你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 减少排放二氧化碳的建议

减少排放二氧化碳的建议范文

发布时间:2024-01-26 14:55:43

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇减少排放二氧化碳的建议范例,将为您的写作提供有力的支持和灵感!

减少排放二氧化碳的建议

篇1

一些科学家提议,可以为地球建造太阳镜以应对全球变暖,即在赤道附近放置一圈散射太阳光的微粒,从而减少太阳对地球的辐射,来抵消温室效应产生的热量。这个疯狂的想法可能要花费数万亿美元。

往海洋中投入大量铁

在海洋中,进行光合作用的浮游生物利用二氧化碳来制造食物,随着这些生物的死亡,二氧化碳也随之沉入海底。铁元素能够刺激浮游生物的生长,便有科学家建议在海中投入大量铁,以刺激大量浮游生物的生长,从而吸收过量的二氧化碳。

降低飞机的飞行高度

飞机产生的飞行云隔离了地球热量的蒸发。一些科学家就建议飞机降低飞行高度,这样就无法形成飞行云了。飞行高度降低意味着飞行距离增加,但科学家认为,飞行云减少所产生的效应将抵消燃油增加对环境带来的损害。

在海洋表面种植水藻

环境保护者提出,利用抽水管道将海洋深处的富氧化水引到海洋表面,养殖大量的海藻,用来吸收空气中的二氧化碳,然后二氧化碳就会随着海藻死后而沉入海底。

真树假树都要种

科学家提议种植10万棵假树,用于吸收排放二氧化碳。这些假树可以通过过滤器吸收二氧化碳并储存起来。这种假树的模型可能和集装箱一样大,但其吸收二氧化碳的能力将是真正树木的数千倍。

在空气中注入气雾剂

空中悬浮的某些气雾对大气有降温效果,这些小分子可以拦截一部分太阳辐射,并将其反射到太空中去。于是科学家就提议,可以模拟火山喷发,向大气中注入大量的气雾,来应对全球变暖。

在厨房中保留蠕虫

生物学家建议,可以在厨房内保留一定数量的蠕虫,它们以垃圾中的面包碎屑和果核为食,然后可将其变成复合肥,用于花园施肥或种植室内植物。

将二氧化碳埋入地下

一些科学家建议,将二氧化碳收集起来埋在地下岩层、煤层或空置的煤气田中。首先要将二氧化碳分离出来,然后进行压缩并注入地下。但是这一提议并不是很现实,因为它不仅成本高,而且存在地下气体渗出的风险。

用垃圾建造房屋

篇2

随着工业化进程的加快,各种因素导致大气中的二氧化碳含量大幅度增加,引起温室效应。如何减少碳排放量成为当今科学研究的一个重要课题。碳捕集和封存(Carbon Capture and Storage,以下简称CCS)就是基于目前的时代背景产生的,用来解决碳排放量问题的一项技术。尽管CCS技术能有效地封存过多的二氧化碳,对于缓解温室效应具有很好的前景,但是由于各种经济、政策以及其他的一些原因,CCS技术目前乃至将来几十年都面临着巨大的挑战。

1 推广CCS技术的必要性

二氧化碳对于人类的生活和生产至关重要。它能够阻挡太阳的热量逸散进太空,使地球温度基本恒定,让动植物得以生存。然而近几年来,人类的工业化进程显著地提高了大气中二氧化碳中的含量。从碳排放的角度来看,工业生产如炼油、制钢、发电等,每天都向大气层释放出大量的二氧化碳。人们在日常生活中的碳排量也是罪魁祸首之一。小汽车、船舶、航天飞机以及家用设备等排放出的二氧化碳也显著增加。从碳吸收的角度来看,全球植被面积有减无增,地球吸收和调节大气中二氧化碳含量的能力也有所下降。种种因素都导致全球大气层中二氧化碳含量持续攀升,从而引发温室效应。温室效应将使大气升温,大气和海洋循环发生改变,影响人们的正常生活[1]。

据统计,在2010年碳排放量达到了历史性的最高值。国际能源机构IEA(International Energy Agency)最近报告说按照这种趋势下去,到2100年的时候全球温度将升高超过3.5℃[2]。解决或者说缓和这个问题的方法大概可以分为两种:一是找到清洁的能源,二是让生产出的二氧化碳更少地进入大气层中。

对于前者,相比于目前大量、廉价而且易于获得的化石燃料,清洁能源的市场占有率仍旧十分有限,化石燃料的主导地位在未来几十年不会有太大的变化。按照全球碳捕集与封存研究所(Global CCS Institute)提供的数据,全球能源需求在未来20年将增长40%,石油、天然气等化石燃料的燃烧将继续向大气排放出大量的二氧化碳,温室效应将愈发严重。

对于后者,许多地区和国家已经采取了一些地方政策来减少工业中的碳排放,有的是自愿性、义务性的,也有的是通过商业贸易的形式来执行。近年来人们推出了新的思路,那就是CCS技术。它是一种将工业生产中的二氧化碳捕获、集中起来,再通过管道或者其他设备运移到一个适合封存的地质场所,把二氧化碳长期储存起来的一项新技术。尽管二氧化碳早在几十年前就因为各种原因被注入地下(如石油工业中通过向储层注入二氧化碳来提高原油的采收率等),长期地将二氧化碳封存起来还是一个新概念。据估计,到2050年,在工业生产中CCS每年可以减少40亿吨的二氧化碳,约为2050年所需减少的二氧化碳的9%,数量相当可观。但是为实现这个目标,20%到40%的生产设备需要配有CCS技术[3]。由此我们可以预见CCS技术必须得到充分的重视和推广。

2 CCS技术的基本原理

一般来说,CCS技术主要包括三个环节:捕集,运输和储存。具体来说,首先是将动力工厂或者各种来源的二氧化碳通过某种方法捕获起来,然后将其压缩、运输到某个地点,注入地下,利于该处的上覆岩层来封隔二氧化碳,阻止二氧化碳向上逸散。随后,再利用一些监测设备以确保二氧化碳被安全、永久地封存起来。在一个适宜的地质场所,如较深的咸水层、报废的油气藏或者是不再开采的煤层等,二氧化碳可以被安全封存达百万年之久[4]。据美国能源部估计,大概有36000亿吨的二氧化碳可以被储存在地下(指美国和加拿大境内)。相比于世界上每年排放大约130亿吨的二氧化碳,CCS技术对于减少二氧化碳具有很广阔的应用前景。

在捕集二氧化碳的环节中,常用的三种方式有燃烧后捕集、燃烧前捕集和富氧燃烧捕集。捕集方式的选择按照不同的生产过程而定。例如对于水泥厂排放的二氧化碳常采用燃烧后捕集,而对于钢铁生产过程排放的二氧化碳则采用富氧燃烧捕集。由于实际操作中捕集到的二氧化碳往往不纯,其中或多或少地含有其他气体,所以捕集二氧化碳之后还需要对它进行进一步的分离处理。可采用某些溶剂来吸收杂质或者是用半透膜等方法进行气体的分离。

在二氧化碳运输环节,首先将二氧化碳压缩成液态,然后通过卡车或者火车来将其运输到目的地。由于二氧化碳的运输量巨大,考虑到运输的安全性和经济性,现在普遍采用管道来运输。

最后一个环节是将二氧化碳注入到一个多孔的地下岩层中,深度往往在800米甚至更深。在这个深度,二氧化碳受到高温高压的作用以浓稠状的液态形式存在,密度相当于水的50%到80%之间。在这种较低的密度条件下,由于浮力的作用二氧化碳将向上运移,驱替地层原始孔隙中的液体。这也就是注入二氧化碳以提高石油采收率的基本原理。

3 推广CCS技术的挑战

CCS技术能否实施很大程度上基于整个项目周期的风险评估,包括从选址、设计、建造,到监测、报告、报废等。风险评估时一个很重要的因素就是解决法律和经济上的责任,解决这些责任如何被合理地分配给各个群体。这种风险性和不确定性包括商业层面、法律层面、以及技术层面等。理解这些风险是制定决策的前提条件。

商业层面上,一个企业或者说国家在推广CCS技术时,如果能有效地发挥市场运行的机制,把二氧化碳作为一种商品来进行销售和购买,吸引投资和回馈收益,则可以激活和调动人们科学研发的积极性,提高CCS技术在人们心中的认可程度等。如果一种商品只有买进,而不见具体的产出,或者产出极小,那么它也就失去了作为一种商品对于投资者的吸引力,勉强推广CCS技术的企业也会面临很大的风险。

法律层面上,合理和具体的法律法规是规避高风险(如推广CCS技术)的基础。模棱两可的建议和号召无法吸引投资者真正行动起来自主研发CCS技术,而只有明文条款如国家支持、政府补贴等,才能给有心运行CCS技术的企业以物质和精神上的保障。

技术层面上,由于二氧化碳大部分是从工厂的废气中收集来的,各种杂质掺混,使得分离和捕集二氧化碳的成本十分高昂。而且由于捕集来的二氧化碳需要长期地封存在地下,它的安全性也需要技术上的保障。

所以现有的挑战是严峻的。我国CCS科技研发方面,“十一五”期间在973、863、支撑计划的部署以及相关国际科技合作项目的支持下,国内有关高校、研究院所、企业围绕CCUS开展了基础理论研究、技术研发和一些中小规模工程示范[5]。但在目前的条件下,较高的成本使其在国内外的应用受到了限制[6]。就现有碳捕获技术而言,捕获一吨二氧化碳最高成本400英镑(642.4美元),成本过高,不适用于大规模商业生产。据路透社报道,全球碳捕集与封存研究所在其本年度关于全球碳捕集与封存部署情况的报告中警告说,根据目前的投资水平和监管不确定性来看,从现有的16个项目激增至130个项目的目标是不可能实现的。该研究所预计,其年度报告中确定的59个项目中,届时可能只有51个能投入运行,而有些项目则不太可能实施[7]。推广CCS技术还有很长的路要走。

4 推广CCS技术的一些建议

如果没有行之有效的措施,到2050年二氧化碳的排放总量将翻倍甚至更多。即使CCS技术对于减少碳排放具有极大的潜力,但如果没有政府和相关机构对CCS技术的认可和支持,CCS技术也不可能得到充分发展[8]。目前我国科技部了CCS发展技术路线图,但主要还是从技术研发角度,还没有考虑到政策支持、资金支持、公众参与等措施。

所以针对目前存在的问题,现有以下几点建议:

其一,政府可以通过减免税收等手段确保应用CCS的工程项目有足够的资金。许多生产单元如生物工程、炼油厂、水泥厂等在采用CCS 技术之前,往往综合考虑各种经济因素,如果资金不足,就算这种技术如何减排、如何保护环境,也不可能付诸于生产实践中。

其二,政府应鼓励科研人员更加重视CCS技术的研发,使这项技术更加成熟可行。技术的成熟一方面可以捕获更多的二氧化碳,另一方面还可以节约成本,是CCS长足发展的基础。同时,如果将天然气加工厂、煤气厂等捕获的二氧化碳用于油藏之中的话,还可以作为提高原油采收率的原料之一,实现废物的二次利用。

其三,政府对于CCS技术的宣传还应加大。目前CCS的应用所引起的重视还不够,尽管CCS的应用前景已经得到了广泛认证,人们对CCS技术的研究仍集中于动力单元。如果人们想达到预期的减排目标,CCS应当被用于更多的领域、更多的国家和地区;应当让更多的人意识到CCS技术的广阔前景,使得有关企业更快地掌握和实施CCS技术,推动CCS的广泛发展。许多示范工程已经具备一定的竞争力,并开始执行HSE标准(Health, Safety and Environment)。这些示范工程可能对建立合理的节能标准以及增加社会的认可度有一定的帮助。

5 结语

总的来说,CCS技术的发展有赖于各项技术的协同进步,有赖于企业和政府对其的肯定和支持。在技术方面,通过改进技术从而降低捕集、运输和封存的费用,例如深入研究各种物理、化学的吸附效率,减少捕集成本。在政策和环境方面,用支持性的法律法规吸引更多的企业来研发和运用CCS技术。只有这样,已推行CCS技术的企业才能获得充足的资金来长期投资、不断研究,未推行的企业也会逐渐投身于CCS技术的推广中来,从而有效地降低大气中二氧化碳含量,遏制温室效应的加剧。

参考文献

[1] IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp

[2] Carbon Capture and Storage: Bring Carbon Capture and Storage to Market. SBC Energy Institute, 2012: http:/// sbcinstitute.aspx

[3] Technology roadmap-Carbon capture and storage in industrial applications. OECD/ International Energy Agency and United Nations Industrial Development Organization, 2011.

[4] Global CCS Institute website: http://

篇3

近来,“低碳经济”和“碳税”不断被政府官员和学者提及,已成为备受关注的名词。财政部财科所课题组在近期了《中国开征碳税问题研究》报告,将我国碳税的征收提上了议事日程。一些发达国家也计划开征碳关税,这引发了不少专家对我国是否率先征收碳税问题的讨论。本文将简单介绍碳税的概况,并分析一些国家实施碳税的经验,在此基础之上,提出一些相关的建议。

一、碳税的概况

(一)何为碳税

国际上对碳税(carbon tax)的定义是指,针对二氧化碳排放所征收的税。征收碳税是为了进一步控制二氧化碳的排放,以市场手段实现环境治理的有效经济手段之一。通过开征碳税能够抑制化石能源消费,进而达到减少二氧化碳及其他污染物排放的目的。

(二)碳税的优缺点

碳税除了有助于解决能源环境问题外,还有以下优点:一是有利于能源结构调整。开征碳税能够推动化石燃料(如煤炭、天然气、汽油和柴油等)和其他高能耗产品的价格上涨,导致此类产品的消费量下降,最终起到抑制此类产品消费的目的。二是有利于鼓励企业探索和利用可再生的能源,加速淘汰耗能高、排放高的落后工艺,研究和使用节能减排技术(例如:碳回收技术等),从而促进产业结构的调整,降低能源消耗和加快节能减排技术的开发和应用。三是有利于促进新行业的发展,例如:脱碳、储碳技术的清洁煤技术行业。

碳税的缺点主要是:征收碳税会降低私人投资的积极性,对经济增长产生抑制作用。因此,社会各方对该项税收有较多的争议。

二、国际实施碳税的经验

自20世纪90年代初以来,芬兰、瑞典、丹麦、荷兰等国家先后开征碳税,虽然开征碳税的国家或地区不多,但情况各异。以下就三个国家的碳税征收经验进行分析。

为了减少二氧化碳的排放和促进可再生能源的使用,芬兰于1990年率先征收碳税。在征税之初,征收对象包括了所有矿物燃料,并采用低税率(税率仅为1.62美元/吨)。在实行一段时期后,发现二氧化碳的减排效果不佳。为了能在20世纪末把二氧化碳排放的增长率降低为零,芬兰政府逐步提高了碳税的税率,由最初的1.62美元/吨提高到26.15美元/吨。税率调整后,减排的效果显著。经芬兰政府的评估,在1990~1998年间,芬兰有效地抑制了约7%的二氧化碳排放量。

继芬兰开征碳税后,瑞典于1991年对工业企业和私人家庭开始征收碳税,并采用高税率(税率为250瑞典克朗/吨)。随后,考虑到对本国工业竞争力的保护,瑞典政府降低了工业企业的碳税税率(工业企业只需要交纳80瑞典克朗/吨,而一些高能耗工业行业,如商贸园艺、采矿、制造业及纸浆和造纸行业,则全免)。瑞典环保局对瑞典实施碳税效果的评估结论:与假定仍然维持1990年以前的政策情景下的排放量相比,1995年瑞典的二氧化碳排放量减少了15%,其中排放量90%的减少来源于碳税。

丹麦在1992年开始对家庭用能征收碳税,标准税率为13.4欧元。于1993年起对工业企业征收碳税。最初,工业企业的征税额度仅为家庭税额的35%。随后在一些政客的要求下,调高了工业企业碳税税率。但为了保护本国产品和服务的国际竞争力,丹麦政府对那些已经签订了自愿协议的高耗能企业进行减免(即签订了自愿协议的耗能企业支付0.4欧元/吨的碳税,而没有签订自愿协议的企业要支付3.3欧元/吨)。评估表明,在征收碳税这些年来,丹麦已减少3.8%的二氧化碳排放量,也就是减排230万吨二氧化碳。

三、国外碳税实践对我国的启示

自2002年以来,我国一直是仅次于美国的世界第二大二氧化碳排放国。随着我国经济和社会的快速发展,二氧化碳的排放问题会越来越严重。作为国际社会中举足轻重的大国,我国所要承担的减排压力也将不断增大。因此,除了尽早加强二氧化碳减排技术、制度和能源战略等领域的研究外,还应当充分借鉴国外开征碳税的实践经验,结合本国国情逐步推进碳税制度建设。从国内外的研究和实践来看,笔者建议应该从以下几个方面来考虑我国的碳税问题。

(一)择机引入碳税

财科所课题组的《中国开征碳税问题研究》报告中建议,考虑到缓解国内外压力、居民和企业的负担以及经济结构转型等多方面的影响,建议五年内开征碳税。不少学者也认为,目前中国的经济受到国际金融危机的冲击,经济增长趋势不稳定,现在不宜开征碳税。王金南在《政策研究》中称,根据“巴厘岛路线图”达成的协议,2012年后在要求发达国家承担可测量、可报告、可核实的减排义务的同时,也要求发展中国家采取可测量、可报告、可核实的适当减排温室气体行动。他建议中国碳税起征时间宜为2012年。笔者也认为,我国从2012年起开征碳税是最理想的时机。主要理由是:

1.目前,发达国家的科技水平和资源利用率都已经达到了相当的高度,所以,除了征收碳税外,很难再找到其他的办法实现减排目标。而我国的科技水平和资源利用率还远没有达到发达国家的水平,不断地采用新的技术,提高资源的利用率,减少二氧化碳的排放,才是目前我国实现减排目标的有效方法,在现阶段开征碳税不一定能收到节能减排的明显效果。

2.正如财科所课题组的报告中所提到的,根据“巴厘岛路线图”达成的协议,2012年后全球为应对气候变化必然会形成新的格局,也必然会对中国控制温室气体排放施加更大的压力。在资源税改革后的1~3年内(即在2012~2013年)开征碳税,恰好符合中国根据国际气候变化谈判需要而适时出台有关二氧化碳减排政策的策略。

(二)税率的差异性

根据我国的国情,并在借鉴国外实践经验的基础上,笔者提出:我国碳税的税率应具有差异性。首先,在不同的时期,采用不同的税率。即在征收的初期,应采用较低的税率,然后再逐步提高,这样可以让企业和居民在承担较低税负的情况下及时调整能源消费行为。其次,可以借鉴丹麦的做法,对不同的能源使用者采用不同的税率。即对使用高污染能源――煤的企业和个人征收高税率的碳税;对使用天然气的企业和个人征收相对低的税率;对于使用可再生资源(风能、太阳能)的企业和个人不征碳税,甚至还对这些企业和个人给予一定的补偿。从而达到鼓励人们更多使用可再生能源,减少对高污染能源的消耗,最终实现减少二氧化碳的排放目的。

(三)纳税环节的选择

在征税环节的选择上,有些专家提出,碳税纳收环节应为消费环节(即最终使用环节),这样可以利用价格的传导作用,刺激消费者减少能源消耗。但也有一些专家有不同的意见,他们认为,考虑到我国目前对煤炭、天然气和成品油征税的实际做法,从实际管理和操作角度考虑,在生产环节征收碳税更容易操作。

笔者认为,在纳税环节的选择除了要考虑到价格信号的刺激作用外,也要考虑到我国的产业结构。特别是当前,我国的经济发展仍然依赖重工业、劳动力密集型产业的优势,能源利用效率不高,二氧化碳减排的任务还很重。为了实现减排的目标,为了保障碳税的有效征收,减少税收征管成本,笔者也建议将碳税的征税环节设在生产环节。

(四)税收减免与返还

碳税实施可能给相关产业带来影响以及产生社会公平问题,政府应及时建立和完善相应的减免与返还机制。在制定减免条款时应主要考虑:一是能源密集型行业的国际竞争力。征收碳税必将增加这类企业的成本,削弱其国际市场的竞争力。为了避免对能源密集型行业造成过大的冲击,保护我国相关产业在国际市场上的竞争力,建议在符合国家节能减排条件的情况下,可对能源密集型行业实行低税率或税收返还制度,对那些节能减排成效显著的企业还应给予奖励。二是从创造和谐社会的角度出发,对于低收入群体和地区,征收碳税导致其生活受影响,为了不影响其生活和经济发展,政府应给予相应的税收减免优惠或者给予相应的补贴。

(五)建立专项基金

政府可以借鉴英国碳基金公司的成功经验,将碳税收入建立国家专项基金,实行专款专用。2001年英国组建了一个由政府投资、按企业模式运作独立的碳基金公司。该基金主要用于:一是促进研究与开发;二是加速技术商业化;三是投资孵化器。到目前为止,已经取得了丰富的成果和经验。所以,我国政府也可将这项基金用于提高能源效率,研发节能新技术,开发低排放的新能源,实施植树造林等增汇工程项目以及加强有关的科学研究与管理等。

【参考文献】

[1] 李伟,张希良,周剑等.关于碳税问题的研究[J].税务研究,2008(3).

[2] 汪曾涛.基于我国碳税税负归宿的税收政策研究[J].商业时代,2009(12).

篇4

如果我们将人均地方生产总值与二氧化碳排放量进行关联分析,即检验两者的关系是否满足二氧化碳排放的“环境库兹涅茨曲线(EKC)”。如图1所示,由于EKC曲线可能为“倒U”型也可能为“N型”,因此设二氧化碳排放的环境库兹涅茨曲线方程可能为(3)式或(4)式之一,由于无法提前确定,需要回归后进行对比确定。通过对(3)式、(4)式的回归分析,可以发现满足含三次项的回归结果优于仅含二次项的回归结果。对回归结果进行残差Q检验,不存在自相关和偏自相关。回归结果为。由回归结果可知,黑龙江省二氧化碳排放量与地方生产总值的关系为“反N型”关系。二氧化碳排放拐点对应有两个,分别对应地方生产总值2589.1667亿元和12773.1522亿元,两个拐点分别对应1997年和2012年。1997年为第一拐点,2012年为第二拐点,在1997年达到最低点后,二氧化碳排放量开始随着地方生产总值的增长而增长,但速度递减,至2012年达到二氧化碳排放量的最高点。依现有数据来看,2012年以后黑龙江省二氧化碳排放量应呈下降趋势,但是由于没有后续数据支持,还不能确定这一拐点得以确立。

相比较而言,吉林省和辽宁省二氧化碳排放的环境库兹涅茨曲线与黑龙江省不同,呈现为标准的“倒U”型,且逐渐接近最高点(见图2和图3)。吉林省和辽宁省的经济增长速度的变化趋势与黑龙江省相同,但2008年之后,吉林省和辽宁省的产业结构并没有出现“逆工业化”的回调趋势,特别是吉林省近年来的工业化速度明显加快。黑龙江省的能源结构较快得到优化,而吉林省和辽宁省的非碳能源消费比重分别不足2%和1%。因此,如果沿着这个趋势来判断未来吉林省和辽宁省的CKC拐点已经确立的可信度较高。随着未来工业化的深入发展,黑龙江省的二氧化碳排放总量可能还会继续上升。

二、结论与建议

通过上述比较分析可知,由于不能确定黑龙江省的CKC曲线是否已经达到最高点,且第二产业比重回调,未来黑龙江省为发展低碳经济而进行产业结构调整和实现工业化的过程中,应注重以下几个方面:

篇5

作者简介:顾佰和(1987-),男(满族),辽宁丹东市人,中国科学院科技政策与管理科学研究所,博士研究生,研究方向:绿色低碳发展战略与政策分析.

1引言

化工行业是经济社会发展的支柱产业,同时也是耗能和温室气体排放大户。国际石油和化工联合会的统计数据显示,2005年世界二氧化碳排放量约为460亿吨,其中化学工业的二氧化碳排放为33亿吨,约占7.1%[1]。中国是世界上最大的化工制品国之一。其中合成氨、电石、硫酸、氮肥和磷肥的产量均排名世界第一[2]。2000年到2010年,中国的化工行业工业产值增长迅速,其中几种主要化工制品例如:乙烯、电石、烧碱、硫酸、甲醇、硝酸等产品的产量在此期间增长了50%以上。2000-2010年化学原料及化学制品制造业能源消费量逐年上升,年均增长8.86%[3],占全社会能源消费总量的比重基本保持在10%左右。

我国化工行业产品结构不合理,高消耗、粗加工、低附加值产品的比重偏高,精细化率偏低。美国、西欧和日本等发达国家和地区的化工行业精细化率已经达到60%~70%,而目前我国化工行业的精细化率不到40%。且我国化工行业工艺技术落后,高耗能基础原材料产品的平均能耗比国际先进水平要高20%左右,因此我国化工行业存在较大的节能减排空间[4]。那么我国化工行业到底有多大的减排潜力,如何预测化工行业的温室气体减排潜力成为决策者和研究人员关注的焦点之一。

国内外学者围绕行业温室气体减排潜力评估展开了一系列研究,但研究集中于钢铁行业[5-6]、电力行业[7-8]、交通行业[9-10]、水泥行业[11-12]等产品结构较为单一的行业。而由于化工行业的产品种类繁多,且工艺流程各不相同,目前对于化工行业的温室气体减排潜力研究,从研究对象上主要集中于少数几种产品和部分工艺流程。Zhou[13]等全面细致的核算了中国合成氨生产带来的二氧化碳排放和未来的减排潜力,并据此提出了促进减排的政策措施。Neelis[14]等学者从能量守恒的角度研究了西欧和新西兰化工行业的68种主要工艺流程理论上的节能潜力。IEA[15-16]在八国集团的工作框架下,评估了化学和石油工业中49个工艺流程应用最佳实践技术(BestPracticeTechnology)短期内所带来的能效改善潜力。Patel[17]针对化学中间体和塑料等有机化学品给出了累积能源需求和累积二氧化碳排放量的核算流程和核算结果。

就关注的减排影响要素而言,主要涉及技术和成本两方面。技术层面上,Park[18]等通过调查五种节能减排的新技术,使用混合的SD-LEAP模型评估了韩国石油炼制行业的二氧化碳减排潜力;Zhu[19]从技术进步的视角采用情景分析方法从整个行业的层面研究了中国化工行业的二氧化碳减排潜力,并提出一系列促进化工行业碳减排的措施;卢春喜[20]重点概述了气-固环流技术在石油炼制领域中的研究与应用进展;王文堂[21]分析了目前化工企业节能技术进步所遇到的障碍,并对促进企业采取节能减排技术提出建议。成本方面,Ren[22]等对蒸汽裂解制烯烃和甲烷制烯烃两种方式的节能和碳减排成本进行了对比;戴文智等[23]将环境成本作为石油化工企业蒸汽动力系统运行总成本的一部分,构建了混合整数非线性规划(MINLP)模型,优化了多周期运行的石油化工企业蒸汽动力系统;高重密等[24]从综合效益角度出发提出了化工行业实施碳减排的相关建议以及化工园区实施碳减排的管理模式;何伟等[25]设计了节能绩效-减排绩效关系图及节能绩效、减排绩效与经济效益协调关系三角图。

在研究方法上,通过对以上文献的归纳,不难发现情景分析已成为行业温室气体减排潜力的主流分析框架。已有的国内外大部分相关研究都采用情景分析方法[5-12,13,18,19]。情景分析方法是在对经济、产业或技术的重大演变提出各种关键假设的基础上,通过对未来详细地、严密地推理和描述来构想未来各种可能的方案[26]。相比弹性系数法、趋势外推法、灰色预测法等传统的定量预测方法,情景分析法以多种假定情景为基础,强调定性与定量分析相结合。情景分析法在进行预测时,不仅可根据预测对象的内在产生机理从定量方法上进行推理与归纳,还可对各不确定因素(自变量)的几种典型的可能情况采取人为决策,从而更为合理地模拟现实。因此,情景分析法更加适用于影响因素众多、未来具有高度不确定性的问题的分析。此外,情景分析法与传统预测法还有一点显著不同。传统预测法试图勾绘被预测对象未来的最可能发生状况,以及这种可能程度的大小。而情景分析法采取的是一种多路径式的预测方式,研究各种假设条件下的被预测对象未来可能出现何种情况。在情景分析中,各种假设条件不一定会自然出现,但通过这样的分析,可帮助人们了解若要被研究对象出现某种结果需要采取哪些措施以及需要何种外部环境。

综观国内外学者的研究,有以下特点:从研究对象上来说,更多侧重于化工行业产品层面二氧化碳减排潜力的研究,而鲜有从行业整体层面的研究;从研究要素上来说,一般只考虑单一要素对二氧化碳减排的贡献,鲜有综合考虑化工行业内部结构调整、技术进步、政策变动等多因素的研究。鉴于此,本文结合化工行业的产品结构特点构建了一套化工行业二氧化碳减排潜力综合分析模型:首先结合化工行业产品种类繁多的特点,分别从行业和产品视角构建了一种两阶段二氧化碳排放核算模型;在此基础上,综合考虑化工行业的发展规模、结构调整、技术进步等因素,建立了化工行业二氧化碳减排潜力的情景分析方法,探索不同情景下化工行业的减排潜力和路径。最后运用该方法以中国西部唯一的直辖市、国家首批低碳试点城市———重庆市的化工行业为例进行应用分析。最后提出了我国化工行业低碳转型的对策建议。

2模型与分析方法

2.1核算边界

化工行业的二氧化碳排放包括两部分:一部分是由燃料燃烧产生的排放,另外一部分是工业过程和产品使用产生的排放。其中燃料燃烧产生的排放又分为化石燃料产生的直接排放以及电力、热力消耗产生的间接排放,为了体现化工行业对区域二氧化碳减排的贡献,本文将电力和热力消耗产生的间接排放也计算在内。此外,一些化工产品在生产活动中是吸碳的,例如尿素的生产,这部分被吸收的二氧化碳需要在计算中扣除。

2.2化工行业二氧化碳排放两阶段核算模型

为了能够得到化工行业全行业的二氧化碳排放量,同时能够综合考虑多种因素探索其二氧化碳减排潜力,本文针对化工行业特点构建了一种两阶段二氧化碳排放核算模型。模型中的主要参数名称及其含义见表1。

2.2.1基于全行业视角的核算方法

行业视角核算方法主要针对化工行业二氧化碳排放的历史和现状。本文所研究的化工行业包括国民经济行业分类中的化学原料及化学制品制造业、化学纤维制造业和橡胶制品业。化工行业是终端能源消费部门,通过能源平衡表,可以得到化工行业分能源品种的能源消耗量,根据2006年IPCC国家温室气体清单指南推荐的方法二,化工行业由燃料燃烧引起的二氧化碳排放量为:

部分产品在工业过程和产品使用中会产生二氧化碳排放,这部分排放量为:

此外,一些产品在生产过程中会吸收二氧化碳,被吸收的二氧化碳量为:

因此,基于行业视角核算的化工行业温室气体排放量为:

表1主要参数名称及其含义下载原表

表1主要参数名称及其含义

2.2.2基于产品视角的核算方法

化工行业产品种类虽多,但能耗相对集中在少数几种高耗能产品上,2007年,合成氨、乙烯、烧碱、纯碱、电石、甲醇这6种高耗能产品的能源消耗量占中国化工行业的54%[19]。现有的化工行业节能减排政策大部分集中在几种主要的高耗能产品上,因此从产品层面探讨化工行业的二氧化碳排放核算更具有现实意义。本文建立一种基于产品视角的核算方法来预测化工行业未来的二氧化碳排放。首先将化工行业由燃料燃烧引起的二氧化碳排放分为高耗能产品和其他产品两部分。某种高耗能产品的二氧化碳排放量为:

其中EMi为第i种高耗能产品单位产品的二氧化碳排放量,计算方法见式(6):

由于除主要耗能产品外的其他产品种类多,单个产品的能源消耗量不大,能源利用效率数据难以获得,所以难以从单位产品能耗的角度对这部分产品的二氧化碳排放进行核算,本文将这部分产品作为一个整体来考虑,引入单位产值的二氧化碳排放来解决这一问题。其他产品合计的二氧化碳排放量为:

工业过程和产品使用排放以及产品对二氧化碳的吸收同基于行业视角的核算方法。

因此,基于产品视角核算的化工行业温室气体排放量为:

2.3减排潜力情景分析模型

2.3.1减排潜力的定义

潜力就是存在于事物内部尚未显露出来的能力和力量。而减排潜力即存在于某一温室气体排放主体内尚未发掘的减排能力。为了能够量化表达,本文将减排潜力进一步定义为某一温室气体排放主体通过努力可以实现的减排量。

本文所关注的是化工行业未来的二氧化碳减排潜力,这里为化工行业设置多种不同的发展情景。不同情景下的行业内部结构、技术水平、所面临的宏观和微观政策各不相同,相应的会得到不同的二氧化碳排放路径。其中一种情景称之为BAU(BusinessAsUsual)情景,也叫照常发展情景,该情景下化工行业现有的能源消费和经济发展趋势与当前的发展趋势基本保持一致,沿用既有的节能减排政策和措施,不特别采取针对气候变化的对策。其他情景中化工行业分别针对气候变化做不同程度的努力。所谓化工行业的二氧化碳减排潜力,针对关注的指标不同,有两类不同的含义。一是绝对二氧化碳减排潜力,即目标年份中其他各情景的二氧化碳排放量相比BAU情景的减少量;二是相对二氧化碳减排潜力,即目标年份的二氧化碳排放强度相比基准年份降低的百分比。

通过同一年份各情景与BAU情景二氧化碳排放总量的横向比较,以及同一情景不同年份间二氧化碳排放强度的纵向比较,便可分别得到化工行业的绝对和相对二氧化碳减排潜力。

2.3.2情景分析模型

根据减排潜力的定义,y年份化工行业的绝对二氧化碳减排潜力为:

其中CEyBAU为y年份化工行业BAU情景的二氧化碳排放总量,CEly为y年份化工行业情景l下的二氧化碳排放总量。

相对二氧化碳减排潜力是针对二氧化碳排放强度设置的指标,化工行业的二氧化碳排放强度为:

,其中V为化工行业的工业增加值。由此可以得到,y年份化工行业的相对二氧化碳减排潜力为:

其中,为基准年化工行业的二氧化碳排放强度,CEIly为y年份化工行业在情景l下的二氧化碳排放强度。

3案例分析

3.1对象描述

本文应用上述模型方法以重庆市化工行业为例展开分析。化工行业是重庆市重要的支柱产业之一。2011年重庆市化工行业实现工业总产值902亿元,占重庆市工业总产值的比重达到7.6%。重庆市缺煤少油,但天然气资源丰富,重庆市是国内门类最齐全、产品最多,综合技术水平最高的天然气化工生产基地。但重庆市化工行业部分产品的工艺技术路线落后,产品结构有待调整优化。2009年重庆市化工行业的精细化率仅约20%,低于全国的30%-40%的平均水平,更低于发达国家的60%-70%的水平。

根据重庆市化工行业发展现状和趋势,本文选取了合成氨、烧碱、纯碱、甲醇、石油加工、乙烯和钛白粉这七种产品作为重庆市化工行业的主要耗能产品。其中,2005年合成氨、烧碱、纯碱、甲醇和钛白粉这五种产品合计的二氧化碳排放占化工行业总体排放的46.5%,而石油加工、乙烯将是重庆市化工行业“十二五”期间重点发展的石油化工产业链中的上游产品。本文利用前文所述的化工行业二氧化碳减排潜力分析模型,分析了重庆市化工行业分别到2015年和2020年的二氧化碳排放变化情况,并通过不同情景间的比较得到其减排潜力。

3.2情景设置

化工行业的能源消耗和二氧化碳排放主要由以下几方面因素决定:产业发展规模,产业内部结构,高耗能产品的产量,技术结构的调整,产品的技术进步率等。本文根据以上这些因素为重庆市化工行业设计了三个发展情景。

在这三种情景中,重庆化工行业未来经济发展变化的基本趋势保持一致。2005—2011年重庆市化学工业总产值年均增长29.5%,未来重庆化工行业将继续保持比较高的经济增长速度。根据《重庆市化工行业三年振兴规划》,到2015年重庆市化工行业总产值将达到2000亿元。由此本文设定2011-2015年重庆市化学工业总产值的年均增长率为23.0%,2015-2020年年均增长率降低到20.0%。与此不同的是,为了支持这种经济的发展需求,三种情景分别设定了不同的能源消费增长和利用模式,具体描述如下。

表2情景定性描述表下载原表

表2情景定性描述表

3.3数据来源及处理过程

重庆市化工行业总产值和增加值现状数据来自《重庆市统计年鉴》(2005-2012),化工行业未来总产值数据来自《重庆市化工行业三年振兴规划》;行业内部结构现状数据来自《重庆市化工行业统计公报》(2005-2010);化工行业分能源品种能源消耗量数据来自《中国能源统计年鉴》(2005-2012);各主要耗能产品产量数据来自《重庆市统计年鉴》(2005-2012);各主要高耗能产品综合能耗参照《中国化学工业年鉴》、《中国低碳发展报告2011~2012》、高耗能产品能耗限额标准(由国家标准化管理委员会制定和颁布)和《能效及可再生能源项目融资指导手册(2008)》,各主要高耗能产品未来所采用的工艺比例和能源消耗参考《2050中国能源和碳排放报告》中的设置,不同的情景将设置不同的技术参数;各种一次能源的二氧化碳排放因子以及各主要耗能产品工业过程与产品使用的排放因子均来自《省级温室气体清单编制指南》,电力的二氧化碳排放因子参考中国国家发改委每年公布的“中国区域电网基准线排放因子的公告”,蒸汽的二氧化碳排放因子通过重庆市的能源平衡表间接计算得到,单位尿素吸收的二氧化碳量用尿素的碳含量(12/60)乘以二氧化碳与碳的转换因子(44/12)得到。主要耗能产品的单价参照中国化工产品网的报价。

3.4结果分析

3.4.1绝对减排潜力

(1)行业总体排放情况

通过模拟计算,重庆市化工行业未来的二氧化碳排放量如下图1所示。

图1重庆化工行业各情景二氧化碳排放总量

图1重庆化工行业各情景二氧化碳排放总量下载原图

随着石油化工的引进,未来重庆化工行业将进入一个飞速发展的阶段。三个情景的二氧化碳排放总量都呈明显的上升趋势,但由于所采取的结构调整和技术改进措施不同,二氧化碳排放总量上升的幅度有所不同。

BAU情景中,由于精细化工比例不高,到2020年只为45%,技术进步率有限,二氧化碳排放上升幅度最大。2015年和2020年的二氧化碳排放量分别为2005年的7.5和13.3倍。

节能情景中,化工行业的精细化工比例相比BAU情景有所提高,到2020年达到50%,工艺设备的技术进步也更显著。2015和2020年二氧化碳排放总量比BAU情景分别低492万吨和1338万吨。

低碳情景中,化工行业的精细化比例进一步提高,到2020年达到55%左右,主要耗能产品的技术水平达到或接近国际先进水平。2015年和2020年二氧化碳排放总量比BAU情景分别低985万吨和2644万吨。

(2)主要耗能产品排放情况

2005年,合成氨、烧碱、纯碱、甲醇和钛白粉这五种主要耗能产品合计的二氧化碳排放量占重庆市化工行业总体二氧化碳排放的46.5%。未来由于化工行业产品结构的调整,高能耗产品产出占化工行业的比例越来越低,加上化工行业工艺技术的改善,尤其对主要耗能产品进行的技术改造,使得主要耗能产品的二氧化碳排放量在重庆化工行业二氧化碳排放总量中所占的比重越来越低,见下图2:

图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重

图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重下载原图

BAU情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重为29.7%,到2020年降低到18.4%。

节能情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重降至26.2%,到2020年进一步降低到16.7%。

低碳情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重为22.0%,到2020年进一步降低到15.2%。

虽然未来各情景主要耗能产品的二氧化碳排放占化工行业总体的比重有所下降,但仍在化工行业中占有重要的地位,未来在进行产品结构调整的同时,主要耗能产品的节能减排仍将是化工行业实现二氧化碳减排的重要方面。

3.4.2相对减排潜力

(1)行业总体相对减排潜力

重庆市化工行业未来的二氧化碳排放强度(万元GDP二氧化碳排放量)如下图3所示。

图3重庆化工行业各情景二氧化碳排放强度

图3重庆化工行业各情景二氧化碳排放强度下载原图

与排放总量显著上升形成鲜明对比的是,重庆化工行业的二氧化碳排放强度下降明显。原因在于重庆化工行业在未来十年将进入一个飞速发展的阶段,2020年重庆化工行业的增加值相比2005年将增加30倍。而由于对高耗能产品规模的控制,精细化工比例的大幅提高,化工行业内部结构得到不断优化;同时由于化工行业的能效水平不断提高,到2020年逐步接近或达到国际先进水平,使得三个情景中,2020年重庆化工行业的二氧化碳排放总量相比2005年分别只增加了13.3、11.6和9.9倍。从而导致三个情景化工行业的二氧化碳排放强度均有较大幅度的下降。各情景二氧化碳排放强度相比2005年降低幅度见下表3。

表3重庆化工行业各情景二氧化碳排放强度相比2005年降低百分比下载原表

表3重庆化工行业各情景二氧化碳排放强度相比2005年降低百分比

(2)主要耗能产品相对减排潜力

随着节能减排技术的不断改进和推广,未来重庆市化工行业各主要耗能产品的单位二氧化碳排放量将不断降低,由于篇幅有限,本文仅以合成氨为例进行分析。

重庆市合成氨均以天然气为原料,2005年重庆市大型天然气制合成氨的比重仅为3.8%。单位合成氨二氧化碳排放量为3.0吨。若扣除末端尿素固碳量,则2005年单位合成氨二氧化碳排放量为2.7吨。未来由于大型天然气制合成氨所占比重越来越高,使得重庆市未来单位合成氨二氧化碳排放显著降低,见下图4和图5。

图4单位合成氨二氧化碳排放量

图4单位合成氨二氧化碳排放量下载原图

图5单位合成氨二氧化碳净排放量(去除尿素固碳)

图5单位合成氨二氧化碳净排放量(去除尿素固碳)下载原图

BAU情景中,2015年大型天然气制合成氨的比重达到50%,合成氨二氧化碳排放总量占化工行业总排放的6.7%,单位合成氨二氧化碳排放降低到2.2吨;2020年大型天然气制合成氨的比重达到80%,合成氨二氧化碳排放只占化工行业总排放量的3.8%,单位合成氨二氧化碳排放进一步降低到1.8吨。

节能情景中,2015年大型天然气制合成氨的比重达到60%,合成氨二氧化碳排放总量占化工行业总排放的5.3%,单位合成氨二氧化碳排放降低到2.0吨;2020年大型天然气制合成氨的比重达到90%,合成氨二氧化碳排放总量占化工行业总排放的2.9%,单位合成氨二氧化碳排放进一步降低到1.6吨。若扣除末端尿素固碳量,2015年和2020年重庆市合成氨的二氧化碳排放量分别可减少117.3万吨和146.7万吨,单位合成氨二氧化碳排放分别降低到1.1吨和0.7吨。

低碳情景中,2015年大型天然气制合成氨的比重达到70%,合成氨二氧化碳排放总量占化工行业总排放的3.8%,单位合成氨二氧化碳排放降低到1.8吨;2020年大型天然气制合成氨的比重将达到100%,合成氨二氧化碳排放总量仅占化工行业总排放的2.3%,吨合成氨二氧化碳排放进一步降低到1.5吨。

篇6

[中图分类号]F293 [文献标识码]A [文章编号]1671-8372(2012)04-0012-04

一、引言

城市化作为一种全球性的经济社会现象,主要发生在工业革命以后。伴随着世界城市化的快速发展,城市人口急剧膨胀,城市规模快速扩张,能源消费迅猛增加,工业污染迅速蔓延,生态环境问题日益严重。在全球十大环境问题中,气候变暖居首位,而全球气候变化主要是由于温室气体排放量的不断增加,尤其以二氧化碳排放的增加为主。近200年来,世界城市化水平和二氧化碳排放量保持同步上升,目前二者均有加速的趋势。产业革命以来,世界城市化水平在5%左右,大气中二氧化碳浓度在280ppm左右(ppm是气体浓度单位,表示百万分之一),到了2007年,世界城市化水平达到了50%,二氧化碳浓度值上升到了383ppm,而其危险临界值为385 ppm,全球平均地表温度也比工业革命时期升高了0.74℃[1]。

我国城市化进程快速发展的同时带动了以化石燃料为主的能源消耗迅猛增长,使得二氧化碳等环境污染物的排放量逐年增加。根据国际能源署(IEA)公布的统计数据显示,2007年我国化石能源消费产生的二氧化碳排放已经超过美国,成为目前世界上二氧化碳排放总量最大的国家[2]。然而伴随着我国城市化、工业化发展的不断快速推进,以煤为主的能源消费量还将不断增加,由此产生的二氧化碳排放量也会进一步上升,这意味着,我国碳减排面临的国际压力将会日益增加。

随着全球气候变暖问题的日益严峻,越来越多的研究开始关注如何在城市化进程中缓解温室气体排放问题。徐国泉等运用LMDI分解法对中国碳排放进行了因素分解研究,定量分析了经济发展和能源强度对我国碳排放的影响,指出经济发展拉动我国碳排放呈指数增长,而能源强度的贡献率则表现为倒“U”形[3]。王锋对1995-2007年中国碳排放量增长的驱动因素进行了研究,认为人均GDP增长是二氧化碳排放量增加的最大驱动因素[5]。何吉多关于1978-2008年中国城市化与碳排放关系的协整分析表明,我国碳排放量与城市化水平之间存在长期动态均衡关系,且这种长期均衡关系对当前碳排放偏离均衡水平的调整力度较大[5]。日本学者Yoichi Kaya于IPCC的一次研讨会上提出Kaya恒等式,指出人类活动产生的温室气体排放与经济发展、人口等因素存在联系[6]。Duro和Padilla认为Kaya因素中引起不同国家碳排放差异的重要因素为人均收入、能源消费碳强度和能源强度[7]。林伯强等通过对Kaya恒等式的分解,认为1978-2008年对中国碳排放影响较为显著的因素包括经济发展、能源强度、能源消费碳强度和城市化水平[8]。

人类活动与温室气体排放之间的关系已经成为国际热点之一,研究二者之间的关系有着重要的现实意义。山东省作为我国的人口、经济大省,一直是高能耗、高碳排放区,魏一鸣指出,2005年山东省终端能源消费产生的二氧化碳排放总量居全国首位[9]。同时,山东省城市化进程快速推进,2010年山东省城市化水平为40.04%,正处于诺瑟姆曲线划分的城市化发展阶段中的中期加速发展阶段[10]。虽然山东省城市化发展已取得了可喜的成绩,但与我国49.95%的城市化水平相比还是相差较远。研究山东省城市化进程中的碳排放,不仅对于把握山东省碳减排政策、城市化发展战略、保持经济持续快速发展具有现实意义,而且对于更好地理解我国的整体状况也有重要意义。基于此,本文运用协整分析方法借助VECM模型对山东省城市化水平和二氧化碳排放量之间的长短期关系进行实证分析,并利用Kaya恒等式对山东省城市化进程中的碳排放影响因素进行分解分析,最后提出相应的政策建议。

二、山东省城市化与碳排放关系的协整分析

2.变量的平稳性检验

四、结论及政策建议

本文运用协整分析方法借助VECM模型对山东省城市化水平和二氧化碳排放量之间的长短期关系进行了实证分析,并利用Kaya恒等式对山东省城市化进程中的碳排放影响因素进行了分解分析,从而得出以下结论:

(1)山东省城市化水平和二氧化碳排放量之间的协整方程说明,二者之间存在长期均衡关系,长期弹性系数为1.7120,即城市化水平每提高1%,碳排放量将同步增长1.7120%,这说明城市化是导致山东省碳排放量增长的一个重要因素。

篇7

关键词 低碳经济 碳减排 对策

一、前言[1]

气候变化是全世界所面临的重大环境问题,已经渗透到能源、粮食安全、贸易、金融和国际安全等诸多领域,越来越受到世界各国的关注。由此,二氧化碳减排已经成为全球关注的重大问题。

二、目前二氧化碳减排的主要途径和研究进展[2]

目前,二氧化碳减排主要有三种途径:一是分离和回收使用化石燃料时产生的二氧化碳并加以封存;二是优化能源结构,使用能源替代技术,大力发展低碳的化石燃料、可再生能源、核能和新能源;三是节约用能,提高能源转换率和利用率。从所需时间、实施难易程度、减排效果和经济性等角度来考虑,这三种方案各有利弊。

(1)利用油气田对二氧化碳进行地质封存,兼有经济和环境效益,已经成为最有吸引力的碳减排手段。二氧化碳捕集和封存的技术近年来已经受到国际重视。由于化石燃料燃烧中产生二氧化碳,目前的捕集技术主要有三条技术路线,即燃烧前脱碳、燃烧后脱碳及富氧燃烧。燃烧前脱碳的关键技术是转化制氢,涉及高温下氢的膜分离技术,包括模式转化装置、膜材料等方面的技术开发。燃烧后脱碳的技术核心是氨吸收脱除二氧化碳,难点在平吸附剂的开发。富氧燃烧技术的关键是氧气供应及高技术涡轮机的开发。二氧化碳封存是指将从电厂中回收的二氧化碳,运输至埋存地,并注人地质结构中封存起来。回收到的二氧化碳需要压缩至超临界状态,以减小体积,提高运输效率。管道运输是最有效的运输手段。

此外,二氧化碳封存还可以与强化油气开采相结合,提高油气采收率,收获了相当可观的经济效益。由于具有显著的环境效益和经济效益,利用油气田封存二氧化碳成为最有吸引力的减排CO2的手段,美国、加拿大、日本等经济发达的国家已经开展了这方面的研究,并取得了一些成绩。

(2)优化能源结构,使用能源替代技术,大力发展低碳燃料和无碳燃料.可以从源头上减少二氧化碳排放。日本重点发展燃料电池、生物燃料和核电,以此来降低对石油的需求。计划到2030年,使石油在能源消费总量所占的比例从50%降到40%。

从长远来看,发展低碳燃料是减排二氧化碳的最终途径,但目前由于受到技术和成本等诸多方面的限制,短期内无法达到较好的减排效果。

(3)提高能源利用率,降低对化石能源的消耗,是二氧化碳减排的重要途径。美国于2005年公布的新能源法案中大力强调节能,宣布将对使用节能电器和节能建材的居民减免税收。

三、根据我国的实际情况对CO2减排的一些建议[3]

面对我国目前严峻的碳排放问题,由此引起的气候变暖及一系列生态环境问题。CO2减排刻不容缓。依据我国现有能源消费状况,及能源生产技术和成本的限制,较为可行的CO2减排的途径有如下四个方面:

(1)调整能源结构,使用其他形式的能源。

中国能源的消费结构以煤炭为主。中国煤炭消费占能源消费总量的比重高于发达国家和世界平均水平,合理渊整能源结构可有效地降低CO2排放。能源消费结构的调整仍然限于在煤炭和天然气之间进行调整,主要目标是用洁净的天然气资源替代煤炭资源和其他能源,缓解对生态环境造成的压力。

(2)开发新的煤炭利用技术。

中国现有的能源结构是由中国能源的可采储量结构决定的。也就是说,以煤炭为主的能源结构,在未来的一段时间内,是不会变的。

(3)提高能源的利用效率。

由于我国大部分能源在开采、加工转换、贮运和中段利用过程中的损失和浪费,导致了能源利用率偏低[6]。与炼焦、炼油的较高加工转换率相比,不到40%的发电及电站供热的加工转换率极大影响了我国能源加工转换的总效率。

(4)大力发展植树造林。

根据植物光合作用原理吸收CO2。可以把碳固定在生物体内。林业对CO2的减排还有很大的空间。有数据估计[7],至2020年全国新增林地碳吸收可达108t,比目前的水平提高4倍。大力发展植树造林,可增强陆地生态系统碳吸收,在一定程度上减轻我国所面临的碳减排压力。

四、结语

为减缓温室气体排放给全球带来的影响,国际组织也逐渐形成共识:控制CO2的排放,发展低碳经济。我国目前碳排放形势严峻,但笔者相信,只要采取正确的战略措施,我国完全可以在实现经济可持续发展的同时走低碳经济之路。

参考文献:

[1]李慧明,杨娜.地然经济及碳排放评价方法探究.学术交流.2010(193).

[2]陈晓进.国外二氧化碳减排研究及对我国的启示.国际技术经济研究.2006.9(3).

[3]杨蕾,李光明,沈雁文,黄菊文.中国能源消费带来的碳排放问题与碳减排措施.科技资讯.2008(3).

[4]魏一鸣,范英,等.关于我国碳排放问题的若干对策与建议.气候变化研究进展.2006.2(1):15~20.

[5]齐超.制度含义及其本质之我见.税务与经济.2009(3).

篇8

[中图分类号]F59

[文献标识码]A

[文章编号]1002-5006(2013)07-0064-09

引言

旅游业作为世界第一大经济产业,每年国际旅游的人数约占全球总人口的1/6,如此庞大规模的人口“迁徙”对气候、环境造成了实质性的影响,引起相关国际机构和学界的广泛关注。第一届全球气候变化与旅游国际会议后,联合国政府间气候变化委员会(IPcc)、世界气象组织(uNwM0)、世界旅游组织(uNwTO)等国际组织及其他研究机构达成共识:旅游业是能源消费的主要领域之一和温室气体排放的主要来源之一。旅游业能源需求和二氧化碳排放成为近5年来旅游研究的热点。我国该方面研究起步较晚,2008年“旅游业节能减排”字样首次出现在政府文件中,目前仍处于探索性研究阶段。本文系统地对国内外旅游业能源需求和二氧化碳排放研究进行了回顾,以期通过国内外研究进展的对比分析,为下一阶段我国旅游业能源需求和二氧化碳排放研究提供思路,为我国旅游业节能减排工作提供科学借鉴与参考。

1、国外旅游业能源需求与二氧化碳排放研究进展

旅游业能源需求与二氧化碳排放问题的实质是旅游环境影响以及气候变化与旅游相互影响问题的延伸,国外该方面研究开展得很早,可追溯到20世纪中叶。通过对国外相关研究文献的整理与分析,国外研究主要集中在旅游业能源需求与二氧化碳排放的结构与途径,旅游业能源需求与二氧化碳排放量的定量测算、预测及旅游业节能减排措施等4个方面。其中,旅游业能源需求与二氧化碳排放量的测算是研究的重点。

1.1 旅游业能源需求与二氧化碳排放的途径与结构

厘清旅游业能源需求与二氧化碳排放途径是旅游业减缓温室气体排放工作的首要前提。由于旅游业产业关联性高、产业链长,旅游活动灵活多样,旅游业能源需求与二氧化碳排放途径复杂且多元。尽管如此,国外相关研究较为一致地认为旅游业能源需求与二氧化碳排放主要集中在旅游交通(特别是国际长途旅游飞行)和在目的地为游客提供舒适的设施等。由于国家发展水平和旅游业发展阶段不同,各国旅游业能耗需求与二氧化碳排放的途径和比例结构有所差异,但旅游交通始终是各国旅游业能源需求与排放的重头(表1)。旅游业所需的能源主要来自化石燃料中的石油。2006年,石油提供了全球40%的能源需求和90%的交通需求;未来15年,因交通和旅游业发展,石油占全球能源的比例将达60%。约曼等(Yeoman,et al.)在分析了全球经济、石油替代能源生产及全球可持续发展需求等形势后,认为随着石油供应量的衰减及价格上涨,长期来看,将对苏格兰旅游业产生颠覆式的影响。而在发展中国家的乡村地区,生物质特别是木材是主要的能源来源。尼泊尔安那波那保护区的住宿业每年要消耗掉3600吨薪材和近47.5万升煤油。联合国环境署和经合组织共同推出的一份最新报告显示,在旅游业导致的二氧化碳排放中,航空占40%,汽车占32%,住宿占21%,剩下的7%分别被旅游活动(4%)和其他交通方式(3%)所排放。世界旅游组织研究报告显示,2005年全球旅游交通和住宿业的二氧化碳排放总量分别为1192百万吨和284百万吨,占旅游业二氧化碳排放总量的比重分别约为63%和15%;其中,航空二氧化碳排放量为640百万吨,占旅游交通排放的53.69%。高斯林(Gtissling)从能源需求、土地利用与覆被变化、物种多样性等5个方面研究了全球旅游业的环境影响,结果表明,2001年全球旅游业因交通产生的耗能约为13223皮焦,占总能耗的94%;排放二氧化碳当量为1263百万吨,占总排放的90.28%。住宿业能耗为508皮焦,占总能耗的3.5%;排放二氧化碳当量80.5百万吨,占总排放的5.75%。剩下的为旅游活动所消耗和排放。贝肯等(Becken,et al.)用实证研究法对新西兰旅游吸引物和旅游活动的能源消耗模式进行研究,发现旅游交通能耗占总能耗的65%~73%。

1.2 旅游业能源需求与二氧化碳排放的定量测算

旅游业能源需求与二氧化碳排放量的定量测算是最基础但又最核心的研究内容,是旅游业应对气候变化、制定节能减排措施的科学基础与前提。旅游业的能源需求与排放涉及众多行业和部门,包含直接和间接的能耗与排放,加上旅游业统计数据缺乏这一现实,旅游业能源需求与二氧化碳排放的定量测算是一个世界性的难题,是该领域研究的重点。

1.2.1 测算方法

从全球来看,目前尚没有系统的关于旅游业能源消耗和二氧化碳排放量估算的方法。文献研究显示,目前最常用测算方法主要有两种(表2),一种是借用全球气候变化和可持续发展研究领域常用的碳足迹法(carbonfootprint approach)和生态足迹法(ecological footprint approach);另一种是“自下而上法(bottom-up approach)”,即直接计算旅游业各环节的能耗与排放,最终求得整个产业的能耗与排放数据。

(1)碳足迹是指企业机构、活动、产品或个人通过交通运输、食品生产和消费以及各类生产过程等引起的温室气体排放的集合。从其定义不难看出,碳足迹法是对生产和消费全过程、直接和间接排放碳当量的追踪,甚至不考虑碳发生的区域。澳大利亚资源能源旅游部从生产和消费两个方面,运用碳足迹法估算了澳大利亚旅游业的温室气体排放。结果表明,2003~2004年间,澳大利亚旅游业碳足迹为1.15亿吨。洛克等(Loke,et al.)利用碳足迹法研究了夏威夷能源需求与旅客数量急剧增加以及旅游者国别多样化的关系,发现旅游者能耗占夏威夷总能耗的比重平均为60%;且国外游客比例越大,能耗需求也越大。

(2)生态足迹是指维持一个人、地区、国家或者全球的生存所需要的以及能够吸纳人类所排放的废物、具有生态生产力的地域面积。旅游生态足迹即指维持旅游活动所需要的以及能够吸纳因旅游而排放的废物、具有生态生产力的地域面积,其实质是一定区域内旅游活动对生态影响的一种定量测度。亨特(Hunter)认为,生态足迹法对理解旅游的环境影响具有实际意义,并且将被作为一项重要的旅游可持续发展的环境指标广泛采用。罗伯特等(Roberto,et al.)采用生态足迹法,结合兰萨罗特岛旅行推断模型,计算兰萨罗特岛公路旅游交通使用量及其对未来旅游业发展的影响。研究结果表明,兰萨罗特岛上的旅游交通主要是依赖于私家车,在接下来的10年里,公路旅游交通量还将持续增长,并达到饱和,兰萨罗特岛旅游交通在旅游生态足迹中所占的比重将会增大。

(3)“自下而上”法是从到达目的地游客的数据分析人手,向上逐级统计能耗与排放量。这种方法有两个特点,一是逻辑算法简单,但实际操作难度很大,既要求研究区域旅游业统计资料完备,同时还需要海量的实地调研数据;二是遗漏大部分旅游业间接的能耗与排放,导致估算结果总体偏小。但尽管如此,在实际研究工作中,自下而上法被采用得最多。前述的几项关于全球旅游业能耗与排放的估算研究,其思路都暗含着自下而上法的运算逻辑。贝肯等采用“自下而上”法分析新西兰南岛西部海岸旅游者不同行为引致的能源消耗。研究结果表明,国际游客的能源消费总量是新西兰国内游客的4倍。霍伊特等(Howitt,et al.)采用“自下而上”法发现2007年单次往返于新西兰的国际邮轮游客碳排放量范围为250~2200克/人·公里,每位旅客在邮轮上的住宿所需的平均能耗约为1600百万焦/晚,比陆地上的一般酒店能耗要高出12倍。

1.2.2 测算内容

据文献整理研究,当前国外旅游业能源需求与二氧化碳排放的定量测算主要包含两方面内容。一是对总量的定量测算。高斯林估算2001年全球旅游业共消耗能源14080皮焦,排放二氧化碳当量1399百万吨。皮特尔斯等(Peeters,et al.)的测算表明旅游业导致了全球4.4%的二氧化碳排放。世界旅游组织和其他相关机构的一份联合报告指出,2005年全球旅游业排放的二氧化碳约占全球二氧化碳排放总量的5%,该排放量所造成的影响,大约可以达到全球温室效应的14%。江南等(Konan,et al.)的测算显示,夏威夷旅游业的能源消耗占全州总能耗的60%。澳大利亚资源能源旅游部估算2004年澳大利亚旅游温室气体直接排放为470万吨,间接排放为2810万吨。尼泊尔(Nepal)测算了尼泊尔安那波那保护区乡村旅游的能源消耗,结果表明住宿业每年约消耗3600吨薪材和47.5万升煤油。二是对一些关键参数的定量测算,如交通工具、住宿方式、旅游活动的单位旅游能耗和排放强度。相关研究较多,并注意到了国别之间的差异。比如乘飞机旅行单位能耗为2.0百万焦/人·公里,排放二氧化碳396克/人·公里;乘汽车旅行单位能耗为1.8百万焦/人·公里,排放二氧化碳132克/人·公里;新西兰酒店单位能耗为155百万焦/床·晚,马略卡岛为51百万焦/床·晚,桑给巴尔为256百万焦/床·晚;新西兰直升机滑雪单位能耗1300百万焦/游客,潜水800百万焦/游客,博物馆参观10百万焦/游客;往返于新西兰国际邮轮旅游者平均碳排放为390克/人·公里等。

1.3 旅游业能源需求与二氧化碳排放的预测及情景分析

研究旅游业能源需求与二氧化碳排放是为了把握未来的趋势与动态,因此,许多专家学者对其预测及情景分析作了研究,以期能够为有针对性的节能减排措施提供具体可靠的科学依据。世界旅游组织研究报告预测,以2005年为基准,在2035年以前,来自旅游业的二氧化碳排放将以2.5%的年均速度增长;其中住宿业二氧化碳排放的年均增速为3.2%。而皮特尔斯等的预计比世界旅游组织的预计高0.7个百分点,即2035年之前全球旅游业二氧化碳排放将以每年3.2%的增长率增加。杜波依斯等(Dubois,et al.)用敏感度分析法,以2000年为基准,预计按照当前旅游业增长趋势,到2050年法国旅游休闲业温室气体排放将增加90%。

1.4 旅游业节能减排的措施研究

节能减排措施是旅游业能源需求与二氧化碳排放的最终落脚点。从国外研究进展看,目前已基本形成体系化的节能减排措施。世界旅游组织从旅游行业角度分别就政府、旅游企业及旅游者提出了比较系统的节能减排政策措施,同时还对交通、建筑、装备制造等相关领域的节能减排提出了具体对策及技术途径。理查德(Richard)利用仿真模型分析碳税对国际旅游的影响,指出如果全球按1000美元/吨征收碳税,则乘飞机的国际旅游将减少0.8%,相对应可减排二氧化碳0.9%。贝肯等研究表明,坐落在世界遗产拉明顿国家公园的生态客栈采取绿色全球21环境认证计划,成功认证后,每年能耗大幅减低,二氧化碳排放每年减少189吨,节约15000澳元。除了政策或有关技术手段外,旅游者行为方式的选择也是旅游业节能减排的重要方面。贝肯等研究发现,无论在国际旅游者还是国内旅游者能耗账单中,交通始终占据主导地位,因此改变旅行方式能够有效影响旅游者的能源需求。巴克利(Buckley)认为,“慢旅游”是一种有效的降低碳排放的旅游方式,它是指反对乘坐飞机等快速交通工具的旅游,更重视游的过程,强调旅游的过程和目的地同样重要。“慢旅游”必将发展成为一种未来旅游的流行方式。

2、我国旅游业能源需求与二氧化碳排放研究进展

我国旅游业能源需求与二氧化碳排放研究起步较晚,目前仍处于探索性研究阶段。文献资料研究表明,国内研究主要集中在旅游业能源需求与二氧化碳排放量的测算和旅游业节能减排的对策措施方面。

2.1 旅游业能源需求与二氧化碳排放的测算研究

我国旅游业能源需求与二氧化碳排放的测算研究涉及全国、省域/地区及产品层面。全国层面,石培华等首次系统地估算了全国旅游业的能耗与排放,结果表明,2008年我国旅游业消耗能源为428.3皮焦,排放二氧化碳51.34百万吨L25 2。省域/地区层面,陶玉国等估算了2009年江苏省旅游业直接的能耗和二氧化碳排放量,分别为32.56皮焦和3.7百万吨,占江苏能源总消耗量和碳排放总量的比例分别为0.53%和0.56%,旅游交通、住宿业和旅游活动占旅游能耗的比例分别为70.91%、17.32%和11.76%。章锦河等分别对四川省九寨沟、鄂西、湖南和江西等地旅游生态足迹、碳足迹进行了测算。另外,郭等(Kuo,et al.)对我国台湾地区澎湖列岛旅游业能耗与二氧化碳排放进行了测算,结果表明,每年澎湖列岛旅游业消耗能源795.96百万焦,排放二氧化碳5.05千克;其中,旅游交通能耗4.95×108百万焦,排放二氧化碳3.38×108克,住宿业能耗为1.17×108百万焦,排放二氧化碳8.56×108克,旅游活动耗能1.24×108百万焦,排放二氧化碳7.71×108克。林(Lin)对台湾地区垦丁等5个国家公园旅游交通的二氧化碳排放进行了研究,结果表明,近8年旅游交通的二氧化碳排放量在增加,5个国家公园平均每年排放二氧化碳16.1万吨。产品层面,等以云南旅游市场最具代表性的香格里拉“八日游”系列产品为例,从生态足迹角度对该线路产品的生态效率进行了计算和分析。

2.2 旅游业节能减排的对策与措施

国内旅游业节能减排工作实践最早从要素部门开始,从生态景区、循环景区到绿色饭店、绿色交通。对策与措施的研究紧跟实践步伐,并最终拓展至旅游城市(圈)、全行业。章锦河以九寨沟和黄山两个国内知名的生态型景区为例,以旅游废弃物为手段定量测度旅游业能源需求与排放对生态的影响,认为合理控制游客规模、缩短旅行距离、减少乘飞机出游等是旅游业节能减排和建设生态型景区的有效举措。王辉等提出要借鉴台湾坪林地区的措施,给每个海岛型景区设置一个“碳减量计数器”,以此增强游客节能降耗意识并约束自身的旅游行为方式,从而有效降低旅游活动的能耗与排放。李萍就酒店行业的节能减排,从发展理念、能源管理、引导消费观到政策和制度保障提出了一系列具体的对策与建议。林研究了1999~2006年台湾地区5个国家公园旅游交通的二氧化碳排放,提出政府可以通过提升管理效率,运用价格杠杆等降低碳排放,同时通过就近旅游、提高交通荷载、使用清洁能源及其他技术措施来降低旅游二氧化碳排放。蔡萌等从低碳旅游发展导则、低碳旅游设施、低碳旅游吸引物、低碳旅游体验环境和低碳旅游消费方式等5个方面构建了低碳旅游城市模型,提出规范发展、互动发展、示范发展等城市旅游低碳发展的战略举措。万幼清认为武汉城市圈旅游业节能减排需要提升绿化措施、优化绿地布局、加强水域生态保护。石培华等系统整理了旅游业各要素、各领域节能减排的技术手段、运行模式和制度安排。

近3年来,作为旅游业节能减排实现方式的低碳旅游,成为旅游学术界的研究热点。在中国知网,以“低碳旅游”为主题或关键词检索,共得到有效文献297篇。文献数量统计表明,2011年共发表137篇,占全部文献的46.13%;2010年和2012年各79篇,各占26.60%;2009年仅有2篇,占0.67%。而近300篇文献中,仅有17篇(5.72%)发表在核心期刊,一定程度上表明研究的深度有限。研究内容主要集中在概念、内涵及特征研究,低碳旅游发展案例介绍,发展模式及实现的路径、建议等。

3、国内外研究总结与对比

3.1 总结

整体而言,国外旅游业能源需求与二氧化碳排放研究主要在3个方面取得了进展:1)识别了旅游业能耗、排放的重点领域及结构;在旅游业能源消耗与二氧化碳排放的定量估算研究与情景分析方面形成初步结论。2)对各类型交通方式、住宿方式及旅游活动的单位能耗和二氧化碳排放等关键性参数有了一般性的认识,并识别了明显的国别、地区及不同部门之间的差异。3)基本形成体系化的节能减排政策措施。但是,国外研究同时存在3个方面不足之处:1)虽然形成一些标志性成果,但总量不多,还没有系统化和规模化的研究积淀;对旅游交通、住宿及旅游活动方式等单个领域和环节的实证研究多,地区性、全行业的系统研究较少。2)多是基于部分国家/地区的调查数据和经验数据进行估算,尚没有系统的估算方法和情景分析法。3)多以旅游发达国家或经济发达国家为对象,针对发展中国家研究较少。

而从国内研究进展来看,主要有4个特征:1)起步晚,绝大多数研究是2009年之后开展的,且研究总量有限。2)现有的旅游业能耗及二氧化碳排放量的现状估算研究更多地是参照国外已有研究的架构及经验数据进行的,其中涉及的关键性数据如不同交通方式的能耗及排放参数等都是通过文献研究得到的经验数据,对我国的针对性和有效性不足。3)旅游业能源需求与二氧化碳排放的预测和情景分析至今仍是空白。4)旅游业节能减排对策与措施研究的科学支撑不足,宏观对策多,具体的、有针对性的举措少。

3.2 对比分析

主要从旅游业能源需求与二氧化碳排放的结构与途径,旅游业能源需求与二氧化碳排放量的定量测算、预测及旅游业节能减排措施等4个方面进行对比分析(见表3)。

在旅游业能源需求与二氧化碳排放的结构与途径研究上,国内外总体上是一致的,即重点都在旅游交通和住宿两方面,但总量和结构有区别。总量上,从全球来看,旅游业能耗及排放占全球的比重在5%左右,而我国则不到1%,无论是全国层面还是省域层面。结构上,国外旅游交通能耗及排放明显高于国内,旅游活动则相反,国内要高于国外,住宿业能耗及排放水平比较接近,可能和我国住宿业从学习国外而开端有关。定量测算方法上,国内几乎完全借鉴国外研究方法,没有开发出适合我国旅游业特色的方法;定量测算的广度国内外比较接近,但深度上国外明显深于国内。预测方面国内目前仍是空白。对策与措施方面,国外已基本形成体系化、宏观与微观相结合的对策措施,国内对策体系尚未形成,以宏观对策居多。

4、研究启示与展望

结合国外研究进展,针对国内研究现状,未来国内旅游业能源需求与二氧化碳排放研究应重点关注以下3个方面内容:

4.1 加强旅游交通和住宿等重点领域能源需求与排放的定量实证研究

总体来看,我国旅游业能源需求与排放的研究存在现状不清、总量不明的问题;旅游交通能耗与排放情况完全空白,住宿业仅粗线条掌握全国四星级以上酒店的水电气等能源消耗数据。因此,要加强旅游业特别是交通和住宿重点领域能耗与排放的定量测算;根据我国旅游业实际,对不同类型旅游交通方式、住宿业态、旅游活动单位能耗/排放强度等关键参数开展针对性定量实证研究;开展各种工程技术手段方面的节能降耗效率与能力的实证研究。

4.2 加强旅游业能源需求与排放的预测分析和情景研究

篇9

然而,就在卯足劲要为“低碳”尽一份责任时,人们却发现,自己并不了解“碳排放”的基础知识,不知道如何计算“二氧化碳排放量”,不清楚自己的生活方式是“高碳”还是“低碳”,不明白“建低碳城市”、“促低碳经济”、“过低碳生活”到底该做些什么。而哥本哈根气候大会传出的批评声在提醒我们:中国人到了必须学会自己计算“碳排放”的时候了。

“碳排放”指的是人们在消耗化石燃料(煤炭、石油、天然气)时产生的二氧化碳排放量。一个碳原子充分燃烧后会生成一个二氧化碳分子。碳原子的原子量为12,二氧化碳的分子量为44,因此,由碳燃烧,到二氧化碳生成,物质重量从12增加到44――产物比原料重了3.7倍。所以,理论上,1公斤纯碳充分燃烧后,会产生出3.7公斤二氧化碳――这就是“碳排放量”。

在中国,每年的能源消费总量都在《中华人民共和国国民经济和社会发展统计公报》中,比如,2008年“全年能源消费总量为28.5亿吨标准煤”。标准煤亦称煤当量。1吨标准煤的能量,约为0.7吨纯碳充分燃烧释放的热量。0.7吨乘以3.7得出:消耗1吨标准煤的能源,排放的二氧化碳量为2.6吨。任何普通人,只要记住“2.6”这个简单数字,就能从国家公布的统计报告中,估算出中国全年的二氧化碳排放量。以2008年为例,全年能源总消费量为28.5亿吨标准煤,其中3亿吨来自传统生物质能源(非化石燃料),2.5亿吨来自可再生能源,实际消费的化石燃料能源量为23亿吨标准煤。23亿吨乘以2.6,得出二氧化碳排放量为59.8亿吨。根据当年的统计公报,中国人口为132802万人,由此计算出,2008年中国人均二氧化碳排放量为4.5吨――这与国内外学术界认可的数字十分吻合。

在哥本哈根,中国向世界承诺:到2020年,单位GDP的碳排放下降40%~45%。这激起了许多中国公众想从自家开始减少碳排放的热情。这个着眼点是非常正确的。国家发改委能源研究所的一项研究指出:目前中国居民生活的能耗(含衣、食、用、服务、行、住六项)占全国能源消费总量的40%以上,其中,生活能耗的一半是“住”(包括炊事、采暖、家电、照明)产生的直接能耗,另一半是“衣、食、用、服务、行”中各种消费品或服务产生的间接能耗。此项研究建议,推动和引导居民生活方式的转变,对节能减排能起到事半功倍的效果。而最能让公众有兴趣做的事情,就是减少自家生活中直接能耗所带来的“碳排放”。

家庭直接能耗产生的“碳排放”由四部分构成:用电量、用水量、用气量、耗油量。方便的计算公式是,将用量与相应的二氧化碳排放强度系数相乘。在杭州科协提供给居民的《低碳生活指导手册》中,计算公式和强度系数如下:

用电的碳排放:度数×0.785(公斤)

用水的碳排放:吨数×0.91(公斤)

用气的碳排放:立方数×0.19(公斤)

篇10

2002年3月,财政部等有关部门颁布《企业业绩评价操作细则(修订)》,水泥行业目前仍在遵循该细则评价业绩,评价指标主要包括基本指标、修正指标及评议指标三个层次组成的一个共28项总的指标体系,反映了企业目前的财务效益、资产营运情况、偿债能力和发展能力四个方面的内容。目前,水泥行业的业绩评价指标实行百分制,指标权数按照行业特点和专家意见来确定。其中:计量指标的权重为80%,评议指标的权重为20%。在实际的评价中,为了简化计算,三层次的指标权数分别先按百分制设定,然后按权重再次恢复。 

(二)评价指标存在的问题 

尽管水泥行业现行的业绩评价指标体系较过去有了很大的进步,将经营者基本素质和综合社会贡献等指标纳入评价体系,已经比较全面、系统地适应经济发展的需要,但仍然存在以下缺陷: 

1?财务与非财务指标的权重制定不够科学 

目前,在水泥行业的业绩评价指标中更加注重的是财务指标,如净资产收益率、流动资产周转率、利息保障倍数、销售增长率等,但对非财务指标的重视程度不够,这显然不符合低碳经济发展的具体要求。在这个评价指标体系当中,财务评价指标的权重为80%,非财务指标仅占整个评价体系的20%。非财务指标因权重过低不能反映两种指标之间存在的关系,而且在财务指标上,既没有低碳资产对企业经营的影响,也没有一个具体的衡量企业环境负债的指标;在非财务指标中也没有对二氧化碳的排放利用情况进行考量。如果以企业绩效进行评价,既不客观、全面,也不能反映低碳经济对企业业绩的具体要求。 

2?反映企业社会责任的指标不够具体 

从前面分析可知,水泥行业是一个高耗能、高污染且在社会经济发展中占据重要地位的行业,因此该行业的企业业绩评价具有一定的特殊性,特别是在强调走可持续发展道路、发展低碳经济的今天,这样一个碳排放量高的行业必须对其履行的社会责任进行评价,然而,目前的业绩评价指标中企业社会责任指标的表现是“综合社会贡献”,它只是一个普通指标,并没有提出具体从哪几个方面对企业的社会贡献度进行评价,更不能反映企业低碳参与情况和为环保事业所做的贡献程度。 

二、低碳经济下我国水泥行业业绩评价指标的改进建议 

(一)科学设置三类指标的权重配比 

传统的业绩评价指标中财务指标与非财务指标比例是8:2,过于关注财务指标,而忽视了非财务指标,重视企业自身经济效益却忽视了企业的社会责任,影响了社会对企业的全面评价。非财务指标是企业管理中必不可少的一个指标,在指标设立时应更加注重财务指标与非财务指标的有机统一,科学设置二者的权重配比。表1是在低碳经济条件下对企业业绩评价指标的新设定。 

表1低碳经济下我国企业业绩评价指标指标层次权重基本指标具体指标财务指标50%盈利能 

力指标总资产收益率净资产收益率低碳净收益率营运能 

力指标存货周转率应收账款周转率总资产周转率低碳资产周转率偿债能 

力指标短期偿债能力指标长期偿债能力指标、 

环境负债比率发展能 

力指标销售增长率资本积累增长率低碳产品销售增长率非财务 

指标30%二氧化碳 

排放利用 

指标排放二氧化碳收费的缴纳情况、取得排放二氧化碳许可的情况、排放二氧化碳超标率、二氧化碳回收利用率技术创 

新指标单位经济增加值替代能源使用率社会业绩 

评价指标20%具体内容见表21?财务业绩指标改进 

在原有盈利能力指标、营运能力指标、偿债能力指标和发展能力指标的基础上,为符合发展低碳经济的要求,将低碳资产纳入指标当中,主要增加的指标计算及评价含义如下: 

(1)低碳净收益率=低碳净收益/净利润×100% 

低碳净收益是指企业在经营过程中从事环境保护、发展低碳经济的收入减去费用支出的净额,其收入来源销售低碳产品、减少碳排放而少支付的费用以及使用节能设备所减少的支出。低碳成本费用是企业在研发低碳产品、购买节能设备及使用替代能源时发生的支出。该指标反映了企业在发展低碳经济时的获利能力,指标越大,说明企业的低碳经营效益越好,低碳经济发展程度越高。 

(2)低碳资产周转率=营业收入/低碳资产×100% 

该指标表明一定时期内低碳资产的周转次数,该指标越大,说明企业低碳资产的使用效率越高,表明企业低碳经济发展程度越高。 

(3)环境负债比率=环境负债/负债总额×100% 

环境负债是指在企业生产过程中由于对环境造成的污染和破坏而导致的经济利益流出所形成的负债,该指标可以很好地衡量在低碳经济下水泥行业生产所付出的环境成本,将环境因素考虑在企业业绩评价之内。 

(4)低碳产品销售增长率=当年低碳产品销售收入增长额/上年低碳产品销售收入×100% 

该指标能较好地反映企业在生产销售低碳产品方面的潜力,从而评价企业对低碳经济的践行程度。 

2?非财务业绩指标改进 

(1)低碳执行指标 

化石能源的节约及高效使用、二氧化碳的排放治理是水泥行业在低碳经济下经营业绩评价的重要方面。在生产过程中含碳化石能源消耗情况用单位经济增加值化石能源消耗量衡量,该指标主要反映单位化石能源生产率,在经济增加值不变的情况下,该数值越小,说明企业的能源使用效率越高。 

单位经济增加值化石能源消耗量=化石能源消耗量/经济增加值 

生产过程中二氧化碳排放情况用单位经济增加值二氧化碳排放量衡量,该指标可以直接反映和评价企业的环境效益,在不同企业间具有较好的可比性,数值越小,说明二氧化碳减排效果越好。 

单位经济增加值二氧化碳排放量=二氧化碳排放量/经济增加值 

(2)二氧化碳排放利用指标 

对水泥企业在生产过程中二氧化碳的排放和利用情况,应该从排放二氧化碳收费的缴纳情况、取得排放二氧化碳许可的情况、排放二氧化碳超标率、二氧化碳回收利用率等方面考虑。 

(3)技术创新指标 

在发展低碳经济的要求下,对水泥生产企业依靠科技创新在生产销售过程中减少碳排放提出了新要求。因此,对低碳技术投资总额、低碳产品比率、二氧化碳使用效益、申请的低碳专利的数量等指标进行衡量,与此同时设置单位经济增加值替代能源使用率等指标来反映企业开发使用新能源、减少化石能源消耗方面的业绩。 

篇11

许多学者对碳减排成本和配额分配进行了详细研究。高鹏飞等(2004)对2010-2050年中国的碳边际减排成本进行了研究,指出中国的碳边际减排成本是相当高的且越早开始实施碳减排约束越有利。王灿等(2005)分析了部门碳减排边际成本曲线,发现重工业、电力、煤炭部门是减排成本相对较低的行业。随着减排率的提高,所有部门成本急剧上升,重工业削减二氧化碳排放的弹性相对较大。韩一杰等(2010)在不同的减排目标和GDP增长率的假设下,测算了中国实现二氧化碳减排目标所需的增量成本,发现GDP增长速度越快或减排目标越高,减排增量成本也越高;但由GDP变化所引起的增量成本变化远小于由减排目标调整所引起的增量成本变化。巴曙松等(2010)发现各种主要能源消费的碳减排成本之间存在差异性,提出施行燃料转换政策是一个很好的减排政策选择。也有一些文献研究了省区减排成本和配额分配问题。褚景春等(2009)以综合能源成本为准则,对省区内外的各种资源进行筛选,得出总成本最小的电力资源组,然后将减排成本计入综合资源规划,使系统排放量达到最优水平。Klepper, G. 等(2006)研究了不同地区的减排成本、区域二氧化碳排放等问题。李陶等(2010)基于碳排放强度构建了省级减排成本模型,在全国减排成本最小的目标下,得到了各省减排配额分配方案,但其各省减排成本曲线与全国类似的假设,与现实情况有些差距。以上文献均是基于碳排放强度的单约束,通过估计碳边际减排成本曲线来分析减排配额的。但“十二五”规划中提出了能耗强度和碳排放强度分别降低16%和17%的双重约束目标,为完成此双重强度约束目标,国务院《“十二五”节能减排综合性工作方案》(国发[2011]26号)(下文简称《节能减排方案》)对各省设定了能耗强度降低目标,各省也相应制定了经济发展的年度规划目标。如何在双重强度约束下,实现各省经济增长、能源消耗和二氧化碳排放最优分配,对整个国民经济发展起着非常重要的作用。

本文基于以上想法,从全局最优的角度,建立在全国及各省的能耗强度和碳排放强度目标约束下的省际经济增长优化模型,考察全国及各省的能耗强度、碳排放强度及省际经济增长扩张约束对各省经济增长、能源消耗和二氧化碳排放的影响,找到各省经济增长、能源消耗和二氧化碳排放的最优分配值,比较各种情景下的节能成本和减排成本,分析全国能源消耗和二氧化碳排放对全国生产总值的脱钩状态,并对全国能耗强度和碳排放强度最大降低幅度进行了预测。

二、优化问题及模型

我国正处于快速工业化阶段,发展经济是当今及今后很长一段时期内的首要任务。因此,本模型的目标函数为最大化各省区生产总值总和,约束条件为全国及各省的能耗强度和碳排放强度的目标约束,以及经济增长扩张约束。根据分析问题的侧重点不同,可建立如下两个优化模型。

(一)如果2010-2015年全国能耗强度和碳排放强度至少降低16%和17%,各省能耗强度和能源碳强度与2005-2010年变化幅度相同,各省经济增长遵循历史发展趋势并兼顾东中西部协调发展,并且各省通过调整产业结构、能源消费结构、节能减排技术改造和技术进步等措施实现《节能减排方案》中各省区能耗强度的降低目标,那么就有关各省经济增长、能源消耗和二氧化碳排放应该如何优化分配问题,可建立如下模型来考察。

利用模型Ⅰ可分析以下两种情景:

情景1:2015年全国能够完成能耗强度和碳排放强度分别降低16%和17%的目标,各省能够完成《节能减排方案》中的下降目标,各省2010-2015年能源碳强度降低程度与2005-2010年相同。以各省政府工作报告中确定的2011年各省经济增长速度作为2010-2015年各省经济增长扩张约束上限;“十二五”规划中提出了2010-2015年国内生产总值增长7%的预期目标,本情景以7%作为2010-2015年各省经济增长扩张下限。

情景2:为适当减缓因经济发展过快而造成能源的过度消耗,实现经济可持续发展,本情景中各省经济扩张约束上限在情景1基础上同比例缩小,其他假设与情景1相同:全国能耗强度和碳排放强度分别降低16%和17%;各省能耗强度能够实现《节能减排方案》中的下降目标;各省2010-2015年能源碳强度降低率与2005-2010年相同;2010-2015年各省经济年均增长扩张下限为7%。

(二)能耗强度和能源碳强度共同决定碳排放强度的变化。若2010-2015年全国能源碳强度降低程度与2005-2010年相同,则全国能耗强度最大降低幅度是多少,以及全国能耗强度降度最大时各省经济增长、能源消耗和二氧化碳排放的最优分配值又是怎样的?此问题可转化为情景3。

情景3:2010-2015年全国能源碳强度降低程度与2005-2010年相同,全国能耗强度降低率为可变参数。其他假设与情景2相同:2015年各省能耗强度能实现《节能减排方案》中的下降目标,2010-2015年各省能源碳强度降低程度与2005-2010年能源碳强度降低程度相同;2010-2015年各省经济增长扩张下限为7%,上限在情景1基础上 同比例缩小。可利用以下模型分析。

三、数据来源及预处理

数据来源于历年《中国能源统计年鉴》和《中国统计年鉴》,数据样本期为2005-2010年,基期和分析期分别为2010年和2015年。因西藏能源消耗数据缺失,模型中暂不考虑。由于二氧化碳排放主要来源于化石能源消耗,本文主要计算了各省煤炭、石油、天然气三种主要化石能源的二氧化碳排放量,煤炭、石油、天然气的排放系数分别为2.69kg/kg、2.67kg/L、2.09kg/kg(采用IPCC推荐值)。由于统计口径不同,所有省区生产总值总和与国内生产总值数据不等,本文所说全国生产总值为所有省区(除西藏外)生产总值总和,所说全国能耗强度为所有省区能源消耗总量与全国生产总值之比,所说全国碳排放强度为所有省区二氧化碳排放总量与全国生产总值之比,所说全国能源碳强度为所有省区二氧化碳排放总量与所有省区能源消耗总量之比。从历年《中国统计年鉴》可得2005-2010年各省区生产总值(2005年不变价)。从历年《能源统计年鉴》可得各省各种能源消耗量。煤炭、石油和天然气的消耗量与它们相应的排放系数相乘,可分别得到煤炭、石油和天然气的二氧化碳排放量。进而可得样本期每年全国及各省区能耗强度和能源碳强度,可得样本期内各省及全国能源碳强度的变化率。能耗强度的降低率来源于《节能减排方案》。由于2010年各省区各种化石能源消耗量数据目前没有公布,无法算出2010年各省二氧化碳排放量,在此假设2010年各省化石能源消费结构与2009年相当,则各省2010年能源碳强度与2009年能源碳强度相同。情景1中参数标定见表1,其他情景中参数的具体变化见本文分析过程。

四、情景优化结果分析

下面利用所建模型来分析三种情景中各省经济增长、能源消耗和二氧化碳排放的优化分配。

(一)地区GDP优化分析

优化结果显示三种情景下模型均有最优解,说明从全局最优角度看,在全国及省际能耗强度和碳排放强度约束下,保持经济平稳较快发展,能够找到各省区经济增长的最优路径,进而可分析三种情景下各省区经济增长最优分配值的异同(见表2)。

情景1优化结果显示,2010-2015年全国经济年均增长率为10.2%,经济区域中,东北、中部、西北和西南地区经济发展较快,各省经济年均增长率均大于全国经济年均增长率;京津、北部沿海、华东沿海和南部沿海地区经济年均增长率均低于全国经济年均增长率,但均在9%以上。说明若各省能够实现节能减排目标,经济区域就能够协调发展,尤其是东北、中部和西南地区经济能够保持较好的发展势头。从省区看,山西、贵州、青海和宁夏的经济增长速度较慢,其中山西年均增长率为8.5%,没有达到本省经济增长扩张上限;贵州、青海和宁夏的年均增长率为7%,取值为经济增长扩张下限,经济增长速度最慢。其他省区经济年均增长率取值为各省经济增长扩张上限,经济发展较快。说明如果经济发展保持目前势头,现行的全国及各省能耗强度约束对山西、贵州、青海和宁夏的经济发展较为不利,对其他省区的经济发展较为有利。

为了维持能源、经济和环境的可持续发展,避免能源过度消耗,需要适度放慢经济发展速度。情景2在情景1基础上同比例缩小了经济扩张上限,为保证2010-2015年间各省年均增长率不低于8%,各省经济发展水平扩张上限缩小比例不超过4.504%。优化结果显示,同比例缩小上限约束对各省及全国经济发展的负面影响是全方位的。当各省经济扩张上限缩小比例为4.504%时,全国经济年均增长率为9%,下降了1.2个百分点。从经济区域看,京津、华东沿海、南部沿海、中部、西南、东北、北部沿海和西北地区经济年均增长率下降程度依次增大。从省区来看,河北、内蒙古、云南、甘肃和新疆经济增长率为7%,最优值从经济扩张上限降到经济扩张下限;辽宁年均增长率为9.1%,没有达到经济扩张上限。除此之外,其他省区的经济发展水平在情景1基础上同比例缩小了4.504%,最优值为经济扩张上限。

情景3优化结果显示,若2010-2015年全国能源碳强度降低程度与2005-2010年能源碳强度降低程度相同,则全国能耗强度的最大降低幅度为17.27%,与此同时全国碳排放强度降低了21.07%。与情景2对比,全国经济年均增长率为8%,下降了一个百分点。从经济区域看,东北、中部、西北和西南分别下降了2.9、1.7、1.2和2.8个百分点;其他区域没有改变。从省区来看,河北、山西、内蒙古、贵州、云南、甘肃、青海、宁夏和新疆的经济年均增长率分别为7%,最优值仍然是经济扩张下限;吉林、黑龙江、河南、湖北、湖南、重庆、四川和陕西的经济年均增长率分别为7%,最优值从经济扩张上限降低到经济扩张下限;辽宁年均增长率从9.1%下降到7%;广西年均增长率从扩张约束上限下降到7.3%,接近经济增长扩张下限。说明进一步降低全国能耗强度对东北、中部、西北和西南地区的经济增长有较强的阻碍作用。

(二)地区能源消耗和二氧化碳排放优化分析

各省GDP优化值乘以相应能耗强度和碳排放强度可分别得到各省能源消耗和二氧化碳排放的最优分配值。图1和图2分别为三种情景下各省能源消耗和二氧化碳排放增加量的变化情况。

图1 三种情景下2010-2015年能源消耗的增加量 单位:10000 tce

从图1中可见三种情景下,山东、广东、江苏、河北、河南、辽宁等省区能源消耗较大,北京、上海、江西、海南、贵州、青海、宁夏等省区能源消耗较少。情景2与情景1相比,北京、上海、贵州、青海和宁夏能源消耗量没有改变;其他省区均有不同幅度的减少,其中能源消耗变动幅度排在前十一位的省区依次是内蒙古、河北、辽宁、山东、甘肃、新疆、云南、江苏、广东、河南和山西。情景3与情景2相比,辽宁、吉林、黑龙江、河南、湖北、湖南、广西、重庆、四川、陕西等地区能源消耗进一步减少,其中河南、四川、重庆、黑龙江和辽宁的能源消耗减少幅度较大;其他省区的能源消耗没有改变。同理可分析各省区二氧化碳排放情况。三种情景中二氧化碳排放变动均较大的省区有河北、内蒙古、辽宁、黑龙江、山东、河南、广东、云南、陕西、甘肃、新疆等。从图2中可看出,情景2与情景1中各省二氧化碳排放的增减情况与能源消耗的增减情况一致。二氧化碳排放变动幅度排在前十一位的省区依次是内蒙古、辽宁、河北、山东、山西、新疆、甘肃、河南、云南、江苏和广东。但其省 区排序与能源消耗变动大小的省区排序有所不同,这是因为二氧化碳排放量不仅受能源消耗量的影响,而且还受能源碳强度的影响,即各省能源碳强度不同导致二氧化碳排放的变化与能源消耗的变化不一致。情景3与情景2相比,二氧化碳排放没有变化的省区和能源消耗没有变化的省区相同;二氧化碳排放减少的省区与能源消耗减少的省区也相同,但省区排序有所不同。

图2 三种情景下2010-2015年二氧化碳排放的增加量 单位:10000 t

结合情景2与情景1中的经济增长优化结果可知,能源消耗和二氧化碳排放变动较大的省区比较容易受经济扩张约束上限变化的影响。缩小经济扩张上限,虽然放慢了全国及一些省区的经济增长速度,但有利于节约能源和减少二氧化碳的排放。结合情景3与情景2中的经济增长优化结果可知,当2010-2015年各省能源碳强度与2005-2010年的能源碳强度变化相同时,能源消耗和二氧化碳排放变动较大的省区比较容易受全国能耗强度变化的影响。为了实现全国经济增长、能源消耗和二氧化碳排放的最优配置,各省区在制定政策时,要充分考虑本省区的具体情况,制定出适合本省低碳发展的路径。

(三)三种情景下全国节能减排成本与脱钩状态分析

我们把各种情景下全国总能源消耗和二氧化碳排放的优化结果进行对比,当GDP改变量与能耗改变量为负值时,令GDP改变量与能耗改变量比值为节能成本;当GDP改变量与二氧化碳排放改变量为负值时,令GDP改变量与二氧化碳排放改变量比值为减排成本。由三种情景的经济增长、能源消耗和二氧化碳排放的最优化分配可看出,情景2在情景1基础上同比例缩小了经济扩张上限,减慢了某些省区的经济增长速度,有利于节约能源和减少二氧化碳的排放,其节能成本和减排成本分别为0.963万元/吨标准煤和0.310万元/吨。情景3在情景2基础上考察了全国能耗强度和碳排放强度的最大降低幅度。在此种情况下,节能成本和减排成本分别为1.010万元/吨标准煤和0.339万元/吨。两种对比结果显示节能成本和减排成本均较低,说明适度放慢经济发展过快省区的经济发展和进一步加快全国能耗强度和碳排放强度的降低,虽然对全国及个别省区的经济发展有一定的阻碍作用,但对全国总体能源消耗和二氧化碳排放起着较强的抑制作用。

本文采用Tapio脱钩指标,将二氧化碳排放与经济增长的脱钩弹性分解如下:

其中分别称为碳排放弹性脱钩指标、能源消耗弹性脱钩指标和能源碳排放弹性脱钩指标,经济增长、能源消耗和二氧化碳排放增长率采用2010-2015年年均增长率。由三种情景的经济增长、能源消耗和二氧化碳排放的最优化分配,可计算出三种情景下2010-2015年年均碳排放弹性脱钩指标、能源消耗弹性脱钩指标、能源碳排放弹性脱钩指标(见表3)。结果显示,能源消耗在情景1中处于增长连接状态,在情景2和情景3中处于弱脱钩状态,且能源消耗脱钩指标值越来越小,说明能源消耗和全国生产总值的弱脱钩程度越来越强。能源碳排放在三种情景中虽均处于增长连接状态,但能源碳排放弹性脱钩指标值越来越趋于0.8(增长连接与弱脱钩状态的临界值),说明虽然二氧化碳排放与能源消耗之间还处于增长连接阶段,但越来越趋于弱脱钩状态。二氧化碳排放在三种情景中均处于弱脱钩状态,而且碳排放弹性脱钩指标值越来越小,说明二氧化碳排放与全国生产总值的弱脱钩程度越来越强。

五、结论及政策建议

本文根据所分析问题的侧重点不同,从全局最优的角度,建立了两个在全国及省际能耗强度和碳排放强度约束下省区经济增长优化模型。分析了三种情景下各省区经济增长的优化问题,比较了各省经济增长、能源消耗和二氧化碳排放的最优分配路径的异同。发现三种情景下均能实现“十二五”规划中对国内生产总值增长的预期目标、单位GDP能耗强度和碳排放强度的约束目标。若2010-2015年全国能源碳强度降低程度与2005-2010年能源碳强度降低程度相同,则全国能耗强度和碳排放强度的最大降低幅度约分别为17.27%和21.07%。

篇12

先看水的作用。水蒸气是强效的温室气体。大气温度升高,蕴含的水蒸气就更多。一旦更多二氧化碳进入湿润的地球大气层,温室效应就会迅速加剧。

这种“正反馈”现象不单单只有这一例。温度一升高,原本能反射阳光的积雪层和海冰会迅速融化,最终导致更多热量被吸收,温室效应加剧。从更长的时间尺度考量,植被变化也会影响热量吸收,而且陆地和海洋也可能释放更多二氧化碳,超过其吸收量。成百上千年过去,冰盖可能大面积融化,进一步减少地球反射率。排除诸如超级火山爆发这样无法意料的灾难,地球会因此变得非常温暖。

我们不知道:究竟会变得有多热

如果大气中的二氧化碳浓度变成现在的两倍,那么地球究竟会变得有多热?有一种方法可以探询复杂反应后的结果:利用地球气候的计算机模型。另一个更为可靠的办法是参照最近数百万年的气候情况,考察过去二氧化碳浓度改变如何影响气候。

“气候敏感性”是衡量气候系统中温度变化的指标,通常取大气中二氧化碳浓度升至2倍后,引起的全球平均温度变化。上述两种方法都表明,若二氧化碳浓度变为现在的两倍,地球温度至少会提高2℃。而大部分研究认定:升高3℃的可能性最大。

一些对过去气候的研究却表明,升温可能达到6℃或更高。出现这种差异的原因之一是,气候模型只能考虑短期反馈,然而史前气候研究还包括长期反馈,比如冰盖的改变。如果这些研究和真实图景接近,那么我们的模型可能会提供未来几十年气候变暖情况的精确答案,但是,会低估未来几个世纪甚至更长时间的温室效应。

正因为可能存在的缺陷,气候模型甚至会低估近期气候对温室效应的反馈。这意味着我们可能低估2050年或2100年的温室效应。一些研究表明,气候模型中,海洋吸收了比实际情况更多的热量;其他研究表明,云系可能产生比模型中更多的正反馈。因为不能确定气溶胶的冷却效果,也不确定温室效应的实际强度,这些问题还没能解决。

大多数证据仍然表明,短期内“气候敏感性”大概是3℃左右,同IPCC的气候模型一致。不过,即使这数字已经算低得不可能,实际情况仍可能更高。

而即使“气候敏感性”是3℃,现在也几乎没可能限制气温升高。想让气温仅比前工业时代高2℃很难。根据最近的研究,到2050年,我们有超过50%的可能性尽一切努力减排,削减80%的排放。

IPCC在2007年的报告建议将大气中二氧化碳浓度限制在450ppm;现在这一数字是380ppm。随着中印等国排放量的增加,目标似乎已经难以达到。从现在的趋势来看,最快在21世纪60年代,气温就可能上升超过6℃。如果“气候敏感性”高过我们预期,或者二氧化碳排放比IPCC情境预测的最坏情况还要高,升温幅度甚至将不止6℃。

【思考】

环境问题一直是人类关注的热点问题,那么,对于人类面临的困境,你有什么好的建议吗?

________________________

____________________________

____________________________

____________________________

____________________________

____________________________

【链接】

节能减排,你应该知道……

少买一件衣服。每人每年少买一件不必要的衣服,相当于节约2.5千克标准煤,相应减排6.4千克二氧化碳。如果全国有2500人做到这点,就可以节约6.25万吨标准煤,减排二氧化碳16万吨。

篇13

 

一、引言

2003年2月,英国工贸部了《我们未来的能源—创建低碳经济》的能源白皮书,时任英国首相布莱尔在序言中首次提出了“低碳经济”的概念。所谓“低碳经济”是指以低能耗,低污染,低二氧化碳排放为基础的绿色经济,目的是最大限度地减少煤炭,石油等高碳能源的消耗。其基础是建立低碳能源系统、低碳技术体系和低碳产业结构,要求建立与低碳发展相适应的生产方式、消费模式和鼓励低碳发展的国际国内政策、法律体系和市场机制,其核心是技术创新和制度创新。

二、云南省低碳经济发展现况

作为世界上仅次于美国的第二大温室气体排放国,我国政府明确提出要积极发展低碳经济,国内一些省市已经积极行动起来。云南省,发展低碳经济优势突出,潜力巨大,因此,其发展低碳经济的进展状况受到了国家和省政府的高度重视。

1.云南省支柱产业低碳经济发展状况

低碳经济的发展需要低碳产业的支撑。按照低碳产业概念,烟草产业、生物资源开发创新产业、旅游产业是低碳产业,电力产业中水电也是低碳产业,云南五大支柱产业中有三个半属于低碳产业范畴。矿产业也在积极寻求向低碳经济的转型。

(1)烟草产业

烟草业是一个环境污染相对较小的行业低碳生活论文,但基于国家和省政府对环境保护的日益重视,烟草业自身的改良也在不断进行之中。抽烟产生的有害物质有4000余种,其中包括二氧化碳,一氧化碳,尼古丁,焦油等,那么如何降低卷烟中一氧化碳,二氧化碳的含量就成为烟草产业发展低碳经济的关键。

燃烧一支香烟,最终进入空气的一氧化碳约为90mg,二氧化碳约为135mg。05年我国销售香烟19328亿支,因此,由于吸烟进入空气的一氧化碳约为17.4万吨,二氧化碳约为26.1万吨。一氧化碳进入空气最终会转化为二氧化碳,也就是说每年排放到空气中的二氧化碳为43.5万吨。新品云烟“如意”是云南红云集团成立后回馈消费者的第一份厚礼,其在烟标上首次印有环保标志,根据国家局有关规定标注:烟气一氧化碳量13mg。以此类推,如果我国销售的香烟都为“如意”,那么,云南省将为全国每年减少37.2万吨的二氧化碳排放量。

(2)电力产业

云南省煤层气资源约4240亿立方米,抽采1亿立方米用于发电,可实现节能量9.5万吨标准煤。相当于减排21.375万吨的二氧化碳;“十一五”期间,示范完成电机系统节能改造示范工程1600项,其中完成600台高效节能电机替代落后低效电机,600台套风机、水泵低压变频改造,50台套高压电机变频调速改造。目标是年节能14万吨标准煤,相当于减排31.5万吨二氧化碳;燃煤工业锅炉节能改造工程,计划年节能22万吨标准煤。云南省电力产业40%靠火力发电,如果采用节能改造工程,将年减少49.5万吨二氧化碳排放。

(3)矿产业

云南地质结构复杂,金属矿和非金属矿都十分丰富,是中国有色金属重要生产基地,因此,也是治理二氧化碳排放的重点单位。矿产的冶炼过程是产生二氧化碳的主要途径。与电力产业一样,矿产业同样采用了燃煤工业锅炉节能改造工程,将减少49.5万吨的二氧化碳排放;余热余压利用工程,例如:(1)钢铁行业:完成昆钢控股有限公司余热发电示范项目低碳生活论文,年新增发电量11.4亿千瓦时,折合14万吨标准煤。(2)水泥行业:完成云南瑞安建材48兆瓦新型干法水泥窑纯低温余热发电示范项目,推动昆钢嘉华、红塔滇西水泥利用纯低温余热发电。全省50%新型干法水泥窑实现装机发电,年新增发电量8.14亿千瓦时,折合l0万吨标准煤。(3)焦化行业:在焦炭主要生产地曲靖示范完成两个焦炉煤气发电项目。回收60%焦炉煤气发电9亿千瓦时,折合11.061万吨标准煤。 (4)黄磷行业:在有条件的黄磷生产企业示范完成两个黄磷炉尾气发电项目。(5)推广蒸汽冷凝水回收利用、蒸汽蓄热器项目,实现每小时回收100吨蒸汽冷凝水,年节约能源1.44万吨标准煤。每年共可减少至少82.125万吨二氧化碳排放。

2.林业的低碳经济发展状况,即清洁发展机制(CDM)项目的开展。

清洁发展机制(CDM)项目,是指发达国家间和发展中国家开展减少源的排放和增强汇的清除项目,产生的减排单位可以出让和买卖。简单来说就是发达国家从中国的清洁能源类项目中购买二氧化碳减排量,抵冲发达国家的减排义务。现阶段可计入CDM减排项目的林业活动限于造林与再造林,即林业CDM固碳项目。

由国家林业局与保护国际(CI)和美国大自然保护协会(TNC)合作,按照有关国际规则设计和操作程序,正在云南和四川,结合森林植被恢复和生物多样性保护,进行林业碳汇试点示范项目。该项目计划发展森林多重效益,包括生物多样性、碳汇、及社区发展。目前已开展的工作:一是筛选出了玉龙、隆阳、腾冲、双江4个县市区为森林多重效益项目(FCCB)优先发展县;二是召开了FCCB信息系统建设项目专家咨询会及设计报告会;三是成立了碳汇信息管理中心,通过招标的形式确定由云南师范大学地理学院及云南省林业调查规划院共同完成信息系统的开发。

三、促进云南低碳经济发展的对策建议

云南省拥有丰富的水能,风能,太阳能,地热能,生物能,这些资源使得云南能源结构的转变成为可能;秀美的自然风光及浓厚的民族风情,为低碳经济的代表——旅游业的发展夯实了基础;云南排碳少(工业化程度不高),吸碳多(森林资源丰富)的经济特点,大大降低了发展低碳经济所付出的成本。

那么,云南应该如何利用自身优势,帮助各个产业,很好地发展低碳经济呢?

1.烟草产业

随着人类环保及保健意识的增强,烟草业不可避免地面临衰退,云南省的烟草业已经发展到顶峰,在未来的低碳竞争中并不占优势,对于贮备了大量资金却不知如何使用的云南烟草业,我认为应该在以下方面进行改革:一是拿出一部分资金投资其他具有低碳竞争力的产业,如旅游业低碳生活论文,生物质能产业,实现共赢;二是积极研发烟草的其他用途,加快实现产业升级换代。

烟草蛋白具有食用价值。烟叶富含蛋白质,烤烟烟叶在10%左右,晒烟和白肋烟可高达20%。一些研究结果表明,植物叶蛋白尤以烟草叶片中可溶性蛋白(FI)含量高,FI蛋白中的各种必需氨基酸含量不仅均高于世界粮农组织(FAO)制定的蛋白制品中必需氨基酸含量标准,而且其中的酪氨酸、苯丙氨酸、苏氨酸和亮氨酸都超过该标准1倍左右,比一些主要粮食作物如水稻、小麦、玉米、大豆蛋白质中的必需氨基酸含量都高。而且烟草再生能力强,一年可多次收获,烟叶产量高,利用鲜烟叶提取蛋白,其亩产量可超过大豆。

烟草具有药用价值。烟草中所含的泛琨10是目前治疗心肌梗塞等心脏病的特效药物。从烟叶中提取的烟碱具有使精神兴奋和镇静两方面的温和作用。最近的医学研究又发现,烟碱可以缓解托瑞特综合症,阿尔茨海默病、帕金森氏综合症、溃疡性结肠炎和注意力缺乏症;而且烟碱制成农药可防治农作物害虫,剩余物质可用作饲料和肥料。

2.以食品为重点的生物开发产业。生物产业是以再生性生物资源为主要原料,市场需求规模巨大,能源需求较少,污染性低,具备知识经济和循环经济的双重特征,是创造绿色GDP的“领航产业”。如何利用自身优势,借助低碳经济的契机进一步发展壮大。一是要加大宣传力度,争取国际国内资金的支持。世界银行,各大投资性银行以及国内银行都对低碳融资采取着非常积极地态度;二是大力发展乙醇燃料。云南省主要采用木薯、甘薯等非粮作物生产燃料乙醇,而且现有的生产企业并未占用耕地,所以云南的发展前景看好。三是引进先进技术,发展以可再生植物资源为原料的产品。

3.以自然风光和民族风情为特点的旅游业。旅游业同样是典型的低碳经济产业,随着人类物质生活的不断丰富,竞争压力的不断扩大,对精神愉悦的追求将成为势不可挡的潮流。我们要做的是,借助低碳之风,进一步壮大生态特色旅游。具体可从以下几点入手:一是拆除景区违规建筑,恢复生态原貌,积极推进生态饭店、生态旅馆的建设,提供以绿色食品为主的饮食和采用节能设备的住宿;二是积极开发新的景点,在创意上结合环保低碳生活论文,策略上注意与其他景点的斜街,规划时充分考虑当地经济、人口、生物多样性和生态系统的承载力。

4.其他非支柱产业应如何应对低碳的挑战。除了以上支柱产业,其他产业也在经济生活中扮演着重要角色,对减排二氧化碳同样肩负着不可推卸的责任。为此,政府应鼓励非支柱产业的兼并与合作,发展产业集群。这些产业由于种种原因,没能发展壮大,很难在践行低碳的过程中得到政府及国际社会的支持,在技术引进及结构转型中将遇到无法逾越的难关,根本谈不上发展低碳经济。与此同时,在生产过程中推行低碳方式,培养职工低碳意识,开发企业低碳精神。

5.直接的经济利益。以上都是间接通过节能减排来实现经济发展。低碳经济能否形成一个产业,其是否能带来直接的经济利益至关重要。清洁发展机制(CDM)项目,使我们看到了契机,它可以直接带来资金的收入,完全可以发展壮大为一个产业。

三、小结

发展低碳经济与贯彻落实科学发展观、建设资源节约型和环境友好型社会、转变经济增长方式的本质是一致的,不仅能够促进解决国内的能源和环境问题,而且有利于增强应对气候变化的能力,有利于从整体上提升国际竞争力。

参考文献:

[1]胡宗洋.低碳经济与中国发展[J].科学对社会的影响,2008,(1).

[2]何燕.昆明低碳经济情景分析[J].科学环境导刊,2009,(1)

[3]王雪娜.我国能源类碳源排放量估算方法研究[D].北京:北京林业大学,2006.

友情链接