通孔材料;中通孔:通孔工艺在前段工艺FEOL器件制造之后,但是在后段工艺(back?end of line,BEOL)互连线之前;后通孔:通孔工艺在后段工艺之后,或与互连线工艺集成在一起进行;采用这种技术可以使用金属材料如铜和钨。

(2) 根据TSV工艺与三维键合工艺的顺序来划分:TSV工艺在三维键合工艺之前或者之后。

(3) 根据晶圆减薄与三维键合工艺的顺序来划分:晶圆减薄工艺在三维键合工艺之前或者之后。

(4) 根据三维键合工艺来划分:分为晶圆到晶圆(Wafer?to?Wafer,W2W)[9]键合、晶片到晶圆(Die?to?Wafer,D2W)[10?11]键合、晶片到晶片(Die?to?Die,D2D)[12?14]键合三种。采用的晶圆键合方法,包括:氧化物融熔键合(oxide fusion bonding)、聚合物黏着键合(polymer adhesive bonding) 、金属?金属键合(metal?metal bonding)。其中,金属?金属键合又可分为:金属融熔键合(metal fusion bonding)和金属共晶键合 (metal eutectic bonding),如:铜锡共晶(Cu?Sn eutectic)等。

以上是按照四种主要的特征来划分,除此以外,还可以按照另外的特征来划分,例如F2F(face?to?face)键合或者B2F(back?to?face)键合等。上面定义的通用流程特征可应用于3D?WLP和3D?SIC的顶层互连线和中层互连线。

对于3D?WLP TSV技术,后通孔的路径是最重要的,它在三维键合之前完成,可以是前面TSV(TSV与互连线在器件的同侧)或者是背面TSV(TSV在器件背面)。这些方法不仅仅可以用于平常的半导体技术,而且可以用于无源器件或者混合信号模块。另外,与TSV相关的问题还包括成品率、TSV可靠性、TSV寄生效应、TSV冗余、热通孔等问题,均是研究热点。

2 三维技术蓝图

依据上文的三维互连线级别和三维工艺的定义,给出了每个级别的TSV的发展蓝图如表2,表3所示[8]。对于3D?SIC,它分两个互连线级别,具体如下:顶层互连线级别的3D?SIC和3D?SoC。这种技术允许W2W, D2W和D2D堆叠。这种三维TSV工序一般与硅晶圆的制造生产线集成在一起,而三维键合工序一般在硅工序之外。中层互连线级别的3D?SIC,例如小电路块的三维堆叠。这种技术一般是W2W堆叠。三维TSV工序与三维键合工序都集成在硅制造生产线之中。

表2 顶层互连线级别的3D?SIC/3D?SoC发展蓝图

Intel认为三维芯片是未来芯片的发展趋势,它会带来架构的极大改变,未来即将迈入三维时代。Intel实验室与台湾工研院有合作开发采用三维芯片架构的低功耗内存技术,该技术将来可应用在百万级计算、超大规模云数据中心等大型系统以及智能手机、Ultrabook、平板计算机等移动系统中。Amkor公司和位于比利时的纳米电子和纳米技术研究中心IMEC,将合作开发成本效益高的基于晶圆级三维集成技术。许多公司如IBM;Amkor,Intel,IMEC,Samsung,Qimonda AG,德州仪器、Tessera,Tezzaron,Ziptronix,Xanoptix,ZyCube都在研究三维集成技术;TSMC(台湾)、Tezzaron、特许(新加坡)已有晶圆厂宣布有意将TSV技术量产,这些都是三维技术走向量产阶段、成为主流技术的前兆。

表3 中层互连线级别的3D?SIC发展蓝图

3 三维集成技术面临的挑战

成功的发展三维集成电路是一个综合复杂的问题,这个过程中面临多种挑战,需要克服很多问题。本文列出了几个最关键的问题,具体如下:

(1) 技术限制。三维集成技术的工艺还不完善。现在比较成熟的技术我们俗成2.5D,采用的bond?pad方式连线的晶圆级封装技术。基于TSV的三维堆叠技术目前已能实现,但是尚未大规模量产和一个完整的量产方案。例如是先通孔还是后通孔,三维集成是采用原有的设备改装还是全新的技术,是否会产生一种全新的三维集成厂,负责专门的三维集成工作,这些各个公司都有自己的研究方案,但尚未形成成熟的技术路线。

(2) 测试问题。测试技术也面临挑战,传统测试技术是针对单层系统设计的,未提供针对多层芯片集成的整体系统测试技术。

(3) 三维互连的设计问题。三维互连设计的问题主要表现在:第一,三维芯片中个各层可能是采用不用工艺完成的,要综合的对不同的层进行互连设计难度很大。现在常用的方法是,先进行一个三维划分,然后再进行各个层内的设计;第二,跨越几个层的全局互连线,例如时钟和电源电路,均需要重新考虑设计问题。

(4) 散热问题。在二维集成电路中,芯片发热已经对电路性能和可靠性产生了重要影响,采用三维工艺后,有源器件集成密度的大幅提升促使芯片功耗剧增,加之芯片内部使用的电介质填充材料导热性能不佳,种种不利因素使得三维集成电路芯片散热问题雪上加霜,散热问题成为集成电路物理设计中必须首先考虑的难点问题之一。目前也提出了很多解决热量问题的方案,但是并没有一个公认的完善的解决方案。

(5) CAD工具问题。集成电路的计算机辅助设计作为芯片设计的关键技术,对芯片性能、功耗、工作温度、设计?制造通过率等都有着巨大影响,是三维集成电路发展的基石。过去几年来三维集成工艺的发展成熟,使得人们已开始在三维集成电路方面开展积极的探索,但是目前的三维集成电路的CAD软件尚不完善,大部分均为现有的二维CAD软件的简单扩展,还没有一个通用的全面的软件。

4 结 语

CMOS集成电路发展至今,传统二维(2D)平面集成工艺已达集成密度极限,为了提升芯片性能,集成更多晶体管,就必须增加芯片尺寸,而芯片尺寸增加带来全局互连距离的延长,从而引发了更严峻的互连问题:延时增加、噪声、信号串扰问题不断加剧限制了数据总线带宽,互连问题成为二维集成电路的瓶颈。要克服互连线带宽限制,必须实质性地改变设计方法。

三维集成电路是传统二维集成电路从传统平面集成方式向垂直方向立体集成方式的延伸。三维集成电路的优势在于:多层器件重叠结构使芯片集成密度成倍提高;TSV结构使互连长度大幅度缩短,提高传输速度并降低了功耗;重叠结构使单元连线缩短,并使并行信号处理成为可能,提高了芯片的处理能力;多种工艺,如CMOS、MEMS、SiGe、GaAs混合集成,使集成电路功能多样化;减少封装尺寸,降低设计和制造成本。本文给出了三维技术的定义,并给众多的三维技术一个明确的分类,包括三维封装(3D?P)、三维晶圆级封装(3D?WLP)、三维片上系统(3D?SoC)、三维堆叠芯片(3D?SIC)、三维芯片(3D?IC)。给出了比较有应用前景的几种技术,三维片上系统和三维堆叠芯片的技术蓝图。最后,分析了三维集成电路存在的一些问题,包括技术问题、测试问题、散热问题、互连线问题和CAD工具问题,并指出了未来的研究方向。

参考文献

[1] BANSAL S. 3?d stacked die: Now or future?[C]// Proceedings of Design Automation Conference. [S.l.]: DAC, 2010: 298?299.

[2] KOESTER S J. Wafer?level 3d integration technology [J]. IBM Journal of Research and Development, 2008, 52(6): 583?597.

[3] PATTI R S. Three?dimensional integrated circuits and the future of system?on?chip designs [J]. Proceedings of the IEEE, 2006, 94(6): 1214?1224.

[4] PAVLIDIS V F, FRIEDMAN E G. Interconnect?based design methodologies for three?dimensional integrated circuits [J]. Proceedings of the IEEE, 2009, 97: 123?140.

[5] ZHANG R, ROY K, KOH C?K, JANES D B. Stochastic interconnect modeling, power trends, and performance characterization of 3?d circuits [J]. IEEE Transactions on Electron Devices, 2001, 48(4): 638?652.

[6] ZHANG Y. A study of the on?chip interconnection network for the ibm cyclops64 multi?core architecture [C]// Proceedings of Parallel and Distributed Processing Symposium. [S.l.]: PDPS, 2006: 10?14.

[7] Anon. Addressing the challenges of tera?scale computing [J]. Intel Technology Journal, 2009,13(4): 1?11.

[8] Anon. International technology roadmap for semiconductors [R/OL]. [2013?07?02]. http:// .

[9] TAOUIL M, HAMDIOUI S. Yield improvement for 3d wafer?to?wafer stacked memories [J]. Journal of Electronic Testing?Theory and Applications, 2012, 28(4): 523?534.

[10] CHOI W K. A novel die to wafer (d2w) collective bonding method for mems and electronics heterogeneous 3D integration [C]. Proceedings of 2010 60th Electronic Components and Technology Conference. [S.l.]: ECTC, 2010: 829?833.

[11] TAOUIL M. Test impact on the overall die?to?wafer 3d stacked IC cost [J]. Journal of Electronic Testing?Theory and Applications, 2012, 28(1): 15?25.

篇11

关键词:

现代;光纤通信;光电集成;路集成电路;设计分析

随着国家的发展,社会的进步,人类的生活已经离不开通信方式了,各种各样的交流活动都是需要通讯的传递的。不管我们通过何种方式、何种途径,只要将我们想要传递的信息传递到另外一个地方,就是称为通信。古代所传递信息的方式方法也是多种多样的。但是它们相对来说特别落后,时间也会非常地久。而现代的通信方式中,电话通信是应用最广泛的一种。

1什么是光纤通信

近几年来,随着技术的进步,电信管理体制的改革以及电信市场的全面开放,光纤通信的发展呈现了一番全新的景象。所谓光纤通信就是一种以光线为传媒的通信方式,利用广播实现信息的传送。光纤通讯就是以光导纤维作为信号传输介质的通讯系统。具有抗干扰性好,超高带宽等特点。如今社会我们使用的光纤通信有许多的优点,例如,它可以传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,这样一来,节约了许多资源和能源,有利于资源合理地开发和使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,同时它也可以用在特殊环境或者军事行动中。光纤通信的原理是:在发送端首先要把传送的信息变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。随着信息技术传输速度日益更新,光纤技术已得到广泛的重视和应用。在多微机电梯系统中,光纤的应用充分满足了大量的数据通信正确、可靠、高速传输和处理的要求。光纤技术在电梯上的应用,大大提高了整个控制系统的反应速度,使电梯系统的并联群控性能有了明显提高。电梯上所使用的光纤通信装置主要由光源、光电接收器和光纤组成。

2集成电路的实现

集成工艺技术也就是在最近的一二十年取得了飞速的发展。随着元器件尺寸大小的不断减小,集成电路的集成速度也在不断地提高。发展迅速的集成电路工艺技术为通信系统的发展奠定了坚实的基础。当下,利用光电集成电路实现的光的发射和接收装置已经被各个实验室所广泛使用。光电集成电路在单片上集成的光和电元件越来越多了,这就是光电集成电路速度越来越快的原因。

3光纤通信现状

光纤通信技术的发展带动了光纤产业的进步。想要实现光发射与光电集成电路是非常容易的,但是想要实现高速系统的混合集成是非常困难的。由于毫米波信号是狭窄的,所以可以使用混合集成工艺来实现毫米波系统,我们可以这样来设计集成电路及其组成部分,使其波段上的输入和输出阻抗保持在大约50欧姆左右,即使用50欧姆的传输线来连接元器件和集成电路。此外,例如激光驱动、时钟恢复、数据判决、复接、光接收放大等各种类型的模拟、数字、混合集成电路依然可以轻松实现,这是因为电路也可以设计成输入输出是50欧姆的阻抗。想要利用混合方法实现高速光发射机与接收机的真正困难所在是激光二极管和光检测器的阻抗不是50欧姆。尤其是激光二极管,他的非线性无法进行混合集成的。没有合适的匹配网络将基带数据信号从激光二极管连接到驱动器或者从光检测器连接到前置放大器上,就会大大地降低了系统的操作性能。这样相比利用光发送和光接收的集成电路来实现是十分简便的。利用光集成电路实现光发射和接收不仅可靠性高而且成本低。但是用光电集成电路也是具有一定的挑战性的,制作光元件和电子电路所需要的材料是存在一定的差别的。现在制造高速光发射和接受光电集成电路在光传输系统中是十分必要的。这个设计工艺的难点在于要形成材料,即适合制造光电器件和电子电路所需要的制作材料,此外还要设计出光电集成电路。现实很残酷,大家仍需努力。

4光电集成电路

光发射机光电集成电路一般是由同一底上的激光二极管和驱动电路构成的。集成电路其中包括了电子元器件结构的生长、激光、激光二极管、电阻器、晶体管等电子元件的制造,其中光电元件和金属化连接是比较困难的。在外延生长的衬底上,大概需要三个工序来集成光电集成电路,分别为制作激光二极管、制作电子电路、进行光电元件之间的连接。首先要制作激光二极管,激光二极管的P型区域欧姆接触层通过蒸发形成金属状态,随后利用光刻法来生成激光二极管的大概区间,然后进行湿法刻蚀形成接触激光二极管的N区区间,最后在活性离子刻蚀体系中完成刻蚀过程,直到遇到AGAAS层后停止刻蚀过程。AGAAS层能隔离电子电路机构和激光结构,形成一种薄膜电阻,从而形成第一金属层和空气桥两个连接层。我们通常采用空气桥连接激光二极管的P区,采用第一金属层连接激光二极管的N区,这样就能很好地实现激光二极管和电子电路层的连接。这就实现了一个量子激光器的光电集成电路了。制作光电集成电路的芯片也是存在一定的难度的,目前端面反射激光镜的干腐蚀技术尚未成熟,只能用解离的方法来完成,所以说集成激光驱动器电路还有很大的空间有待开发。光电集成电路分别是由光检测器、前置放大器以及主放大器构成的,这其中包括数据判决器、时钟恢复和分接电路。光检测器的集成是光电集成电路中最重要的一个部分,而金属-半导体-金属光检测器(MSM)因为只需要少步骤的追加工艺,和如名字一般较为实惠且广泛的材料在雪崩类型光电检测器和p-i-n被广泛运用的同时也被单片集成光接收机广泛的使用着。在设计中第一级为基本放大单元,是共源放大电路且带有源负载,电阻的反馈由电压并联负反馈,电平位移级使用的是两级源级跟随器,它被接入到后面,与此同时,又需要引进一个肖特基二极管,这样就起到了一个降低反馈点的直流电平所特需的水平的作用,达到了这样一个效果后,在偏低压的条件下,电路同样可以正常工作。

5主要工艺流程

第一步,我们要准备好充足的材料,对材料进行结构和参数方面的设计计算,并确定材料的外延生长,来确定集成方式及集成所需要的元器件。第二步,对PD台面进行腐蚀,首先腐蚀掉INP层露出HEMT的帽层,把MSM保留在芯片上,即通过把PD台面以外的PD层材料腐蚀掉来露出HEMT层。第三步就是进行器件的隔离工作,仍然使用台面腐蚀的办法将HEMT和PD元器件之间隔离起来,想要实现比较好的隔离效果就一定要准确的腐蚀到半绝缘衬底上。最后就是保护芯片的工作了,在芯片表面沉淀一层介质,这样不仅保护了芯片表面还成为了源漏的辅助剥离介质。

6结束语

光纤通信技术作为通信产业中的支柱,是我们现如今社会中使用最多的通信方式。即使在现在的社会当中,光纤通信技术得到了十分稳定有效的发展,但是现在科技发展如此之快,越来越多的新技术涌现出来,我国的通信技术水平也得到了明显的改善与提高,光纤通信的使用范围和价值也在悄悄地扩张。但是光纤通信技术为了迎合网络时代,必须有更高层次的发展,才能占据市场的主流地位。我相信随着光通信技术更加深入地发展,光纤通信一定会对整个通信行业甚至社会的进步起到举足轻重的作用。

参考文献:

[1]付雪涛.集成电路工艺化学品标准体系探讨[J].信息技术与标准化,2013(Z1).

[2]白晋军,李鸿强.浅谈多媒体技术在集成电路工艺教学过程中的利与弊[J].教育教学论坛,2013(42).

[3]汤乃云.“集成电路工艺原理”课程建设与教学改革探讨[J].中国电力教育,2012(29).

篇12

中图分类号:G642.0 文献标志码: A 文章编号:1002-0845(2012)09-0102-02

集成电路产业是关系到国家经济建设、社会发展和国家安全的新战略性产业,是国家核心竞争力的重要体现。《国民经济和社会发展第十二个五年规划纲要》明确将集成电路作为新一代信息技术产业的重点发展方向之一。

信息技术产业的特点决定了集成电路专业的毕业生应该具有很高的工程素质和实践能力。然而,目前很多应届毕业生实践技能较弱,走出校园后普遍还不具备直接参与集成电路设计的能力。其主要原因是一些高校对集成电路专业实践教学的重视程度不够,技能培养目标和内容不明确,导致培养学生实践技能的效果欠佳。因此,研究探索如何加强集成电路专业对学生实践技能的培养具有非常重要的现实意义。

一、集成电路专业实践技能培养的目标

集成电路专业是一门多学科交叉、高技术密集的学科,工程性和实践性非常强。其人才培养的目标是培养熟悉模拟电路、数字电路、信号处理和计算机等相关基础知识,以及集成电路制造的整个工艺流程,掌握集成电路设计基本理论和基本设计方法,掌握常用集成电路设计软件工具,具有集成电路设计、验证、测试及电子系统开发能力,能够从事相关领域前沿技术工作的应用型高级技术人才。

根据集成电路专业人才的培养目标,我们明确了集成电路专业的核心专业能力为:模拟集成电路设计、数字集成电路设计、射频集成电路设计以及嵌入式系统开发四个方面。围绕这四个方面的核心能力,集成电路专业人才实践技能培养的主要目标应确定为:掌握常用集成电路设计软件工具,具备模拟集成电路设计能力、数字集成电路设计能力、射频集成电路设计能力、集成电路版图设计能力以及嵌入式系统开发能力。

二、集成电路专业实践技能培养的内容

1.电子线路应用模块。主要培养学生具有模拟电路、数字电路和信号处理等方面的应用能力。其课程主要包含模拟电路、数字电路、电路分析、模拟电路实验、数字电路实验以及电路分析实验等。

2.嵌入式系统设计模块。主要培养学生掌握嵌入式软件、嵌入式硬件、SOPC和嵌入式应用领域的前沿知识,具备能够从事面向应用的嵌入式系统设计能力。其课程主要有C语言程序设计、单片机原理、单片机实训、传感器原理、传感器接口电路设计、FPGA原理与应用及SOPC系统设计等。

3.集成电路制造工艺模块。主要培养学生熟悉半导体集成电路制造工艺流程,掌握集成电路制造各工序工艺原理和操作方法,具备一定的集成电路版图设计能力。其课程主要包含半导体物理、半导体材料、集成电路专业实验、集成电路工艺实验和集成电路版图设计等。

4.模拟集成电路设计模块。主要培养学生掌握CMOS模拟集成电路设计原理与设计方法,熟悉模拟集成电路设计流程,熟练使用Cadence、Synopsis、Mentor等EDA工具,具备运用常用的集成电路EDA软件工具从事模拟集成电路设计的能力。其课程主要包含模拟电路、半导体物理、CMOS模拟集成电路设计、集成电路CAD设计、集成电路工艺原理、VLSI集成电路设计方法和混合集成电路设计等。此外,还包括Synopsis认证培训相关课程。

5.数字集成电路设计模块。主要培养学生掌握数字集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事数字集成电路设计的能力。其课程主要包含数字电路、数字集成电路设计、硬件描述语言、VLSI测试技术、ASIC设计综合和时序分析等。

6.射频集成电路设计模块。主要培养学生掌握射频集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事射频集成电路设计的能力。其课程主要包含CMOS射频集成电路设计、电磁场技术、电磁场与

天线和通讯原理等。

在实践教学内容的设置、安排上要符合认识规律,由易到难,由浅入深,充分考虑学生的理论知识基础与基本技能的训练,既要有利于启发学生的创新思维与意识,有利于培养学生创新进取的科学精神,有利于激发学生的学习兴趣,又要保证基础,注重发挥学生主观能动性,强化综合和创新。因此,在集成电路专业的实验教学安排上,应减少紧随理论课开设的验证性实验内容比例,增加综合设计型和研究创新型实验的内容,使学有余力的学生能发挥潜能,有利于因材施教。

三、集成电路专业实践技能培养的策略

1.改善实验教学条件,提高实验教学效果。学校应抓住教育部本科教学水平评估的机会,加大对实验室建设的经费投入,加大实验室软、硬件建设力度。同时加强实验室制度建设,制订修改实验教学文件,修订完善实验教学大纲,加强对实验教学的管理和指导。

2.改进实验教学方法,丰富实验教学手段。应以学生为主体,以教师为主导,积极改进实验教学方法,科学安排课程实验,合理设计实验内容,给学生充分的自由空间,引导学生独立思考应该怎样做,使实验成为可以激发学生理论联系实际的结合点,为学生创新提供条件。应注重利用多媒体技术来丰富和优化实验教学手段,如借助实验辅助教学平台,利用仿真技术,加强新技术在实验中的应用,使学生增加对实验的兴趣。

3.加强师资队伍建设,确保实验教学质量。高水平的实验师资队伍,是确保实验教学质量、培养创新人才的关键。应制定完善的有利于实验师资队伍建设的制度,对实验师资队伍的人员数量编制、年龄结构、学历结构和职称结构进行规划,从职称、待遇等方面对实验师资队伍予以倾斜,保证实验师资队伍的稳定和发展。

4.保障实习基地建设,增加就业竞争能力。开展校内外实习是提高学生实践技能的重要手段。

实习基地是学生获取科学知识、提高实践技能的重要场所,对集成电路专业人才培养起着重要作用。学校应积极联系那些具有一定实力并且在行业中有一定知名度的企业,给能够提供实习场所并愿意支持学校完成实习任务的单位挂实习基地牌匾。另外,可以把企业请进来,联合构建集成电路专业校内实践基地,把企业和高校的资源最大限度地整合起来,实现在校教育与产业需求的无缝联接。

5.重视毕业设计,全面提升学生的综合应用能力。毕业设计是集成电路专业教学中最重要的一个综合性实践教学环节。由于毕业设计工作一般都被安排在最后一个学期,此时学生面临找工作和准备考研复试的问题,毕业设计的时间和质量有时很难保证。为了进一步加强实践环节的教学,应让学生从大学四年级上半学期就开始毕业设计,因为那时学生已经完成基础课程和专业基础课程的学习,部分完成专业课程的学习,而专业课教师往往就是学生毕业设计的指导教师,在此时进行毕业设计,一方面可以和专业课学习紧密结合起来,另一方面便于指导教师加强对学生的教育和督促。

选题是毕业设计中非常关键的环节,通过选题来确定毕业设计的方向和主要内容,是做好毕业设计的基础,决定着毕业设计的效果。因此教师对毕业设计的指导应从帮助学生选好设计题目开始。集成电路专业毕业设计的选题要符合本学科研究和发展的方向,在选题过程中要注重培养学生综合分析和解决问题的能力。在毕业设计的过程中,可以让学生们适当地参与教师的科研活动,以激发其专业课学习的热情,在科研实践中发挥和巩固专业知识,提高实践能力。

6.全面考核评价,科学检验技能培养的效果。实践技能考核是检验实践培训效果的重要手段。相比理论教学的考核,实践教学的考核标准不易把握,操作困难,因此各高校普遍缺乏对实践教学的考核,影响了实践技能培养的效果。集成电路专业学生的实践技能培养贯穿于大学四年,每个培养环节都应进行科学的考核,既要加强实验教学的考核,也要加强毕业设计等环节的考核。

对实验教学考核可以分为事中考核和事后考核。事中考核是指在实验教学进行过程中进行的质量监控,教师要对学生在实验过程中的操作表现、学术态度以及参与程度等进行评价;事后考核是指实验结束后要对学生提交的实验报告进行评价。这两部分构成实验课考核成绩,并于期末计入课程总成绩。这样做使得学生对实验课的重视程度大大提高,能够有效地提高实验课效果。此外,还可将学生结合教师的科研开展实验的情况计入实验考核。

7.借助学科竞赛,培养团队协作意识和创新能力。集成电路专业的学科竞赛是通过针对基本理论知识以及解决实际问题的能力设计的、以学生为参赛主体的比赛。学科竞赛能够在紧密结合课堂教学或新技术应用的基础上,以竞赛的方式培养学生的综合能力,引导学生通过完成竞赛任务来发现问题、解决问题,并增强学生的学习兴趣及研究的主动性,培养学生的团队协作意识和创新精神。

在参加竞赛的整个过程中,学生不仅需要对学习过的若干门专业课程进行回顾,灵活运用,还要查阅资料、搜集信息,自主提出设计思想和解决问题的办法,既检验了学生的专业知识,又促使学生主动地学习,最终使学生的动手能力、自学能力、科学思维能力和创业创新能力都得到不断的提高。而教师通过考察学生在参赛过程中运用所学知识的能力,认真总结参赛经验,分析由此暴露出的相关教学环节的问题和不足,能够相应地改进教学方法与内容,有利于提高技能教学的有效性。

此外,还应鼓励学生积极申报校内的创新实验室项目和实验室开放基金项目,通过这些项目的研究可以极大地提高学生的实践动手能力和创新能力。

参考文献:

[1]袁颖,等.依托专业特色,培养创新人才[J]. 电子世界,2012(1).

[2]袁颖,等.集成电路设计实践教学课程体系的研究[J]. 实验技术与管理,2009(6).

[3]李山,等.以新理念完善工程应用型人才培养的创新模式[J]. 高教研究与实践,2011(1).

篇13

七星电子是我国集成电路制造设备的领先企业,近年来通过自主研发以及与国际国内著名厂商、科研院所合作,同类产品性能逐步接近国际先进水平。公司生产的扩散系统、清洗系统、气体质量流量计等集成电路工艺设备已成功装备多条集成电路生产线,产品已在国内6英寸IC生产线得到广泛应用。在混合集成电路和电子元件开发能力、科技人员的技术水平、试验设备的配套及数量等方面居于国内前列。同时,公司从产品结构、配套能力、产品实物质量、品牌效应方面在国内也处于领先地位。七星电子是国内唯一一家具有8英寸立式扩散炉和8英寸清洗设备生产能力的公司,生产的8英寸生产线设备开始进入国内主流IC生产线。公司目前正进行12英寸90/65纳米清洗机、扩散炉和质量流量计等集成电路设备的研发。七星电子所生产的扩散设备和清洗设备均是集成电路制造工艺中的关键设备,产品用量大,技术含量高。公司开发的清洗设备产品已在集成电路生产线、集成电路材料、光电子行业和电力电子行业上得到了应用。

自主研发 为国防和航天事业作贡献

七星电子在混合集成电路和电子元件领域积累了多年的生产经验,通过承担军品科研任务形成了丰富的技术储备,产品的技术水平主要体现在产品的高精密、高可靠特性以及能够达到特定的技术指标等等。公司在国内军用混合集成电路以及高精密阻容元件的生产上,具备领先的技术优势。公司拥有九条生产线符合军工生产标准,生产的混合集成电路、高可靠高稳定电阻器、固体钽电容器、石英晶体器件等产品,广泛应用于军工行业。公司还在军工科研方面取得多项重大成果,为中国的国防和航天事业作出了显著的贡献,2006年被总装备部、国防科工委及信息产业部三部委联合评为“十五”军用电子元器件科研生产先进单位,获得信息产业部授予“军工电子质量年活动先进单位”。信息产业部军工电子局还先后多次对七星电子成功研制“集成电路设备工程”给予了奖励,中国空间技术研究院、中国运载火箭技术研究院、中国载人航天工程办公室、信息产业部、中国航--天科技集团公司等单位先后对七星电子在“神舟五号”、“神舟六号”、“神舟七号”载人飞船及“嫦娥一号”发射成功中作出的贡献给予了各种奖励,肯定了七星电子为中国航天事业中做出的贡献。

友情链接