发布时间:2024-01-26 15:45:38
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇人工智能教学设计案例范例,将为您的写作提供有力的支持和灵感!
【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03
人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。
人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。
一 专家系统
专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。
目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]
教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]
目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。
二 机器人学
机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。
机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。
机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。
三 机器学习
机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]
随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。
四 自然语言理解
自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]
自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]
五 人工神经网络
人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。
人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。
六 分布式人工智能(Distributed Artificial Intelligence,DAI)
分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。
分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。
综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。
技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。
参考文献
[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.
[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.
[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.
[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.
[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.
[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.
[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.
[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.
[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.
[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].
[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.
[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.
[16] 自然语言理解[DB/OL].
[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.
这只是人工智能在教育领域的小试牛刀。虽然有专家预测在未来十年内不会看到人形机器人替代教师进入课堂,不过地平线报告2016年基础教育版和2107年高等教育版都预测未来五年内人工智能将会在教育行业普及。
教育行业已有的人工智能研究和应用
Woolf等人在2013年提出了人工智能在教育领域应努力解决“五大挑战”:①为每一个学习者提供虚拟导师:无处不在地支持用户建模、社会仿真和知识表达的整合。②解决21世纪技能:协助学习者自我定位、自我評估、团队合作等。③交互数据分析:对个人学习、社会环境、学习环境、个人兴趣等大量数据的汇集。④为全球课堂提供机会:增加全球教室的互联性与可访问性。⑤终身学习技术:让学习走出课堂,进入社会。
过去十年,一些研究者对人工智能在教育领域中的应用做了大量的探索。相关的研究成果包括:①跟踪学习者的思维步骤和解决问题的潜在目标结构(Anderson等,1995);②诊断误解和评估学习者的理解域(VanLehn,1988);③提供及时的指导、反馈和解释(Shute,2008);④促进高效学习的行为,如自我调节、自我监控和自我解释(Azevedo&Hadwin,2005);⑤以合适的难度水平和最适当的内容来规划学习活动(VanLehn,2006)。
这些研究,基本上使用到了人工智能的每一项技术——自然语言处理、不确定性推理、规划、认知模型、案例推理、机器学习等。“智能导师系统”就是基于这些研究和技术而开发的人工智能教育应用。类似的成熟产品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷泽大学的一项试验发现用智能导师系统的学习者比使用其他教学方法的学习者获得的成绩更高。
人工智能在教育行业的新发展
教育行业的三种类型(内容、平台和评估)的服务商都在经历着一场变革。内容出版商面临纸质印刷到数字出版和开放教育内容的挑战。学习平台正试图区分自适应、个性化和数据分析的功能。评估供应商则继续探寻从多项选择题测试转向更具创新性的问题类型。人工智能将为这三种类型教育服务商带来新的发展思路和契机,同时也惠及教育生态系统中的所有利益相关者。学生通过即时反馈和指导提高学习效率,教师将获得丰富的学习分析和个性化指导经验,父母能够低成本地为孩子改进职业前景,学校能够规模化提高教育质量,政府能够提供负担得起的教育。2017年,人工智能将在以下领域发挥其效益。
1.人工智能批改作业
批改作业和试卷是一件乏味的工作,这通常会占据教师大量的时间,而这些时间本可以更多地用于与学生互动、教学设计和专业发展。
目前,人工智能批改作业已经相当接近真人教师了,除了选择题、填空题外,作文的批改能力已经大幅提高。美国斯坦福大学已经成功开发出一种机器学习程序,能够批改8~10年级的作文。随着图像识别能力的大幅提高,手写答案的识别也接近可能。就连占有美国标准化考试60%市场份额的全球最大教育企业——培生公司也认为,人工智能已经可以出现在教室并提供足够可信的评估。据培生公司近期的报告IntelligenceUnleashed推测,人工智能软件所具有的广泛的、定制的反馈能够最终淘汰传统测试。
2.人工智能实现一对一辅导
自适应学习软件已经能为学生提供个性化学习支撑。据2011年VanLehn的一项研究发现,人工智能在某些特定主题和方法上比未经训练的导师更具有效性。进一步的研究发现,人工智能导师能在学生出错的具体步骤上给予实时干预,而不是就整个问题的答案给予反馈(Corbett&Anderson,2001;Shute,2008)。
自适应学习在拉美地区正在兴起。AndréUrani市政学校的学生使用人工智能软件Geekie观看在线课程(视频和练习)。Geekie为学生提供每一步的实时反馈,并随着学习的进展来传授更为精细的课程内容。
早在1984年,本杰明·布卢姆的研究就提出一对一辅导能带来更好的学习效果。而人工智能技术可以模拟一对一辅导,以更好地跟踪、适应和支持个体学习者。这将是人工智能在教育中更高层次的个性化学习应用。例如,比尔·盖茨看好的人工智能聊天机器人或个人虚拟导师,能在学生面临挑战时提供强有力的支持,随时随地回答学生的提问;还可以为学生订制学习方案和规划职业发展路径,并引导学生走向成功。更重要的是,人工智能可以匹配聊天机器人或虚拟导师的面孔和声音来满足学生个人喜好。对比网页界面的自适应学习系统,这才是真正做到了一人一导师。
3.人工智能关注学生情感
2016年地平线报告高等教育版把情感计算列为教育技术发展普及的重要方向。也就是说,人工智能不仅限于模拟人类传递知识,还能通过生物监测技术(皮肤电导、面部表情、姿势、声音等)来了解学生在学习中的情绪,适时调整教育方法和策略。例如,机器人导师捕捉到学生厌烦的面部表情时,就可以立即改变教学方式努力激发他们的兴趣。这种关注情感的人机交流为学生营造一个更真实的个性化学习环境,更好地维持了学习者的动机。美国匹兹堡大学开发的AttentiveLearner智能移动学习系统就能通过手势监测学生的思想是否集中。突尼斯苏斯国家工程学院的研究人员正在研究开发基于网络的人工智能教学系统。该系统能够识别学生在任何地方开展科学实验的面部表情,以优化远程虚拟实验室的教学过程。
进一步的研究发现,人工智能还可以关注学生的心理健康。当前已经有使用人工智能来为自闭症儿童提供有效支持的案例。例如,伦敦知识实验室在Topcliffe小学开展试验,让自闭症学生与半自动虚拟男孩安迪开展互动交流,研究人员发现患有自闭症的学生在社交能力方面有进步。
4.人工智能改进数字出版
教科书等课程材料并非总是完美,传统印刷出版让课程的修订变得过于缓慢。这不仅是生产工艺的问题,更主要的是纸质课程材料无法快速获取使用者的反饋来识别缺陷所在。而数字化出版在人工智能的支撑下能彻底改变这一现状。
人工智能可帮助使用者快速识别课程缺陷。大规模网络开放课程Coursera的提供者已经将这一想法付诸实践。当发现大量学生的作业提交了错误的答案时,系统会提示课程材料的缺陷,进而有助于弥补课程的不足。
另一项人工智能在数字化出版的应用是自动化组织和编写教材。这是基于深度学习系统能模仿人类的行为进行读和写。ScottR.Parfitt博士的内容技术公司CTI就依据这项技术帮助教师定制教科书——教师导入教学大纲,CTI的人工智能引擎能自动填充教科书的核心内容。
随着自然用户界面和自然语言处理在人工智能领域的成熟应用,课程材料的数字化出版也会有更新的形态——不再局限于书本或网页的形式,聊天机器人和虚拟导师将成为内容表达的更好的方式。
5.人工智能作为学生
多年的研究表明,教会别人才是更好的学习,即learning-by-teaching。美国斯坦福大学教育学教授DanielSchwartz正基于这一理念来开发新的人工智能产品。他联合了多个领域的专家一起开发了人工智能应用——贝蒂的大脑(Betty’sBrain),让学生来教贝蒂学习生物知识。试点研究发现,使用这一方法来学习的学生比其他学生成绩更好,且在科学推理上也更胜一筹。
类似的研究和开发还有瑞典隆德大学的TimeElf和美国卡内基梅隆大学的SimStudent,这两个人工智能产品也是基于learning-by-teaching而开发,让学生在教会机器人知识的过程中深化对知识的理解。
0引言
无人机具有较强的机动性和较好的可操控性,能辅助人类在恶劣和危险的环境中执行复杂的任务。近年来,无人机系统迅速发展并广泛应用于环境监测、灾难搜救、反恐侦察等众多领域。无人机系统研究的一个关键问题是如何发展高度智能化的软件系统,提高无人机在动态复杂环境中自主决策的能力。目前,众多高校开设的无人机专业课程主要研究无人机的硬件平台、通信与测控、指挥控制、综合保障和实践等方面,然而对于无人机系统的智能决策问题研究尚不深入。
1无人机系统决策的内涵
1.1无人机自主控制系统概述
无人机自主控制系统是无人机实现自主飞行管理与自主任务管理的机载系统,如图1所示,它涵盖了机器人“观测一判断一决策一行动(observer-orient-decision-action,OODA)”的各个环节。
无人机自主控制能力是衡量无人机智能自主水平的一项重要能力。表1基于OODA分别对无人机自主控制能力进行了描述,其中,“判断”与“决策”部分评价的是无人机对战场态势的评估能力和对任务或行为的决策与规划能力,是衡量无人机自主决策能力的最重要指标,也是无人机决策课程设计与实践的核心。
1.2无人机自主决策子系统概述
自主决策模块位于智能无人机系统的顶层,它如同人类神经系统执行决策行为,产生计划并处理不确定性。自主决策模块主要包括顶层任务决策、顶层任务规划、底层行为决策和底层路径规划。顶层任务决策用于任务策略的在线生成;顶层任务规划用于任务计划的在线制定;底层行为决策用于运动行为的在线序贯决策;底层路径规划用于导航计划的在线生成,这些内容的教学与实践将贯穿课程的教学与实践过程。
2人工智能在无人机系统决策中的发展以及作用与地位
人工智能从孕育之初到现在,经历了“三起两落”,如图2所示。人工智能的发展也不断促进无人机自主决策能力的发展,甚至可以说,人工智能的发展决定无人机自主决策水平的高低。早期,无人机决策大多依托产生式规则或谓词逻辑技术,主要针对确定决策;20世纪六七十年代,知识表达引入到有人机辅助决策支持系统的设计与研发中,也逐步迁移到无人机智能自主系统中;随着概率统计的引入,基于贝叶斯的不确定推理决策方法得到大力发展;专家系统依据专家经验生成策略,用于解决离散事件不确定性,形成了一系列无人机智能自主决策成功案例;近年来,机器学习、多智能体理论的热潮将无人机智能水平推到了一个前所未有的高度,使无人机具备知识沉淀、知识挖掘、智能发育的能力,并将单无人机执行ISR任务拓展到多无人机协同遂行多任务领域。无论经典人工智能方法还是人工智能新思路,都是无人机智能自主决策的重要基础,在无人机系统智能决策课程教学与实践中具有举足轻重的地位。
3无人机智能决策课程教学总体设计
国防科技大学依托控制学科和仪器学科在自动化专业试办开设了“无人机工程”专业方向,培养掌握无人机工程相关领域基础理论和基本知识的学员,使其具有从事无人机系统及相关装备的分析、设计、研制、维护和管理等方面的实际工作能力和初步科学研究能力。
3.1教学目的与课程设计总体思路
设置无人机智能决策课程的目的是使本专业学生快速了解无人机决策系统组成、熟悉决策系统工作原理、掌握决策理论与实现方法。课程设计的总体思路是设置课堂教学和动手实践两个主要环节,课堂教学环节主要通过教师讲授的方式,基于无人机自主控制系统组织结构,介绍无人机决策系统的基本概念;实践环节则是在学生已经掌握智能决策算法基本原理和流程的基础之上,让学生参与到决策系统的设计与实现中来。
3.2课程教学主要内容
无人机智能决策是课程教学的核心内容,主要覆盖贝叶斯推理理论、最优化理论、智能搜索等基本决策理论和方法,主要讲解如何将其运用于无人机智能感知、任务规划的建模和优化方法,比如基于贝叶斯的不确定推理、基于启发式人工智能搜索算法的路径规划等。内容安排包括问题描述、基本原理、算法过程、输入输出设计、结果分析等;人机智能融合决策是课程的拓展部分,主要涵盖人机智能融合原理、脑机接口原理、融合决策机制等理论和方法,主要讲解如何将其运用于人在回路辅助的无人机智能自主决策、混合主动规划的接口设计与融合决策方法,比如基于脑机接口的人机智能融合决策、混合主动任务规划等;拓展内容安排包括资料查新、接口设计、融合机制设计、融合算法实现、结果分析等。
4无人机智能决策教学实践环节设计
4.1课程实践环节的必要性
4.1.1无人机系统智能决策课程对实践的需求
实践教学是高等学校教育非常重要的教学环节,是提高人才分析问题与解决问题的重要途径。无人机系统智能决策是一门实践性很强的课程,一是由于无人机系统是一门交叉性的学科,主要涉及空气动力学、无人机平台设计与制造、图像处理与智能感知、导航系统原理、无人机飞行控制、人工智能、机器学习、任务规划与分配、无人机系统体系保障技术等许多学科,所以该学科具有知识点多、涉及面广、理论性强,需要学生具备较好的逻辑思维能力和数理基础等特点,因此,必须通过实践才能加深对无人机系统知识的理解;二是智能决策技术不断走向实用,20世纪80年代随着人工智能基础科学的研究,智能决策作为一门新兴学科出现在国际科学舞台上,智能决策技术早期以研究经典的智力游戏问题和仿真实验来证明理论等为主流,随着互联网的普及和国际信息化进程的提高,智能系统和智能计算等也逐渐成为学者们的研究热点。从加强学生的实践能力出发,考虑到课程的建设需要,需要加强无人机系统智能决策课程的实践教学内容。
4.1.2无人机系统智能决策课程对实践的要求
根据智能决策的特点,进行实践教学需要达到以下几个目的:一是加强学生对基础知识的理解,对智能决策基本方法的掌握;二是加强学生将智能决策知识与方法用于解决实际问题的能力;三是增强学生对智能决策研究领域的兴趣,培养更多的专业人才。
智能决策的实践教学工作必须以高质量的科研内容为基础。通过瞄准国际前沿、集成创新和引进消化吸收、提升原始创新以及再创新能力,从而建设创新平台和创新团队,以高水平科学研究支撑高质量的高等教育。此外,智能决策的实践教学还要考虑因材施教,验证关键技术环节。目前学生的学习任务较重且水平参差不齐,在设计实践环节时,要把握如何能在较短的时间内让学生得到最大程度的能力锻炼。在这种情况下,教师必须进行充分的准备,事先搭好通用的硬件平台和软件框架,以减轻学生不必要的负担,营造良好的氛围,将学生的主要精力集中在创新实践上,这样才能提高实践教学的效率。因此,课程借鉴了无人机领域最具影响力的国际微小型飞行器赛会(IMAV)的比赛规则,结合智能决策的研究热点和当前承担的学术科研任务,引入无人机竞赛作为智能决策教学实践的平台。
4.2基于无人机系统智能决策的课程实践方案
在智能决策课程开始之际,教师向学生明确课程实践方案,即通过无人机竞赛的形式考核学生解决实际问题的能力。通过举办无人机竞赛,可以激发学生的学习热情和创新动力,达到寓教于乐的目的。学生带着思考主动学习理论知识,而不是为了应付考试被动学习;教师应当按照学生的综合能力合理组队,从而达到能力互补和团队协作。
无人机竞赛面向本校无人机工程专业方向的本科生,根据智能决策课程的需要,共设置3个科目。
第一个科目是自稳飞行,无人机需在3分钟内完成从出发点到指定目标点的飞行,要求单次滞空时间不少于30秒;本科目考查的是学生对无人机自主飞控基础知识的掌握。第二个科目是避障侦察,无人机需以尽可能快的速度穿越一排障碍门,并识别地面上的物品;障碍门的可通行区域各不相同,无人机需通过机载单目相机识别可通行区域,并自主规划路径;本科目考查的是学生对智能识别和任务规划基础知识的掌握。第三个科目是特级飞行,包括手抛无人机平稳飞行、8字飞行、伴随飞行等;本科目考查的是学生的创造力。比赛采用百分制,3个科目按照难度系数和重要程度评分占比分别为30%、50%和20%。
Python是一门免费、开源的跨平台高级动态编程语言,可以处理系统运维、图形处理、数据库编程、多媒体编程、软件分析、Web编程、科学计算与可视化、机器学习、人工智能等,拥有众多狂热的支持者,使得各个领域的人员能快速实现和验证自己的思路与创意。Python早就广泛应用到企业之中,早在2004年,Google便已决心在快速开发方面使用Python。近日,IEEESpectrum了第四届顶级编程语言交互排行榜。因为有各种不同语言的排行,所以IEEESpectrum依据不同的变量对流行度进行了排行。Python击败Java,C,C++等语言,跃居编程语言交互排行榜第一名。非计算机专业学习编程的目的并非为了培养专业的编程开发人员,而是一方面为了锻炼学生逻辑思维、扎实的问题分析能力;另一方面为了方便学生在各个领域进行研究实践。Python语言的优势在于资源丰富,拥有坚实的数值算法、图标和数据处理基础设施,建立了非常良好的生态环境,吸引了大批科学家以及各领域的专家使用。这也是非计算机专业学生学习Python编程的必要性。
1编程语言的学习对非计算机专业的重要性
1.1程序设计基础在非计算机专业开设情况
我国大学针对非计算机专业开设的程序设计基础课程,使用C语言作为基础语言的较多。C语言作为程序设计基础语言,能够让学生明白程序运行原理,计算机各个部件如何交互,程序在内存中是怎样的状态以及操作系统与程序有怎样的关系。但是对于非计算机专业学生来说,C语言语法复杂,调试程序困难,学生缺少对计算机体系的整体认识,也无需了解计算机底层知识,后续工作很难使用C语言来解决问题,所以并不适合教授给没有任何计算机认知背景的非计算机专业学生。Java语言也是部分高校面向全校开设的程序设计基础编程公选课,是一门面向对象的编程语言,具有简单性、分布式、健壮性、可移植性、平立、动态性等特点。Java语言广泛应用在Android应用、金融业应用的服务器程序、网站、嵌入式领域、大数据技术和科学应用等领域。但是对于非计算机专业学生而言,Java语言学习成本比较高,工作后的应用场景较少,语言本身重点关注代码复用性和可移植性,这些特点说明Java并不适用于非计算机专业学生[1]。
1.2非计算机专业选择Python的原因
Python语言由荷兰人GuidovanRossum于1989年发明,第一个公开发行版发行于1991年,已经有28年的历史。Python在设计上坚持了清晰划一的风格,这使得其成为一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。Python的设计哲学是“优雅”“明确”“简单”,具有丰富和强大的库[2]。Python语言是最接近自然语言的编程语言,代码简洁高效,对于没有编程经验的学生来说较易上手,学生无需纠结语法和程序编写方式,而是更快的抽象问题并提出解决方案,这样更容易激发学生的学习热情。非计算机专业涉及范围较广,Python所能完成的工作也非常广泛,除了Web编程、图形处理、计算机视觉、软件分析、物联网管理、科学计算与可视化等领域,一些意想不到的领域Python也能涉及。例如Python也能够用于电影视觉特效的制作,其中就包括了《星球大战》某些电影特效的制作,从集体渲染到批量处理再到影片合成,Python将所有步骤都紧密黏合在了一起。2017年,“人工智能”首次被列入政府工作报告,Python也借助人工智能(ArtificialIntelligence,AI)和数据科学,攀爬到了编程语言生态链的顶级位置。随着AI应用的发展,数百万之众的教师、公司职员、工程师、翻译、编辑、医生、销售、管理者和公务员将裹挟着各自领域中的行业知识和数据资源,涌入Python和AI大潮之中,深刻地改变整个IT,或者说数据科技(DataTechnology,DT)产业的整体格局和面貌。
2非计算机专业Python编程教学设计
对于非计算机专业学生,学习编程语言是很有挑战性的,学生专业不同,思维方式也不相同。为了引发学生学习兴趣,达到较好的教学效果,教师要转变课堂上的角色,让学生成为课堂的主角[3]。针对该课程和学生特点,提出“分方向的理论与实践指导”,学生可以有重点、有目标地进行学习。
2.1教学目标
计算机编程延伸到非计算机专业,对学生的掌握计算机理论知识和实践技能要求较高。“程序设计基础”作为入门课程,除了教授学生一门编程语言的概念、语法及使用,还要教会学生编程思想、分析问题和解决问题的能力。
2.2教学内容
非计算机专业Python编程教学涵盖的基本内容包括:基础知识、Python序列、流程控制语句、函数、面向对象程序设计等。后续应当着重针对学生的学习方向或者兴趣点,有针对性地讲解Python的标准库和扩展库,并以案例或者项目的形式展现Python在各个领域中的应用。通常,不同学校的公选课的学时不同,32学时或者48学时。无论多少,学生都无法只利用上课时间达到最佳的学习效果,所以课下的自主学习尤为重要。在学习每个知识点后,教师安排部分课下自主学习的内容,以帮助学生更充分地掌握所学内容,并安排大量与实际工作学习相关案例。
2.3教学方法
除了讲授法、案例法等传统教学方法,教师应当充分分析学生特点,并时刻观察学生的反应。教师在引入新概念、新理论时要以学生学习或者生活中熟悉的内容为切入点,自然并具有逻辑性,能够解决问题,引发学习积极思考问题。实践是编程语言学习必不可少的过程,通过实践夯实理论知识,并亲自动手操作解决实际问题。教师应当分专业引导学生参与课题或项目中的部分模块,给学生创造更多机会去实践,学生完成课题或项目后,充分体验到编程的乐趣,从而更好地激发学生学习兴趣。
2.4拓展学生视野
由于学生专业不同,教师应当充分备课,了解Python在各个领域中的突出应用,并学习相关领域中的应用背景与相关知识。如果能将所学知识带入实际情境中,学生用于解决工作和学习中遇到的各类非通用计算问题,理解并实践计算思维[3]。在拓展学生视野的过程中同时增进了教与学的相互促进,教师与学生都积极参与到教与学的互动中,提升了教学效果。随着互联网与传统行业深度融合以及人工智能的火热,前沿性、基础性、交叉性的学科研究越来越多,有利于培养学生的创新意识和开拓精神。
3结语
身为教育工作者,从教与学的理论上思考编程语言公选课的教学问题。笔者认为,“分方向的理论与实践指导”能够培养学生基于自身学习、研究方向,学好用活书本知识,更重要的是与实践应用相联系,有利于培养学生的创新能力、探究精神和创新思维能力。本文提出了面向非计算机专业学生开设Python编程教学入门的必要性,并针对该编程语言特点阐述了“分方向的理论与实践指导”的教学设计,这是编程公选课教学适应高素质人才培养要求的一种尝试。只有在教学过程中,联系本校学生实际情况,不断创新、改革,才能使教学设计达到更好的效果,为社会培养真正有用的人才。
[参考文献]
[1]王立翔.基于计算思维的python语言课程教学改革刍议[J].教育现代化,2017(15):12-13.
计算思维为计算机基础教学提出了新的机遇和挑战,有了计算思维的课程指导思想后,很多教育专家开始研究计算思维的落地问题[3-5],专家们普遍认为:计算思维的落地就是如何在计算机教学内容与教学方法上提高学生用计算机解决实际问题的能力,即问题的求解、系统设计以及人类行为理解等[6]。基于此,構建适合引导和驱动计算机教学的项目和寻找更能激发学生兴趣、积极性的案例成为我们必须面对的问题。
1 计算机博弈项目是计算思维培养的重要载体
在2016世界人工智能科学诞生60周年之际,谷歌公司的AlphaGO围棋软件与世界围棋冠军李世石上演了“世纪人机大战”。2017年伊始,Master围棋网测又取得了60场全胜的战绩,随后,卡内基·梅隆大学的Libratus在德州扑克比赛中轮流击败了4名顶尖人类高手,人工智能再次引发了世界范围内的研究与开发热潮。目前很多学者认为:人类社会正在从“互联网+”向更高阶的“人工智能+”跃迁,智能科学与技术已经成为促进所有学科发展的重要因素,计算机博弈是人工智能领域的重要研究方向[7]。
计算机博弈项目涉及的方法主要包括:博弈问题的提出、棋盘的数据描述、棋面的评估模型、搜索算法的选择、算法的实现与优化、人机交互处理等方面,这些内容刚好与计算思维的思想相一致,非常适合培养学生的计算思维能力。
一段时间以来,学生网游上瘾困惑着家长和教育工作者,以何种方式引导青年学生远离网游以及网游的魅力一直是不解之谜。而多个高校的实践证明,计算机博弈项目能迎合青年学生的愉悦、冒险、好奇和高对抗需求,让他们在快乐中分析、编程、斗智,既长知识,也长能力,既培养了计算机实践与创新能力,也培养了计算思维、科研思维和团队合作精神。
学会将人的思维过程用计算机来实现,学会处理相关的问题,学会做好最优决策,这对于所有学生来说都是有助益的。计算机博弈项目是培养学生实践与创新能力的应用型项目,更是培养大学生计算思维的重要载体。
2 新课程体系与课程内容改革
现有的计算机基础课程体系没有充分考虑计算思维和创新思维能力的培养,也没有突出宽、专、融的教学特点,并且课程内容陈旧。2015年教指委推出了新版的《大学计算机基础课程教学基本要求》(以下简称基本要求)[8],指出了新的历史时期计算思维能力的培养将成为大学计算机基础教学的新常态,对课程体系、教学目标和内容进行了全面阐述。
依据基本要求和部分学校的改革实践[9-10],提出了适合沈阳航空航天大学应用型人才培养的宽、专、融相结合的大学计算机基础课程新体系(见表1)。新的课程体系以计算思维为主线,以培养学生的计算思维意识、计算思维方法和计算思维能力为目标,分为3个层次,每个层次设置不同的课程。随着课程体系的重新构建,各类课程的教学内容也重新进行了调整,例如:在第1层次,减少了Office方面的内容,增加了动手实验和Python内容;在第2层次,取消了VF内容,增加了C#内容;在第3层次增加了基于计算机博弈的科技创新平台的内容。
2.1 大学计算机基础课程内容改革
在大学计算机基础课程中,主要设置了4个模块:①计算机系统、网络与操作系统;②信息编码与信息处理技术;③数据库基础;④计算思维、算法与程序设计初步。在第4部分中,加入了排序算法、黎曼积分、机器博弈、旅行商、哥尼斯堡七桥等常用问题的算法。还特别增加了Python语言部分[11],通过求解三角形面积,引出了顺序、选择和循环结构的基本用法;通过求解π的值,引出了蒙特卡罗方法和公式方法;通过蟒蛇的绘制,引出了Turtle库的使用方法。通过以上内容的学习,学生可以对程序设计的基础知识和利用计算思维解决问题的方法有一个初步的了解,初步培养学生程序设计的基本能力和计算思维意识。
以全面开放的形式设置了3个专项实验:计算机拆装、操作系统安装和计算机组网,通过学生亲自动手实验,提高学生对计算机硬件的认知能力和计算机维护能力。
2.2 计算机程序设计课程内容改革
在计算机程序设计课程中,本着为专业服务、与时俱进的思想,将课程设置成3个模块:C#语言主要面向航空类专业和创新实验班学生;VB语言主要面向文管类和安全类专业学生;C语言主要面向电子、自动化、材料、机械类专业学生。在开课过程中允许学生跨专业选课,学生可以选择更适合自己的语言或多种语言同时学习。
为了突出实践能力的培养,课程内容中增加了8个实验学时,专门用于综合性程序设计实验,该实验由3~4人组成的小组共同完成。在期初的时候进行动员,在期中的时候布置实验题目,在期末的时候进行答辩验收。通过综合实验,学生初步具备了利用所学知识解决实际问题的能力,培养了学生计算思维方法和团队协作精神。
2.3 将计算机博弈案例与教学内容深度融合
为了调动学生的学习积极性,将学生喜欢的计算机博弈项目作为案例融入教学中[12-13],使学生在兴趣与主动学习中领悟计算思维。
在大学计算机基础课程中,讲授了计算机博弈的发展与竞赛概况、计算机博弈的空间复杂度与搜索复杂度、蒙特卡罗方法等。
在计算机程序设计课程中,以具体项目的形式为学生讲授了计算机博弈的评估方法、搜索算法、棋盘的数据表示与可视化制作等内容。
在计算机综合训练课程中,我们设计了与计算机博弈问题相关的课设题目,例如:爱恩斯坦棋的人人对弈平台设计、幻影围棋的开局设计、局面评估的建模方法等。通过博弈案例建模和典型算法设计,帮助学生掌握使用计算机技术解决博弈问题的途径和基本方法,为学生进一步开展计算机博弈科技活动打下坚实基础。
3 新形态化的教材建设
团队人员以《VB程序设计教程》为切入点,进行了新版教材的建设。教材的主要特点是新形态、立体化、数字化和案例式。除了纸质版教材,还在网络平台上了数字化教学资源,主要包括教学课件、案例素材、拓展案例、微视频、实验素材、参考资料等,这些资源非常有利于学生自主学习、协作学习和探究性学习。
微视频资源是针对重要知识点建设的,每个微视频大约3~5min,微视频的二维码印制在教材的相应章节上,学生可以通过手机扫描访问,实现了基于移动互联网的学习方式。微视频特别适合学生利用碎片化时间进行辅助式学习。
教材中的案例遵循5结合原则:①与数学知识相结合。例如:积分计算、矩阵运算、函数曲线等,都是学生熟悉的问题。②与趣味性题目相结合。例如:抽奖活动、分糖果游戏、开心农场等,都是学生喜欢的小项目。③与实际应用相结合。例如:高考录取、学生绩点计算、打气筒模拟、课堂点名等,都是学生经常面对的实际问题。④与专业知识相结合。例如:曲柄滑块机构,这是机械类专业学生应掌握的典型机构。⑤与計算机博弈知识相结合。例如:博弈搜索算法、棋盘的可视化设计等。通过有兴趣的教学案例引发学生深入学习与研究的积极性,也体现了寓教于乐的教学方式。
4 开展计算机博弈科技活动
沈阳航空航天大学从2011年引入计算机博弈项目以来,团队人员依托博弈项目,深入开展了寓教于乐、寓教于研、以研促教、以赛促学的创新人才培养模式[14]。
1)开展博弈科技研究和“大创项目”工作。
基于计算机博弈项目,很多老师开展了科技研究,并将科研成果应用于教学中。建立了博弈科研梯队,教师既能对博弈活动起到组织、指导和护航作用,又能在计算机博弈的科研中勇攀高峰,形成学科制高点,为科技攻关和实际应用创造条件。开展了计算机博弈科技社团工作,社团成员在老师的指导下,既可以参加科研课题,也可以组队申报大学生创新创业训练项目(简称大创项目)。学生与老师合作开展科技研究、撰写论文,形成了良好的学习与科研氛围。
2)开展计算机博弈竞赛工作。
计算机博弈项目具有喜闻乐见、挑战无穷的特点,深受学生喜欢。学校鼓励学生组成不断吐故纳新的代表队,支持学生参加各类计算机博弈竞赛(校级、省级、国家级和国际级)。到目前为止,共组织了6届校级计算机博弈比赛,平均每年参加人数达200余人。校赛选拔后组织集训,备战全国比赛,共组织学生参加了6届全国计算机博弈大赛和1次国际机器博弈大赛,营建了良好的校园计算机创新文化氛围。
5 取得的成效
1)学生课程成绩提升。
以计算思维为主线的教学改革方案使学生受益颇多,每年有4 000名学生学习计算机课程,学生课程成绩提高较大,例如:计算机程序设计课程平均成绩提高15%,大学计算机基础课程平均成绩提高10%。在期末对学生进行问卷调查时,大部分学生表示学习收益较大,对计算机技术的理解和利用计算机技术解决问题的能力都有较大提升。
2)学生竞赛成绩优异。
随着研发能力的不断增强,学生参加的计算机博弈竞赛项目也越来越多,现已达到12项,包括六子棋、点格棋、苏拉卡尔塔棋、亚马逊棋、幻影围棋、不围棋、爱恩斯坦棋、军棋、国际跳棋、海克斯棋、斗地主、桥牌。近几年累计获省级以上奖项100余项,累计获冠亚季军20项,其中幻影围棋、亚马逊棋、军棋、六子棋项目都曾获得过全国冠军奖项,总体竞赛成绩位居全国前几名,既提高了大学生的计算机创新能力,也促进了我国计算机博弈事业的发展,在国内高校中产生了较好影响。
3)学生科技成绩突出。
基于计算机博弈项目,学生与老师合作在CCDC国际会议的机器博弈(Computer Game)专题上已25篇,表2是发表的部分学术论文。学生在老师的指导下申报了大创项目30多项,表3是部分大创项目。
6 结 语
计算思维的理论研究在我国已经走过了6年多,现在应该是全面落地的时候。我们本着与时俱进、为专业服务的指导思想,调整了各门课程的教学内容,引入了Python、C#等程序设计语言,将学生喜欢的计算机博弈项目作为教学案例与课程内容深度融合,实现了竞赛与教学相结合的教学新模式。计算机博弈项目具有喜闻乐见、挑战无穷的特点,特别能引发青年学生的好奇心与研究热情,广泛开展基于计算机博弈项目的科技与竞赛活动,较好地培养了学生的创新精神和科研思维。计算机博弈项目是非常好的培养学生计算思维的重要载体。笔者希望本文能对高校的计算机教学提供一种参考,更希望计算机博弈能在更多的高校生根、发芽、开花和结果。
参考文献:
[1] Wing J M. Computational thinking[J]. Communications of the ACM, 2006, 49(3): 33-35.
[2] 何钦铭, 陆汉权, 冯博琴. 计算机基础教学的核心任务是计算思维能力的培养:“九校联盟(C9)计算机基础教学发展战略联合声明”解读[J]. 中国大学教学, 2010(9): 5-9.
[3] 陈国良, 董荣胜. 计算思维与大学计算机基础教育[J]. 中国大学教学, 2011(1): 7-11.
[4] 李廉. 以计算思维培养为导向深化大学计算机课程改革[J]. 中国大学教学, 2013(4): 7-11.
[5] 冯博琴. 对于计算思维能力培养“落地”问题的探讨[J].中国大学教学, 2012(9): 6-9.
[6] 龚沛曾, 杨志强. 大学计算机基础教学中的计算思维培养[J]. 中国大学教学, 2012(5): 51-54.
[7] 王骄, 徐心和. 计算机博弈: 人工智能的前沿领域: 全国大学生计算机博弈大赛[J]. 计算机教育, 2012(7): 14-18.
[8] 教育部高等学校大学计算机课程教学指导委员会.大学计算机基础课程教学基本要求[M]. 北京: 高等教育出版社, 2016.
[9] 王移芝, 金一, 周围. 基于“计算思维”能力培养的教学改革探索与实践[J]. 中国大学教学, 2014(3): 49-53.
[10] 刘光蓉. 融入计算思维的 C 语言实验教学设计[J]. 实验室研究与探索, 2015, 34(10): 81-83.
[11] 嵩天, 黄天羽, 礼欣. Python 语言: 程序设计课程教学改革的理想选择[J]. 中国大学教学, 2016(2): 42-47.
[12] 王亚杰, 王晓岩, 邱虹坤, 等. 基于爱恩斯坦棋的程序设计课程教学案例设计[J]. 计算机教育, 2012(18): 75-77.