你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 垃圾焚烧作用

垃圾焚烧作用范文

发布时间:2024-01-23 15:10:32

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇垃圾焚烧作用范例,将为您的写作提供有力的支持和灵感!

垃圾焚烧作用

篇1

1引言

随着经济的发展、人口的不断增多以及人民生活水平的日益提高,城市垃圾的产生量也逐渐增多。在当今世界,大量的垃圾已成为城市中一个长期存在的污染源。对垃圾的处理不当,可能会造成严重的大气污染、水污染和土壤污染,并将占用大量的土地。因此,如何经济、有效地进行垃圾处理,是成为我国和世界其他各国面临的一个亟待解决的问题。

2垃圾处理现状及发展趋势

据有关资料统计,我国仅“城市垃圾”的年产量就近1.5亿吨,而且,这些城市垃圾量以每年7~8%的速度增长。而垃圾的处理不到1/3,真正达到无害化处理和能源利用的比例更低――目前处理生活垃圾的方法除露天堆放外,主要采用卫生填埋。但是如不是严格意义上的填埋产生的高浓度渗出液,会造成地下水以及地表水的严重污染,对水资源造成严重威胁。同时产生大量的有害气体,会污染大气,如若处理不当,其产生的危害会延续几百年甚至上千年。现在,随着经济的高速发展,城市化水平的提高,在城市周边很难寻找适宜的垃圾填埋的场地,因此,造成我国城市垃圾处理问题相当严重。

垃圾焚烧是目前固体废弃物处理的有效途径之一,其目的在于垃圾的无害化处理和利用。在西方发达国家,垃圾焚烧技术的应用已经有将近130年的历史,而且目前仍被认为是最有效、经济的垃圾处理技术之一。此方法的最大优点是垃圾资源化和减量化处理程度高。垃圾焚烧厂建立在城市周围,运送垃圾方便,并且可以向城市提供热能,产生很好的经济效益。应用计算机控制使焚烧炉运行在最佳运行工况,并且有先进的尾气处理设备和严格的排放监测手段,使得垃圾焚烧对大气造成的二次污染降到最低点。我国在垃圾焚烧技术的研究、设备开发和应用方面起步较晚。相比之下,我国在垃圾焚烧处理上仍处于摸索与研究的阶段。九十年代在各大城市以及沿海城市地区开始重视垃圾焚烧技术的应用,但由于焚烧技术、烟气处理技术引进的步伐不能跟上,投资控制不下来,一直未能有实质性的进展。有些地方由于难于寻找合适的垃圾填埋厂以及受资金方面的约束,只注重把垃圾烧掉,没有考虑好如何烧好、烧透以及如何作好环境保护与能源利用。

垃圾焚烧处理的关键设备是垃圾焚烧炉,通过它将垃圾焚烧,因此,焚烧炉的性能将直接影响到垃圾焚烧处理的效果和经济性能。下面我们将通过对垃圾焚烧炉的发展过程以及使用情况进行分析,以便得出一种适合我国实际情况的合理的焚烧炉方案。

3垃圾焚烧处理之关键设备――焚烧炉

3.1 垃圾焚烧炉发展的主要型式和特点

垃圾焚烧技术已经经历了将近130年的发展过程,垃圾焚烧技术和设备已经日臻完善并得到了广泛的应用。西方发达国家目前通用的垃圾焚烧系统主要有以下几类:

(1)垃圾层燃焚烧系统,如采用滚动炉排、水平往复推饲炉排和倾斜往复炉排(包括顺推和逆推倾斜往复炉排)等。层燃焚烧方式的主要特点是垃圾无需严格的预处理。滚动炉排和往复炉排的拨火作用强,比较适用于低热值、高灰分的城市垃圾的焚烧;

(2)流化床式焚烧系统,其特点是垃圾的悬浮燃烧,空气与垃圾充分接触,燃烧效果好。但是流化床燃烧需要颗粒大小较均匀的燃料,同时也要求燃料给料均匀,故一般难以焚烧大块垃圾,因此流化床式焚烧系统对垃圾的预处理要求严格,由此限制了其在工业废弃物和城市垃圾焚烧领域的发展;

(3)旋转筒式焚烧炉,其特点是将垃圾投入连续、缓慢转动的筒体内焚烧直到燃烬,故能够实现垃圾与空气的良好接触和均匀充分的燃烧。西方国家多数将该类焚烧炉用于有毒、有害工业垃圾的处理。

3.2 当今垃圾焚烧、技术面临的新情况和新问题

在当今高度工业化的时代,城市垃圾焚烧技术面临着许多新情况和新问题:

(1)在经济发达国家,城市垃圾堆积密度小、热值高且灰分和水分较低;

(2)垃圾焚烧排放标准日益严格,特别是要求烟气中有害物质的排放得到有效的控制。除了烟尘之外,垃圾焚烧烟气中主要的有害物质有CO、SOx、NOx、有机碳以及二氧(杂)芑(二恶英,dioxins)和呋喃(furane)。通过对燃烧技术的改进和焚烧过程的调整,这些物质的产生和排放可以在一定程度上得到控制。相比较而言,在本世纪五十年代以前仅对垃圾焚烧炉的烟尘排放以及最低焚烧温度有过限制。规定最低焚烧温度(如800℃)目的在于将产生刺激性气味的有害物质在炉子中充分燃烬;

(3)从焚烧炉投资和运行经济性的角度来看,其焚烧量应为3 t/h到20~25 t/h。

因此,现代垃圾层燃焚烧系统应该满足以下要求:

⑴拨火作用强,以保证整个炉排面上垃圾的均匀、充分燃烧并防止结渣。影响炉排拨火作用的主要因素有:

① 炉排的型式;

② 炉排运动的方式和强度;

③ 炉排倾角和垃圾在炉排面上的移动方向等;

⑵为了保证垃圾的及时引燃、充分燃烧和燃烬,炉排应分成干燥和引燃区、主焚烧区和灰渣燃烬区三个区域;

⑶燃烧设备应该具有对经常发生的垃圾成分(水分或者热值)突然出现波动情况的适应能力。当垃圾成分发生波动时,焚烧炉垃圾给料量以及一次风量及其分布和温度均应及时准确地予以调节;

⑷对燃烧空气(一次风和二次风)进行预热;

⑸具有投入某些添加剂的可能性,以降低某些有害物质如二恶英、NOx和SOx的排放量;

⑹将整个燃烧过程划分为垃圾焚烧阶段和烟气中可燃有害物质的燃烧阶段,后一阶段烟气的燃烬需要足够的空气。在垃圾焚烧阶段需限制燃烧空气量,以避免炉膛温度的强烈波动以及产生过多飞灰;

⑺保证较低的灰渣和飞灰含碳量(1~3%),燃烬良好。

3.3 倾斜往复推饲炉排焚烧炉的发展前景

现代垃圾层燃焚烧炉炉排的主要型式之一是往复推饲炉排,其中应用最广泛的应是单级或多级布置的顺推倾斜往复炉排。垃圾由机械给料装置自动进入炉膛,先后在炉排上经过干燥和引燃区、主焚烧区以及燃烬区,完成整个焚烧过程,垃圾在炉膛内的停留时间一般为1小时。借助于炉排倾角并通过炉排的往复运动,垃圾在向灰斗的运动过程中不断地得到翻搅,拨火作用强。为了适应焚烧量、垃圾种类以及成分的变化,燃烧空气量及其分布均可调节,并可分为一次风、二次风或者三次风分别配给。德国EVT公司的垃圾焚烧系统是采用顺推倾斜往复炉排的典型例子。其特点在于采用一个链条炉排来保证垃圾的均匀和连续输送。通过对链条炉排传送速度的无级调节,使得焚烧炉能够对垃圾热值的波动作出灵活的反应,有利于燃烧工况的调节。

滚动炉排也是一种前推式炉排,一般由倾斜布置的多个滚筒组成。滚筒在液压装置的作用下作旋转运动,使得滚筒上的垃圾在燃烧过程中形成波浪式的运动,垃圾从而得到充分的搅拌,拨火作用强,燃烧充分。该类焚烧炉炉膛的设计合理地结合了滚动炉排的特性和垃圾焚烧的特点,前面的几个滚筒为垃圾的干燥和燃烧区,能使高水分、低热值的垃圾迅速得到干燥并及时着火。低热值的垃圾在前拱高温辐射的作用下,形成垃圾焚烧所必需的高温区域,以使垃圾充分燃烧并减少有害物质的产生和排放。在后拱的作用下,火焰和高温烟气直接冲刷后面滚筒燃烬段上的垃圾,以促使垃圾的进一步燃烬。逆推倾斜往复炉排的典型代表是德国马丁公司的炉排,其与前推倾斜往复炉排的不同之处在于炉排片的运动方向与垃圾运动方向相反。因此,采用逆推倾斜往复炉排可使来自主焚烧区域的灼热灰渣与干燥引燃区域中的垃圾更加充分地混合,有利于垃圾的引燃。可见,这种炉排更加适用于水分高、热值低的垃圾的焚烧。

分析各种城市垃圾焚烧设备的特点可知,结合我国国情来发展倾斜往复推饲炉排焚烧炉是合理可行的。在设计中,除了要考虑受热面传热效率外,还应考虑受热面和炉墙的腐蚀和磨损、烟气净化以及自动控制等问题。在炉拱和炉膛设计和燃烧空气布置、分配方面,应该充分考虑我国城市消费水平较低,垃圾不可燃成分比例较高,热值远低于发达国家的特点。不过我国城市生活水平正在不断提高,城市垃圾正向着含水率降低、可燃成分逐渐增加的趋势发展,中等以上城市的垃圾热值一般在2512~4605 kJ/kg,个别地区已达3349~6280 kJ/kg,已达到或接近垃圾焚烧的要求(热值不小于3350 kJ/kg)。考虑到我国的实际情况,在研制大型垃圾锅炉、建设大规模垃圾焚烧厂的同时,应该鼓励开发中、小型垃圾焚烧设备。

篇2

中图分类号:X705 文献标识码:A

1 二恶英的性质、结构及来源

二恶英主要是由于人类的活动而产生的一种最毒的物质,其毒性是氰化钾的1000倍,1g二恶英可使10000人致死,此外还具有致癌性、致奇性、生殖毒性等慢性毒性。二恶英是多氯代二苯二恶英(PCDDs)和多氯代二苯呋喃(PCDFs)的总称,根据其所含氯原子的数量和取代位置的不同,PCDDs有75种同系物,PCDFs有135种同系物,其毒性亦有极大的差异。

自然界中,二恶英来源如下:一是垃圾焚烧过程中产生的,二是有机氯化学物质合成时的副产物,三是造纸工厂在纸浆的氯气漂白过程中产生的和炼钢过程中产生的,四是自然产生的,如森林火灾。

2 垃圾焚烧与二恶英的产生

垃圾焚烧可使垃圾减量化,减量至原量的10%左右,而且焚烧垃圾产生的蒸汽可用于发电而实现资源化,可谓一举两得。因此,日本、欧美等发达国家建立了大量的垃圾焚烧工厂,但是垃圾焚烧时会产生相当数量的二恶英。如日本全国一年因垃圾焚烧而排放出的二恶英达2500g, 占全国二恶英排放量的一半。这对我国推行垃圾焚烧处置法时,必须给予高度地重视,以减少二恶英的污染。

2.1 二恶英的生成机理

二恶英的生成机理,通过各国科学家近10年的研究表明,主要有如下二条生成途径:

(1)从与二恶英结构关系不紧密的,碳水化合物开始,而生成的。二恶英的生成其碳、氯、氧、金属是必要的,适合温度是250~350℃,而300℃左右为其最适合,垃圾焚烧时产生的飞灰,其所含碳氧化物而分离成为具有二恶英结构的物质,而生成二恶英。(2)从具有与二恶英结构相近的氯化苯酚等而生成的。

2.2 影响二恶英生成的要因

2.2.1 粒子状物质

垃圾焚烧炉的排放气体中,垃圾中的无机物以飞灰、煤烟等粒子状物质而存在。这些粒子状物质是二恶英生成的重要条件。粒状物质中的金属、碳对二恶英生成反应起着非常重要的作用,而且,生成的二恶英在排放气体中吸附粒子状物质,凝缩成为微小粒子。

2.2.2 催化剂

飞灰中的金属或金属氧化物是作为催化剂参与二恶英的生成反应。其中:如铜的氯化物(CuCl2,CuCl等)起非常重要的作用,如从氯化氢和氧生成氯的催化剂,有机化合物氯化时的催化剂,从前躯物质生成二恶英的催化剂,碳氧化后生成二恶英结构时催化剂。而且,金属氯化物在二恶英生成时也是氯的供给源。其它金属如铁、镍、锌等亦具有催化剂的作用。

2.2.3 氯

无机氯和聚氯乙烯同样是二恶英生成需的氯的供给源。但垃圾中的氯大量存在,是否生成二恶英,取决于焚烧物中垃圾的燃烧状态。

2.2.4 碳

垃圾焚烧生成的煤烟等是二恶英第一条生成途径的起点物质,煤烟的结构是多种环状结构物质的集合体,与二恶英的结构非常相近,极易变为二恶英结构。

2.2.5 焚烧炉中温度

垃圾焚烧炉中的温度直接影响二恶英的生成量,如前所述250~700℃易生成二恶英。

3 控制垃圾焚烧中二恶英生成的对策

3.1 焚烧垃圾前分类处理

氯是二恶英生成必要条件,重金属在二恶英生成中起催化剂作用,所以垃圾焚烧前,应进行分类处理,可回收利用的尽量回收利用, 日本、美国、欧共体国家重视垃圾综合处理,分类收集,资源回收利用。

3.2 二恶英生成抑制

篇3

【关键词】生活垃圾焚烧发电厂;运行;问题;管理策略

【Keywords】 domestic waste incineration power plant; operation; problem; management strategy

【中图分类号】X799.3 【文献标志码】A 【文章编号】1673-1069(2017)04-0092-02

1 引言

生活垃圾焚烧发电厂的发电原理就是使用特殊的垃圾焚烧设备,将生活垃圾倒入其中作为燃烧介质,然后利用生活垃圾燃烧后产生的能量进行发电[1]。生活垃圾焚烧发电是一种新型的发电方式,不仅有效处理了生活垃圾,避免生活垃圾所造成的环境污染,还能够用于发电,实现了资源的再次利用,具有非常重要的价值。

2 生活垃圾焚烧厂在环境保护中的作用

2.1 减少垃圾存放量

填埋生活垃圾是过去我国一直采取的处理生活垃圾的方式,在今天这种填埋的方式已经无法满足需求。根据相关数据统计表明,近年来我国生活垃圾存量已经超过70亿吨,占地面积达到了80万亩以上。

我国正面临着被生活垃圾包围现象,通过建设生活垃圾焚烧发电厂,能够焚烧绝大部分固体生活垃圾,占据着生活垃圾总量的80%以上,这无疑极大地减少了我国生活垃圾存量,而且通过焚烧的处理方式不仅能够避免二次污染,还能够用于发电,可谓是一举多得。

2.2 具有明显的节能减排效果

建设生活垃圾焚烧发电厂,对生活垃圾进行焚烧处理时产生的余热能够再次进行利用,降低了能耗,提高了资源利用率。根据相关数据表明,焚烧1t的生活垃圾,其产生的能量相当于0.2t左右的标准煤。

3 生活垃圾焚烧发电厂运行中存在的问题

近年来,生活垃圾焚烧发电技术在我国得到大力推广和应用,各地相继建设了许多生活垃圾焚烧发电厂。就目前来看,我国所掌握生活垃圾焚烧发电技术从总体来说与国际是接轨的,但是生活垃圾焚烧发电技术与设备、余热利用率的能力仍有所欠缺,需要进一步提高。生活垃圾焚烧发电厂中部分关键设备仍然需要从国外采购。

4 生活垃圾焚烧发电厂运行管理策略

4.1 加大生活垃圾焚烧发电技术与设备的研发、投入力度

生活垃圾焚烧发电技术水平高低与设备的先进性直接决定了生活垃圾焚烧发电厂的运行效率,在很大程度上体现着生活垃圾焚烧发电厂的发展前景[2]。因此,加大生活垃圾焚烧发电技术与设备的研发投入力度非常有必要。现阶段,相较于发达国家,我国的垃圾焚烧发电技术与设备仍存一定差距,我们必须充分认识到这一点,并引起足够的重视,进而不断加大对生活垃圾焚烧技术与设备的研发、投入力度,在国家科技发展计划中纳入垃圾焚烧发电技术,建立垃圾焚烧发电技术研究中心,加强与国际先进机构进行沟通交流,积极引进国际先进的垃圾焚烧发电技术,以此提高我国生活垃圾焚烧发电水平,降低垃圾焚烧设备生产成本。

政府部门应逐步完善现有的监督管理机制,健全相关制度,例如责任制度、激励制度和惩罚制度等,明确规范运行标准,加强监管部门建设,同时逐步放开监管市场,组建专业的监测机构或吸引国外先进监测机构投资建设。另外,针对有害物质监测的问题,相关部门应逐步开展焚烧炉、尾气净化装置运行工况的实时监控[3]。同时政府多部门应共同参与,协调合作,实现信息共享,使得各部门明确自身职责,充分发挥其职能。加强对生活垃圾焚烧发电厂检查,对于不符合规定要求的垃圾焚烧发电厂,必须勒令其及时进行整改,从而确保所有运行的生活垃圾焚烧发电厂均是符合规定要求的。

4.2 建立开放、透明的全民参与制度

全民参与顾名思义就是指社会各界人士,全体民众共同参与在其权利义务范围内,有目的和目标的社会活动。现阶段,绝大多数的民众都很反感自己生活范围内建设生活垃圾焚烧发电厂,究其根源就是对我国垃圾焚烧发电技术的认识不够全面,盲目地认为排放无法达到相关规定标准。就国外和国内焚烧垃圾发电所获取的成果来看,生活垃圾焚烧发电具有较高的可行性,但是为什么我国绝大多数民众会持有反感态度,关键就在于生活垃圾焚烧发电厂建设与运行的相关信息是否具有公开性。因此,为了解决上述问题,政府必须加大民众对生活垃圾焚烧技术认识的普及程度,同时建立开发、透明的全面参与制度。

4.3 提升生活垃圾综合管理水平,制定完善应急方案

对于国际上先进的生活垃圾管理知识与经验,我国应抱着积极学习的态度,做好生活垃圾源头减量、分类收集处理、利用等工作,在焚烧生活垃圾时,尽量剔除不适合焚烧且不能用于发电的物质。同时还应制定完善的急方案,专门针对各种突发事件,提高应急管理水平,尽量将损失减到最小。提升生活垃圾综合管理水平,制定完善的应急方案,能够有效促进我国生活垃圾焚烧发电技术的发展。

5 结语

综上所述,针对生活垃圾焚烧发电厂运行中存在的问题,必须引起高度重视并采取有效措施予以解决,同时加强生活垃圾焚烧发电厂运行管理,这样有助于提高生活垃圾焚烧发电厂运行效率,从而促进垃圾焚烧发电厂的发展。

【参考文献】

篇4

1 概述

垃圾焚烧发电是通过垃圾干燥、燃烧和燃烬三个阶段,让垃圾在850℃至1100℃的高温下充分燃烧。燃烧中,可通过DCS自动控制系统即时监控和调整焚烧炉内垃圾的燃烧工况,及时调节推料器及炉排运行速度和燃烧风量。焚烧垃圾产生的高温烟气在余热锅炉中进行热交换,产生过热蒸汽,推动汽轮发电机组产生电能。电能通过电网,输送到各地,实现了垃圾减量化、资源化、无害化处理。

2 新世纪二段往复式垃圾焚烧炉的工艺结构特点

新世纪公司二段往复式垃圾焚烧炉是在日本三菱马丁型垃圾焚烧炉基础上发展起来的。早期的日本三菱马丁型垃圾炉两列逆推式炉排采用一对液压油缸来驱动;干燥段、燃烧段、燃烬段的逆推炉排运动速度是相同的。由于逆动炉排的作用,使炉排上的垃圾得到均匀的、充分的搅动和翻转,对燃烧时产生表面固化的垃圾团还有破碎作用,让垃圾得到足够的空气进行燃烧。而在实际运行过程中,干燥段、燃烧段、燃烬段炉排的运动速度要求是不相同的:干燥段、燃烬段炉排速度应当比较慢;而燃烧段炉排运动速度应当比较快。而早期日本三菱的马丁型垃圾焚烧炉,三段炉排共用一对液压油缸来驱动,三段炉排的运动速度是一致的,三段炉排运动速度以满足燃烧段的需求为主。由于燃烧段逆推炉排运动速度比较快,从而导致垃圾往往在干燥段及燃烬段炉排上向前运动过快,还没有充分烧透就掉落到垃圾渣坑里去了。针对这个问题,新世纪公司作了重大改进,在原有的逆推炉排下方,增设了顺推炉排。

新世纪二段往复式(逆推+顺推)垃圾焚烧炉排的主要特点是:二段往复式逆推炉排由1对油缸驱动;炉排有一定倾斜度,通常有14级;垃圾进入炉膛在倾斜的逆推炉排上不断翻滚搅拌、干燥着火、燃烧。顺推炉排位于逆推炉排下方;通常有6级;延长了垃圾在燃烬段的停留时间,垃圾基本上是在顺推炉排的床面上充分燃烬的。

二段往复式垃圾焚烧炉在逆推炉排床面上有一个较长的干燥区,从而使得即使是含水量高达50%的低热值垃圾,在二段往复式垃圾焚烧炉内也能燃烧。通常,垃圾经过进料漏斗,由DCS控制系统调节垃圾给料器的给料量;同时把垃圾推入炉排干燥段。在由DCS控制系统调节控制下,先后使垃圾依次通过干燥段、燃烧段(逆推炉排);然后再进入燃烬段(顺推炉排),最后燃烬的炉渣在顺推炉排作用下,落入炉渣储坑。

3 DCS系统对新世纪二段往复式垃圾焚烧炉过程控制

和利时公司DCS系统对垃圾焚烧炉的控制积累了比较丰富的工程经验,并针对新世纪二段往复式垃圾焚烧炉开发了一系列控制算法块,如料层控制、推料机控制、炉排控制、出渣机控制、料斗门控制等算法功能块,简单易学;针对焚烧炉行业垃圾成分复杂、热值不均、焚烧炉经常偏离最佳燃烧工况等特点,在锅炉蒸发量控制、逆推炉排尾部料层调节控制、顺推炉排风门控制、液压站控制等做了优化控制方案,更有效的提高全厂自动化控制水平,从而减少运行、检修人员的工作强度和工作时间,提高了生产效率,降低了整体运营成本。以下介绍由和利时DCS实现的四川内江生活垃圾焚烧发电厂项目的新世纪垃圾焚烧炉的应用案例。

新世纪垃圾焚烧炉项目全厂DCS系统网络结构图如图1所示。

DCS系统配置7个过程控制站,分别为:ACC系统控制站、余热锅炉控制站、烟气净化控制站、汽机控制站、DEH系统控制站、公共系统控制站和化水系统控制站,完成对整个垃圾焚烧发电项目各系统的监视和控制。

监控操作站的配置:DCS系统共配置5个操作员站(分别为:锅炉OS1、锅炉OS2、汽机OS3、汽机OS4、公用OS5)、1个工程师站、两台历史数据服务器。

全厂DCS系统控制范围:垃圾运输的称重汽车衡系统,焚烧炉辅机及ACC系统,余热锅炉,烟气净化系统,汽机本体、辅机及DEH系统,化水系统,全厂公用系统。

4 关键过程控制

新世纪二段往复式垃圾焚烧炉的自动燃烧控制技术采用了锅炉蒸发量和炉温稳定控制原理,以保证焚烧炉根据设定的数值实现稳定、可靠的运行。其自动燃烧控制策略所有环节均由DCS控制,如:锅炉蒸发量控制策略、焚烧炉料层厚度控制策略、炉膛温度控制策略、烟气含氧量控制策略等。

4.1 锅炉蒸发量控制策略

新世纪炉排自动燃烧控制技术中,主要是依靠控制逆推炉排下的一次风量和给料器速度来调节控制垃圾焚烧炉的蒸汽蒸发量。具体来说,新世纪软件的设计思想是优先考虑调节逆推炉排下面四个段一次风的风量来调节控制蒸汽量。实际上,一次风量增加,垃圾焚烧加快,垃圾厚度自然下降,这时自然就需要增加垃圾给料量。所以,新世纪在自动燃烧控制技术中,采用这样的控制策略就成功避免了其他垃圾焚烧炉由于给料量增加太多,烧不透的现象。

一次风温度通过一次风蒸预器来控制,通过自动控制来调节风门的开度来控制一次风温度,一次风温度一般控制在250℃~270℃,公共风室风压一般控制在2500pa以上,各风室(一次空气室)风压一般控制在1500pa以上。

4.2 焚烧炉料层厚度控制策略

垃圾层厚度控制系统监控炉排上垃圾层厚度,根据监测到的料层厚度调节推料器速度和干燥炉排速度以保持料层厚度给定的设定值,同时,辅助调节燃烧炉排速度和燃烬炉排速度。控制料层维持在一定范围内,确保垃圾料层过厚而导致燃烧不充分。(如图2)

4.3 炉膛温度控制策略

控制炉内温度能保持炉内的温度稳定,以维持锅炉负荷和减少烟气中污染物排放。为了控制炉内温度,由测量所得的炉内温度T1、炉顶部烟气温度T2和烟气流量Fg,经过运算公式运算得出炉膛温度。控制炉温维持在一定范围内。实现二恶因产生的最小化控制。(如图3)

焚烧炉正常运行时,炉膛温度联动辅助燃烧器的启停:(1)TR

4.4 烟气含氧量控制策略

烟气中一氧化碳与氧气的浓度和炉温密切相关。当供风不足或过量会导致低炉温下燃烧不充分,一氧化碳浓度就上升,氧气浓度下降,通过调节二次空气流量以保持氧气浓度高于给定SV时的浓度,确保焚烧炉燃烧充分,降低烟气中一氧化碳浓度。(如图4)

5结束语

新世纪二段往复式垃圾焚烧炉针对国内城市生活垃圾低热值、高水分的特点而设计(适应垃圾低位热值:4000~7500kJ/kg),进料垃圾不需要预处理;生活垃圾可经料斗和推料器直接送进炉膛内连续焚烧;不需要经常起炉或停炉。其技术成熟,设备可靠,具有适应热值范围广、负荷调节能力大、可操纵性好和自动化程度高等特点。其控制系统采用和利时公司的DCS系统,通过DCS系统配置的专业算法和优化方案,更有利于焚烧炉自动燃烧管理的实现,降低操作人员劳动强度,确保焚烧炉稳定、完全燃烧。通过四川内江等多个项目的成功应用,将垃圾焚烧技术减容减量、资源化、无害化的优势体现出来,对垃圾焚烧发电技术产生了积极的影响。

篇5

引言

工业垃圾是指工业生产过程所产生的废弃物。与生活垃圾相比,工业垃圾的破坏性更强,且工业垃圾处理过程有可能对生活环境造成破坏,因此必须高度重视对工业垃圾的处理。常见的工业垃圾处理技术包括焚烧处理、固化处理、卫生填埋等,但工业界往往把焚烧技术看作工业垃圾处理的最终选择。若想有效控制工业垃圾焚烧处理的效果,则必须提高对工业垃圾焚烧过程的控制。随着计算机技术的发展,自动化技术也呈现出迅猛发展的势头,同时工业垃圾焚烧自动化运作对热工仪表功能及性能的要求也越来越高,如此便要求热工仪表必须尽快从技术角度及设备角度进行改进。为此,文章作者结合实践经验,浅析工业垃圾焚烧热工仪表自动化技术的应用。

1 工业垃圾焚烧热工仪表自动化技术的概况

热工仪表是指热工控制仪表,此乃工业垃圾焚烧的中枢系统,同时也是实现热工自动化的重要部件。工业垃圾焚烧的热工仪表是指用来捕捉及调控工业垃圾焚烧运作参数的控制性仪表。此热工仪表是由高智能型设备仪表、现代电子信息技术及热能控制理论有机结合而成,具体包含程控仪、变换器、传感器等部分,同时各部经电缆线连接起来,由此确保连接线路的完整性及控制系统的可靠性。据此可知,工业垃圾焚烧热工仪表的最大优势是把高新热能工程理论与智能化监管能力结合起来,由此实现工业垃圾焚烧运作的科学性、可靠性、经济性。目前,市面销售的热工仪表的种类较多,比如气动型、电动型、液动型、混合型、自力型热工仪表(按能源分类);DCS型、组装型、单元组合型、基地式热工仪表(按结构分类)。工业垃圾焚烧热工仪表自动化运作是指工业垃圾焚烧过程,对数据的测量及信息的计算处理进行自动化调控,同时实现自动预警等。实践证实,工业垃圾焚烧的热工自动化仅依靠热工控制仪表及相关自动化设备便可实现。因为工业垃圾焚烧运作过程,热工仪表发挥着关键性的作用,因此热工仪表的选择必须慎重,同时必须确保所选热工仪表的质量及性能,由此改善热工仪表的自动化条件。为此,下文着重谈论工业垃圾焚烧热工仪表自动化技术的应用现状。

2 工业垃圾焚烧热工仪表自动化技术的应用现状

跨世纪以来,我国工业经济呈现出迅猛发展的势头,同时对工业垃圾的高效处理也变得十分迫切。除此以外,工业垃圾焚烧技术的改进也带动着热工仪表的更新换代,比如自动化控制技术,进而实现热工仪表性能更好且运行更可靠,并最终实现工业垃圾焚烧效率最大化。

据调查结果显示,DCS系统现已被广泛应用到工业垃圾焚烧领域,且此系统对提升热工仪表自动化控制的安全适用性及经济可靠性非常重要,同时也对提高热工仪表自动化控制水平意义重大。DCS系统(又称集散型或分布式控制系统)是指采用计算机技术把全部二次显示仪表集中显示到电脑上,同时全部调节阀及一次仪表等依然分散安装到生产现场的对应位置。由于现场控制站是DCS系统的核心,所以控制站发生的任何故障均有可能引发严重后果,而若想避免此情况的发生,最好采用在线冗余技术来对DCS系统进行优化升级。DCS系统采用的基础技术包括计算机技术、控制技术、通信技术、CRT显示技术,即DCS系统经某种通信网络把控制室及现场控制站的工程师站和操作员站等连接起来,由此实现对现场生产设备的集中操作管理及分散控制。截至目前,DCS系统与个人计算机(PC)已经能够经可视化操作平台实现完美结合,因此工业垃圾焚烧热工仪表调控过程,DCS系统的操作变得更加方便。除此以外,随着DCS系统与PLC间共通性的增加,DCS接入PLC通讯接口的难度越来越低,如此便可实现信息参数的再加工或共享,进而方便对工业垃圾焚烧热工仪表运作的信息化管理。然而,随着DCS系统功能的增加,DCS系统的应用也遭遇诸多尴尬局面,例如把开关按钮设在控制台上会影响到DCS控制与主控室间的融洽度,进而影响到自动化控制技术的应用效果。DCS系统被广泛应用的同时,FCS系统也被逐渐应用到工业垃圾焚烧炉热工仪表控制领域。尽管DCS系统的应用使自动化控制系统的稳定可靠性明显改善,但就上位机体对信息的需求而言,DCS依然存在诸多缺陷亟待完善。考虑到DCS系统的分散控制性制约着现场整体的控制,因此FCS系统的应用能够实现上位机与热工仪表间的数据信息交换。

3 结束语

跨世纪以来,我国工业经济的发展持续呈现出高速发展的势头,但同时工业垃圾的处理也日渐紧迫。比较多种处理方法后发现,焚烧垃圾具有垃圾减量最彻底及回收热能的优点,因此焚烧已成为处理工业垃圾的主要方式。考虑到工业垃圾焚烧过程存在诸多不确定性,因此必须切实控制好工业垃圾焚烧的运作效率,尤其是对热工仪表运作效率的控制。由此可见,对热工仪表自动化技术的研究具有现实意义。长期以来,DCS系统就被广泛应用到工业垃圾焚烧控制领域。研究表明,DCS系统的应用对提升热工仪表自动化控制的安全适用性及经济可靠性非常重要,同时也对提高热工仪表自动化控制水平意义重大。但是,随着工业垃圾处理量的增加及处理要求的提高,DCS系统的应用应从两方面进行改进,即对DCS系统进行优化升级;实现DCS系统与其他先进技术的融合,进而实现工业垃圾焚烧效率的提高。

参考文献

[1]李大中,王晨颖,娄云,等.垃圾与煤、秸秆混燃锅炉污染物排放优化[J].农业机械学报,2012,43(7):117-123.

[2]秦宇飞,白焰.机械炉排式城市生活垃圾焚烧炉焚烧特性的仿真[C]//2009全国博士生学术会议――电站自动化信息化论文集,2009:85-92.

[3]罗嘉.大型垃圾焚烧发电厂燃烧控制策略[J].电力自动化设备,2009,29(7):146-148.

篇6

从18世纪开始,生活垃圾已经开始集中收集和堆放,但是集中堆放造成严重的环境污染问题,到19世纪开始出现焚烧处理垃圾的方式,但是方法比较简单。进入19世纪末机械焚烧炉开始出现,并应用于垃圾焚烧处理。经过100多年的发展,垃圾焚烧技术有了显著进步。目前应用于垃圾焚烧的各种型号的垃圾焚烧炉有数百种,根据不同的分类方法可以分为以下几类。

一、按处理方式分类

最具代表性的城市生活垃圾焚烧炉有:层燃焚烧炉、流化床焚烧炉、回转窑焚烧炉。

其中层燃焚烧炉按炉排形势,又分为滚动炉排、链条炉排、水平往复炉排、顺推倾斜往复炉排、逆推倾斜往复炉排等。其中层燃机械炉排炉技术可靠,处理量大,维护方便,较适合我国生活垃圾处理的现状。流化床焚烧炉可分为循环流化床及沸腾炉,最大优点是可以达到完全的燃烧效果并对有害物质进行最彻底的破坏,一般排出炉外的未燃物均在1%左右,是几种方式中燃烧最充分的[1]。回转窑锅炉在城市生活垃圾处理中应用较少,主要应用于焚烧特种垃圾及污泥。

二、按炉膛形状分类

炉排炉能否将垃圾进行充分燃烧,主要是保证3T+E原则(Temperature――炉膛燃烧温度,Time――烟气在炉膛内的停留时间,Turbulence――燃烧烟气湍流程度,Ex-cessoxygen――过热空气量)。炉膛燃烧烟气紊流程度主要和炉膛结构和尺寸,二次风布置有关。炉膛形状主要分为3种类型,顺流式、逆流式、混流式(见下图1)。

顺流式焚烧炉炉膛进口设在焚烧炉尾部,烟气流向与垃圾运动方向相同,适用于低水分,高热值垃圾。顺流式主要应用在欧美等发达国家,在国内应用较少。逆流式焚烧炉炉膛进口设置在焚烧炉前端,烟气流向与垃圾运动方向相反,具有较强的垃圾干燥能力,特别适用于高水分,低热值的垃圾。混流式焚烧炉炉膛进口位于炉排中部,根据垃圾热值的高低可调节炉膛位置,热值高时向焚烧炉尾部移动,热值低水分高的时候需要干燥新投入的垃圾,炉膛可向焚烧炉前部移动。根据我国城市生活垃圾的特性,目前国内应用较多的为混流式垃圾焚烧炉,依据城市的垃圾特性做结构的适当调整。

三、按炉排结构分类

层燃型垃圾焚烧炉主要由进料斗、进料管、推料器、炉排、炉排片、液压系统、液压站出渣口、除渣机、炉墙钢架及炉墙、一次风二次风系统等组成。其中炉排作为垃圾焚烧炉排炉最核心的的组件是用来区分机械炉排炉结构形式的主要方法。

层燃炉炉排主要分为往复炉排、滚筒炉排、链条炉排、摆动炉排、移动式炉排等。而目前应用较多的层燃型炉排主要有逆推倾斜炉排,顺推倾斜炉排,水平双向往复炉排组合式炉排,两段式炉排等等[2]。

(一)逆推式炉排

逆推式炉排指垃圾燃烧过程中垃圾的运动方向与炉排运动方向相反,每级炉排横向布置做往复运动。逆推式炉排一般倾斜布置,便于垃圾自然滚落,例如MATIN型垃圾焚烧炉炉排倾角26°,ALSTOM型垃圾焚烧炉炉排倾角24°。逆推炉排一般不分级,整体呈一个燃烧面,由于炉排倾角较大,垃圾有靠自重向前移动的倾向。

炉排片前端特制菱形凸起,成三角面。炉排在往复运动过程中,炉排向上运动对垃圾层起到搅动、翻转作用,向下运动将垃圾层向炉排尾部搬运。

逆推式炉排尺寸设计紧凑,燃烧速率一般比顺推炉排要高15%-20%。

(二)顺推炉排

(三)水平双向顺推炉排

水平双向顺推炉排是指整体炉排水平布置,运动炉排组和固定炉排组交错布置,各组炉排组向上倾斜25°布置。运动炉排组起到推动和翻转垃圾层的作用,运动炉排组靠垃圾自重使其紧贴固定炉排片。此类炉排一般分段布置,并设置跌落落差,利于垃圾的有效燃烧。通常根据垃圾燃烧阶段分为干燥,燃烧,燃尽3个模块,每个模块间设置500-800mm左右落差。根据垃圾特性每个模块的长度可做适当调整,例如低热值垃圾可以增加干燥段长度。其典型应用为日本田熊公司的SN型炉排炉。

(四)组合式炉排

组合式炉排指炉排具有两种运动功能,一种是滑动炉排组做与垃圾运动方向相同的水平运动,类似顺推炉排炉排组倾角为0°情况;另一种是摆动炉排组沿与水平方向成一定夹角进行摆动,作用类似摆动炉排。其典型结构为西格斯炉排,图10中滑动炉排由固定位置向右运动,图11中当滑动炉排运动到指定位置,摆动炉排开始摆动。

组合式炉排根据垃圾的焚烧阶段也分为干燥段,燃烧段,燃尽段。不同生产制造厂商设计特点不同,有的炉排为整体呈一个平面,有的各段间设置路差,便于垃圾充分燃烧,但炉排组基本结构相同。

(五)滚动式炉排

滚动式炉排比较容易理解,原理和输送机械差不多,如图12所示。炉排由直径1.5m的滚筒按20°左右水平倾角布置。滚筒的数量一般视垃圾的特性及数量确定。每个滚筒由电机驱动,可实现无级调速,便于快速准确的控制燃烧速度。相邻滚动之间设有刮灰装置,一次风通过滚筒,给垃圾燃烧提供足够的氧气并冷却滚筒。滚筒式炉排在国内城市生活垃圾焚烧中较少应用。

(六)摆动式炉排

摆动炉排是一种比较特别的炉排,炉排整体倾角25°,没有跌落。摆动炉排运动和波浪类似,靠前后两个炉排的摆动推动垃圾向前移动。此类炉排在国内同样应用较少。

垃圾焚烧炉的形式并不只以上几种,这里仅介绍几种比较常用的炉排形式。

四、总结

本文主要介绍了生活垃圾焚烧炉的分类方法,并详细介绍了层燃垃圾焚烧炉的炉排结构及分类。目前国内广泛采用的垃圾焚烧炉主要分两类,流化床炉和机械炉排炉。机械炉排炉实际工程应用比流化床要多很多。而机械炉排炉中应用较多的为顺推、逆推和组合炉排方式,依公司的不同又具有不同的特点。根据我国城市生活垃圾低热值,高水分的特点,需要对进口炉排做相应的改良。

篇7

中图分类号:P754.1 文献标识码:A 文章编号:

1引言

近年来,生活垃圾的处理已经成为了经济高速发展的大中型城市的难题,大量的生活垃圾严重污染了环境,影响了市容,制约着城市的进一步发展,作为可以将垃圾体积减小,质量减轻,同时能够进行能量再利用产生经济效益的方法——生活垃圾焚烧发电目前在发达国家所普遍采用。从1988年我国建造第一座垃圾焚烧发电厂之后,发展较为迅速。垃圾焚烧发电厂具有很好的综合效益,符合可持续发展的要求,前景广阔。

2垃圾焚烧发电厂的应用前提

关于是否采用垃圾焚烧发电厂,国家于2000年印发的《城市生活垃圾处理及污染防治技术政策》对采用焚烧处理垃圾的最低发热量做了规定:“6.1 焚烧适用于进炉垃圾平均低位热值高于5000kJ/kg、卫生填埋场地缺乏和经济发达的地区。”可见生活垃圾的低位发热量是决定一个城市生活垃圾适不适合采用焚烧法处理技术的关键。一般认为,低位发热量小于3300kJ/kg的垃圾不易采用焚烧处理,介于3300~5000kJ/kg的垃圾可以采用焚烧处理,大于5000kJ/kg的垃圾适宜焚烧处理。

同时,为了确保垃圾的彻底燃烧和控制二恶因的产生,国家于2002年颁布实施的《生活垃圾焚烧污染控制标准》要求生活垃圾的焚烧温度要大于850℃,停留时间要大于2s。根据热量衡算,垃圾进炉低位发热量应达到6280kJ/kg。考虑到整个焚烧工艺系统的经济性,业内人士提出7000kJ/kg经济热值的观点。

3 垃圾焚烧发电的设备

国内目前已建成的生活垃圾发电设施大都采用引进国外垃圾焚烧设备,但进口的焚烧设备在国内应用效果并不好,往往处于非经济运行状况甚至运行后效率低下而面临着大型改造。

3.1 垃圾焚烧锅炉利用效率低下的原因

早期垃圾焚烧锅炉自身热效率较低

早期引进焚烧设备主要解决低热值生活垃圾能够燃烧、减容和无害化处理。限于当时技术条件与客观因素,20世纪80年代国内首次引进的垃圾焚烧锅炉热效率为65%,远低于同年代普通工业锅炉(80%以上)和电站锅炉(90%以上)。由于垃圾燃烧烟气中主要由含氧成分构成腐蚀性气体,对余热锅炉受热面产生高温腐蚀和低温腐蚀;余热锅炉设计难以选择较高蒸汽参数。为避免低温腐蚀,垃圾锅炉排烟温度又不能过低,一般在控制在200℃以上;因而,提高垃圾焚烧锅炉热效率亦受到一定限制。

(2)垃圾焚烧锅炉效率偏低

目前垃圾焚烧锅炉的效率偏低,主要原因有以下三个:一是作为燃料的国内城市生活垃圾目前由于分拣程度不高,高水分、低热值,与西方国家对应设计的燃料参数有较大的差别,在运行后需要额外进行投油或者投煤助燃;二是焚烧锅炉热功率相对较小,蒸发量一般为10t/h,不会超过100t/h,出于经济原因,能量回收措施有局限性。三是机组排汽热能无法充分利用。受天气因素影响,排汽参数不可能低于对应的饱和温度。蒸汽在汽轮机内膨胀做功降压至排汽压力后即进入凝汽器中凝结放热。这部分蒸汽能量难以直接利用,在热力学上称之为不可利用热能,一般占全厂热能损失一半以上。

因而,提高国内垃圾焚烧热能——电能转换效率主要途径有以下三项:一是改善入炉燃料的参数;二通过根据中国国情设计制造焚烧设备,提高垃圾锅炉热效率;三是选择适当的发电工质参数;四是完善本厂热力系统。

4 提高热能利用效率的有效途径

4.1降低生活垃圾入炉前的含水率

(1)根据相关理论推导:垃圾维持自行燃烧需要的最低热值应随垃圾水分的升高而增加,当垃圾含水率分别为40%、48%和55%时,对应的垃圾最低热值分别为7658、7908和 8126kJ/kg。对于采用混合收运的生活垃圾来说,降低生活垃圾的含水率污泥是提高生活垃圾热值的最有效办法。因此在许多生活垃圾焚烧发电厂焚烧炉前设置垃圾池,其很重要的作用就是降低垃圾的含水率。在堆贮的过程中,一部分水分被沥干,一部分水分在近似堆肥化的过程中蒸发流失。天津顺港垃圾焚烧厂原生垃圾在垃圾坑里面贮存5到7天,用抓斗进行翻堆,在夏季含水率从50%~60%降低到30%~48%,低位热值从4180~4600kJ/kg提高到4600~ 5130kJ/kg。

(2)根据相关实验证明:混合原生垃圾在密闭的垃圾仓内,堆高1.5m,通过强制通风,二次翻堆,含水率62%的混合生活垃圾,7天后含水率降至45%左右,垃圾低位热值超过焚烧基本要求值。

4.2提高锅炉热效率,降低散热损失

垃圾焚烧锅炉在正常运行过程中,需将炉水表面含盐分较高的炉水排出,一般在上锅筒设连续排污系统。此外锅炉还在底部设定期排污系统,将炉水底部渣、垢排出。锅炉运行中可设置集中排污扩容热能利用设备,对这因排污带走热量进行有效利用,产生经济效益的同时降低散热损失。

4.3提高锅炉出口蒸汽参数

垃圾发电厂属于小型热力发电厂,发电工质提高压力需提高热力设备承压等级;过高温度需采用价格昂贵的耐高温腐蚀金属材料制造过热器,其整体经济效益不一定经济。因而,一定要测算出设备投入——产出效能比较并与汽轮发电机组相匹配,优选最佳方案。目前国内外大中型垃圾发电厂常选用发电工质参数为4.0MPa/400℃过热蒸汽,发电汽耗率小于6.0kg/(kW·h)。2003年建成的温州第2座垃圾发电厂,采用国产垃圾焚烧锅炉。其蒸汽参数为3.9MPa/450℃,发电汽耗率已接近5.0kg/(kW·h)。已达到当代垃圾电厂国际先进水平。

4.4优化热力系统

由于焚烧炉采用进口设备,而热力系统设备往往在国内采购,在热力系统的设计中,存在一些可利用热能未充分利用,而早期引进的垃圾电厂的蒸汽式空气预热器、除氧器、锅炉给水加热器直接由锅炉减压供汽,未利用其压差发电,直接造成了蒸汽可用能的损失等。

通过优化热力系统,增加热能利用率,合理平衡机组发电能力与对外供热用户需求,尽可能地利用焚烧锅炉提供的热能。

5 结速语

用焚烧方式并回收其中能量的垃圾处理技术在近20年得到了迅速发展。焚烧垃圾,回收能源,以实现城市生活垃圾的减容化、无害化和资源化,符合可持续发展的要求。但是由于垃圾焚烧炉产生的烟气具有腐蚀性大,易产生高温腐蚀和低温腐蚀的特点,因此可通过适当选型,降低焚烧锅炉散热损失,对进厂垃圾进行堆酵以沥出其中水分,提高入炉垃圾低位热值等方法和手段提高锅炉热效率。从而也提高了垃圾焚烧发电厂整体的热能利用效率。

参考文献:

篇8

1 引言

城市生活垃圾焚烧发电是把城市生活垃圾收集后,送入垃圾焚烧发电厂进行焚烧处理。生活垃圾进行高温焚烧,在高温焚烧中产生的热能转化为高温蒸气,推动汽轮机转动,使发电机产生电能的过程。

2 工程概述

垃圾焚烧发电项目一期工程由三条400t/d垃圾焚烧线和二台12MW汽轮机发电机组以及辅助公用系统组成。

垃圾焚烧发电厂主要由垃圾焚烧系统、余热利用系统、烟气处理系统、污水处理系统等组成。

3 垃圾焚烧发电热控自动化的控制方式

根据垃圾发电厂工艺流程的特点,控制系统主要由分散控制系统(DCS)、焚烧炉燃烧控制系统(ACC)、烟气连续测量监视系统、汽轮机控制系统(DEH)、汽轮机紧急跳闸系统(EST)、汽轮机安全监视系统(TSl)、辅助车间控制系统等几部分组成。

4 垃圾焚烧发电DCS系统的构成

DCS控制系统完成对三条焚烧线和两台汽轮发电机组及其辅助公用系统的监控。DCS 控制系统由服务器、现场控制站、工程师站、操作员站、冗余通讯网络、现场仪表等成。

4.1 监控系统的功能

数据采集系统(DAS)具有图形显示功能、报警管理、制表记录、历史数据存储和查询功能;模拟量控制系统(MCS)能满足焚烧炉、锅炉和汽机及其辅助系统安全可靠、稳定高效运行;顺序控制系统(SCS)以程序控制为基础,对焚烧炉联锁控制、焚烧炉炉排的控制、汽机联锁保护等。

4.2 监控系统的构成

(1)现场控制站

控制站由主控单元控制器、模拟量输入输出卡件、开关量输入输出卡件、网络通讯等单元构成。主控单元控制器采用双机热备冗余结构, 通讯系统也为双网冗余。

(2)操作员站

操作站、工程师站平时各自完成所控的对象,需要通过密码身份验证登陆,赋予相应权限。

(3)打印机

控制系统设一个打印机(用于事件、报警、图形、数据等打印),安放在工程师站内。

(4)GPS装置

GPS装置与DCS系统的服务器连接。

(5)电源

电源柜内配置冗余电源切换装置和回路保护设备。

4.3 监控系统可靠性措施

设备冗余配置,锅炉和机组的重要保护和跳闸功能采用独立的多个测量通道,跳闸回路采取三取二逻辑、十取三等逻辑。当主控系统发生全局性或产生大故障时,为确保机组紧急安全停机,设置独立于主控系统的紧急停机按钮。

4.4 DCS监控系统通讯网络

DCS系统外部设备通讯网络设有并支持,RS323 RS422/485接口MODBUS协议、及PROFIBUS -DP现场总线、HATE协议等。 DCS与厂级监控信息系统(SIS)配置一台数据采集接口相连,数据采集接口功能由独立操作员站完成并设防火墙。

4.5 垃圾焚烧余热锅炉控制方式

以 DCS 为核心的监控系统,同时提供MODBUS 和PROFIBUS-DP 两种通讯协议与控制子系统进行通讯。焚烧炉综合燃烧控制系统(ACC)与焚烧余热锅炉主控系统通讯通过 PLC(S7-300)实现炉排液压系统自动控制并接受 DCS 来的含氧量、炉膛温度和主汽流量信号,可实现自动燃烧控制。

4.6 烟气净化处理系统

布袋除尘控制系统配一套PLC,通过RS485接口与 DCS系统通讯,气力输灰系统直接进入DCS系统进行监视和操作。

4.7 辅助车间控制系统

污水处理控制系统是一套完整独立的控制系统(DCS),只将必要的监视控制通过OPC协议通讯到主DCS系统监控。垃圾抓斗控制系统,系统采用PLC控制 ,在垃圾吊主控室实现设备操作,DCS不设控制监测。

4.8 烟气在线监测系统(CEMS)

烟气在线监测系统在每套焚烧线的烟气出口安装了独立的监测探头,配置独立的监测分析设备。

4.9 余热锅炉吹灰系统

焚烧余热锅炉乙炔脉冲吹灰系统自带PLC控制系统,由PLC控制吹灰时间、频率。

5 焚烧炉燃烧控制子系统

焚烧炉燃烧控制子系统包括:锅炉给水三冲量串级调节系统 ,过热蒸汽温度串级调节系统 ,炉膛负压调节系统,烟气净化处理控制系统,顺序控制系统(SCS),锅炉联锁保护系统 (MFT),综合燃烧控制装置 (ACC)。

6 汽轮机控制系统构成

以DCS为核心的汽轮机监控系统包括:汽机危急跳闸系统(ETS)、汽机安全监视系统(TSI)、汽机数字电液调节系统(DEH)、凝汽器热井水位自动调节系统、疏水调节系统、射水真空调节系统、轴封调节系统、循环水调节系统、除氧器模拟量控制系统(MCS)、除氧器液位自动系统,除氧器压力自动调节系统。

7 工业电视监控系统

篇9

在垃圾焚烧技术运用的过程中,主要采用了热力技术形式,对垃圾进行分解、无害化以及减量化的处理,并在回收废物中对能量、矿物质与自身化学成分分析。通过垃圾焚烧可以减少废物体积以及危害状态,降低垃圾中有害物质的出现。而且,在垃圾焚烧技术分析中,其装备与污染防治设施呈现出不断完善的状态,因此,在我国垃圾处理的过程中,焚烧技术逐渐成为最基本的垃圾处理方式。

1 垃圾焚烧处理过程

焚烧系统主要是垃圾焚烧处理中的核心工艺,在目前垃圾焚烧项目中得到运用的设备主要有机械炉排炉、流化床焚烧炉以及回转式焚烧炉。

2 垃圾焚烧处理的现状

在现阶段城市进程发展的背景下,城市生活垃圾焚烧主要是通过机械炉排焚烧炉以及流化床焚烧炉进行的。通过调查可以发现,欧洲国家有90%的焚烧厂会采用机械炉排路的垃圾方式,日本大型城市的垃圾焚烧厂会采用机械炉排路的方式。而我国在发展中,于2014年建成178座生活垃圾焚烧发电厂,并采用机械排炉技术,采用流化床技术的电厂为67家。其中循环流化床技术的垃圾焚烧厂主要分布在东部地区,采用机械排炉技术的垃圾焚烧厂多分布在东部沿海区域。同时,在人们环境观念逐渐提升的过程中,热解气化焚烧技术在近年环境保护中得到了运用,其技术主要包括了热解及气化两个过程,其中的热解技术主要是在无氧或是缺氧条件下,通过高温,利用垃圾有机分解的形式,脱出挥发性物质的固态焦炭过程。而气化主要是反应物在原性状态下与气化剂发生的反应,并在此基础上生成以可燃气为主的热化转换过程[1]。

3 焚烧炉型的技术比较分析

3.1 炉排炉型焚烧炉

对于炉排炉型焚烧炉而言,是机械炉排炉的一种,通过机械炉排行程炉床,在垃圾处理的过程中,依靠炉排的运动是垃圾在整个机械系统中不断翻动,并实现向前或是向后的推行。通常状态下,垃圾燃烧中其基本的流程可以分为三个阶段,分别是干燥阶段、燃烧阶段以及燃尽阶段。在整个焚烧工艺流程运行中,通过一次风机在垃圾储坑的上部将垃圾发酵堆积所产生的臭气引出,然后经过蒸汽(空气)预热器的加热处理,将其作为助燃空气送入到焚烧炉之中,保证垃圾在较短的时间内得到干燥处理。在燃烧阶段中,为了保证垃圾得到充分的燃烧,需要在燃烧炉的上方通入二次风,主要是为了加强氧气气流的干扰,增强助燃的空气量,实现垃圾的一次性燃烧。在炉排炉型焚烧炉技术运用的过程中,其存在着一定的优势及缺陷因素:第一,优势分析。在炉排炉型焚烧炉技术使用的过程中,不需要添加煤或是其他辅的燃料,所以产生的煤渣也就相对较少。而且,在单台焚烧炉垃圾处理的过程中,其容量相对较大,在处理中不需要对垃圾进行分类处理。通过炉排的机械运用,可以保证炉内垃圾的稳定燃烧,而且燃烧的过程较为完全,炉渣的热灼现象逐渐降低。第二,缺点分析。通过对炉排炉型焚烧炉技术的分析可以发现,机械炉排焚烧炉存在着初投资、运行以及维修费用较高的现象,而且,排炉片的磨损腐蚀现象较为严重,因此,在垃圾处理技术选择的过程中,需要对该技术的优缺点进行系统性的分析,保证垃圾处理的安全性及高效性[2]。

3.2 流化床焚烧炉技术分析

在流化床焚烧技术运用的过程中,其燃烧的原理主要是通过流态化技术进行垃圾的燃烧,并借助砂进行安全处置,从而达到生活垃圾焚烧介质均匀传热以及完全燃烧的最终目的,在垃圾焚烧的过程中,空气会从流化床底部喷入,并实现砂介质的合理搅动,使垃圾形成流态性。通过流化床焚烧炉技术的运用,可以充分保证炉膛下部布置的耐高温特点,而且,系统板上装有载热的惰性粒子,并在床下布风的同时使惰性颗粒呈现出沸v的状态,并形成流化床床段。在流化床焚烧垃圾的过程中,需要将垃圾进行破碎处理,使垃圾达到一定的粒度状态,而且,通过短时间的流化焚烧,可以借助燃风作用将其在短时间内进行处理,从而形成流化床焚烧炉的合理性。在流化床焚烧炉运用的过程中,其优点主要体现在以下几个方面:第一,流化床焚烧燃烧炉的效率相对较高,而且未燃物的排除率只有1%。第二,在炉内燃烧中,炉内没有机械运动部件,而且耐久性相对良好,可以延长机械的使用寿命。缺点:第一,流化床焚烧炉主要是依靠空气进行垃圾的处理及燃烧,然后在对进炉的垃圾进行有粒度的要求,通常情况下,进炉的垃圾颗粒不能大于50mm,而且大颗粒的垃圾厚实会直接落到炉底,从而达到完全燃烧的最终目的。第二,垃圾在炉内沸腾的状态会全部依靠大风量高压的空气,存在着电耗大、生产灰量大的问题,从而为下游烟气净化带来了一定的负荷。第三,流化床焚烧炉在运行及操作的过程中,其专业性的技术相对较高,因此,在调控手段优化中,需要有专业性的技术人员进行操作及引导。

3.3 回转窑焚烧炉技术分析

在回转炉焚烧技术运用的过程中,其燃烧的技术主要采用了二段式的燃烧技术。在一段项目处理中采用了类似水泥窑的水平圆筒式燃烧式,并按照定速旋转的方式到达搅拌垃圾的最终目的。当垃圾在一燃烧室燃烧完成之后会直接进入到二燃烧室,其中一燃烧室中产生废气,当其含有有机物时,需要将其导入到二燃烧室之中,然后在运用辅助燃油或是超量助燃空气的燃烧效果。在一燃烧室处理的过程中,由于转速的变化,会导致底灰以及飞灰的分别处理,影响垃圾窑中的停留时间,同时对垃圾在高温空气中施加了较强的机械碰撞,实现了垃圾可燃物质的有效处理。在回转窑焚烧技术运用的过程中,存在着优点及缺点因素。第一,优点,所处理的废弃物合理不同预处理就达到最终目的,而且其适应性相对广泛。在垃圾处理中可以解除调控回转窑的转速,进行垃圾停留时间的调节。同时,由于系统的机械振动的运行状态,可以使垃圾达到良好的搅拌效果,提升垃圾处理的整体效率。第二,缺点,在回转窑焚烧炉运行的过程汇总,其燃烧需要过量的空气,导致整个系统的运行效率较低。垃圾处理量不大,而且燃烧问题不能得到有效控制,需要辅助燃料达到燃烧的目的。圆球形的固体废弃物容易发生回转窑的现象,不容易完全进行燃烧,而且,在垃圾处理中,烟道中的浮选颗粒相对较多,而且,在处理污泥废弃物的过程中,容易出现熔渣现象。

总而言之,在现阶段垃圾处理的过程中,需要通过对垃圾焚烧现象的系统分析,进行焚烧炉型技术的优化选择,达到垃圾有效处理的最终目的,为环境的优化提供稳定支持。

4 结束语

总而言之,在现阶段垃圾焚烧炉技术运用的过程中,需要认识到垃圾处理的现状,使用不添加辅助燃料进行稳定的垃圾燃烧,然后在通过对机械炉排炉特点的分析,进行垃圾的优化处理。而且,焚烧炉型垃圾处理中,通过技术的优化运用,可以保证垃圾处理技术的完善性及可靠性,通过对大容量垃圾的优化处理,提高垃圾处理效率,保证系统的稳定运行。

篇10

在我国现阶段的垃圾处理中,生活垃圾所占的比例最大,国内每年堆积的生活垃圾总量约为75万吨。在国内传统的垃圾处理中,普遍采取填埋的方法,但是这种方法的缺陷和弊端较多。在新的社会形势下,我国政府、环保和能源部门提出了垃圾处理的新原则,即减量化、无害化、利用化和安定化,其根本目的是在避免垃圾形成二次污染的前提下,加强垃圾的回收和再利用。目前,垃圾焚烧发电是国内外常见的垃圾再利用技术之一,实现了垃圾的无害化处理,减少了垃圾对于生态环境的污染,而且有效提升了区域的资源供应能力。

1、垃圾焚烧发电技术的特点分析

目前,在国内各省市、地区相继建设了一些具有较大规模的垃圾焚烧发电站,成为区域环境治理和能源供应的新途径之一。从专业技术的角度进行分析,垃圾焚烧发电技术的特点主要表现在以下几个方面:

1.1适用条件

垃圾焚烧发电技术的优势是显而易见的,但并不是所有的地区都适于开展垃圾焚烧发电。在各地区拟定垃圾焚烧发电站的建设时,必须对各类垃圾的低位发热值、可燃质含量与含水率等进行鉴定。一般情况下,生活垃圾的低位发热值要在6280kJ/kg以上,可燃质含量在35%左右,含水率在50%以下,这是应用垃圾焚烧发电技术的基本条件。

1.2技术类型与特点

1.2.1回转炉技术

回转炉技术是最为常见的垃圾焚烧发电技术之一,其主要是应用回转窑焚烧炉进行垃圾的处理、焚烧和发电。回转窑焚烧炉的窑身通常设置为一微倾斜的形式,垃圾从高端送入低速回转的圆筒内,在筒内经过翻转、燃烧等环节后,燃烬的灰渣从圆筒下端排出。目前,国内使用的回转窑焚烧炉以水冷壁式、耐火砖衬式为主,具体选用何种形式的回转窑焚烧炉要综合考虑地区生活垃圾的性质、经济条件和技术水平等因素。

1.2.2流化床技术

垃圾焚烧发电中流化床技术的主要原理为:各种物料悬浮于流化床焚烧炉的内部,以保证垃圾与空气的充分接触,从而提高炉内的燃烧和烟气排放效果。同时,流化床技术采用分级燃烧的方式,有利于降低各类氮氧化物的排放量和低成本脱硫,燃烧后产生的灰渣也易于综合利用,是较为环保的垃圾焚烧发电技术之一。但是受到煤炭资源价格上涨,飞灰量较大等原因的影响,流化床技术的应用受到了一定的制约。

1.2.3层燃炉技术

层燃炉技术是较为简单的垃圾焚烧发电技术形式,无需对垃圾进行严格的预处理,利用活动炉排较为良好的机械运动能,实现对于各类垃圾的搅动、混合,从而防止了垃圾在进入炉内后遇高温出现表面固化的问题。同时,应用层燃炉技术实现了垃圾的干燥、着火、燃烧与燃烬等流程均在炉排上进行,节省了技术应用中的人力、物力资源投入。

2、垃圾焚烧发电中常见污染问题及对策

在垃圾焚烧发电中,实现了各类垃圾的“三化”处理,但是在垃圾燃烧过程中有可能向外界排放各种有毒、有害气体或灰尘,从而造成了二次污染的问题。据我国环保部门统计:在垃圾焚烧发电过程中,二恶英的排放量较大的毒性有机化合物之一,其主要分布于垃圾焚烧炉产生的飞灰中。一般情况下,二恶英主要来源于各种原生垃圾中,或者燃烧过程中产生的烟气。同时,重金属也是垃圾焚烧发电中常见的污染物,主要有铅、铜、汞、铬、镉等,在焚烧过程结束后,重金属污染物主要分布灰、烟气与底渣中。

在垃圾焚烧发电的污染治理中,要注意对于焚烧温度的控制,一般要保持在1000℃以上,气体在炉内的停留时间要在2s以上,而且要保证烟气中的含氧量在6%-10%之间。在垃圾焚烧过程中,要尽量控制CuO、HCl、CuCl2的排放量,以防止对于大气的污染。同时,在垃圾焚烧发电过程中,要尽量保证各种重金属污染物残留于底渣中,既减轻了重金属直接排出炉外的技术难度,也有效避免了重金属污染物对于二恶英的催化作用。

3、推进我国垃圾焚烧发电产业发展的策略

目前,在我国各地区形成了发展垃圾焚烧发电产业的热潮,但是由于准入机制和相关监管制度的不健全,而导致大量不符合技术标准和环保要求的垃圾焚烧发电站存在,虽然在短期内取得了一定的经济效益,但是却形成了区域内新的污染源,对于区域经济、社会、环境的健康、和谐发展是极其不利的。因此,在我国垃圾焚烧发电产业的发展中,必须要综合分析和考虑各种影响因素,加强对垃圾焚烧发电站建设流程的审批,并且重视环保技术的创新和实践,从而构建具有中国特色的垃圾焚烧发电产业。

3.1技术政策的完善

在垃圾焚烧发电站的建设中,各级政府和相关部门必须从自身职责的角度出发,加强技术政策的完善。例如:在垃圾焚烧发电的工程设计、设备制造、工艺流程与运行管理等方面,要根据地区的实际情况,并借鉴外国的先进理念和成功经验,制定严格的技术规范与专业准则,特别要注重关键技术的研发与实践,从而为我国垃圾焚烧发电产业发展提供必须的技术基础。

3.2加强产业结构政策

在我国中央及各级地区政府循环经济发展规划的制定与实施中,应将垃圾焚烧发电产业列入其中,在提高产业整体社会地位的基础上,也要注重对于产业的资金、技术和政策扶持力度,从而构建完善的产业结构政策,为垃圾焚烧发电产业的发展创造良好的外部环境。

3.3污染物排放指标应与国际接轨

在我国垃圾焚烧发电产业的发展中,污染物排放超标的现象日趋严峻,这是今后必须重点解决的问题之一。目前,日本、美国、德国、法国、韩国等垃圾焚烧发电产业发达国家,均制定了严格的污染物排放指标,并且配备了相应的监管机制。但是我国垃圾焚烧发电的污染物排放指标尚未形成规范的体系,各地区制度的指标存在较大的差异,所以,我国要积极参照其他国家的标准,在国内实现垃圾焚烧发电污染物排放指标的统一化,同时加强监督与管理工作的力度。

4、结束语

在我国新的社会经济形势下,国内部分城市中已经建设了一定数量的垃圾焚烧发电站,不但有效解决了城市生活垃圾的处理问题,而且创造了可观的经济效益。但是我们也要认识到,我国的垃圾焚烧发电中仍然存在严重的环境污染问题,如果不能对相关污染问题进行有效的质量,将严重阻碍我国垃圾焚烧发电产业的长期发展。因此,在我国加快垃圾焚烧发电站建设步伐的基础上,要加强对于环境污染问题的深入研究,积极改进和完善相关技术措施,从而促进产业的和谐、稳定发展。

参考文献:

[1]汪玉林.垃圾发电技术及工程实例[M].北京:化学工业出版社,2003:69-77.

[2]黄飞.城市生活垃圾综合处理大有可为[A].中国电机工程学会垃圾发电技术研讨会论文集[C].2002.

篇11

机械炉排炉的结焦、积灰会导致焚烧炉前、后拱处形成的“喉口”部位通流面积变小甚至堵塞,从而造成停炉检修;另外如果过热器管外壁沾污、腐蚀,过热器第一、二管屏间隙变小甚至堵塞,降低锅炉运行经济性和安全性,因此必须从机械炉排炉运行中的烟气流速和流动方向,烟温、壁温、飞灰浓度、配风情况等考虑影响受热面结焦、积灰的重要因素,分析导致锅炉烟道沾污、积灰的主要原因,研究影响炉内结焦、积灰的影响规律。

当灰粒温度低于软化温度时,在受热面上,一般只能形成疏松的弱粘聚形灰渣,易脱落;当灰粒温度高于软化温度时,灰将以粘聚性较强的渣型粘附于受热面上;灰层表面温度进一步升高时,就可能形成熔渣。

对于烟道积灰,由于其熔融温度远高于通过烟道的烟气温度,所以烟道中只有少量积灰,未发生熔融,易用吹灰器吹掉。经检测,飞灰的各熔融特征温度接近 1500℃,分析认为这可能与加入的脱酸物质 Ca(OH)2有关。另外,流动温度与初始变形温度差值与灰渣形态有关。当该温差小时,管壁上可形成薄层熔渣,粘结牢固,吹灰器难于吹掉;当温差大时,灰渣层会较厚,在灰渣熔融前对管壁的粘附作用小,用吹灰器较易清除。对比以上各熔融温度,渣块熔融温度最低,与喉口处的严重结渣情况相对应,且 t2-t1=4℃,t4-t3=6℃,渣块达到变形温度后,迅速地软化,流动,更加重了结渣,并难以清除。

1.垃圾飞灰的熔点特性研究

垃圾焚烧与一般燃料燃烧相比,垃圾焚烧具有发热值低、灰份高、热值变化大却含水量高等特点,因此垃圾在焚烧过程中情况也较为复杂,具有气、液、固体多项反应混合发展,多介质中的传递、同相和异相间传递交替发生的特点,并受晶界过程、电化学过程和应力演变过程等多重因素的影响;

所以,垃圾焚烧环境中发生的结焦、结灰比一般燃料燃烧过程中更复杂。

在垃圾飞灰实际测量的灰熔融特性来看,其变形、软化、熔融温度均低于粉煤灰的温度,这决定了垃圾焚烧炉易于结焦的特点,根据深能环保武汉厂取灰样的情况,t1=950℃,t2=980-990℃。

由于垃圾的组成复杂,灰渣在管壁(水冷管壁、过热器管壁)上沉积存在两个不同的过程:第一个沉积过程是初始沉积层的形成过程。初始沉积层为化学活性高的薄灰层,它由尺寸很小的灰颗粒组成。第二个沉积过程是较大灰粒在惯性力作用下冲击到管壁的初始沉积层上(惯性沉积),当初始沉积层具有粘性时,它捕获惯性力输运的的灰颗粒,并使渣层厚度迅速增加。由于初始沉积层主要是由挥发分灰组分的冷凝及微小颗粒的热迁移而引起,在实际运行中很难防止初始沉积层的形成。一旦初始沉积层形成后,往往造成炉内结焦迅速增加,并对锅炉安全运行构成威胁。

2. 垃圾焦样的熔点特性研究

分析焦样成分中可知,单项氧化物的熔点温度较高。在实践生产中炉膛出口结焦严重,说明焦渣的熔融特性与其组分有关。因为仅仅从焚烧炉出口处烟气温度是低于氧化物熔点温度,理论上分析是不会结焦。基于煤结焦的大量试验数据,给出了结焦的各个判别指数。虽然煤和生活垃圾差异很大,但生活垃圾与煤结焦的焦样成分相似,用煤结焦判别指数判别生活垃圾的结焦程度也有很大参考价值。

通过硅铝比、碱酸比等积灰判别数据的分析可以得出垃圾焚烧飞灰有严重的积灰、积焦的倾向,且垃圾灰的积灰趋势高于煤灰。而实际运行中的垃圾焚烧炉由于运行工况、垃圾成分变化较大,积灰往往较严重。粘结性积灰对受热面的影响更大,生长较快且难以清除,粘结性积灰主要发生在从过热器一段、二段、三段以及省煤器前部区域。松散性积灰主要发生在垃圾焚烧炉尾部烟道受热面上。

用三种结焦判别指数判断,生活垃圾结焦程度都属严重结焦状态。深能环保在南山、宝安、武汉等几个垃圾发电厂焚烧炉炉膛出口结焦情况普遍存在。情况严重时,需一个月打焦一次。一般 1.5-2 个月左右打焦一次,属正常状态。运行调整较好时,打焦时间稍长,在 2.5-3 个月左右。

在垃圾焚烧炉实际运行中,烧结是一个复杂的理化过程,微粒表面自由能的降低,向自由能和表面积最小状态进行是烧结反应的原始推动力,在热力学上是不可逆过程。因此烧结固相反应与焚烧炉高温粘结灰的发展密不可分。

在研究过程中,我们认为积灰的烧结一般在低于灰熔点的温度下进行,主要的以固相反应为主,但积灰中仍然可能有熔融相的存在,但少量的液相成分可能对固相反应和烧结过程起到重要影响。大量不同的小颗粒或更小的亚微颗粒在高温多相反应和表面熔融相共同作用,是造成烧结团聚的驱动力,并在积灰内部呈现致密的烧结结构。在积灰中液相的主要原因是由于低熔点共熔体熔融和气态凝结共同造成的。液相的存在为灰颗粒的附着提供了较强的化学力,而且可能在毛细作用下使颗粒重新排列而加快颗粒间的致密化,同时使强烈烧结和快速化学反应成为可能。

在垃圾积灰烧结过程主要包括固-固反应和气-固反应,其中硅铝酸盐矿物与碱金属生成低熔点共熔物的反应是固相参与的化学反应主要形式,碱金属和碱土金属在烟气中的硫酸盐化反应是气-固反应主要形式。在垃圾焚烧过程的烧结积灰分析中,垃圾焚烧飞灰和积灰除了含有多个晶相,往往还会含有液相和玻璃相。积灰中 Ca主要以硫酸盐的形式存在,以Ca SO4为主。

综上所述,垃圾焚烧炉在对流受热面Ca-S型烧结积灰形成问题的分析可以概括为:在垃圾焚烧过程中产生的以 CaO亚微小颗粒为主的灰颗粒在接触到扩散到其表面的SO2等气体的情况下,开始硫酸盐化过程,与 Si O2 等发生固相化学反应生成少量钙的硅酸盐。如果运行中燃烧温度控制不当,过高温度造成Ca SO4 和钙的硅酸盐等表面产生熔融相,融入的颗粒之间接触,加之反应后反应物扩大的体积,加速了积灰的烧结固化速度。垃圾焚烧环境中发生的结焦、积灰结渣比一般燃煤机组、煤粉炉燃烧过程中更复杂,更容易产生。

篇12

1、概述

随着我国经济水平的快速发展,城市规模迅速扩大,人们的消费水平不断提高,生活垃圾产量也随之逐年递增,对生活垃圾处理的要求也越来越高。填埋、堆肥和焚烧是生活垃圾处理的几种主要方式,其中垃圾焚烧处理占地面积小,能迅速而大幅度地减少可燃废弃物的容积,彻底消除有害细菌和病毒,破坏毒性有机结构,并可能回收热能,尾气经处理后,无害化程度非常高,因此,垃圾焚烧技术是目前世界上较常用的现代化大规模处理生活垃圾的技术之一。但是,垃圾焚烧处理投资及运行管理费用高,且如果系统设计不完善、运行管理不当,生活垃圾焚烧后排放的尾气很容易对周围环境造成二次污染,严重伤害人体健康。生活垃圾焚烧尾气排放的主要污染物有:酸性气体、烟尘颗粒物、重金属尘粒、有机类污染物等,另外,我国生活垃圾又具有水分含量高、热值低、组分随季节变化大等特点,因此,研究生活垃圾焚烧所产生的二次污染物的控制与治理,使其能够达到标准安全排放,是发展生活垃圾焚烧技术亟待需要解决的问题[1,2]。

2、生活垃圾焚烧产生二次污染物 [3]

城市生活垃圾焚烧与其他固体物质的燃烧过程不一样,由于高温热分解、氧化的作用,生活垃圾在焚烧过程中,燃烧物及其产物的体积和粒度减小,其中不可燃物大部分滞留在炉排上以炉渣的形式排出,一小部分质小体轻的物质在气流携带及热泳力的作用下,与焚烧产生的高温气体一起在炉膛内上升,经过与锅炉的热交换后从锅炉出口排出,形成含有颗粒物即飞灰的烟气流。由此可见,城市生活垃圾焚烧的过程中产生的二次污染物主要是焚烧烟气中的有害成分及灰渣(或烟尘)中的重金属。

2.1 酸性气体

生活垃圾焚烧产生的酸性气体主要以氯化氢(HCl)、硫化物(SOX)、氮氧化物(NOX)、一氧化碳(CO)为主。

2.1.1氯化氢(HCl)

氯化氢主要来源于生活垃圾中含氯废物的分解,以聚氯乙烯(塑料的一种,常用PVC表示)为例,产生氯化氢的反应式如下所示:

另外,厨余垃圾中的无机氯化物(如食盐NaCl)、纸、布等成分在焚烧过程中也能产生部分HCl气体。

2.1.2硫化物(SOX)

二氧化硫通常由生活垃圾中含硫化合物焚烧时高温氧化过程产生,其中大部分是SO2。以含硫有机物为例,SOX产生机理如下所示:

2.1.3氮氧化物(NOX)

氮氧化物包括一氧化氮(NO)、二氧化氮(NO2)、一氧化二氮(N2O)、三氧化二氮(N2O3)等,但主要成分是NO,其在NOX中所占比例高达95%,NO2仅仅占很少的一小部分。NOX的产生,主要由空气中的氮气(N2)在生活垃圾焚烧过程中高温氧化而产生,另外,垃圾中含氮有机物的燃烧也可以生成NOX,其反应机理可用下式表示:

影响NOX中成分含量的主要因素是焚烧的火焰温度和焚烧区域中氧的含量,当焚烧的火焰温度为1300℃,焚烧区域氧浓度(体积比)≥2%时,生成NO的趋势增加。

2.1.4一氧化碳(CO)

生活垃圾中的有机可燃物在焚烧过程中,绝大部分的碳元素被氧化成二氧化碳,但如果局部焚烧区域中的氧含量不足及温度偏低,一部分碳元素会被氧化生成一氧化碳。由此可见,CO是由生活垃圾中的有机可燃物不完全燃烧而产生的,其产生涉及几种不同的反应式如下:

2.2 烟尘颗粒物及重金属类污染物

重金属类污染物源于焚烧过程中生活垃圾所含重金属及其化合物的蒸发,主要以铅(Pb)、汞(Hg)及镉(Cd)为主。生活垃圾中所含的重金属及其化合物在高温下由固态变成气态,一部分以气相的形式存在于烟气中;一部分以分子形式进入烟气后被氧化,并凝结成很细小的颗粒物;一部分蒸发后又附着在焚烧烟气中的颗粒物上,以固相的形式存在于焚烧烟气中。生活垃圾在焚烧过程中产生烟尘颗粒物的量随焚烧炉型的不同会有所不同,但其来源及主要特性基本上是相似的,详见表1所示[4]。

颗粒物的来源 颗粒物的特性

A 垃圾中的不熔氧化物、纸和塑料中的填充物、泥土、无机色素的油漆和染料、不挥发金属 通常为金属过氧化物、或钙、镁氧化物,颗粒直径一般为0.8μm左右,颗粒密度较大,一般为Fe、Ca、Ti和Al的氧化物

B 垃圾中的无机盐及溶解在废液中的盐 大部分为NaCl、NaSO4、KCl、和CaCl2,通常浓度很低且颗粒直径很小,一般≤0.5μm

C 垃圾中的硫、硫酸、磷和硅或其盐 通常称为气溶胶,颗粒直径非常小(

D 垃圾中的挥发性金属,如Hg、Zn、Ca及Pb等 金属或其氯化物、硫酸盐或氧化物凝结成的气溶胶,其浓度取决于气体的温度,通常颗粒直径较小,一般≤0.5μm

E 不完全燃烧的有机物 从气溶胶中冷凝的沥青(焦油)和高分子量的有机物,颗粒直径通常

2.3 有机污染物

生活垃圾焚烧所排放的废气中有很多种因燃烧不完全而产生的有机污染物,这些产物中毒性比较强的有多氯二苯并二恶英(polychlorinated dibenzo-p-dioxin,简称PCDDs)、多氯二苯并呋喃(polychlorinated dibenzofuran,简称PCDFs)、多环芳香烃化合物(polycyclic aromatic hydrocarbon,简称PAHs)等[5]。有机污染物产生的机理非常复杂,伴随有多重化学反应,如分解、合成、取代等,首先形成反应产物的中间体即前驱物质,最后形成终产物。以二恶英为例,其主要来源于两个方面:一是在燃烧过程中生成。在垃圾的干燥、燃烧、燃尽的过程中,除水分外,还有低沸点的烃类挥发,这些挥发烃燃烧生成CO2和H2O,如果在此过程中局部供氧不足,含氯有机物就会生成易于生成二恶英类物质的前驱物,这种前驱物和HCl、O2反应就可能生成剧毒的二恶英类物质;二是燃烧以后生成,因不完全燃烧而产生的剩余部分前驱物质和废气中的HCl、O2等,在烟尘中的Ca、Ni、Fe等物质的催化作用下,在300℃作用可能生成二恶英类物质。对于二恶英类物质的形成机理,目前还没有成熟的理论,有待进一步研究[6]。

3、生活垃圾焚烧烟气的污染治理

生活垃圾焚烧烟气中的有毒有害气体成分比较复杂,如果采取单一的治理方法只能对其中某一种或几种有毒有害物质有效,由此,对生活垃圾焚烧产生的二次污染烟气宜采用综合的治理技术,一般采用在焚烧过程中实施控制和焚烧烟气处理相结合的办法。

生活垃圾焚烧烟气中的酸性气体(HCl、SOX等)通常采用碱性介质吸收法,最常用的吸收剂为消石灰,最常用的方法有湿法、干法及半干法,其中湿法的净化效率明显高于干法。其吸收反应方程式如下:

生活垃圾焚烧烟气中的NOX主要以NO为主,其反应惰性和难溶性决定了NOX的净化非常困难,最合理的方法是通过合理的燃烧控制从根本上抑制NOX的生成。而烟气中CO的去除主要是通过控制燃烧条件,提高燃烧效率的方法来实现。

处理生活垃圾在焚烧过程中产生的烟尘颗粒物常用的治理设备有袋式除尘器和静电除尘器。静电除尘器可以使颗粒物的浓度控制在45mg/Nm3,除尘效率可高达99.5%以上,而布袋除尘器可使颗粒物的浓度控制在更低水平,对粒径1μm以下的颗粒物除尘效果优于静电除尘器,同时对重金属、PCDD/Fs类等污染物均有较好的去除能力。另外,控制重金属排放浓度的首要前提是做好生活垃圾分类工作,将含有重金属的生活垃圾,如电池、日光灯管、杀虫剂、印刷油墨等回收后集中处理。

针对二恶英类物质的生成主要分两个阶段这一特点,抑制二恶英产生的最有效方法是“3T”措施:(1)炉内温度(Temperature)保持在800℃以上(最好在900℃以上),将二恶英完全分解;(2)保证足够的烟气高温提留时间(Time);(3)优化炉型和二次空气喷入方法,使其形成涡流(Turbulence),充分混合搅拌以达到完全燃烧。与控制重金属污染物一样,对于二恶英类污染物我们也需要积极提倡垃圾分类和处理,对含氯化合物垃圾有的可用填满处理,从源头避免含氯物质进入焚烧炉燃烧,加强废物(尤其如聚氯乙烯塑料袋等、焚烧后易产生二恶英的废物)的回收再利用,限制焚烧垃圾量,限制二恶英的排放量,确定允许排放的最高浓度限量标准[7]。

参考文献:

[1] 张益,赵由才.生活垃圾焚烧技术[M].北京:化学工业出版社.2000:8.

[2] 於剑霞,李均涛.垃圾焚烧与二恶英的污染和治理.长沙铁道学院学报.2010.11(1):53~54.

[3] 刘义清,胡飞.生活垃圾焚烧废气的治理研究[J].广东化工.2010.37(12):105~106.

[4]谢亨华,余媛媛.垃圾焚烧炉烟气有害物质的综合治理工艺[J].环境与开发.1999.14(4):34~47.

篇13

0 引言

城市生活垃圾焚烧技术发展至今已有100多年的历史,最早的垃圾焚烧装置出现在美国和欧洲。经过100多年的发展,垃圾焚烧炉有了较大发展已趋于成熟。我国随着人民生活水平的改善,垃圾热值不断提高,利用垃圾自身热值进行焚烧发电的资源化焚烧技术在我国悄然兴起,特别在经济较发达、土地资源宝贵的地区,焚烧法成为垃圾处置的首选方法。本文对国内外主要的垃圾焚烧炉技术特点进行了讨论,并对适用性做了分析。

1 主要焚烧炉型技术特点分析

目前,世界上焚烧炉的种类较多,主要为四大类型:炉排型垃圾焚烧炉、流化床垃圾炉、回转窑垃圾焚烧炉和垃圾热解气化焚烧炉。下面对这四种炉型的技术特点分别进行了分析。

1.1 炉排炉型焚烧炉

机械炉排炉技术作为世界主流的垃圾焚烧炉技术,技术成熟、可靠,应用前景广阔,发展空间较大。这种焚烧炉因为具有对垃圾的预处理要求不高,对垃圾热值适应范围广,运行及维护简便等优点,是目前在处理城市垃圾中使用最为广泛的焚烧炉。该类型焚烧炉型式很多,主要有固定炉排、链条炉排、滚动炉排、倾斜顺推往复炉排、倾斜逆推往复炉排等。

为使垃圾燃烧过程稳定,炉排型焚烧关键是炉排。炉排分为预热段、燃烧段、燃烬段,段与段之间可以有垂直落差,也可没有落差。垃圾在炉排上着火,热量不仅来自上方的辐射和烟气的对流,还来自垃圾层内部。在炉排上已着火的垃圾在炉排的特殊作用下,使垃圾层强烈地翻动和搅动,引起垃圾底部开始着火,连续的翻动和搅动使垃圾层松动,透气性加强,有助于垃圾的着火和燃烧。

机械炉排炉的技术特点如下:

(1)由于鼓风压力小,风机装机容量小,动力消耗小。

(2)由于烟气粉尘量相对其他型式焚烧炉而言较小,除尘器的负荷和运行成本相对降低。

(3)主要燃料为生活垃圾。点火及辅助燃料为油,不掺烧煤。

(4)进炉垃圾不需预处理。

(5)焚烧炉内垃圾为稳定燃烧,燃烧较为完全,炉渣热酌减率较低。

(6)设备年运行时间可达8000h以上。

(7)垃圾需要连续焚烧,不宜经常起炉和停炉。

由于垃圾焚烧技术较复杂、技术含量高,我国目前的大型机械炉排炉焚烧厂建设主要依靠引进国外先进焚烧炉,北京、上海等大中城市均主要采用引进国外先进炉排炉焚烧技术。部分中等城市开始应用国产机械炉排炉。

1.2 流化床焚烧炉

流化床焚烧炉不设运动炉体和炉排。流化床底设空气分布板,使用石英砂作为热载体。垃圾均匀定量地加入到700℃~750℃的砂子流态化床中,进行热解气化和部分燃烧随后被燃烬,不燃物和焚烧残渣随砂子一起通过炉底的排渣口进入筛分机分离出大颗粒不燃物排出炉外。中等颗粒的渣和石英砂,通过提升机送入炉内循环使用。

流化床垃圾焚烧炉优点:

(1)流化床适用性广,生活垃圾、污水厂污泥、炼油厂的渣油与焦油、低品位煤、林产工业废物、农业废弃物等都可用流化床焚烧技术处理。

(2)从燃烧理论上讲,流化床可使可燃垃圾与空气充分接触,所以不仅燃烧速度快,而且燃烧完全,即灼减率小(

(3)过剩空气系数低,并采用分级送风,减少NOx的生成量。

(4)流化床内无转动的机械设备,故制造简单,造价较低。

流化床垃圾焚烧炉不足之处:

(1)为了保证入炉垃圾的充分流化,对入炉垃圾的尺寸要求较为严格,要求垃圾在入炉前进行一系列筛选及粉碎等处理,使其颗粒尺寸均匀化,一般破碎至15cm以下,易造成恶劣的工作环境。同时较多的辅机故障率高,动力消耗大。

(2)空气鼓入压力高,焚烧炉本体阻力大,动力消耗相对较高。

(3)流态化焚烧导致烟气粉尘含量高,烟气净化系统负荷增大,除尘的费用随之提高。

(4)需要掺加燃煤辅助燃烧。但根据国家有关政策,对掺煤部分的发电量不享受电价优惠。在目前煤价较高的情况下,掺煤影响企业的经济效益。同时,国家要求关停小火电的现行政策对流化床焚烧炉不支持。

(5)由于砂体不断翻动,对耐火内衬磨损大;同时,烟气流速高,对焚烧炉的冲刷和磨损严重。因此,焚烧炉运行可靠性相对较低,厂家保证年运行小时数7200小时,实际运行小时数一般低于7000h。

1.3 回转窑焚烧炉

回转窑焚烧炉技术的燃烧设备主要是一个缓慢旋转的回转窑。它是通过炉本体滚筒连续、缓慢转动,利用内壁耐高温抄板将垃圾由筒体下部在筒体滚动时带到筒体上部,然后靠垃圾自重落下。回转窑式垃圾燃烧装置设备费用低,厂用电耗与其他燃烧方式相比也较少,但焚烧低热值、高水分的垃圾时有一定的难度。

回转窑焚烧炉对垃圾成份适应性强,广泛应用于销毁工业废物和焚烧复杂的干、湿混合垃圾,如污泥等。回转式焚烧炉既有炉排炉直接处理垃圾(不需预处理)和流化床焚烧炉物料与空气充分接触完全燃烧的优点,又避免了炉排炉的炉排需经常更换造成维护费用较高的缺点,但回转炉处理量小。

1.4 垃圾热解气化焚烧炉(CAO)

垃圾热解气化焚烧炉(Controlled Air Oxidation 可控空气氧化技术,简称 CAO 技术),是一种控制空气燃烧技术。CAO系统可分为加热干燥、热解气化、残碳燃烧、可燃气燃烧等4个区域。CAO第1燃烧室中,通入少量空气,在一定温度下,垃圾长时间停留,部分气化,部分分解,部分燃烧。灰渣和不能热分解的物体(如金属、玻璃等)经过自动清灰系统排出炉外。产生的可燃烟气进入上部的第2燃烧室,再配以空气,在超过1000℃的高温下经过2s 的充分燃烧后排出。这些高温气体可以引入余热锅炉回收热量,之后采用NaOH碱液净化,达标排放。

该炉型主要优点:设备结构简单,维护较容易,动力消耗低;厂房高度低;热解法烟气中NOx含量相对较低。

该法不足之处主要为:CAO燃烧系统在一定程度上解决了城市垃圾的处理问题,垃圾不用分选就可以充分地分解和燃烧,但对于水分超过40%的垃圾,在不投油助燃时则不能稳定燃烧。设备处理能力较小,单台处理能力一般为150t/d以下;厂房占地面积大;热量回收率低,焚烧后炉渣灼减率较高。热解炉不能适应高水份、低热值垃圾的处置,因此在我国广泛应用垃圾热解气化焚烧炉技术还有一定困难。

2 结论

回转窑焚烧炉技术和热解气化焚烧炉技术处理规模小、不适用于焚烧高水份、低热值垃圾,生产供应商有限等缺点;而炉排型焚烧炉技术和流化床焚烧炉技术在国内外均有成熟的应用经验,较多的供应厂商。其中,循环流化床由于故障相对较多,工艺相对落后,操作环境相对恶劣。考虑到目前国家对垃圾焚烧发电掺烧其他燃料的限制正日趋严格,流化床炉必须加煤才能保证燃烧;与此同时,环保标准也日益严格,流化床炉飞灰产生量大,处理成本高,导致了流化床垃圾焚烧技术在我国的应用和发展受到一定制约。

根据国家建设部、原国家环保总局、科技部颁布的《城市生活垃圾处理及污染防治技术政策》:“目前垃圾焚烧宜采用以炉排炉为基础的成熟技术,审慎采用其它炉型的焚烧炉”。综上所述,炉排炉型焚烧炉较适合处理我国经济发达地区的生活垃圾。

友情链接