当前位置: 首页 精选范文 生物细胞的作用

生物细胞的作用范文

发布时间:2024-02-03 17:07:21

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇生物细胞的作用范例,将为您的写作提供有力的支持和灵感!

生物细胞的作用

篇1

0引言

骨骼损伤、肿瘤等导致的骨缺损是骨科每天都要面临的问题,临床医生通常是通过自体或异体骨移植方法来解决缺损问题,但这种方法存在着来源有限、增加创伤、排斥反应及疾病传播等问题. 由于利用组织工程学原理与方法再生的骨组织植入体内无免疫排斥的危险且来源充足,因此它的优势逐渐得到认同[1] . 近年来,组织工程迅猛发展并且是目前公认的最有可能在临床取得实际效益的研究领域之一[2]. 但是要真正广泛应用于临床,还必须解决好组织工程的三大关键问题即种子细胞、可降解的生物支架及生长因子. 骨髓来源的骨髓基质干细胞(marrow stromal stem cells, MSCs)由于取材容易,易于体外培养和诱导,是目前最有前途成为组织工程种子细胞来源的细胞[3-4]. 组织工程是将细胞与材料复合,从而构建植入人体的活材料. 在此过程中,目的细胞的生长调控是十分重要的一环,因此对生长因子的作用及其机制的研究是组织工程的重要内容. 生长因子是通过细胞间信号传递影响细胞活动的一类多肽因子,它对细胞具有促进或抑制其分裂增殖、迁移和基因表达的作用. 生长因子对目的细胞作用有利于在体外构建与体内更为相似的模拟环境,从而为体内试验奠定基础.

1骨髓基质干细胞及成骨诱导

目前,骨组织工程种子细胞的分离主要有三种来源:骨髓来源、骨膜来源和松质骨来源[5]. 种子细胞的培养是骨组织工程的前提与基础. MSCs 由于其强大的增殖能力与多向分化潜能成为骨组织工程的种子细胞之一[6].

骨髓是由造血系统和基质系统组成的复合组织,它除了是造血干细胞的主要来源外,同时成人的骨髓组织中还存在着骨髓间质干细胞. 20世纪70年代中期,Friedenstein等[7]报道,骨髓标本中小部分贴附细胞在培养过程中能够分化形成类似骨或软骨的集落,这部分贴壁的细胞就是骨髓基质干细胞,也叫间质干细胞. 这种间质干细胞具有多方向的分化潜能,可以分化成为骨、软骨、肌肉、韧带、肌腱和脂肪等组织[8-9]. 间质干细胞的多向分化特性使之成为组织工程的理想细胞来源,是目前骨组织工程普遍选用的细胞. 近年来的许多组织工程研究均采用了人或动物的骨髓间质干细胞,其结果十分令人满意[10-11].

现有的MSCs培养方法主要为应用诱导剂 (地塞米松、β甘油磷酸钠、抗坏血酸) 和生长因子进行诱导,但诱导效果均不甚理想. 国内外研究者发现, MSCs的分化具有位点特异性,即在何种微环境中培养MSCs,就倾向于向这类环境中的细胞分化. 根据MSCs分化的位点特异性,在骨组织工程中欲把MSCs诱导分化为成骨细胞,采用模拟成骨微环境来诱导MSCs的增殖与成骨分化可能也是一种有效的诱导方法[12-13].

2骨组织工程相关因子

生长因子的合理应用对构建骨组织工程起着关键的作用. 骨组织拥有一个庞大的生长因子库,目前在骨组织中发现了十几种生长因子,已经发现有多种细胞因子对成骨过程具有重要的调节作用,可以诱导成骨、促进细胞增殖和胶原合成、促进成骨和血管生长以及在骨吸收改建方面发挥作用,因此在构建组织工程骨时对成骨因子合理使用或调控成骨细胞的适时适量表达十分重要.

2.1血管内皮生长因子VEGF又称血管通透因子(VPF)或(VAS),是近年来发现的一种高度特异性的促血管内皮细胞生长因子,对胚胎发育及切口修复等生理功能有重要意义. VEGF是一种糖蛋白,其相对分子量为34~45 ku由两个相对分子量各为17 ~22 ku的不同亚单位组成的二聚体,VEGF就是由于该基因的剪切方式不同所形成的系列产物. 人至少有4种VEGF,分别为VEGF121, VEGF165, VEGF189和VEGF206. 近年来研究表明,血管内皮生长因子对中胚层细胞分化有作用,可以使骨髓基质干细胞向成骨分化. Midy等[14]发现,外源性VEGF能使体外培养的成骨细胞碱性磷酸酶(ALP) 活性及cAMP浓度提高4倍. VEGF诱导成骨细胞迁移,增加ALP活性,同时成骨细胞自身合成VEGF. PGE1, PGE2, 1, 25(OH)维生素D3及IGFⅠ能增加成骨细胞VEGF mRNA的表达.

2.2肿瘤坏死因子TNF是一种糖蛋白的低聚物,分子量为39~70 ku,是多功能的细胞因子,主要由活化的巨噬细胞和T细胞产生. TNF是迄今为止所发现的直接杀伤肿瘤细胞作用最强的生物活性因子之一. TNF分两大类:由活化的巨噬细胞产生的称为TNFα,由活化的T细胞产生的TNF称为TNFβ,它们共同作用于同一受体. TNF可刺激培养的成骨细胞和骨器官合成RNA和PGE2,TNF可以抑制胶原和骨钙素的合成以及1, 25(OH)维生素D3刺激的ALP活性,但它可刺激Ι型胶原mRNA表达,这说明TNF的这种胶原合成抑制作用受翻译后产物的调节[15].

2.3骨形成蛋白BMP是广泛存在于骨基质中的一种酸性糖蛋白,是目前唯一被确认具有异位成骨能力的生长因子,它能在体内、外诱导骨髓基质细胞转化为成骨细胞,使高分化的骨细胞群体数量保持稳定. Okubo等[16]用支架材料与不同剂量的BMP复合后植入兔下颌骨的骨缺损中,3 wk后ALP和组织学检查发现新骨形成,证实BMP诱导成骨系软骨内化骨形成过程,且成骨量随BMP剂量增加而增加,有明显的剂量依赖性. 陈克明等[17]认为: BMP与纤维蛋白制成的复合物,具有良好的骨诱导活性. 载体包容BMP等诱导因子可有效缓慢的释放,以发挥其诱导作用. 余家阔等[18]认为,在BMP诱导下,无论是幼稚软骨细胞还是成熟软骨细胞都有表达成骨细胞表型的趋势. 目前认为BMP是骨组织工程中促进成骨作用最重要的一种,近年来BMP作为一种有价值的生长因子越来越受到人们的重视,然而其诱导成骨的机制目前却并不完全清楚. 但由于BMP在骨组织中含量极少且在体内扩散很快,容易被蛋白酶所分解,因而不能在局部发挥持续刺激和诱导成骨作用,其诱导活性难以得到充分的发挥[19].

2.4转移生长因子TGFβ是一种有多种功能的单链多肽,分子量为25ku,具有对骨组织、结缔组织及免疫系统等细胞的调节功能,其调节作用包括细胞生长调节和分化诱导两方面. 目前发现有5种亚型,分别为TGFβ1~TGFβ5. TGFβ广泛存在于多种组织及转化细胞中,其中以骨组织、血小板、软骨组织中含量最丰富,而TGFβ受体在成骨细胞表达最多,表明TGFβ的主要作用是调节骨代谢. 有实验表明TGFβ对胶原基因表达和胶原的合成具有促进作用. TGFβ可促进细胞增殖与分化,促进细胞外基质合成,也是多种免疫细胞的自分泌或旁分泌的调节因子[20].

TGFβ为主要成骨因子之一,它诱导间充质细胞合成软骨特异性蛋白聚糖和Ⅱ型胶原,刺激成骨细胞的增殖及胶原合成. TGFβ在体外对成骨细胞的作用很复杂,部分取决于TGFβ的浓度、细胞密度、种系和成骨细胞的分化阶段. 多数研究认为TGFβ能抑制成骨细胞游离钙的合成、增加成骨细胞分化以及成骨细胞胶原和ALP的表达. TGFβ对成骨细胞生长有调控作用,这种作用在一定程度上表现为双相性. 研究表明,含血清培养的成骨细胞,低浓度的TGFβ可以刺激细胞DNA和胶原合成,抑制ALP活性,刺激细胞生长;而高浓度则抑制胶原合成,对DNA合成无作用. 无血清培养的成骨细胞,高浓度TGFβ抑制ALP生成. 此外,也有研究表明,TGFβ促进骨髓源性和骨膜源性骨前体细胞趋化到骨软骨损伤部位,进而增生、分化形成成骨细胞和软骨细胞 [21].

2.5成纤维细胞生长因子FGF是一种对中胚层和神经外胚层细胞具有促有丝分裂作用的多肽生长因子. 它对成骨细胞具有促增殖作用,并且通过增殖骨细胞数目促进骨形成. FGF分为酸性成纤维细胞生长因子(aFGF)和碱性成纤维细胞生长因(bFGF)两种. aFGF存在于骨细胞浸出物中,bFGF存在于牛和人的骨骼中,前者较后者低10倍. FGF是毛细血管增殖刺激剂,能够促进毛细血管向断端内以及骨移植物中长入,使骨修复早期的组织中软骨岛数量增加,并使骨折断端骨痂血管重建的时间提前,而且可以增加BMP的成骨量. 目前虽然FGF的作用机制还不是很清楚,但是可以肯定的是局部和全身应用FGF可以促进骨形成. bFGF是一种内源性多肽生长因子,有试验表明它能有促进中胚层和神经外胚层细胞有丝分裂的作用 [22].

2.6血小板源性生长因子PDGF 首先在血小板中发现,分子量为28~35 ku,由两个多肽键A和B组成异二聚体,在体外具有促进纤维细胞生长的作用,对所有起源于间叶细胞包括成骨细胞既能促进骨形成,又能刺激骨吸收,起双向调节作用[23]. PDGF还对中胚层细胞有促有丝分裂作用,它对人和鼠成骨细胞及其细胞系均有促有丝分裂作用. 同时它还是一个强力趋化因子,对人和鼠组织中的成骨细胞有强烈的趋化作用. PDGF 是由血小板、巨噬细胞和骨细胞合成,贮存于骨基质中. 它在创伤愈合中起重要作用,称为“创伤因子”. 其主要功能是诱导成骨细胞和骨祖细胞分裂,对于培养的成骨细胞有强烈的趋化作用,能刺激胶原合成. Canalis等[24]发现: PDGF有与IGFⅠ同样的作用,能刺激鼠骨DNA及胶原合成,但是PDGF也具有促使胶原降解的性能.

2.7类胰岛素生长因子IGF家族由两种相关多肽组成,即IGFⅠ和IGFⅡ. 它们是骨基质中最富含的生长因子,两者有相似的结构和体外作用,但在体内生物学效应不同. IGFI 在细胞增殖及细胞外基质合成代谢中具有重要作用. Throp等[25]研究证实了IGFⅠ和TGFβ具有相互作用以促进细胞增殖、胶原及蛋白聚糖合成的作用.

IGFⅡ是重要的细胞内调节剂,能刺激骨细胞的增生、增加骨细胞的分化和I型胶原合成. Strong等[26]发现IGFⅡ能在正常人骨细胞培养中24 h 内增加原胶原mRNA 2~4 倍.

综上所述,细胞因子不过是众多因子中研究较为成熟的几个,如何把这些因子的作用应用于组织工程中,才是我们研究生长因子的目的. 什么样的方法才能使细胞因子的活性在组织工程中发挥最好的作用还要进一步探讨.

参考文献

[1]EghbaliFatourechi G, Khosla S, Sanyal A, et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women [J]. J Clin Invest, 2003,111(8):1221-1230.

[2]裴国献,金丹. 骨组织工程研究进展[J]. 中华创伤骨科杂志,2004,6 (1) :38-42.

[3]CaplanAI.Review:mesenchymal stem cells: cellbased reconstructive therapy in orthopedics [J]. Tissue Eng, 2005,11(728):1198.

转贴于

[4]Kan I, Melamed E, Offen D. Integral therapeutic potential of bone marrow mesenchymal stem cells[J]. Curr Drug Targets, 2005,6(1):31.

[5]Robey PG. Collagenasetreated trabecular bone fragments: a reproducible source of cells in the osteoblastic lineage[J ]. Calcif Tissue Int, 1995,6:S11-S12.

[6]Van Damme A ,VandenDriessche T, Collen D, et al. Bone marrow stromal cells as targets for gene therapy[J]. Curr Gene Ther, 2002, 2(2) : 195-209.

[7]Prockop DJ . Marrow stromal cell as stem cells fornonhematopoietic tissues[J]. Sience, 1997, 276:71-74.

[8]Haynesworth SE, Goshima J , Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow[J]. Bone, 1992,13(1):81.

[9]Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991,9(5):641.

[10]Gao J, Dennis JE, Solchaga LA, et al. Tissueengineered fabrication of an osteochondral composite graft using rat bone marrow derived mesenchymal stem cells[J]. Tissue Eng, 2001,7(4):363.

[11]Schaefer DJ, Klemt C, Zhang XH, et al. Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration[J]. Chirurg, 2000,71(9):1001.

[12]殷晓雪,陈仲强,郭昭庆,等. 人骨髓间充质干细胞定向分化为成骨细胞及其鉴定[J]. 中国修复重建外科杂志, 2004, 18(2): 88-91.

[13]Jendelova P, Herynek V, DeCroos J, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles [J]. Magn Reson Med, 2003, 50(4):767-776.

[14]Xi L, Tekin D, Bhargava P, et al. Whole body hyperthermia and preconditioning of the heart: basic concepts, complexity,and potential mechanisms [J]. Int J Hyperthermia, 2001,17(5):439.

[15 ]Hughes S E, Hall P A. The fibroblast growth factor and receptor moltigene families [J]. J Pathol, 1993,170(3):219-21.

[16]Okubo Y, Bessho K, Fujimura K, et al. Osteogenesis by recombinant human bone morphogenetic protein2 at skeletal sites [J]. Clin Orthop, 2000,375(3):295-301.

[17]陈克明,刘兴炎,葛宝丰,等. 纤维蛋白用作BMP载体的研究[J]. 中华骨科杂志,1998,18:234-235.

[18]余家阔,曲绵域,田得祥,等. 人骨形态发生蛋白对体外培养胎儿关节软骨块的影响[J] . 中华外科杂志,1997,35 (11):687-689.

[19]Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity [J]. Spine, 2002, 27:S10-S15.

[20]Wildemann B, Schmidmaier G, Brenner N, et al. Qantification, localization, and expression of IGFI and TGFbetal during growth factorstimulated fracture healing [J]. Calcif Tissure Int, 2004,74(4):388-397.

[21]Yu Y, Yang JL, ChapmanSheath PJ, et al. TGFbeta, BMPS, and their signal transducing mediators, Smads, in rat fracture healing [J]. J Biomed Mater Res, 2002,560(3):392-397.

[22]Nakamoto T, Inagawa H, Takagi K, et al . A new method of antitumor therapy with a high dose of TNF perfusion for unresectable liver tumor [J] . Anticancer Res, 2000,20 (6A) :4087.

[23]Horner A, Bord S, Kemp P, et al. Distribution of platederived growth factor ( PDGF) A chain mRNA, protein, and PDGFalpha receptor in rapidly forming human bone[J]. Bone, 1996,19(4):353-362.

篇2

1 成纤维细胞的来源及其生物学特性

成纤维细胞(fibroblast)是结缔组织中最常见的细胞,由胚胎时期的间充质细胞(mesenchymal cell)分化而来。在结缔组织中,成纤维细胞还以其成熟状态—纤维细胞(fibrocyte)的形式存在,二者在一定条件下可以互相转变。

不同类型的结缔组织含成纤维细胞的数量不同。通常,疏松结缔组织中成纤维细胞的数量比同样体积的致密结缔组织中所含成纤维细胞的数量要少,故分离培养成纤维细胞多以真皮等致密结缔组织为取材部位[2,3]。

成纤维细胞形态多样,常见的有梭形、大多角形和扁平星形等,其形态尚可依细胞的功能变化及其附着处的物理性状不同而发生改变。成纤维细胞胞体较大,胞质弱嗜碱性,胞核较大呈椭圆形,染色质疏松着色浅,核仁明显。电镜下,其胞质可见丰富的粗面内质网、游离核糖体和发达的高尔基复合体,表明它具有合成和分泌蛋白质的功能。成纤维细胞尚可合成和分泌胶原纤维、弹性纤维、网状纤维及有机基质。它合成的前胶原蛋白分子经内切酶作用,聚合和重排,可形成与成骨细胞合成分泌的胶原原纤维一样具有64nm(640?)周期横纹的胶原原纤维,胶原原纤维经互相粘合形成胶原纤维。经检测,这

两种细胞合成分泌的胶原纤维均是Ⅰ型胶原纤维,在形态和生化结构上完全相同[4,5]。

处于成熟期或称静止状态的成纤维细胞,胞体变小,呈长梭形,粗面内质网和高尔基复合体均不发达,被称为纤维细胞。在外伤等因素刺激下,部分纤维细胞可重新转变为幼稚的成纤维细胞,其功能活动也得以恢复,参与组织损伤后的修复。另外,在结缔组织中,仍保留着少量具有分化潜能的间充质细胞,它们在创伤修复等情况下可增殖分化为成纤维细胞。

2 成纤维细胞在一般创伤修复中的表现

各种创伤均会造成不同程度的细胞变性、坏死和组织缺损,必须通过细胞增生和细胞间基质的形成来进行组织修复。在此修复过程中,成纤维细胞起着十分重要的作用。以伤口愈合过程为例,成纤维细胞通过有丝分裂大量增殖,并从4~5天或6天开始合成和分泌大量的胶原纤维和基质成分,与新生毛细血管等共同形成肉芽组织,填补伤口组织缺损,为表皮细胞的覆盖创造条件。在伤口愈合中,成纤维细胞主要来源于真皮层的局部成纤维细胞和未分化的间充质细胞,以及血管周围的成纤维细胞和周细胞。内脏损伤时,参与修复过程的成纤维细胞多来自间质和包膜,以及粘膜下或浆膜下层的结缔组织。有人认为创伤愈合过程中伤处聚集的大量成纤维细胞,一方面是由成纤维细胞通过分裂增殖而来,另一方面,更多地是由邻近的间充质细胞、纤维细胞和毛细血管周细胞等演变或游走到伤处。在创伤修复的后期,成纤维细胞通过分泌胶原酶参与修复后组织的改建。在某些病理条件下,以成纤维细胞为主要细胞成分的肉芽组织或增生组织块还可以在非骨组织内发生钙化,引起异位骨化(ectopic ossification)。但对于异位骨化的参与细胞及其机制尚不十分清楚,未分化间充质细胞、成纤维细胞、内皮细胞和毛细血管周细胞等可划归为诱导性骨祖细胞的细胞都有可能参与这一过程[6,8]。

3 成纤维细胞在骨创伤修复过程中的表现

最简单和常见的骨创伤即是骨折,其愈合过程须经过炎性反应、清扫、纤维骨痂和骨性骨痂4个阶段[4]。不同阶段参与的细胞主体不同。成纤维细胞从骨折第3天起就出现于骨折局部血肿中[6],骨折后5天即在机化血肿及骨折断端的间隙及其周围大量存在,是参与纤维骨痂阶段的主要细胞成分[4,5]。在此阶段成纤维细胞一方面大量分裂增殖,一方面又合成和分泌大量Ⅰ型胶原,使肉芽组织逐步变成疏松的结缔组织,将骨断端包围起来,形成接合两骨折断端的巨大的纤维骨痂。然而,这种由无数成纤维细胞和丰富的肉芽组织为主体构成的纤维结缔组织却不会演变为在其它组织创伤修复时常见的瘢痕组织,而是通过钙盐结晶在其内部不断沉积,逐渐演变为骨性骨痂,使骨折局部的修复达到骨性愈合,恢复骨组织的结构。此时,骨折愈合部只有骨组织而不再存在成纤维细胞[4,5,9~11]。

4 成纤维细胞的成骨作用

成纤维细胞在骨折愈合过程中不同于其它组织创伤修复的表现,以及在某些病理条件下可以参与异位骨化[6,7],使人们对成纤维细胞的分化能力、钙化骨化能力以及在成骨过程中其成骨能力如何发挥、细胞演变的最终归宿如何等等问题产生了浓厚的兴趣。对成纤维细胞成骨能力的研究也正是开始于对骨折愈合过程中成纤维细胞表现的观察。

对骨折局部骨形成区的电镜观察显示,除了成骨细胞在此发挥成骨作用外,成纤维细胞确实也存在着类似的成骨表现[4,5,9~13]。例如,在其线粒体内可清晰见到钙盐颗粒,部分内质网腔内可见成熟的胶原纤维,分泌到其四周的胶原纤维内可见高密度的钙盐结晶沉积。不仅如此,成纤维细胞还能象成骨细胞一样产生基质小泡并引起小泡内的钙盐沉积。钙化的基质小泡形成丛毛球状的钙球,钙球随后合并、融合为骨组织。以上种种现象表明,成纤维细胞与成骨细胞一样具备提供钙盐沉积及骨形成所必需的条件。在从纤维性骨痂到骨性骨痂的演变过程中,成纤维细胞也随之演变为骨细胞,与成骨细胞的归宿相一致。但二者在演变过程中的

表现又不尽相同,主要有以下几点可资鉴别[9,13]:①成纤维细胞及其细胞核均呈不规则的椭圆形或长方形,而成骨细胞及其细胞核则为边缘比较光整的椭圆形;②成纤维细胞均单独存在,细胞之间有众多的胶原纤维相隔,成骨细胞则以连续排列的形式出现;③成纤维细胞的细胞质内溶酶体少见,而成骨细胞的细胞质内则常有溶酶体可见;④成纤维细胞四周的骨组织都由丛毛球状钙球或针状钙盐结晶组成,成骨细胞则都有一面紧贴比较成熟与致密的骨组织;⑤成骨细胞是一个一个地被骨组织(类骨质)包围变为骨细胞,而成纤维细胞则可以是两个或两个以上同时被骨组织包围在一个陷窝内,然后再随着细胞之间基质的钙化而分隔为各占一个骨陷窝。

对成纤维细胞的成骨作用,有学者认为这是成纤维细胞的固有特性在骨折这一特定情况下得以表达的结果[9,11]。骨折局部活的和失活的骨组织及软骨组织,以及骨基质中的某些大分子都有可能诱导成纤维细胞表达其成骨作用进而演变为骨细胞[14,15]。较早在骨基质中发现的骨形态发生蛋白(bone morphogenetic protein, BMP)即对成纤维细胞有一定的诱导作用。对骨折愈合中BMP作用的研究[16,17],表明创伤使内源性BMP呈阶段性合成与释放,并诱导周围软组织中的间充质细胞或/和成纤维细胞等向成骨方向转化。应用PAP法发现[16],骨折后第3、5天局部纤维肉芽组织中的成纤维细胞样间充质细胞内以及第14天新生骨小梁间纤维组织中的成纤维细胞样间充质细胞内,都与成骨细胞、软骨细胞和骨基质一样存在BMP,表明这些成纤维细胞样间充质细胞已被诱导为可合成分泌BMP、具有成骨作用的细胞。而Sampath[15]从牛骨基质中分离提纯得到的成骨素对成纤维细胞的骨诱导能力更是超过了BMP和当时已知的其它骨生长因子。

成纤维细胞在其成骨作用得以表达后,可能通过两种方式成骨:①膜内成骨;②在环绕软骨的纤维层内成骨。开始分泌胶原纤维后,参与成骨的成纤维细胞只有两个归宿[4,5,9,13]:①变性、死亡、碎裂直至消失,这种演变发生早、范围广,故从纤维性骨痂形成开始,就逐渐有基质成分发生钙化,进而转变为骨基质;②演变为骨细胞,这一过程出现较晚,并穿插在前一过程之中,故在形成骨组织的细胞成分的同时,还使丰富的纤维骨痂演变为骨性骨痂,形成骨组织。但这种由成纤维细胞演变成的骨细胞,其结局如何、其生物学特性与由成骨细胞演化而来的骨细胞是否相同仍不清楚。例如,骨细胞从骨陷窝脱离后,可恢复为功能活跃的成骨细胞,再次参与骨组织的形成;而由成纤维细胞演变成的骨细胞在脱离骨陷窝后,是成为成骨细胞还是恢复为成纤维细胞、此时是否还具备成骨作用等一系列问题尚缺乏研究。

5 成纤维细胞体外培养的生物学特性[18]

成纤维细胞的分离培养一开始并不涉及成骨作用,而主要是用于研究细胞的老化、各种外来因子对细胞的损伤、细胞在体外条件下的恶性转化、以及某些先天性代谢异常、酶缺陷等。由于皮肤成纤维细胞易于获取,又易于在体外生长,故目前皮肤成纤维细胞培养已在基础医学和临床医学研究中得到较广泛的运用,其分离培养技术已相对成熟,对其体外生长规律也有了较全面的认识。

成纤维细胞的原代培养可用酶消化法或组织块法,其中组织块法又因其操作简便、条件易于控制而应用更为普遍。通常,以酶消化法获得的成纤维细胞悬液在接种后5~10min即可见细胞以伪足初期附着,与底物形成一些接触点;然后细胞逐渐呈放射状伸展,胞体的中心部分亦随之变扁平;最快者大约在接种后30min,细胞贴附底物即较为完全,呈现成纤维细胞的形态。采用组织块法则大约在接种后2~3天[2,3]到1周左右,在接种的皮肤组织块周围长出细胞。待细胞融合成片,铺满培养容器底壁大部分时即可进行传代。一般都采用胰蛋白酶(trypsin),将成纤维细胞从底壁消化下来后分瓶作传代培养。成纤维细胞在体外培养条件下能保持良好的分裂增殖能力。细胞分裂时变为球形;分裂后又平铺在附着物的表面成为有突起的扁平细胞。体外培养的成纤维细胞,其生命期限与物种等因素有关。例如:人胚成纤维细胞约可培养50代;恒河猴皮肤成纤维细胞能传代超过40代;鸡胚成纤维细胞则只有少数能培养30代;而小鼠成纤维细胞多数只能生长8代左右。另外,从老年个体取得的成纤维细胞的寿命要比取自年轻者短。由于在细胞传代和进行体外培养时,细胞的生物学特性会逐渐发生一些不同于体内的改变,故通常只将前10代视这正常细胞,可在此时将生长旺盛的成纤维细胞冻存起来,以备将来复苏使用,这在将培养的细胞由动物实验向人体实验过渡的过程中必须给予足够的重视。

6 成纤维细胞在体外培养中的成骨作用

徐荣辉[2]等通过体外培养家兔皮肤成纤维细胞发现,经传代培养的成纤维细胞至第8天时,其细胞集落中有不透光的骨小结节形成;到37天时,小结节扩大、延伸,形成骨小梁样结构。经活体四环素标记显示,所形成的结构为新生骨组织。他们还注意到,成纤维细胞在参与骨形成的过程中并无分化为成软骨细胞或成骨细胞的明确迹象,故推测并未发生此种分化,而成纤维细胞之所以能发挥成骨作用,很可能是受某些诱导因素作用的缘故。他们认为用以培养成纤维细胞的中厚皮片中混杂存在的上皮细胞(或/与内皮细胞),可能是诱导成纤维细胞形成骨组织的一种诱导因素。而Friedenstein[6,19]较早的实验则认为,属于诱导性骨祖细胞之一种的成纤维细胞,在上皮细胞(如膀胱上皮)或脱钙骨基质等诱导因子作用下,可以分化为成骨细胞进而形成骨组织。邓廉夫[20]等分离培养取自关节内的损伤性和晚期骨关节炎性的滑膜细胞,发现其中的成纤维细胞样细胞增殖迅速,呈束状或交叉铺展并可形成多层结构,细胞表面有其分泌物形成的不透光结节,经四环素标记、ARS(Alizarinred s)和甲苯胺蓝(Toluidine blue)染色,显示结节为新生骨组织。在缺乏常规的诱导因子——上皮细胞的作用下,取自滑膜的成纤维细胞样细胞也能发生成骨作用,他们推测是在关节损伤后或骨关节炎的发生与发展过程中,改变的关节微环境(如TNF样活性物质增多等)可能会触发滑膜的成纤维细胞与骨形成相关的多基因表达,使其向成骨型细胞分化,这样,滑膜成纤维细胞样细胞在体内时即已具备成骨性能,故在培养条件下可发挥成骨作用。Dodda[21]等的研究则

指出,变性滑膜细胞多种细胞因子和生长因子的表达、关节液内多种细胞因子的出现,可能是滑膜成纤维细胞样细胞成骨表型表达的重要始动因素。这些相关的研究表明成纤维细胞成骨表型的表达可能存在着较复杂的调控机制,而其诱导因素也是多样的。

为获取大量具有成骨表型的成纤维细胞并了解其转化机制,邓廉夫[22]等将分离纯化的人皮肤成纤维细胞置于加有不同浓度EGF、IL-6、TNF-α、BMP-2的培养液中进行体外培养,采用生物化学、组织化学和电镜观察等方法检测成纤维细胞成骨性标记物的形成状况,发现TNF-α和BMP-2联合应用,可使成纤维细胞分泌碱性磷酸酶、骨钙素及胶原纤维的量增加;成纤维细胞可由梭形向圆形或多突形转化,蛋白分泌旺盛;细胞外基质中,丰富的胶原纤维定向或杂乱排列,其间散在较多的钙颗粒;细胞可重叠交织形成多层结构,其表面有分泌颗粒和钙盐结晶堆积,并不断融合扩大成骨结节,表明TNF-α和BMP-2可以诱导成纤维细胞成骨。但这种完全由成纤维细胞经诱导而形成的骨组织,在缺乏典型的成骨细胞参与下是否能在体外或植入体内后经改建成为成熟的板层骨及其改建过程如何?仍有待进一步研究。

7 展望

尽管成纤维细胞受哪些因素诱导可以产生成骨作用、这些因素的诱导方式及其机制如何以及成纤维细胞在骨形成中是否分化为成骨细胞等等问题尚未完全解决,但成纤维细胞经诱导可以形成骨组织这一现象已逐渐为广大科学工作者所接受。由于成纤维细胞直接参与了骨折愈合过程中纤维性骨痂的形成,其自身又具备被诱导成骨的能力,可以设想,利用成纤维细胞分布广泛、取材方便、对机体损伤较小、体外培养容易成活、增生繁殖较快等较其它具有成骨作用的细胞(如骨膜成骨细胞、骨髓基质细胞等)优越之处,在体外大量培养扩增成纤维细胞,并施以有效的诱导因素(如上皮细胞、TNG-α和BMP等)使其具备成骨效能,然后与合适的生物材料载体复合,同时使该复合体在体外或体内保持良好的成骨能力并进行一定程度的成骨,则有望获得具有一定的生物力学支撑强度而成骨作用又保持活跃的“活骨”复合体,用以替代自体骨或异体骨回植体内治疗难以自身修复的较大的骨缺损,这无疑将为骨缺损的修复治疗开辟一条新的有辉煌前景的道路。在组织工程技术和生物材料科学已有较大发展的今天,这一设想是极有可能实现的。当然,从目前所处的实验阶段过渡到临床应用尚有很大一段距离,需要解决的问题还很多,而且随着研究的展开和深入,问题可能还会越来越多,但这确实是一项很有临床应用价值和社会、经济效益的重大课题,值得广大基础医学工作者和临床科研人员为之而努力。

参考文献

[1]温广明,徐达传.成骨细胞的成骨作用及复合移植研究进展.中国临床解剖学杂志,1999,17(4):374

[2]徐荣辉,饶寒敏,朱雅萍,等.皮肤成纤维细胞在体外培养中的成骨作用.中华外科杂志,1994,32(3):190

[3]饶寒敏,徐荣辉,朱雅萍,等.家兔皮肤成纤维细胞在体外培养中的成骨作用(显微录象与四环素标记观察).中华骨科杂志,1995,15(5):295

[4]柴本甫,汤雪明.实验性骨折愈合的超微结构研究。中华外科杂志,1979,17:368

[5]裘世静,柴本甫.不同接骨板固定后骨折修复的超微结构研究.中华外科杂志,1990,28(2):88

[6]Friedenstein a.Precursor cells of mechonocytes. In Rev Cytol, 1976,47(3):327

[7]Abdin m, Friedenstein AY. Electron microscopic study on bone induction by the transitional epithelium of the bladder in guinea pigs. Clin Orthop, 1972,82(2):182

[8]Brighton cT, Lorich DG, Kupcha R, et al. The pericyte as a possible osteoblast progenitor cell. Clin Orthop,1992,275(2):287

[9]柴本甫,汤雪明.实验性骨折愈合的超微结构研究-成纤维细胞成骨作用的电子显微镜观察.中华实验外科杂志,1985,2(4):157

[10]Chai bF, Zhu XL, Yang LF,et al. Ultrastructural investition of experimental fracture healing-Ⅲ:electron microscopic observation on deposition of calcium salt crystals. Clin Med J,1979,92(10):668

[11]Tang xM, Chai BF. Ultrastructural investition of experimental fracture healing-Ⅳ:electron microscopic observation on transformation and fate of fibroblast and chondrocytes. Clin Med J,1981,94(5):291

[12]柴本甫,汤雪明,李 慧.实验性骨折愈合中钙化骨化的超微结构观察(兼论成纤维细胞的成骨作用).中华创伤杂志,1995,11(1):4

[13]柴本甫,汤雪明,李 慧.骨折二期愈合过程中的成纤维细胞成骨作用.中华骨科杂志,1996,16(4):245

[14]Mckibbin b. The biology of fracture healing in long bone. J Bome Joint surg(Br),1978,60(1):150

[15]Sampath tK, Desimone DP, Reddi AH. Extracellular bone matrix-derived growth factor. Exp cell Res,1982,142(1):460

[16]马真胜,胡蕴玉,吕 荣,等.骨形态发生蛋白在闭合性长骨骨折愈合中的作用.中华实验外科杂志,1997,14(1):50

[17]Onishi t, Ishidou Y, Nagamine T, et al. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family memebrs and a BMP typeⅡ receptor during fracture healing in rast. Bone, 1998,22(6):605

[18]司徒镇强,吴军正,主编.细胞培养.西安.世界图书出版公司,1996.7~12

[19]Friedenstein a. Induction of bone tissue by transitional epithelium. Clin Orthop, 1968,59:21

篇3

成纤维细胞(fibroblast)是结缔组织中最常见的细胞,由胚胎时期的间充质细胞(mesenchymal cell)分化而来。在结缔组织中,成纤维细胞还以其成熟状态—纤维细胞(fibrocyte)的形式存在,二者在一定条件下可以互相转变。

不同类型的结缔组织含成纤维细胞的数量不同。通常,疏松结缔组织中成纤维细胞的数量比同样体积的致密结缔组织中所含成纤维细胞的数量要少,故分离培养成纤维细胞多以真皮等致密结缔组织为取材部位[2,3]。

成纤维细胞形态多样,常见的有梭形、大多角形和扁平星形等,其形态尚可依细胞的功能变化及其附着处的物理性状不同而发生改变。成纤维细胞胞体较大,胞质弱嗜碱性,胞核较大呈椭圆形,染色质疏松着色浅,核仁明显。电镜下,其胞质可见丰富的粗面内质网、游离核糖体和发达的高尔基复合体,表明它具有合成和分泌蛋白质的功能。成纤维细胞尚可合成和分泌胶原纤维、弹性纤维、网状纤维及有机基质。它合成的前胶原蛋白分子经内切酶作用,聚合和重排,可形成与成骨细胞合成分泌的胶原原纤维一样具有64nm(640?)周期横纹的胶原原纤维,胶原原纤维经互相粘合形成胶原纤维。经检测,这两种细胞合成分泌的胶原纤维均是Ⅰ型胶原纤维,在形态和生化结构上完全相同[4,5]。

处于成熟期或称静止状态的成纤维细胞,胞体变小,呈长梭形,粗面内质网和高尔基复合体均不发达,被称为纤维细胞。在外伤等因素刺激下,部分纤维细胞可重新转变为幼稚的成纤维细胞,其功能活动也得以恢复,参与组织损伤后的修复。另外,在结缔组织中,仍保留着少量具有分化潜能的间充质细胞,它们在创伤修复等情况下可增殖分化为成纤维细胞。

2 成纤维细胞在一般创伤修复中的表现

各种创伤均会造成不同程度的细胞变性、坏死和组织缺损,必须通过细胞增生和细胞间基质的形成来进行组织修复。在此修复过程中,成纤维细胞起着十分重要的作用。以伤口愈合过程为例,成纤维细胞通过有丝分裂大量增殖,并从4~5天或6天开始合成和分泌大量的胶原纤维和基质成分,与新生毛细血管等共同形成肉芽组织,填补伤口组织缺损,为表皮细胞的覆盖创造条件。在伤口愈合中,成纤维细胞主要来源于真皮层的局部成纤维细胞和未分化的间充质细胞,以及血管周围的成纤维细胞和周细胞。内脏损伤时,参与修复过程的成纤维细胞多来自间质和包膜,以及粘膜下或浆膜下层的结缔组织。有人认为创伤愈合过程中伤处聚集的大量成纤维细胞,一方面是由成纤维细胞通过分裂增殖而来,另一方面,更多地是由邻近的间充质细胞、纤维细胞和毛细血管周细胞等演变或游走到伤处。在创伤修复的后期,成纤维细胞通过分泌胶原酶参与修复后组织的改建。在某些病理条件下,以成纤维细胞为主要细胞成分的肉芽组织或增生组织块还可以在非骨组织内发生钙化,引起异位骨化(ectopic ossification)。但对于异位骨化的参与细胞及其机制尚不十分清楚,未分化间充质细胞、成纤维细胞、内皮细胞和毛细血管周细胞等可划归为诱导性骨祖细胞的细胞都有可能参与这一过程[6,8]。

3 成纤维细胞在骨创伤修复过程中的表现

最简单和常见的骨创伤即是骨折,其愈合过程须经过炎性反应、清扫、纤维骨痂和骨性骨痂4个阶段[4]。不同阶段参与的细胞主体不同。成纤维细胞从骨折第3天起就出现于骨折局部血肿中[6],骨折后5天即在机化血肿及骨折断端的间隙及其周围大量存在,是参与纤维骨痂阶段的主要细胞成分[4,5]。在此阶段成纤维细胞一方面大量分裂增殖,一方面又合成和分泌大量Ⅰ型胶原,使肉芽组织逐步变成疏松的结缔组织,将骨断端包围起来,形成接合两骨折断端的巨大的纤维骨痂。然而,这种由无数成纤维细胞和丰富的肉芽组织为主体构成的纤维结缔组织却不会演变为在其它组织创伤修复时常见的瘢痕组织,而是通过钙盐结晶在其内部不断沉积,逐渐演变为骨性骨痂,使骨折局部的修复达到骨性愈合,恢复骨组织的结构。此时,骨折愈合部只有骨组织而不再存在成纤维细胞[4,5,9~11]。

4 成纤维细胞的成骨作用

成纤维细胞在骨折愈合过程中不同于其它组织创伤修复的表现,以及在某些病理条件下可以参与异位骨化[6,7],使人们对成纤维细胞的分化能力、钙化骨化能力以及在成骨过程中其成骨能力如何发挥、细胞演变的最终归宿如何等等问题产生了浓厚的兴趣。对成纤维细胞成骨能力的研究也正是开始于对骨折愈合过程中成纤维细胞表现的观察。

对骨折局部骨形成区的电镜观察显示,除了成骨细胞在此发挥成骨作用外,成纤维细胞确实也存在着类似的成骨表现[4,5,9~13]。例如,在其线粒体内可清晰见到钙盐颗粒,部分内质网腔内可见成熟的胶原纤维,分泌到其四周的胶原纤维内可见高密度的钙盐结晶沉积。不仅如此,成纤维细胞还能象成骨细胞一样产生基质小泡并引起小泡内的钙盐沉积。钙化的基质小泡形成丛毛球状的钙球,钙球随后合并、融合为骨组织。以上种种现象表明,成纤维细胞与成骨细胞一样具备提供钙盐沉积及骨形成所必需的条件。在从纤维性骨痂到骨性骨痂的演变过程中,成纤维细胞也随之演变为骨细胞,与成骨细胞的归宿相一致。但二者在演变过程中的表现又不尽相同,主要有以下几点可资鉴别[9,13]:①成纤维细胞及其细胞核均呈不规则的椭圆形或长方形,而成骨细胞及其细胞核则为边缘比较光整的椭圆形;②成纤维细胞均单独存在,细胞之间有众多的胶原纤维相隔,成骨细胞则以连续排列的形式出现;③成纤维细胞的细胞质内溶酶体少见,而成骨细胞的细胞质内则常有溶酶体可见;④成纤维细胞四周的骨组织都由丛毛球状钙球或针状钙盐结晶组成,成骨细胞则都有一面紧贴比较成熟与致密的骨组织;⑤成骨细胞是一个一个地被骨组织(类骨质)包围变为骨细胞,而成纤维细胞则可以是两个或两个以上同时被骨组织包围在一个陷窝内,然后再随着细胞之间基质的钙化而分隔为各占一个骨陷窝。

对成纤维细胞的成骨作用,有学者认为这是成纤维细胞的固有特性在骨折这一特定情况下得以表达的结果[9,11]。骨折局部活的和失活的骨组织及软骨组织,以及骨基质中的某些大分子都有可能诱导成纤维细胞表达其成骨作用进而演变为骨细胞[14,15]。较早在骨基质中发现的骨形态发生蛋白(bone morphogenetic protein, BMP)即对成纤维细胞有一定的诱导作用。对骨折愈合中BMP作用的研究[16,17],表明创伤使内源性BMP呈阶段性合成与释放,并诱导周围软组织中的间充质细胞或/和成纤维细胞等向成骨方向转化。应用PAP法发现[16],骨折后第3、5天局部纤维肉芽组织中的成纤维细胞样间充质细胞内以及第14天新生骨小梁间纤维组织中的成纤维细胞样间充质细胞内,都与成骨细胞、软骨细胞和骨基质一样存在BMP,表明这些成纤维细胞样间充质细胞已被诱导为可合成分泌BMP、具有成骨作用的细胞。而Sampath[15]从牛骨基质中分离提纯得到的成骨素对成纤维细胞的骨诱导能力更是超过了BMP和当时已知的其它骨生长因子。转贴于

成纤维细胞在其成骨作用得以表达后,可能通过两种方式成骨:①膜内成骨;②在环绕软骨的纤维层内成骨。开始分泌胶原纤维后,参与成骨的成纤维细胞只有两个归宿[4,5,9,13]:①变性、死亡、碎裂直至消失,这种演变发生早、范围广,故从纤维性骨痂形成开始,就逐渐有基质成分发生钙化,进而转变为骨基质;②演变为骨细胞,这一过程出现较晚,并穿插在前一过程之中,故在形成骨组织的细胞成分的同时,还使丰富的纤维骨痂演变为骨性骨痂,形成骨组织。但这种由成纤维细胞演变成的骨细胞,其结局如何、其生物学特性与由成骨细胞演化而来的骨细胞是否相同仍不清楚。例如,骨细胞从骨陷窝脱离后,可恢复为功能活跃的成骨细胞,再次参与骨组织的形成;而由成纤维细胞演变成的骨细胞在脱离骨陷窝后,是成为成骨细胞还是恢复为成纤维细胞、此时是否还具备成骨作用等一系列问题尚缺乏研究。

5 成纤维细胞体外培养的生物学特性[18]

成纤维细胞的分离培养一开始并不涉及成骨作用,而主要是用于研究细胞的老化、各种外来因子对细胞的损伤、细胞在体外条件下的恶性转化、以及某些先天性代谢异常、酶缺陷等。由于皮肤成纤维细胞易于获取,又易于在体外生长,故目前皮肤成纤维细胞培养已在基础医学和临床医学研究中得到较广泛的运用,其分离培养技术已相对成熟,对其体外生长规律也有了较全面的认识。

成纤维细胞的原代培养可用酶消化法或组织块法,其中组织块法又因其操作简便、条件易于控制而应用更为普遍。通常,以酶消化法获得的成纤维细胞悬液在接种后5~10min即可见细胞以伪足初期附着,与底物形成一些接触点;然后细胞逐渐呈放射状伸展,胞体的中心部分亦随之变扁平;最快者大约在接种后30min,细胞贴附底物即较为完全,呈现成纤维细胞的形态。采用组织块法则大约在接种后2~3天[2,3]到1周左右,在接种的皮肤组织块周围长出细胞。待细胞融合成片,铺满培养容器底壁大部分时即可进行传代。一般都采用胰蛋白酶(trypsin),将成纤维细胞从底壁消化下来后分瓶作传代培养。成纤维细胞在体外培养条件下能保持良好的分裂增殖能力。细胞分裂时变为球形;分裂后又平铺在附着物的表面成为有突起的扁平细胞。体外培养的成纤维细胞,其生命期限与物种等因素有关。例如:人胚成纤维细胞约可培养50代;恒河猴皮肤成纤维细胞能传代超过40代;鸡胚成纤维细胞则只有少数能培养30代;而小鼠成纤维细胞多数只能生长8代左右。另外,从老年个体取得的成纤维细胞的寿命要比取自年轻者短。由于在细胞传代和进行体外培养时,细胞的生物学特性会逐渐发生一些不同于体内的改变,故通常只将前10代视这正常细胞,可在此时将生长旺盛的成纤维细胞冻存起来,以备将来复苏使用,这在将培养的细胞由动物实验向人体实验过渡的过程中必须给予足够的重视。

6 成纤维细胞在体外培养中的成骨作用

徐荣辉[2]等通过体外培养家兔皮肤成纤维细胞发现,经传代培养的成纤维细胞至第8天时,其细胞集落中有不透光的骨小结节形成;到37天时,小结节扩大、延伸,形成骨小梁样结构。经活体四环素标记显示,所形成的结构为新生骨组织。他们还注意到,成纤维细胞在参与骨形成的过程中并无分化为成软骨细胞或成骨细胞的明确迹象,故推测并未发生此种分化,而成纤维细胞之所以能发挥成骨作用,很可能是受某些诱导因素作用的缘故。他们认为用以培养成纤维细胞的中厚皮片中混杂存在的上皮细胞(或/与内皮细胞),可能是诱导成纤维细胞形成骨组织的一种诱导因素。而Friedenstein[6,19]较早的实验则认为,属于诱导性骨祖细胞之一种的成纤维细胞,在上皮细胞(如膀胱上皮)或脱钙骨基质等诱导因子作用下,可以分化为成骨细胞进而形成骨组织。邓廉夫[20]等分离培养取自关节内的损伤性和晚期骨关节炎性的滑膜细胞,发现其中的成纤维细胞样细胞增殖迅速,呈束状或交叉铺展并可形成多层结构,细胞表面有其分泌物形成的不透光结节,经四环素标记、ARS(Alizarinred s)和甲苯胺蓝(Toluidine blue)染色,显示结节为新生骨组织。在缺乏常规的诱导因子——上皮细胞的作用下,取自滑膜的成纤维细胞样细胞也能发生成骨作用,他们推测是在关节损伤后或骨关节炎的发生与发展过程中,改变的关节微环境(如TNF样活性物质增多等)可能会触发滑膜的成纤维细胞与骨形成相关的多基因表达,使其向成骨型细胞分化,这样,滑膜成纤维细胞样细胞在体内时即已具备成骨性能,故在培养条件下可发挥成骨作用。Dodda[21]等的研究则指出,变性滑膜细胞多种细胞因子和生长因子的表达、关节液内多种细胞因子的出现,可能是滑膜成纤维细胞样细胞成骨表型表达的重要始动因素。这些相关的研究表明成纤维细胞成骨表型的表达可能存在着较复杂的调控机制,而其诱导因素也是多样的。

为获取大量具有成骨表型的成纤维细胞并了解其转化机制,邓廉夫[22]等将分离纯化的人皮肤成纤维细胞置于加有不同浓度EGF、IL-6、TNF-α、BMP-2的培养液中进行体外培养,采用生物化学、组织化学和电镜观察等方法检测成纤维细胞成骨性标记物的形成状况,发现TNF-α和BMP-2联合应用,可使成纤维细胞分泌碱性磷酸酶、骨钙素及胶原纤维的量增加;成纤维细胞可由梭形向圆形或多突形转化,蛋白分泌旺盛;细胞外基质中,丰富的胶原纤维定向或杂乱排列,其间散在较多的钙颗粒;细胞可重叠交织形成多层结构,其表面有分泌颗粒和钙盐结晶堆积,并不断融合扩大成骨结节,表明TNF-α和BMP-2可以诱导成纤维细胞成骨。但这种完全由成纤维细胞经诱导而形成的骨组织,在缺乏典型的成骨细胞参与下是否能在体外或植入体内后经改建成为成熟的板层骨及其改建过程如何?仍有待进一步研究。

7 展望

尽管成纤维细胞受哪些因素诱导可以产生成骨作用、这些因素的诱导方式及其机制如何以及成纤维细胞在骨形成中是否分化为成骨细胞等等问题尚未完全解决,但成纤维细胞经诱导可以形成骨组织这一现象已逐渐为广大科学工作者所接受。由于成纤维细胞直接参与了骨折愈合过程中纤维性骨痂的形成,其自身又具备被诱导成骨的能力,可以设想,利用成纤维细胞分布广泛、取材方便、对机体损伤较小、体外培养容易成活、增生繁殖较快等较其它具有成骨作用的细胞(如骨膜成骨细胞、骨髓基质细胞等)优越之处,在体外大量培养扩增成纤维细胞,并施以有效的诱导因素(如上皮细胞、TNG-α和BMP等)使其具备成骨效能,然后与合适的生物材料载体复合,同时使该复合体在体外或体内保持良好的成骨能力并进行一定程度的成骨,则有望获得具有一定的生物力学支撑强度而成骨作用又保持活跃的“活骨”复合体,用以替代自体骨或异体骨回植体内治疗难以自身修复的较大的骨缺损,这无疑将为骨缺损的修复治疗开辟一条新的有辉煌前景的道路。在组织工程技术和生物材料科学已有较大发展的今天,这一设想是极有可能实现的。当然,从目前所处的实验阶段过渡到临床应用尚有很大一段距离,需要解决的问题还很多,而且随着研究的展开和深入,问题可能还会越来越多,但这确实是一项很有临床应用价值和社会、经济效益的重大课题,值得广大基础医学工作者和临床科研人员为之而努力。

参考文献

[1]温广明,徐达传.成骨细胞的成骨作用及复合移植研究进展.中国临床解剖学杂志,1999,17(4):374

[2]徐荣辉,饶寒敏,朱雅萍,等.皮肤成纤维细胞在体外培养中的成骨作用.中华外科杂志,1994,32(3):190

[3]饶寒敏,徐荣辉,朱雅萍,等.家兔皮肤成纤维细胞在体外培养中的成骨作用(显微录象与四环素标记观察).中华骨科杂志,1995,15(5):295

[4]柴本甫,汤雪明.实验性骨折愈合的超微结构研究。中华外科杂志,1979,17:368

[5]裘世静,柴本甫.不同接骨板固定后骨折修复的超微结构研究.中华外科杂志,1990,28(2):88

[6]Friedenstein a.Precursor cells of mechonocytes. In Rev Cytol, 1976,47(3):327

[7]Abdin m, Friedenstein AY. Electron microscopic study on bone induction by the transitional epithelium of the bladder in guinea pigs. Clin Orthop, 1972,82(2):182

[8]Brighton cT, Lorich DG, Kupcha R, et al. The pericyte as a possible osteoblast progenitor cell. Clin Orthop,1992,275(2):287

[9]柴本甫,汤雪明.实验性骨折愈合的超微结构研究-成纤维细胞成骨作用的电子显微镜观察.中华实验外科杂志,1985,2(4):157

[10]Chai bF, Zhu XL, Yang LF,et al. Ultrastructural investition of experimental fracture healing-Ⅲ:electron microscopic observation on deposition of calcium salt crystals. Clin Med J,1979,92(10):668转贴于

[11]Tang xM, Chai BF. Ultrastructural investition of experimental fracture healing-Ⅳ:electron microscopic observation on transformation and fate of fibroblast and chondrocytes. Clin Med J,1981,94(5):291

[12]柴本甫,汤雪明,李 慧.实验性骨折愈合中钙化骨化的超微结构观察(兼论成纤维细胞的成骨作用).中华创伤杂志,1995,11(1):4

[13]柴本甫,汤雪明,李 慧.骨折二期愈合过程中的成纤维细胞成骨作用.中华骨科杂志,1996,16(4):245

[14]Mckibbin b. The biology of fracture healing in long bone. J Bome Joint surg(Br),1978,60(1):150

[15]Sampath tK, Desimone DP, Reddi AH. Extracellular bone matrix-derived growth factor. Exp cell Res,1982,142(1):460

[16]马真胜,胡蕴玉,吕 荣,等.骨形态发生蛋白在闭合性长骨骨折愈合中的作用.中华实验外科杂志,1997,14(1):50

[17]Onishi t, Ishidou Y, Nagamine T, et al. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family memebrs and a BMP typeⅡ receptor during fracture healing in rast. Bone, 1998,22(6):605

[18]司徒镇强,吴军正,主编.细胞培养.西安.世界图书出版公司,1996.7~12

[19]Friedenstein a. Induction of bone tissue by transitional epithelium. Clin Orthop, 1968,59:21

篇4

【关键词】 莱菔子水溶性生物碱;ApoE基因敲除小鼠;抗氧化

莱菔子是十字花科植物萝卜(Raphanus sativus L.)的干燥成熟种子,在《日华子本草》中记为萝卜子。其性味辛、甘、平,归肺、脾、胃经,主要功效为降气化痰,消食除胀。《本草纲目》记载:“莱菔子长于利气”。莱菔子水溶性生物碱以芥子碱(Sinapine)为主要成分,广泛存在于十字花科植物中的一种季胺盐物质。本实验通过观察莱菔子水溶性生物碱对载脂蛋白E(ApoE)基因敲除小鼠血清一氧化氮(NO)、超氧化物歧化酶(SOD)、丙二醛(MDA)影响来探讨莱菔子水溶性生物碱抗动脉粥样硬化(AS)作用的机制。

1 材料与方法

1.1 实验材料

1.1.1 药品制备

莱菔子水溶性生物碱,由吉林省中医中药研究院新药中心制备。

1.1.2 实验动物

北京维通利华公司提供雄性ApoE基因敲除小鼠75只,雄性C57BL/6J小鼠15只,13周龄,体重(22±2)g,清洁级。

1.1.3 主要仪器及试剂

电子记重秤AWH(SI)-2.5 kg:国产;BD/BC518 -20℃冰箱:国产;4℃冰箱:国产;Q/IFGM0182000低温高速离心机:德国;HH·W21·600电热恒温水浴箱,小型台式离心机:上海医疗器械厂;PERLONG;pus2018 半自动生化分析仪:北京普朗新技术有限公司。

1.1.4 基础饲料

玉米粉26.0%,面粉29.0%,豆粕28.0%,磷酸氢钙1.4%,石粉1.6%,鱼粉5.0%,骨粉5.0%,盐1.0%,多种维生素1.5%,多种微量元素1.5%。

1.1.5 肥甘饲料

由10.0%猪油,2.0%胆固醇,20.0%蔗糖,5.0%蛋黄粉,0.2%胆盐,0.2%甲基硫氧嘧啶,62.6%基础饲料配制而成。

1.2 方法

1.2.1 分组及给药

将ApoE基因敲除小鼠(高脂饮食)随机分为5组,每组15只。模型组,每日灌服饮用水;莱菔子水溶性生物碱高剂量组90 mg·kg-1·d-1,莱中剂量组60 mg·kg-1·d-1,低剂量组30 mg·kg-1·d-1(分别相当于生药60、40、20 g/kg),血脂康组0.2 g·kg-1·d-1,另取10只C57BL/6J大鼠作为空白对照组。空白对照组及模型组给等体积蒸馏水灌胃。给药时间为8 w。

1.2.2 样本的采集及检测

给药8 w后,于末次给药后摘眼球取血处死动物。分离血清后,随机选取6个样本进行检测。NO试剂盒、SOD试剂盒、MDA试剂盒均由南京建成生物工程研究所提供。

1.3 统计学方法

运用SPSS13.0软件进行计算,实验数据均采用x±s表示,组间比较采用方差分析。

2 结果

治疗8 w后,各组小鼠血清NO、SOD及MDA变化比较,见表1。表1 各组治疗8 w后各项指标变化比较(略)

3 讨论

在AS的发生发展过程中伴随着机体氧化应激反应增强,氧自由基(OFR)产生增加,而机体具有抗氧化能力的SOD、谷胱苷肽过氧化物酶(GPX)活性及NO含量等明显降低,即抗氧化酶系的保护作用减低。OFR对血管内皮恭能的影响主要表现在〔1〕:①损伤内皮依赖的血管扩张。由于O-2灭活NO、GPX缺失等造成血管内皮功能障碍。②诱导内皮细胞凋亡。内皮损伤或暴露于O-2和H2O2诱导的细胞凋亡,以致AS发生和促凝血状态。③诱导内皮细胞黏附分子表达。④血管新生。除了对胚胎发育和创伤修复发挥生理作用外;在病理方面其可参与内皮细胞迁移、增殖和血管形成;此外,还参与血管VSMC的生长,迁移。

NO能够与脂氧化自由基直接反应而干扰低密度脂蛋白(LDL)的氧化过程,从而阻止氧化LDL(oxLDL)的生成及对内皮细胞的破坏。SOD是一种广泛存在生物体内的金属酶类。以O2为底物,是清除超氧离子自由基的特效酶类。脂质氧化应激的产物为MDA。本实验结果表明,各治疗组均能增加小鼠血清NO含量;提高血清SOD活性,降低MDA的含量,其调节作用随着剂量的增加而增强,呈剂量依赖性。莱菔子高剂量组

与血脂康组比较无显著差异。

NO是一种理想的抗AS因子,提高NO浓度可以改善血管内皮功能〔2〕。SOD又是清除氧自由基的专一酶,因此,莱菔子水溶性生物碱可能通过这一机制而发挥抗氧化和保护内皮细胞的作用。

篇5

【Abstract】 AIM: To observe the effects of the demethylating agent, 5Aza2′deoxyctidine (5AzaCdR), on the proliferation, cell cycle, apoptosis and xaf1 mRNA expression of stomach cancer BGC823 cells. METHODS: The proliferation of BGC823 cells treated by different concentrations of 5AzaCdR was detected by MTT assay. Assessment of cell cycle and apoptosis were performed by flow cytometry (FCM); the change of xaf1 mRNA expression was semiquantified by RTPCR before and after 5AzaCdR treatment. RESULTS: The growth inhibitory effects on BGC823 cells were observed in a dosedependent manner after exposure to 5AzaCdR at different concentrations (1×103, 5×103, 10×103 nmol/L) for different time. FCM analysis showed that the apoptosis rates in BGC823 cells [(4.53±0.21)%, (8.11±1.01)%, (11.56±0.86)%] increased significantly after exposure to 5AzaCdR for 72 h as compared with the control group [(0.51±0.01)%, P

【Keywords】 5AzaCdR;xaf1;BGC823;methylation;proliferation;apoptosis

0 引言

凋亡抑制蛋白因子家族(IAP)的成员在结构上具有1至3个高度保守的杆状病毒凋亡抑制因子重复序列(BIR)结构域[1],在肿瘤的增殖异常及对抗肿瘤药物耐受形成中发挥了重要作用. X染色体相关凋亡抑制蛋白(XIAP)是IAP中抑制Caspase活性最强的成员. XIAP相关因子1(XAF1)是一个新近发现可以拮抗XIAP抗凋亡作用的蛋白,它可以逆转XIAP对细胞的保护. XAF1在多种肿瘤细胞和组织中存在低表达或表达缺失,XAF1的基因沉默与其启动子高甲基化明显相关[2]. 我们采用5AzaCdR对胃癌细胞株进行处理, 检测xaf1基因表达,并分析肿瘤细胞生物学行为变化,以期进一步探讨胃癌的发生机制及治疗的新方法.

1 材料和方法

1.1 材料 胃癌BGC823细胞株(兰州大学病理解剖学教研室);RPMI1640培养液(美国Gibco公司);胎牛血清(兰州民海生物技术有限公司);5AzaCdR(美国Sigma公司);配制5AzaCdR为1 mol/L的母液,-20℃保存,使用时用RPMI1640稀释为工作浓度. Tap酶(上海生工生物工程技术有限公司);酶联免疫检测仪(BioTek公司);Trizol(Invitrogen公司);UV3000紫外分光光度仪(上海美谱达公司);流式细胞仪(Beckman Coulter公司).

1.2 方法

1.2.1 细胞培养 细胞贴壁生长于RPMI1640培养液中,内含100 mL/L胎牛血清、1×105/L青霉素、100 mg/L链霉素和2 mmol/L L谷氨酰胺,置于37℃ 50 mL/L CO2的饱和湿度箱中培养,每3~4 d消化传代1次. 传代时,常规消化BGC823细胞,置于75 mm培养瓶中,培养24 h后分别用含1×103,5×103,10×103 nmol/L 5AzaCdR的完全培养液连续培养24,48和72 h后弃去药液,用完全培养液继续培养24 h后进行实验. 以同体积磷酸盐缓冲液PBS(pH 7.4)处理的细胞作为对照组. 培养过程中使用相差显微镜观察细胞形态的变化.

1.2.2 MTT法绘制细胞生长曲线 取对数生长期细胞,常规消化后按每孔2×103个(100 μL)接种于6块96孔培养板中,过夜贴壁后弃完全培养液,分别加入含1×103,5×103,10×103 nmol/L 5AzaCdR药液的完全培养液,每孔100 μL,每组设3个复孔;对照组加入等量PBS. 每日取出1板加入5 g/L MTT液10 μL,37℃孵育4 h后加DMSO 150 μL,振荡器振荡10 min充分溶解结晶,在酶联免疫检测仪测定各孔A470 nm值,求其平均值,以A470 nm值为纵坐标,时间(d)为横坐标绘制生长曲线,计算细胞增殖抑制率(cellular proliferation inhibition rate,CPIR). CPIR(%)=(1-实验组A470 nm均值/对照组A470 nm均值)×100%.

1.2.3 RTPCR检测xaf1基因mRNA表达 取对数生长期BGC823细胞,药物处理方法同1.2.1. 收集细胞,Trizol一步反向法抽提细胞总RNA,在紫外分光光度仪上测定吸光度值,鉴定RNA纯度,A260 nm/A280 nm在1.8~2.0之间. PCR引物设计及反应条件如下:xaf1:预期产物片段大小为120 bp,退火温度:56℃;Sense:5′TGGGTGTAGGATTCTCCAGG3′,Antisense:5′GGTTTGCCCAAGGACTACAA3′. 内参照GAPDH:预期产物片段大小为456 bp,退火温度:52℃;Sense:5′TTCTCCCCATTCCGTCTTCC3′,Antisense:5′GTACATGGTATTCACCACCC3′,上述引物由大连宝生物有限公司提供合成. 两步法RTPCR:① 逆转录反应:20 μL反应体系含:2 μg模板RNA,0.5 g/L Oligo(dT)18,RNasefree ddH2O,5×Reaction Buffer,2×107 U/L RNase Inhibitor,10 mmol/L dNTP Mix,2×107 U/L AMuLV RT. 70℃ 5 min,37℃ 5 min,37℃ 60 min,70℃ 10 min,4℃保存. ② 聚合酶链反应:50 μL反应体系含:cDNA 1 μL,10×buffer 5 μL,25 mmol/L MgCl2 3 μL,2.5 mmol/L dNTP 5μL,Tap酶0.5 μL,上下游引物各1 μL,去离子水补至50 μL,GAPDH作内参照. PCR仪扩增条件:94℃变性4 min,按94℃ 30 s,52℃(或54℃)40 s,72℃ 45 s,进行35个循环,最后一个循环72℃延伸5 min. PCR产物经20 g/L琼脂糖凝胶电泳,凝胶图像分析系统分析,以xaf1和GAPDH吸光度比值相对定量.

1.2.4 细胞周期和凋亡率检测 取对数生长期BGC823细胞,药物处理方法同1.2.1. 收集培养细胞,PBS洗2次,调整细胞密度为1×109个/L,700 mL/L冷乙醇-20℃固定24 h,加RNaseA至终浓度1 g/L,37℃温育30 min,加碘化丙啶至终浓度50 g/L,1 h内测定. 以流式细胞仪进行细胞周期分析和凋亡率的检测.

统计学处理:实验数据以x±s表示,采用SPSS 11.5软件进行分析,不同组间率的比较采用单因素方差分析.

2 结果

2.1 5AzaCdR对细胞增殖的影响 分别用1×103,5×103,10×103 nmol/L 5AzaCdR处理6 d后,BGC823细胞的生长增殖活性均有明显抑制,3个试验组的CPIR值分别为(22.36±0.68)%,(32.12±1.27)%和(41.34±1.62)%,与对照组相比差异显著(P

bP

图1 BGC823细胞经5AzaCdR处理前后的生长曲线(略)

2.2 5AzaCdR对细胞中xaf1基因mRNA表达的影响 5AzaCdR处理前BGC823细胞系的xaf1基因mRNA不表达,在经5×103,10×103 nmol/L 5AzaCdR处理后,xaf1基因mRNA重新表达,10×103 nmol/L的5AzaCdR处理组尤为明显,在用药48,72 h后,该基因表达呈明显上升的趋势(图2,3).

2.3 5AzaCdR对细胞周期的影响 BGC823细胞经1×103,5×103,10×103 nmol/L 5AzaCdR处理72 h后,S期的细胞数量逐渐增加,G2/M期细胞数下降,凋亡率明显增加 (表1).

M:50 bp DNA Ladder maker D512A;1:对照组;2~4:5×103 nmol/L 5AzaCdR分别作用24,48和72 h;5~7:10×103 nmol/L 5AzaCdR分别作用24,48和72 h.

图2 BGC823细胞经5AzaCdR处理前后GAPDH mRNA的表达(略)

M:50 bp DNA Ladder maker D512A;1:对照组;2~4:5×103 nmol/L 5AzaCdR分别作用24,48和72 h(相对定量值分别为0.22,0.32,0.37);5~7:10×103 nmol/L 5AzaCdR分别作用24,48和72 h(相对定量值分别为0.90,0.98,1.31).

图3 BGC823细胞经5AzaCdR处理前后xaf1 mRNA的表达(略)

表1 BGC823细胞经5AzaCdR处理72 h后细胞周期的变化(略)

aP<0.05, bP<0.01 vs对照.

3 讨论

DNA甲基化是由S腺苷甲硫氨酸(SAM)作为甲基供体,在细胞内甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,在胞嘧啶(C)的第五位碳原子上加上甲基基团,变成5甲基胞嘧啶(5mC)的化学修饰过程[3]. 近期研究表明,多种人类肿瘤在发展过程中表现异常DNA甲基化模式,常见为甲基化酶水平提高、整个基因组范围甲基化减弱以及局部甲基化水平增高3种,以局部甲基化水平增强较多见[4]. xaf1基因定位于染色体17p13.2位点,研究表明,xaf1基因在多种肿瘤细胞株以及肝癌[5]、结肠癌[6]、黑色素细胞瘤[7]组织中表达降低,存在转录抑制现象,现已证明xaf1基因表达沉默与5′区域CpG岛异常高甲基化相关,转录过程中调控区域的CpG岛高甲基化导致xaf1基因表遗传修饰而失活. 我们采用不同浓度(5×103,10×103 nmol/L)的特异性DNMT抑制剂5AzaCdR,对体外培养的胃癌BGC823细胞进行干预,RTPCR结果显示在5AzaCdR作用前,xaf1 mRNA不表达,而在5AzaCdR作用后,xaf1 mRNA又重新表达,表达强度呈时间和剂量依赖关系,表明DNA甲基化与基因遗传学改变不同,基因的缺失、突变等遗传学改变是不可逆的,而甲基化的DNA核苷酸序列未发生改变,仅通过个别碱基的修饰来影响基因转录,因而是可逆的[8]. 因此我们通过5AzaCdR人为的干预拮抗表遗传学改变,诱导因表遗传学改变而失活的xaf1基因表达,为去甲基化治疗肿瘤提供了理论基础.

凋亡在细胞增殖、肿瘤形成和发展中也起调控作用[9]. 我们应用不同浓度(1×103,5×103,10×103 nmol/L)5AzaCdR诱导胃癌BGC823细胞后,MTT结果显示:细胞增殖受到明显抑制;流式细胞仪细胞周期分析可见S期的细胞数逐渐增加,G2/M期细胞数下降,同时细胞凋亡率明显增加呈时间和浓度依赖关系. 这一结果显示去甲基化后能使细胞阻滞于S期,而使得进入G2/M期的细胞减少,由此推断5AzaCdR的去甲基化作用可通过影响细胞周期而抑制胃癌细胞的增殖;同时xaf1基因去甲基化后重新表达,它可直接结合并抑制XIAP对caspase活性的抑制作用从而发挥诱导凋亡作用[2],xaf1也是一种新的干扰素(IFN)诱导基因,其介导了IFN诱导凋亡的作用,并显著增强了肿瘤坏死因子相关凋亡诱导配体(TRAIL)诱导肿瘤细胞凋亡的作用[10].

参考文献

[1] Deveraux QL, Reed JC. IAP family proteinssuppressors of apoptosis[J]. Genes Dev, 1999, 13(2):239-252.

[2] Byun DS, Cho K, Ryu BK, et al. Hypermethylation of XIAPassociated Factor 1, a Putative Tumor Suppressor Gene from the 17p13.2 Locus, in Human Gastric Adenocarcinomas[J].Cancer Res, 2003, 63(4):7068-7075.

[3] Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science, 2001, 293(5532):1068-1070.

[4] Momparler RL, Bovenzi V. DNA methylation and cancer[J]. Cell Physiol, 2000, 183(2):145-154.

[5] Sakemi R, Yano H, Ogasawara S, et al. Xlinked inhibitor of apoptosis (XIAP) and XIAPassociated factor1 expressions and their relationship to apoptosis in human hepatocellular carcinoma and noncancerous liver tissues[J]. J Oncol Rep, 2007, 18(1):65-70.

[6] Chung SK, Lee NG, Rvu BK, et al. Frequent alteration of XAF1 in human colorectal cancers: Implication for tumor cell resistance to apoptotic stresses[J].Gasteoenterology, 2007,132(7):2459-2477.

[7] Reu FJ, Bae SL, Cherkasskv L, et al. Overcoming resistance to interferoninduced apoptosis of renal carcinoma and melanoma cells by DNA demethylation[J]. Clin Oncol, 2006, 24(23):3771-3779.

[8] Murakami J, Asaumi J, Maki Y, et al. Effects of demethyhting agent 5aza2deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines[J]. Oral Oncel, 2004, 40:597-603.

友情链接