你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
咨询热线:400-838-9661
当前位置: 首页 精选范文 光伏发电的趋势

光伏发电的趋势范文

发布时间:2024-03-06 14:51:52

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇光伏发电的趋势范例,将为您的写作提供有力的支持和灵感!

光伏发电的趋势

篇1

0 引言

太阳能作为一种巨量可再生能源,每天到达地球表面的辐射能大约等于2.5亿桶石油。近三十年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。目前,对这一洁净能源的利用正在进入商业化成长期,国际上称之为“阳光产业”。

1 我国发展光伏电的资源优势

我国太阳能资源十分丰富,据统计理论储量达每年 17000 亿吨标准煤。我国大多数地区平均日辐射量达每平方米 4 千瓦时以上,辐射量每平方米高达 7 千瓦时以上。 通过利用太阳能发电我国已为内蒙古、甘肃、新疆、、青海和四川等地共 14 万无电用户解决了用电问题。

2 太阳能光伏产业发展现状

2.1 发展势头迅猛

在各国政府对再生资源的重视和大力支持下,太阳能光伏产业得到了快速的发展。有数据显示,2013年,全球光伏新增装机容量约为27.5GW,较上年的18.1GW相比,涨幅高达52%,全球累计安装量超过67GW。全球近28GW的总装机量中,有将近20GW的系统安装于欧洲,但增速相对放缓,其中意大利和德国市场占全球装机增长量的55%,分别为7.6GW和7.5GW。2013年以中日印为代表的亚太地区光伏产业市场需求同比增长129%,其装机量分别为2.2GW,1.1GW和350MW。此外,在日趋成熟的北美市场,去年新增安装量约2.1GW,增幅高达84%。

2.2 有晶体硅依然为电池材料主体

太阳能光伏电池材料主要有晶体硅材料,主要分为单晶硅电池、多晶硅电池和薄膜电池三种。单晶硅电池技术成熟,光电转换效率高,单晶硅电池的光电总转换效率可以达到20%-24%,是目前普遍使用的光伏发电材料。但其生产成本较高,技术要求高;多晶硅电池成本相对较低,技术也成熟,但光电转换效率相对较低,多晶硅光电池的转换效率最高才达18.6%,与单晶硅相比多晶硅的转换效率少多了;而薄膜电池是一种可粘接的薄膜,有以下优势:(1)生产成本低,所以可以大批量生产;(2)发光效率更好地利用太阳能,但目前其在技术稳定性和规模生产上均存在一定的困难。

随着技术的进步,目前CdTe、CIS等薄膜光伏电池已逐步进入市场,但现在只占市场的9.3%,随着薄膜光伏电池技术不断进步,薄膜光伏电池的市场份额将快速增长相对而言有更大的发展空间,未来薄膜电池会有更好的发展前景。

3 太阳能光伏发展的趋势

3.1 提高光电转换效率,降低电池材料成本

3.1.1 提高光电转换效率的材料

在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池,从理论研究看,在阳光集中辐照时,利用希泽光电效应可能达到的光电转换效率的极限值为63.2%,但只有使用理想的材料才能达到。若使晶体结构中形成的缺陷能准确无误地出现在所需要的地方,实际上也很难做到。

德国科学家正在进行这方面的实验,他们在单晶硅中掺入稀土金属元素铒(Er)来制造太阳电池,以测试它对转换效率可能产生的影响,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一个13nm厚的氧化物钝化层与两层减反射涂层相结合。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%。

3.1.2 降低目前主流光伏电池材料的成本

降低硅材料用量是降低价格的主要途径。目前,太阳电池材料主要以硅材料为主,但是硅材料还面临着许多问题,多晶硅产业上游环节技术壁垒高、投入大、量产时间长、市场风险高,因此不仅要寻找更为方便易行的硅材料提纯技术以扩大生产,而且要采用新技术,在获得同样电能的基础上减少硅材料用量。而与晶体硅电池相比,薄膜电池在效率与成本方面改善的空间更大,多晶硅价格的上涨会增加薄膜电池的成本优势。

3.2 提高光伏发电的面积

3.2.1 提高建筑光伏发电面积

大量的建筑屋顶都是没有充分的利用,应建立建筑相结合的并网光伏系统,主要形式是城市并网发电的屋顶并网光伏系统。在我国东部沿海经济发达地区,用电量大,对光伏发电能力需求强;同时目前我国光伏产业主要集中在东部省份,光伏产业对当地经济的发展起着重要作用,在城市建设屋顶并网发电系统(BAPV)及光伏建筑一体化集成光伏系统(BIPV),对于城市的供电与节能起到很好的作用。《可再生能源中长期发展规划》提出,到2020年安装建筑光伏2万套,累计安装100万千瓦。

3.2.2 提高地面光伏发电

在世界各地的沙漠、戈壁、荒漠都可以大面积的利用,比如在我国有约264万平方公里的荒漠资源,其中干旱区荒漠化土地面积为250多万平方公里;主要分布在光照资源丰富的西北地区,其年总辐射在1600-2300千瓦时/平方米。在内蒙古的鄂尔多斯、甘肃的河西走廊绿洲边缘、新疆的塔克拉玛干沙漠边缘、晋西北及陕北等靠近电力线路和负荷中心,还有很好的旅游资源,可以作为大型并网光伏项目的起步区域。随着电力输送技术和储能技术的发展,大规模沙漠、戈壁、荒漠光伏电站将必然成为未来的电力基地。

3.2.3 光热发电

太阳能光热发电是指利用大规模阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电的目的。采用太阳能光热发电技术,避免了昂贵的硅晶光电转换工艺,可以大大降低太阳能发电的成本。而且,这种形式的太阳能利用还有一个其他形式的太阳能转换所无法比拟的优势,即太阳能所烧热的水可以储存在巨大的容器中,在太阳落山后几个小时仍然能够带动汽轮发电。光热发电产业布局应当注重资源优势、优势的合理利用,有条件的可综合利用多种可再生能源,互补发电,甚至也可考虑与热电站联合运行。

4 我国光伏发电发展中需要解决的突出问题

4.1 经济性问题(下转第293页)

(上接第265页)目前,太阳能电池的成本为整个系统成本的主要部分。降低硅材料的生产费用,是降低太阳电池成本的关键。 多晶硅电池的材料成本比单晶硅电池的材料成本低,应作为研究的重点。主要研发的问题有:多晶硅材料制备的新技术、快速掺杂表面处理技术、提高硅片质量的新技术新工艺等。 最大功率点跟踪控制技术的日益完善,也会为光伏发电提供更强的竞争实力。

4.2 污染问题

多晶硅行业是个重污染的行业, 国内尾气回收工艺不完善,面临愈来愈大的环保压力。主要表现为生产多晶硅的副产品――四化硅却是高毒物质。用于倾倒或掩埋四氯化硅的土地将变成不毛之地,草和树都不会在这里生长。 它具有潜在的极大危险,不仅有毒,还污染环境。

5 结束语

总之,我国的太阳能光伏产业机遇和挑战共存。为使我国的光伏产品在世界舞台上有竞争性,首先要发挥市场对资源的优化配置作用,同时政府要制定强有力的法规和产业政策。我们坚信在市场和政策的联动作用下,我国的光伏技术必将走在世界的前列。

【参考文献】

篇2

前言

太阳能是人类取之不尽用之不竭的可再生绿色能源,不产生任何的环境污染。我国76%的国土光照充沛,光能资源分布较为均匀;与水电、风电、核电等相比,太阳能发电没有任何排放和噪声,应用技术成熟,安全可靠(图1)。进入21世纪,中国光伏行业逐渐发展起来,中国具有如无锡尚德、江西LDK、常州天合、天威英丽、浙江昱辉等一批世界级光伏企业以及世界最大的太阳能光伏制造基地,但是由于成本较高,中国95%的太阳能产品只能出口到发达国家。近年来,在国家大力倡导发展新型能源的大背景下,大阳能光电研发是近些年来发展最快、最具潜力的研究领域,随着成本问题将逐步解决,加之国家政策支持,中国太阳能市场将变得很大。

图1 能源消费组成展望图

1、光伏发电的基本原理以及优势

光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。在阳光照射下,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”,而这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护就可形成大面积的太阳电池组件,再配合功率控制器和逆变器等部件就形成了光伏发电装置。

光伏发电作为新型能源与常用的火力发电系统相比,具有以下优势:

a)无枯竭危险。太阳能每秒钟到达地面的能量高达80×104kW,如果把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍;

b)安全环保,无噪声,无公害。由于光伏电路是利用光能和电能之间的转化,故其无污染物的排放;

c)采集太阳能的地点的地理位置要求不高,不受资源分布地域的限制。太阳能电池板只要能接受光照就能产生电能,所以可以安装在屋顶或者是始终能接受到光照的墙壁,充分利用空间资源;

d)可靠稳定寿命长,安装维护简便,适用范围广,就算一般家庭也可以利用太阳能发电。

2太阳能光伏产业应用现状

1)在各国政府对再生资源的重视和大力支持下太阳能光伏产业得到了快速的发展,2011年,全球光伏新增装机容量约为27.5GW,较上年的18.1GW相比,涨幅高达52%,全球累计安装量超过67GW。全球近28GW的总装机量中,有将近20GW的系统安装于欧洲,但增速相对放缓,其中意大利和德国市场占全球装机增长量的55%,分别为7.6GW和7.5GW。2011年以中日印为代表的亚太地区光伏产业市场需求同比增长129%,其装机量分别为2.2GW,1.1GW和350MW。此外,在日趋成熟的北美市场,去年新增安装量约2.1GW,增幅高达84%。

图2 光伏产业的发展

其中中国是全球光伏发电安装量增长最快的国家,2011年的光伏发电安装量比2010年增长了约5倍,2011年电池产量达到20GW,约占全球的65%。截至2011年底,中国共有电池企业约115家,总产能为36.5GW左右。其中产能1GW以上的企业共14家,占总产能的53%;在100MW和1GW之间的企业共63家,占总产能的43%;剩余的38家产能皆在100MW以内,仅占全国总产能的4%。规模、技术、成本的差异化竞争格局逐渐明晰。国内前十家组件生产商的出货量占到电池总产量的60%。

2)太阳能光伏电池材料主要有晶体硅材料,主要分为单晶硅电池、多晶硅电池和薄膜电池三种。单晶硅电池技术成熟,光电转换效率高,单晶硅电池的光电总转换效率可以达到20%~24%,是目前普遍使用的光伏发电材料。但其生产成本较高,技术要求高;多晶硅电池成本相对较低,技术也成熟,但光电转换效率相对较低,多晶硅光电池的转换效率最高才达18.6%,与单晶硅相比多晶硅的转换效率少多了;而薄膜电池是一种可粘接的薄膜,有以下优势:①生产成本低,所以可以大批量生产;②发光效率更好地利用太阳能,但目前其在技术稳定性和规模生产上均存在一定的困难。随着技术的进步,目前CdTe、CIS等薄膜光伏电池已逐步进入市场,但现在只占市场的9.3%,随着薄膜光伏电池技术不断进步,薄膜光伏电池的市场份额将快速增长相对而言有更大的发展空间,未来薄膜电池会有更好的发展前景。

表1 市场份额分析

在2000年以前中国的电力供应不是很紧张,2001年以后,在中国经济高速发展下,电力需求以每年超过20%的速度在增长,2003年在全国出现电力供远远少于求的严重现象,电力供应的紧张情况在以后的一段时间内很难缓解。可再生能源得到了中国政府的重视,在中国政府大力支持下已形成了完整的太阳能光伏产业链。截至2010年底,我国光伏发电装机规模达到60万千瓦,光伏新增并网容量为21.16万千瓦,累计并网容量为24万千瓦,较上年的2.5万千瓦,增长了960%。从产业布局上来看,国内的长三角、环渤海、珠三角及中西部地区业已形成各具特色的区域产业集群,并涌现出了无锡尚德、江西赛维、浙江昱辉等一批知名企业。2011年中国多晶硅产量达到7.8万吨,占全球比重约33%;国内产能结构中,成本低于35美元/千克的企业不足十家,约9.5万吨,其他40余家中小企业总产能近5万吨。

篇3

在能源和环境压力日益增加的背景下,推动分布式电源发展已成为世界各国促进节能减排、应对气候变化的重要措施之一。

1 分布式电源发展背景

分布式电源作为新能源的重要组成部分,以其独有的,与大电源、大电网有机统一、缺一不可,在一定程度上影响着电网未来的发展方向。

欧美发达国家以中低层的独立住宅为主发展屋顶光伏。我国光资源富集在西北和华北,其荒漠地区适宜集中式开发,主要包括:建筑屋顶和农牧区户用光伏。我国内陆城市则以高层建筑为主,发展条件不及欧美。

太阳能资源丰富,具有相当的开发和利用价值,本地多年平均太阳能总辐射为4200~5000MJ/m2,平均日照时数为1666.4~2280.9小时,多年日均水平面太阳辐射量3.67kWH/m2。它对改变地区能源结构、缓解地区用电压力、实现地区可持续发展具有重要意义。因此在内陆城市安装分布式光伏电站前景广阔。

2 本地分布式光伏发展现状

作为城区内推广分布式光伏发电项目有一定局限性,因为我国内陆城市则以高层建筑为主,在公用建筑屋顶进行光伏发电项目安装需要取得其他业主的同意,面积要求大,推广具有难度,而在工业园区发展分布式光伏项目有以下几个优点

一是充分利用了取之不尽、用之不竭、无污染且免费的太阳能;

二是充分利用工业园区内企业现有厂房、办公楼等建筑物闲置瓦面或屋顶安装太阳能电池板,建独立太阳能屋顶光伏发电装置,使有限的资源得以再次利用,无需新增土地,既节约了国土资源又节省了征地费用;

三是安装分布式光伏电站实现了自发自用,余电上网销售。对工业园区所属企业,不仅节约了电费,还能享受政府补贴,同时,用不完的电还能卖给电网实现创收,对降低企业运营成本具有明显的优势

四是利用当地丰富的太阳能来发电,从一定程度上缓解了地区用电压力,且不消耗燃料,不污染环境,还能够改善供电质量,调节峰电,保证电力供给。

从本地区工业园区已建的8个分布式光伏电站来看,尽管本地区属于太阳能资源相对较差的第四类地区,但设备运行情况良好,发电效率达到80%以上,表明分布式光伏发电系统技术成熟,达到了理论设计要求,与同等发电量的火电厂相比较,8个分布式光伏电站每年可节约标准煤712.66吨;减少碳排放总量1017.55吨;减少氮氧化物排放26.65吨;减少二氧化硫排放53.52吨;减少粉尘排放48.42吨;减少灰渣排放202.89吨等,有效地改善了人类生活的自然环境。

由于8个光伏电站项目都是充分利用工业园区企业现有厂房、办公楼等建筑物闲置瓦面或屋顶安装太阳能电池板,建光伏电站,使有限的资源得以再次利用,无需新增土地,既节约了国土资源又节省了征地费用,而作为关键部件的太阳能电池使用寿命长,寿命一般可达到25年以上。可见工业园区内的光伏电站具有较高的经济性;但是目前太阳能电池、电缆等材料成本相对较高,从一定程度上延长了投资回收期。

3 分布式光伏发电项目投运后管理

光伏电站投运后管理也很重要,虽然工业园区内建设,后期维护可以较为集中。分布式光伏维护主要在光伏组件的定期保养,由于分布式光伏电站暴露在露天环境中,外面没有任何保护,自然环境因素对分布式光伏电站质量会有较大影响。由此,分布式光伏电站的日常保养很必要,这直接关系到光伏电站使用寿命和发电效率。

对于设备性能来说,辐射强度和温度是影响组件效率的显著因素,带载率和工作电压是影响逆变器效率的显著因素;而对于系统效率来说,由于其具备季节性,环境温度、灰尘遮蔽是影响效率的显著因素。例如如果不注意清洁光伏板组件,有泥点污点,就容易产生热斑效应。所谓热斑效应,就是光伏板组件的串联电路上有部分被遮蔽,其发电量下降,会消耗其他部分产生的电能,成为一个负载。热斑效应会导致光伏板电池组件损坏甚至烧毁。定期对光伏电站组件进行清洗和检查,能明显提高光伏发电系统的效率

因此在光伏电站设计运维的整个生命周期中,都要对关键风险进行控制,这样才能降低度电成本,提高投资回报。

根据我国太阳能资源分布图及其太阳能辐射量五类地区划分来看,同类项目在我国适合在与内陆城市工业园区太阳能资源四类以上地区推广除四川、贵州两省外,其它地区均可大范围推广,前景广阔。

参考文献:

[1]李春华,刘维亭,姜文刚.户用独立式光伏发电系统研究[A].2011中国电工技术学会学术年会论文集[C].2011.

[2]徐亮,翟庆志,王宁.光伏发电系统中MPPT算法的研究与分析[A].纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C].2009

[3]黄维学,徐璞.聚光型光伏发电系统(CPV)的发展前景分析[A].通信电源新技术论坛2011通信电源学术研讨会论文集[C].2011.

[4]侯世英,房勇,孙韬,宋星. 混合储能方案平衡独立光伏发电系统功率变化[A].重庆市电机工程学会2010年学术会议论文集[C].2010.

[5]王景义.光伏发电系统的计算机辅助设计[A].中国太阳能学会2001年学术会议论文摘要集[C].2001.

[6]孟昭渊.独立光伏发电系统储能新方法[A].长三角清洁能源论坛论文专辑[C].2005.

[7] 辛煜,王智灵,何淼,陈宗海. 光伏发电系统中的直流变换器综述[A].第13届中国系统仿真技术及其应用学术年会论文集[C].2011

[8]黄护林,陈昊.一种新型的风力-太阳能光伏互补分布式发电[A].长三角清洁能源论坛论文专辑[C].2005.

[9]罗雪莲.中国光伏发电的发展及前景[A]. 贵州省电机工程学会2007年优秀论文集[C].2008

篇4

1、导言

环境问题、经济问题、资源问题等是我国发展急需调整的问题,同时随着环境污染情况的加重以及燃料资源的日益缺乏,使人们逐渐认识到再生能源发电的重要性,如风力发电、潮汐发电、太阳能发电等。本文就风力和太阳能的光伏发电角度分析其未来发展形势,但就目前我国光伏发电现状来说,比照国外先进国家的技术还有较大的差距,对此加强此方面的研究,增加我国的社会经济以及科技创新是非常有必要的。

2、风力发电现状及趋势

2.1我国风力发电的现状

我国自20世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始袁经过二十几年的发展袁我国的风电市场已经获得了长足的发展遥到2009年底袁我国风电总装机容量达到2601万kW袁位居世界第二遥2009年新增装机容量1300万kW袁占世界新增装机容量的36%袁居世界首位。

2.2风力发电技术研究

我国风力发电机组主要有发电土工原动力的风力机和风能电能转换的发电机两种,其中风力机采用的有常规型和新颖型两种。其技术发展特征主要表现在,风力发电的规模、单机容量正在不断扩大,在电力生产行业占据一定的地位;正在逐渐向着专业化和成熟化方向发展;风力发电技术的成本虽然高,但是日常运营费用却并不是很高。其中单机容量,从最初的55kW逐渐发展到了450kW,目前我国风电机组最大容量是6MW,更有专家向着单机容量10MW的风电机组进行研究,有效地促进了我国风电场建设的速度和经济效益。

功率调节的方式包括定桨距失速调节、变桨距调节、主动失速调节等,额定的风速是14m/s左右;不同的生产商和风力发电型号的额定功率不同,风轮控制的方式、转速控制的方式也不同。其中变速运行,其中风机从风能中,捕获到的功率的公式,即Pr=Cρ(β,λ)ρkπR2;λ=wkR/Vw。式中:Pr表示风轮吸收的功率;ρ表示风的密度;R表示风轮的半径;λ表示叶尖的速比;w表示风轮转速;Cρ(β,λ)表示风能利用系数。同时变速运行,还具有高效率、吸收阵风能量、高系统效率、功率质量改善、运行噪声减少的优点。

2.3发展趋势

我国风能的开发利用应从这几个方面着手:首先,在继续发展小型风力机组的基础上,加速发展大型风力发电机组。目前,我国自行研制的风力发电机组很少,风电机组的国产化将会使得风电成本降低,更为经济性;其次,快速建设风电场。能够大规模利用风能、实现风电产业化的最好方式就是风电场;最后,综合利用其他形式的新能源或常规能源,例如风-光混合系统、风-油混合系统等。

风力发电能够满足能源的有序利用,将会是世界能源利用及发电发展的趋势,而中国风力发电的发展前景也是十分可观及广阔,风电产业和相关的科研机构应及时把握住这次机会,规划出一个系统可行的风电全面发展的计划,逐步解决掉风电发展中的遇到的困难和出现的问题,在科研基础上完善风电机制,使风能真正得到大范围和高效率的利用。

3、太阳能发电现状及趋势

3.1太阳能光伏发电的原理与优点分析

太阳能光伏发电原理最基本体现为:通过太阳能电池把来自于太阳的辐射光能变成电能,现代科技的持续发展使得太阳能发电技术成为最具潜能的一项技术。主要是发挥半导体的光伏发电光能,来自于太阳辐射出的光,聚集于太阳电池中,电池吸收这些光能,对应将其转化为电能。

太阳能光伏发电体现出一定的优势,具体表现为:不同于普通的电力系统发电,太阳能光伏发电主要是利用太阳光能,将光子变成电子,光能转化为电能,这其中省略掉了一系列的能量转化环节,电能转化更为简单,同普通发电对比起来,其效率高、简单、便捷,同时又节能环保;太阳能是一种来自于大自然的能源,具有清洁、环保、可再生等特点,太阳光的广泛分布为其开发与利用带来了巨大便利,充分利用太阳光能就可以减少对其他常规能源的开发,从而减少对环境的污染与破坏。

3.2发展现状与趋势

当前,我国的太阳能光伏发电应用日渐增多,光伏产业得到了快速的增长,然而在实际的发展过程当中却也存在有诸多的问题,太阳能发电的价格一直居高不下。太阳能光伏发电的成本要远超风能发电成本,且为风能发电的7倍之多。并且又以光伏电池组件成本最大。然而伴随着近些年来国内相关科研单位及企业,在开展了一系列的科技攻关后在相关技术手段方面取得了突破性的发展,致使其成本出现了大幅度下降的趋势。

经过多年的实践,我国太阳能资源的开发已经逐步进入到规模实用阶段,我国太阳能的产业规模、光热产业居世界第一。在2015年我国太阳能光热发电技术,已经实现了与火电厂合作发电,同时电站的规模也在不断扩大,大型的太阳能光热发现也支持了海水淡化工程的发展,并且分布式发电系统的建立有效地解决了偏远山区发电问题。虽然我国已经具有了15WM的太阳能发电容量,为我国光伏产业的发展奠定了良好的发展基础。

未来可以将风力和太阳能光伏发电进行结合,使其综合利用对于其发电起到互补的作用;中小型风力发电以及风光互补新能源市场的发展也会有效地推动光伏产业的完善以及技术的成熟。

结论

总而言之,与传统能源相比,风能与太阳能不仅清洁、无污染,而且分布十分广泛。将风能与太阳能进行综合利用,能够发挥出极大的互补性价值,其发电效用要显著优于单一性的风力发电亦或是太阳能发电方式。当前,风力与太阳能发电的互补性研究依然还不甚成熟,因而应当由法律、政策以及相关的研究工作中进行共同努力,推动其发展的步伐,从而为新型清洁能源的开发与利用做出不懈的努力。

篇5

中图分类号 F206 文献标识码 A 文章编号 1002-2104(2015)11-0088-07

当前,化石能源大规模开发利用带来的环境污染、生态破坏、气候变化等问题引起了全社会的关注。作为一种清洁、无污染的可再生能源,光伏发电,具有优化能源结构、保护生态环境、减缓气候变化的作用,已经被人们所认识[1]。但中国光伏发电还存在诸多问题,包括缺乏有效的激励政策、技术尚不成熟、成本竞争力低等,其中成本居高不下是影响其快速发展的重要原因[2-3]。在新能源发电成本预测方面,学习曲线模型被逐渐完善并推广使用,尤其是双因素学习曲线模型的使用最为广泛,它能很好刻画新能源发电过程中技术创新和经验累积对降低成本的作用[1-4]。随着国家的一系列新能源电力发展政策[5-6],越来越多的文献开始讨论新能源发电和燃煤发电之间的成本影响因素以及彼此之间的协同关系[7-9]。已有文献预测,中国光伏并网价格将于2015年和火电价格达一致,光伏发电成本与火力发电成本将在2020年交汇[10-11]。但是,这些文献普遍没有考虑燃煤发电的环境成本。本文主要针对这一问题,分析加入环境影响因素后的燃煤发电成本和光伏发电成本之间的变化情况,并进行成本函数拟合,预测其成本的变化规律和趋势,目的是确定二者发电成本相同的时间点,为未来中国光伏发电规划和电力政策制定提供借鉴。

1 燃煤发电成本预测

1.1 测算方法

燃煤发电的总成本由固定成本和可变成本两部分组成,本文主要考虑可变成本中的燃料费用,燃料费用主要受煤炭价格的影响。因为燃煤成本是煤炭发电中重要的成本组成部分,约占可变成本的85%[12]。

借鉴文献关于燃煤发电成本的计算公式[13],设第t年每度电的供电标准煤耗为gt(g/kWh),若第t年标准煤的价格为pt(元/t),则燃煤发电第t年的可变成本公式为:cv=pt×gt×(7000/w)×10-61+17%×185%,其中w是天然煤发热量,17%是购买电煤的进项税率。燃煤发电的总成本公式为:c=cf+cv,其中cf是固定成本,cv是可变成本。

1.2 数据来源

选取具有代表性的煤炭发电企业“华能”,通过《华能国际电力股份有限公司2014年度报告》[14],设大型煤炭发电企业的固定成本为cf=9.62×109元/年,一年的发电量为1.52×1011kWh,计算出成本公式中固定成本部分为9.62×109/1.52×1011=0.063元/kWh。

根据秦皇岛5500大卡动力煤的每月价格加和所求的平均值计算得pt(元/t),取w=5500。计算出2000年到2013年的中国动力煤价格,以2000年为基期,进行换算,得到统一基期的动力煤价格和固定成本值,具体数据由表1所示。

1.3 不考虑环境成本的测算结果

通过上述数据拟合出以煤炭价格为主导变量的燃煤发电成本曲线和表达函数:十字形和圆点分别表示燃煤发电成本的实际数据和经过光滑处理后的数据,曲线代表拟合的二次函数图形。分析结果,对于燃煤发电成本函数的二次曲线拟合度达到87%,得到燃煤发电的成本是以时间为自变量x的函数: f(x)=-0.001 4x2+0.029x+0.103 2。

通过上述拟合图像可知:在95%的置信水平下,拟合方程为二次函数,确定系数超过86%,拟合出的方程可以较好的反映燃煤发电成本的变化情况;适合度参数中,拟合误差为0.016 23,远小于1,说明选择拟合的方程很适合,曲线预测出的数据会更加准确。

1.4 考虑环境成本的预测结果

燃煤发电的全过程,尤其是排放的各类污染物对环境承载力产生了一定的影响[9]。现阶段中国燃煤发电的成本中并没有计算环境成本,所以燃煤发电的成本一直都比可再生能源发电成本低。但在燃煤发电的整个生命周期中产生的环境附加成本,已经严重制约中国社会可持续发展,只有把环境成本计算在发电成本中,各种能源形式的发电成本相比较才有意义。

1.4.1 燃煤发电的环境污染现状

根据《2013年环境统计年报》[15]:纳入重点调查统计范围的火电厂共3 102家,占重点调查工业企业数量的2.1%。其中,独立火电厂1 853家,独立火电厂SO2排放量为634.1万t,NOX排放量为861.8万t,烟(粉)尘排放量为183.9万t。2013年,中国SO2排放量为2 043.9万t、NOX排放量为2 227.4万t、烟(粉)尘排放量为1 278.1万t[15],燃煤发电排放的废气占全国排放量的具体比例如图2。

1.4.2 环境成本的计算

(1)中国燃煤发电行业SO2和NOX的环境成本。由中国环境统计年报2012年统计数据可知,电力行业排放SO2 797万t,排放NOX 1 018.7万t,带来的经济损失分别为3 517.8亿元和1 240亿元。2012年中国火力发电总量为38 928.1亿kWh,由燃煤发电排放SO2和NOX引起的环境成本分别为Ce(SO2)=0.090 3元/kWh,Ce(NOX)=0.031 9元/kWh。

(2)中国燃煤发电排放CO2的环境成本。根据国家发改委能源研究所的数据得到:CO2 的排放量为0.67(t/t标准煤),2012年排放CO2 11.7亿t,按国际碳交易机制计算出2012年CO2 的排放单价为586.7元/t[9],由燃煤发电排放CO2带来的环境成本为 Ce(CO2)= (11.7×586.7)/38 928.1=0.176 35 元/kWh。

(3)粉尘颗粒物。环境保护部研究表明:2012年中国燃煤发电行业排放的一次细颗粒物粉尘为 223 万t,排放的SO2、SO3和NOX都可以转化为二次细颗粒物[9],共计350万t,合计占全国PM2.5排放总量的40%。根据《2013年全球疾病负担评估》[16]报告显示:统计出2012年我国因PM2.5 导致的死亡人数估计为143.47万人,PM2.5污染对每位死亡患者造成的经济损失为79.5万元[9],共计损失11 405.933 3亿元。2012年由粉尘造成的燃煤发电环境成本为 Ce(粉尘)=(11 405.933 3×40%)/38 928.1=0.117 2 元/kWh。

综合上述四个方面的因素,加入环境成本的燃煤发电成本表达式应该是ct=ptgt(7000/w)×10-61+17%×185%+cf+ce(so2)+ce(NOx)+ce(粉尘)+ce(co2)。将计算出的燃煤发电单位成本数据带入公式,对环境成本进行基期处理,得到各年相对应的环境成本值,计算加入环境成本的燃煤发电的成本值,如表2所示。

1.4.3 燃煤发电完全成本计算

计算燃煤发电完全成本,得到下列数据分析内容和图形(见图3):十字形表示原始数据,曲线表示拟合函数曲线,曲线的拟合程度达到85%,拟合出以时间为自变量的对数函数f(x)=0.24log10(x)+0.54,可作为燃煤发电的完全成本函数。

通过上述拟合图像可知:在95%的置信水平下,拟合方程的确定系数超过84%,拟合出的方程可以较好的反映加入环境成本的燃煤发电成本的变化情况;适合度参数中,拟合误差为0.035 33,说明选择拟合的方程较适合,预测出的数据会更加准确。

2 光伏发电成本预测

2.1 测算方法

基于传统Wright学习曲线,结合光伏发电构建了双因素测度模型,对从经验中学习和从研究开发中学习两个方面进行综合测度[17]。有如下双因素学习曲线模型:c=c0Q-αR-β,c为太阳能光伏发电成本,以光伏组件的单位价格计算单位(元/瓦)。c0为初始成本,Q为太阳能光伏发电的累积生产量,R为太阳能光伏发电的累积研发量。累积生产量Q的学习率指数为0

上述双因素学习曲线模型虽然可以表示光伏发电成本的变化情况,但是不够符合实际情况,按照双因素学习曲线模型得出的光伏发电成本较低。目前,对于大型地面光伏电站的建设,基本都要采用银行贷款投资形式[17]。而且,银行贷款占总投资的比例很高,这部分贷款的利息对于光伏电站的成本电价影响十分巨大。所以,给模型中加入偿还贷款的费用,成本公式ct=c0Q-αR-β+c1,c1表示添加的偿还贷款的费用,修改后的模型能更好的表现光伏发电成本。

2.2 数据来源

根据双因素学习曲线模型中数据的需求,查找我国历年光伏发电组件的单位价格,作为太阳能光伏发电的部分成本。光伏发电的累计生产量作为经验学习数据,光伏发电的积累研发量作为研究开发学习数据,数据已经过基期处理,具体如表3所示。

2.2.1 显著性检验

采用2000年至2010年间的数据,运用最小二乘法,检验参数的显著性,进而证明模型c=c0Q-αR-β的可行性。

为消除数据的异方差性,对光伏发电成本C、累积生产量Q及累积研发量R取自然对数,变换原始公式c=c0Q-αR-β的形式为:lnc=lnc0-αlnQ-βlnR,并使用最小二乘法对三者关系进行了拟合。结果得到lnQ的系数为0.187 899,lnR的系数为0.169 480,方程拟合优度R约为0.63,整体拟合效果良好;lnQ及lnR均在5%的显著性水平下通过t检验,说明累计产量和研发量对光伏发电成本存在显著影响,从影响方向来看,二者对成本均存在负向影响,其中累计生产量的影响更大。

2.2.2 数据计算

在我国,光伏发电的可行性分析计算时,按照20年或者25年的投资回收期计算是较为合理的[17]。本文所用数据为10MW的光伏电站,现阶段总投入大约为12 000万元,贷款比例为70%,年利率为7%[17],则每年偿还贷款的费用为:12 000×70%×7%=588万元。按照投资回收期为20年,光伏电厂年等效满负荷发电时间按照1 500小时计算[11],可以得到表4。

2.3 测算结果

将最终数据经过光滑处理后,得到以下分析结果和图4,在图4中十字形表示原始成本数据,曲线是拟合后的函数图像,通过分析数据知函数拟合程度达到85%,根据分析数据中的多项式系数,获得成本函数为:f(x)=-0.003 365x2+0.047 71x+1.543。

通过上述拟合图像可知:在95%的置信区间内,拟合方程符合二次函数,且拟合方程的确定系数达到85%,可以较好的表现光伏发电的成本变化情况;适合度参数中,拟合误差为0.133 9,均方根为0.086 24,这些指标都说明选择进行拟合的方程较适合,预测出的成本数据会更准确。

3 对比分析

对比没有加入环境成本和加入环境成本下的燃煤发电成本函数与光伏发电成本函数,分析两者的不同之处,结合中国实际政策,预测未来十年里的燃煤发电和光伏发电的成本走势。

3.1 没有加入环境成本下燃煤发电与光伏发电成本对比

图5为不包括煤电环境成本时两者的成本变化趋势:虚线代表光伏发电成本随着时间的变化情况,实线代表燃煤发电成本随着时间的变化情况,两条曲线相交于x点,x点的纵坐标表示当两种发电方式达到发电单位成本一致时的具体时间,横坐标则表示具体成本单价。

如图5,中国光伏发电成本与燃煤发电成本达到一致的时间大概在2021-2022年间,燃煤发电成本有一个小幅度上升之后,开始缓慢下降,基本保持稳定,根据数据知光伏发电成本在2006-2008年达到峰值之后就保持持续下降状态,下降速率明显超过火力发电成本单价,光伏发电成本与燃煤发电成本一致后,依然存在下降趋势。

3.2 加入环境成本下燃煤发电与光伏发电的成本对比

含环境成本的燃煤发电完全成本函数为f(x)=0.24log10(x)+0.54,其中时间x为自变量,成本f(x)为因变量,联立同样以时间x为自变量的光伏发电成本函数f(x)=-0.003 365x2+0.047 71x+1.543求解,再次预测未来十年里的燃煤发电和光伏发电的成本走势。如图6所示,虚线代表光伏发电成本的变化情况,实线代表加入环境成本的燃煤发电成本的变化情况,两条曲线相交于y点。

较前一次对比结果而言,中国燃煤发电成本和光伏发电成本一致的时间大概提前到2019-2020年间,光伏发电成本由原来的1元左右(由表4可知)一直持续下降到0.4元左右,燃煤发电成本加入环境成本后,基本是在原基础上单位成本逐渐提升,没有太大的浮动变化,在光伏发电和燃煤发电达到成本一致后,光伏发电成本继续下降,逐渐低于燃煤发电成本,随后燃煤发电成本基本处于稳定状态。

4 结论与建议

4.1 结论

本文首先分析了影响燃煤发电成本和光伏发电成本的主要因素,构造出不包含环境成本的燃煤发电成本函数和光伏发电的成本函数,拟合出两者根据时间变化的成本函数图像,通过两条成本函数图像的相交点坐标向量,预测二者成本会在2021-2022年间达到一致。但是,如今燃煤发电带来的环境污染问题日益突出,燃煤发电蕴含巨大的环境成本这一事实已经不容忽视。

针对此,本文进一步修改完善了燃煤发电的成本函数,修改后的燃煤发电成本函数模型中加入了CO2、SO2、NOX和粉尘的环境成本数值,整体燃煤发电成本函数图像呈现上升趋势,原有的燃煤发电低成本优势开始降低。再次联立两个成本函数,通过图像交点纵坐标得:燃煤发电和光伏发电达到成本一致的时间较原来的2021-2022年出现明显前移,应当在2019-2020年间就可以达到一致。

加入环境成本后,燃煤发电成本逐年上升,2019年后基本达到稳定,而光伏发电成本曲线出现较快速的下降后,先与燃煤发电成本图像相交,后一直处于燃煤发电成本函数图像下方,占据一定电力市场成本优势。

4.2 建议

分析光伏发电的成本函数,发现其成本下降速率很快,将在较短的时间内与燃煤发电成本达到一致,说明光伏发电未来将有很强的市场竞争力。但是,按照中国电力产业现状而言,由于基础设施、电力体制、光伏发电商业模式等问题,光伏发电不会很快取代燃煤发电占主导地位。结合以上研究,提出以下三点建议:

(1)现阶段中国光伏发电产业主要依赖国家政策补助,才得以与燃煤发电相抗衡。未来的光伏发电必须打破这种局势,用技术创新引领光伏产业发展,从根本上降低光伏发电成本。

(2)中国电力体制依然以煤炭发电为主,电网结构、电力运输和用户消费都以火电为核心。这一点无形之中制约了光伏发电的发展,中国必须逐渐改变现有的电力体制,通过智能电网等形式,促进包括光伏发电在内的可再生能源发电的发展[18],才能完善电力市场结构,为光伏发电提供发展平台。

(3)消纳率是光伏发电的重要制约因素,光伏发电有多少可以上网使用全由消纳率决定[19-20]。纵观中国近年光伏消纳率的数据,有大部分电力因低消纳而白白浪费,所以增加光伏消纳率是未来发展的必要阶段,也是提高光伏发电竞争力的必要手段。

参考文献(References)

[1]曾鸣,鹿伟,段金辉,等. 太阳能光伏发电成本的双因素学习曲线模型研究[J].现代力,2012,(5):72-76. [Zeng Ming, Lu Wei, Duan Jinhui, et al. Study on the Cost of Solar Photovoltaic Power Generation Using Doublefactors Learning Curve Model[J]. Modern Electric Power,2012,(5):72-76.]

[2]Hofman P S, Elzen B. Exploring System Innovation in the Electricity System Through Sociotechnical Scenarios [J]. Technology Analysis & Strategic Management,2010,22(6):653-670.

[3]从荣刚.可再生能源发电优化模型及其应用[J].电力建设,2012,(10):84-88.[Cong Ronggang. Application of Optimization Model for Renewable Energy Power Generation[J]. Electric Power Construction, 2012,(10):84-88.]

[4]袁晓玲,范玉仙.基于Logistic和学习曲线模型的中国电源结构预测[J].湖南大学学报:社会科学版,2013,(4):51-55.[Yuan Xiaoling, Fan Yuxian. Forecast of Power Source Structure in China Based on the Logistic & Learning Curve Model[J]. Journal of Hunan University:Social Sciences Edition, 2013,(4):51-55.]

[5]Yücel G,van Daalen C.A Simulationbased Analysis of Transition Pathways for the Dutch Electricity System[J].Energy Policy,2012,42:557-568.

[6]Verbong G P J, Geels F W. Exploring Sustainability Transitions in the Electricity Sector With Sociotechnical Pathways[ J ]. Technological Forecasting and Social Change,2010,77(8):1214-1221.

[7]韩永滨,曹红梅.我国化石能源与可再生能源协同发展的技术途径与政策建议[J].中国能源,2014,(4):25-29.[Han Yongbin, Cao Hongmei. Measures and Suggestion on Consistent Development of Fossil Energy and Renewable Energy[J]. Energy of China, 2014,(4):25-29.]

[8]章玲,方建鑫,周鹏. 新能源发电绩效评价研究综述:基于多指标评价方法[J].技术经济与管理研究,2014,(1):3-8.[Zhang Ling, Fang Jianxin, Zhou Peng. New Energy Power Generation Performance Evaluation Research Were Reviewed:Based on Multiindex Evaluation Method[J]. Technoeconomics & Management Research, 2014,(1):3-8.]

[9]徐蔚莉,李亚楠,王华君.燃煤火电与风电完全成本比较分析[J].风能,2014,(6):50-55.[Xu Weiwei, Li Yanan, Wang Huajun. Comparasion of Complete Cost Between Thermal Power and Wind Power[J]. Wind Energy, 2014,(6):50-55.]

[10]李素真, 王运民. 燃煤电厂运行中环境成本分析与计算[J]. 环境科学与技术, 2009, 32(9): 129-131.[Li Suzhen, Wang Yunmin. Analysis and Calculation of Environment Cost in Operation for Coalfired Power Plant[J].Environmental Science & Technology, 2009, 32(9): 129-131.]

[11]马胜红, 李斌, 陈东兵, 等. 中国光伏发电成本, 价格及技术进步作用的分析[J]. 太阳能, 2010, (4): 6-13.[Ma Shenghong, Li Bin, Chen Dongbing, et al.Analysis on the Cost, Price and Technology Progress of PV Power in China[J].Solar Energy, 2010, (4): 6-13.]

[12]谢瑛,谭忠富,程晋,等.节能减排调度环境下燃煤电厂发电成本分析[J].电网技术,2011,(2):137-142.[Xie Ying, Tan Zhongfu, Hu Qinghui, et al. Generation Cost Analysis of Coalfired Power Plant in Environment of Energy Saving and Emission Reduction Dispatching[J].Power System Technology,2011,(2):137-142.]

[13]陈广娟,谭忠富,郭联哲,等.煤电价格联动下火力发电企业的风险分析模型[J].现代电力,2007,(2):74-78.[Chen Guangjuan, Tan Zhongfu, Guo Lianzhe,et al. Risk Analysis Model for Firepower Companies Under Coalelectricity Price Linkage[J]. Modern Electric Power, 2007,(2):74-78.]

[14]华能国际.华能国际电力股份有限公司2014年年度报告[R].2014 .[Huaneng Power International INC. The 2014 Annual Report of Huaneng Power International INC[R].2014.]

[15]中国人民共和国环境保护部.2013年环境统计年报[R].2014.[Ministry of Environmental Protection of the People’s Republic of China. The 2013 Annual Report of Environmental Statistics[R]2014.]

[16]Naghavi M, Wang H, Lozano R, et al. Global, Regional, and National Agesex Specific Allcause and Causespecific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963): 117-171.

[17]史B.光伏发电成本的数学模型分析[J].太阳能,2012,(2):53-58.[Shi Jun. A Mathematic Analysis of Cost of Photovoltaic Power[J]. Solar Energy, 2012,(2):53-58.]

[18]丁明,王伟胜,王秀丽,等.大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报,2014,(1):1-14.[Ding Ming, Wang Shengwei, Wang Xiuli, et al. A Review on the Effect of Largescale PV Generation on Power Systems[J]. Proceedings of the CSEE, 2014,(1):1-14.]

[19]胡泊,辛颂旭,白建华,等.我国太阳能发电开发及消纳相关问题研究[J].中国电力,2013,(1):1-6. [Hu Po, Xin Songxu, Bai Jianhua, et al. Study on Issues Concerning Solar Power Development and Accommodation in China[J]. Electric Power, 2013,(1):1-6.]

篇6

中图分类号 TU391 文献标识码 A 文章编号 1674-6708(2013)89-0044-02

随着社会的进步,人们对地球资源的使用愈演愈烈,环境已经遭遇到了不可逆转的破坏,现在人们已经发现了这些问题,开始寻求清洁资源来满足发展和环境保护。至此,太阳能开始进入人们的视线。

1 太阳能发电趋势与现状

20世纪90年代以来我国光伏发电组件生产能力逐渐增强,光伏发电将一步步登上时代舞台,成为人类可使用资源的重要组成部分。同时,我们应该注意到目前的光伏发电还处在初级阶段,还有许多问题有待解决。

1)继续研制太阳的储存方式,提高太阳能的光电转化效率;

2)研究太阳能光转化为电能最大功率跟踪算法,实现太阳光最大功率跟踪;

3)研究太阳能光伏发电的软并网技术,减少光伏电能对电网的冲击。

在以上这些问题中,我们发现更多的是在研究如何高效的存储电能进行利用,同时需要保护现有电网,防止目前的电网受到过大的冲击。因此,我们可以将视线转移到另一个技术上――无线电输电。

无线电,也就是太阳能转换成一种特殊频段的电波,然后类似于广播的形式发射出去。利用电波输电是目前正在研究中的一项革命性的技术。其主要特点是:1)弥补了当前电网传输时的建造费用;2)充分将已有技术与最新科研成果相结合,保护环境;3)共用一套送变电设备,降低工程造价;4)同用一套经营管理人员,提高工作效率,降低运行成本;5)将太阳能发电技术与电力传输技术加以综合利用。

2 国内关于光伏发电的研究

在国内,目前正在大力推广的是分布式光伏发电,即允许下面的组织或个体建设光伏发电设施进行发电,并且将其并入国家电网的输电线路中。

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

3 无线电输电可行性研究

目前无线电导电可实施主要理由:

1)我们可以将电波以步传的方式发射,中继站可以选择已经建立好的电杆,还有目前我国移动电信等运营商建立好的信号塔,极大的方便了电波的传输;

2)在地球上传播时,电波不会经历不同的空气环境,发生折射,影响传播路径,在地球上,大气环境基本相同,路径选择更加容易,接收更加方便。更加的安全;

3)地球上的太阳板更容易被控制,无论何种环境下,地球上的太阳能吸收板都更加容易控制,建造更加的方便。

4 目前可选得无线电输电方式

电波输电在目前也存在着许多得可选方案,如,一定频率得电波,还有超声波等,但是如何从中选择出最合适的也是目前需要研究的一个问题,但是本文作者从电路及输电的一些角度选择超声波作为最好的选择。具体原因如下。

电波无线输电及等效电路:目前研究无线电波传电基本都是利用电磁效应产生的超声波进行的,其具有频率较宽,容量比较大的特点。所选择的材料都是具有逆压电效应的材料,能够方便的将超声波转化成电能。因此,我们这在里讨论的都是基于以上材料的。超声波导电主要包括超声波的发射和接收单元。系统结构图如图1:

同时,当我们将电信号转变为固有信号得时候,匹配电路这时候就有了同频率下得电波,此时的匹配电路会有一定的阻抗变换,能够明显的将输出效率提高, 从而实现了机电共振,超声波便发射出去了。此时,另外一个设施,闭环路控制电路就开始发挥作用,它通过对比实际输出信号和给定的信号误差,直接改变功率管的同段状态,使开关频率也发生改变。这个时候的主电输出电压频率也是明显可调的。接收单元这个时候将超声波转换成高频电能,在经过蒸馏和滤波装置,稳定的直流电就能够被使用了。

5 前景展望与总结

通过目前国家的一些鼓励政策和世界发展的趋势,我们可以看到,光伏发电在未来世界必定会发挥着不可忽视的作用。未来的世界必定会在光伏发电的研究上取得更为伟大的成绩。

篇7

随着经济的快速发展,人们对电力的需求呈现指数增长的趋势,新能源发电已成为电力产业发展的趋势。近几年,通过对光伏发电技术的研究及创新,光伏发电已成功应用于微网中。由于光伏发电对微网的稳定性造成影响,因此,分析光伏发电在微网中存在的问题,并对光伏发电微网控制策略进行研究,对保证光伏发电在微网的稳定性具有重要意义。

1 光伏发电技术概述

随着人们环保意识的不断增强,节能环保的能源产业发展已成为电力能源发展的必由之路。光伏发电具有便捷、节能、无污染、环保等优点,光伏发电技术能够有效的提高能源的供给,是电力技术发展的重要技术。因此,光伏发电在电力行业中被广泛的应用。

光伏发电技术在电网的应用中也存在一定的缺陷,在电网运行中,光伏发电技术容易影响电网供电的稳定性。同时,光伏发电的影响因素较多,诸如温度、光照强度等都会影响光伏发电的稳定性和供电效率。

光伏发电技术在微网的应用中,通过电力电子接口接入,因此,在电力供给过程中存在负荷波动。由于负荷波动的影响,导致整个电力系统的电压和电频都会发生变化,最终影响供电量。因此,只有加强光伏发电技术的研究,才能保证电力输送的稳定,才能提高光伏发电技术的广泛应用。

2 光伏发电应用中存在的问题

光伏发电具有非线性系统的特点,并且光伏发电系统在发电过程中具有随机性和间断性的特点。通过采用光伏发电技术,能够将太阳能直接转化为电能,其中,光伏电池是能量转化的核心元件。

光伏电池受温度、光照强度等外界因素影响较大,外界因素直接影响光伏电池的发电效率。太阳光照强度受阴雨天的影响较大,在光照强度变弱的情况下,光伏电池的发电效率也会随之降低,从而影响光伏电池的供电频率及电压。在光照强度变化较剧烈的条件下,光伏电池的发电功率的变化愈加频繁,影响电力系统的稳定性,甚至电力系统会发生断电。与此同时,光伏发电供电频率和电压的变化会引起保护器的启动,造成电力系统中的电流谐波增加。

光伏电池属于逆变电源,所以光伏电池在能量转化过程中无法保证供电频率和电压的稳定,因此,光伏发电技术容易影响电网供电的稳定性,从而降低供电质量。为保障供电系统的稳定性,在光伏电池和微网中添加蓄电池,这样就可以利用光伏电池为蓄电池充电,当光伏电池受外界因素(光照强度)的影响时,蓄电池可为电力系统提供电能补偿,保证电力系统的稳定。

目前,光伏发电在我国电力系统的应用中采用分布式光伏发电机,但是该发电机受光照强度影响较大,因此,在整个光伏发电系统中通过添加蓄电池,能够有效的提高电力系统的稳定性。

3 光伏发电微网控制策略分析

在光伏发电系统中,采用同步发电机能够有效的提高光伏发电微网的有效性。相比于大规模电网,微网的供电量非常小,采用分布式电源,而且设备简单,操作易行,易于控制。由于分布式发电机组的电容量低,在整个电网中需要多条分布式机组共同发电,才能满足电力系统的供电需求,但是电力系统中的发电机组的增多会提高整个系统操作的复杂性。

在光伏发电系统中,发电机组的能量源自对太阳光,安全环保,但是由于气候和天气的影响,促使光伏发电系统接收到的光照强度不稳定,所以整个电力系统的稳定性差。同时,分布式电源电抗能力低,系统容易发生瘫痪。因此,可以对分布式电源进行改造,改造依据为同步发电机组的调频调压方法,因此,在整个光伏发电系统中,加入同步发电机的算法和相应的控制器,能够保证电力系统的输电稳定性。

光伏发电微网控制采用三相逆变电路,而三相逆变电路的设计主要是基于二阶机电暂态模型,因此,三相逆变电路不仅能够提高光伏发电转子特性,同时还能够有效的模拟定子特性。在光伏发电系统中,电流和电压互感器能够对系统中的电流和电压进行检测,同时,能对检测信息进行实时反馈,然后通过功频和励磁控制器对信息进行分析和处理,并对相关参数进行纠正和调整,从而保证逆变器的平衡,确保电力系统的稳定。但是,在电力系统中,滤波器仅仅对高频率波段进行过滤,而对于基波无法进行处理。

因此,在光伏发电系统中,采用虚拟同步发电机不仅能保证电力系统电能输出的稳定,而且还能够有效保证电力系统的供电质量,从而避免光伏发电对微网系统稳定性的影响,提高微网供电的质量和其稳定性。

随着科技的发展,促进了光伏技术和微网的快速发展,在光伏技术应用过程中,采用分布式光伏电组能够保证电力系统的稳定性和有效性,提高电力系统的供电质量。因此,电力企业应该加强对分布式光伏发电技术中,并将其进行推广和应用。

技术创新带动了光伏技术和微网技术的发展,同时,也提高了分布式光伏发电装置的应用范围和性能。但是,通过对光伏技术微电网的实际应用现状的分析,目前,光伏技术供电不稳定,而且容易受到外界因素(光照强度、温度等)影响,干扰电力系统的供电质量,从而制约了光伏技术的应用。因此,通过同步发电机组在光伏发电中的应用,能够稳定光伏发电系统的稳定性,提高发电系统的供电质量。相信在不久的将来,光伏发电将会被电力系统广泛的应用,只有这样,电力系统的供电量才能满足大众日益增长的电能需求。

参考文献

[1]陈帆.光伏发电微网控制策略分析[J].科技与企业,2016(02):85.

[2]金崇勇.光伏发电微网控制策略分析[J].企业导报,2016(12):64.

篇8

随着经济的发展,对于能源的需求量也在逐年提高,而由于过度开采世界能源储量正在急剧下降,很可能在未来几十年里消耗殆尽。并且这些传统能源都具有高污染、低效率的弊端。太阳能光伏发电是20世纪80年代以来发展最快的技术产业之一。几年前,日本、欧盟和美国还是光伏发电技术的主要应用国家,其发电量约占世界光伏发电量的百分之八十。但是据最新调查结果报告,在近些年里,光伏组件的生产情况已经历了重大变化,中国大陆几乎成为世界太阳能电池和组件的制造核心,在全球顶尖的太阳能电池制造商中,中国企业所占的比例最高,甚至有六家企业进入世界的前十位,中国太阳能光伏发电发展具有很大的潜力。

1 光伏发电的优势

与常用的火力发电系统相比,光伏发电的优点主要体现在:首先,太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用勿须开采和运输。其次,开发利用太阳能不会污染环境,因为它是最清洁的能源之一,这在环境污染越来越严重的今天是极其宝贵的。再次,根据计算每年到达地球表面上的太阳辐射能约相当于130万亿吨标煤,是现今世界上可以开发的能源中储量最大的。根据目前太阳产生核能的速率进行估算,氢的贮量足够维持上百亿年,而地球的寿命约为几十亿年,因此从理论上讲太阳的能量是取之不尽用之不竭的。第四,其建设周期短,获取能源花费的时间短。

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。风力是一种蕴藏丰富、洁净的自然能源,不存在环境污染问题。建造风力发电厂的费用低廉且利用风力发电即不需火电所需的煤、石油等燃料,亦不需要核电站所需的核材料即可产生电力,除常规保养外,没有其他任何消耗。但是和光伏发电比风力发电也有其不足:噪声,视觉污染;占用大片土地;不稳定,不可控;影响鸟类。

太阳能资源十分丰富,并且分布十分广泛,是极具发展潜力的可再生清洁能源。现在,全球环境污染以及资源短缺的问题已十分严峻,太阳能光伏发电的清洁、便利、安全等特点,使其成为全球最为关注和重点发展的产业。太阳能光伏有应用领域广、产品多样化、可适应多种需求的特点,并且改变了过去只能在电场发电的局限,可与建筑结合例如太阳能热水器、小型光伏系统、离网光伏系统等都可建在屋顶。并且随着科学技术的发展太阳能电池及光伏系统的成本持续下降。目前的研究趋势和目标是极力降低成本,使其不断向高效率、低成本的方向发展。

2 光伏发电的应用

目前,各主要发达国家均从战略角度出发大力扶持光伏产业发展的主要途径有:制定上网电价法,实施“太阳能屋顶”计划等一系列推动市场应用和产业发展的策略。亦因各国政府的扶持,光伏产业越来越受到各大投资方的关注。一方面,行业内众多大型企业纷纷宣布新的投资计划,不断扩大生产规模,一起得到更多利益;另一方面,许多其它领域的企业如半导体企业、显示企业携多种市场资本正在或即将进入光伏行业,希望在这一兴起的行业中分一杯羹。而从我国未来社会经济发展战略路径看,发展太阳能光伏产业是我国保障能源供应、建设低碳社会、推动经济结构调整、培育战略性新兴产业的重要方向。在未来的一段时间里,我国的光伏产业将继续之前的蓬勃快速的发展趋势,这对于大多数企业来说既是一个大好的机遇同时又是一个严峻挑战。

我国是个太阳能产品制造大国,但是由于各方面原因,我国的太阳能产品只用于出口。2010年的全球太阳能光伏电池产量有1600万千瓦,而我国的年产量就达到了1000万千瓦。且2010年时,全球光伏发电总装机容量超过4000万千瓦,其主要应用市场在德国、西班牙、日本、意大利,其中德国2010年新增装机容量700万千瓦。不过,我国适宜太阳能发电的国土面积和建筑受光面积很大,太阳能资源十分丰富,其中冀北高原、黄土高原、内蒙古高原、青藏高原等太阳能资源十分丰富的地区占到了国土陆地面积的三分之二,具有很大的开发潜力。

专家预测,太阳能光伏发电将要代替部分常规能源,成为世界能源供应的主体,而且将在21世纪占据世界能源的首要席位。据估计,到2030年,可再生能源将占总能源结构的30%,而太阳能也将占世界总电力供应的10%;到了2040年,可再生能源将在总能耗中占据50%以上,太阳能光伏发电将在总电力中占20%以上;到21世纪末,可再生能源将占80%以上,太阳能光伏发电将占60%以上。这些数据都显示出太阳能光伏发电的发展前景十分乐观,且将在能源领域占领重要地位。

3 结语

当今油、碳等资源十分短缺,在这中状态下,各国都加快发展光伏产业。由于光伏发电的产业竞争会不断加剧,相信不久之后,大型光伏发电企业间并购整合与资本运作会越来越频繁,企业也将日益重视起对行业市场的研究,尤其是将对某些方面进行深入研究,以应对企业的发展和客户的需求改变。也正因为如此,国内的优秀光伏产业迅速崛起,即将成为光伏发电产业中的翘楚。

【参考文献】

[1]曹承栋.浅谈国内外太阳能发电技术发展状况及展望[J].通信电源技术, 2011,1:5-6.

[2]祁成,叶学民.混合发电技术模式及应用研究[J].发电设备,2011,4:32-33.

篇9

1.太阳能光伏发电相关概述

1.1 太阳能光伏发电定义阐释

太阳能光伏发电指的是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就构成光伏发电系统。太阳能是一种绿色无污染的清洁性能源,解决了火力发电的空气污染物排放问题。

1.2 太阳能光伏发电的发展

早在十九世纪四十年代,就出现了利用太阳能进行发电的方式。光伏电池也在二十世纪五十年代就出现,并在七十年代太阳能发电技术得到了广泛推行。在日本、美国等各发达国家,太阳能发电技术得到了应用推行,并在各国政策支持下进一步发展。目前中国也十分重视新能源领域,尤其是太阳能光伏发电的相关产业有些已经达到了国际先进水平。

1.3 太阳能光伏发电的特点

太阳能是可再生资源,从地理学角度来说,太阳能资源具有覆盖范围广泛的特点,并且能量巨大,相当于130万吨的煤进行燃烧所产生的能力。并且太阳目前正值活动旺盛时期,太阳能辐射时间据研究可持续十亿年之久。并且太阳能的利用方式简单,不需要进行采掘,直接收集辐射即可获取。太阳能在利用生产过程中不会产生多余污染,是一种绿色环保的新型能源。同时太阳能安全温和,不会导致工业事故发生。根据中国地理情况研究,在中西部地区接受阳光辐射量大,可利用太阳能进行光伏发电产业发展。

2.计算机模拟技术与太阳能光伏发电

2.1 计算机模拟技术

计算机模拟是在科学研究中常采用的一种技术,特别是在科学试验环节,利用计算机模拟非常有效。所谓计算机模拟就是用计算机来模仿真实的事物,用一个模型来模拟真实的系统,对系统的内部结构、外界影响、功能、行为等进行实验,通过实验使系统达到优良的性能,从而获得良好的经济效益和社会效益。

计算机模拟方面的研究始于六十年代,早期的研究主要用于国防和军事领域(如航空航天、武器研制、核试验等),以及自动控制等方面。随着计算机应用的普及,应用范围也在扩大,现在已遍及自然科学和社会科学的各个领域。

2.2 计算机模拟技术与太阳能光伏发电

利用计算机模拟技术,对影响太阳能光伏发电的各个因素进行数学建模,可以得到实时的太阳辐射强度和累积辐射量、任一特性曲线所对应的最佳电压、最佳电流和系统可得到的最大输出功率、任一时刻系统的发电效率和全天累积发电效率。

由以上数据可以得出太阳能实时辐射强度趋势图和全天辐射强度曲线、任一辐射强度对应的I-U、P-U特性曲线、光伏电池的发电功率趋势图和全天发电功率曲线、全天最佳电压和最佳电流曲线;发电效率趋势图和全天发电效率变化曲线。建模后可以对太阳能光伏发电系统进行评估和系统优化。

3.太阳能光伏发电系统的建模

3.1 太阳能光伏发电系统数学模型建立

太阳能辐射的被利用程度受到多种外界因素的干扰,包括大气层性质、大气层透明程度、太阳入射角度大小、土壤反射率以及太阳能辐射维度高低等,从各种外界因素对数学函数关系的影响方面进行考虑,在进行相关数学模型建设时应综合多种因素进行函数表达式的确立,以保证计算机模拟太阳能光伏发电系统的数学模型建立相对科学合理,能进行接下来的计算过程。

辐射到地球表面的太阳能分为两部分,一部分为直接被大地所接收的直接辐射强度,另一部分则是发生了分散的散射幅度强度。将影响辐射的外界干扰因素和太阳能辐射种类结合考虑,可进行计算机模拟太阳能光伏发电的数学模型建立。主要用LabVIEW软件对数学模型进行分析。

这里给出参考数学式:

Ipd=Ipb+Ihd(1+cosβ)/2+(Ihb+Ihd)p (1+cosβ)

其中,Ihd表示的是太阳能在水平面上发生散射的强度量,Ipb则为太阳能直接辐射在倾斜坡面上的能量,β为太阳光与辐射平面的夹角。

通过数学模型的建立,太阳能光伏发电的研究便有了函数表达,对研究过程起到了简洁化、直观化的处理,并使计算机模拟太阳能光伏发电有了程序基础。建立正确精准的数学模型,是开始计算机模拟实验的前提条件,能有效地帮助研究人员对研究内容更直观、详尽地进行分析。

3.2 光伏电池板的数学模型

光伏电池的等值电路模型一般有3种。第1种是不考虑光伏电池内部任何电阻的简单模型,该模型在光伏电池理论研究以及复杂光伏发电系统中应用较多;第2种模型是只考虑光伏电池并联电阻影响的模型,该模型精度稍高,但在实际应用中并不常见;第3种模型是较为精确的一种模型,其既考虑并联电阻,又考虑串联电阻的影响。

3.3 其他相关因素数学模型建立

太阳能电池板是在研究过程中所需要的重要元件,因此应结合研究用太阳能电板特性,建立太阳能电板的功率数学模型,使研究过程更加科学。

同时应建立蓄电池的数学模型,以及直流-交流逆变器的函数表达式。建立好相关数学模型,并将之与之前所建立光伏电池数学模型、太阳能辐射数学模型进行联立,得到较为统筹的数学模型,并将之录入计算机中,建立起相对应的计算机模拟太阳能光伏发电函数库,由相关技术人员进行整合编写,从而开展计算机模拟太阳能光伏发电研究。

3.4 模拟太阳能光伏发电系统

多个太阳能光伏电池板进行联合组装,构成太阳能电池板集合,便可加大对太阳能的辐射接收面积,从而获取更多太阳辐射能。接受到的太阳能会经过能量转化为电能,产生直流电并流经接线盒从而到达控制器,另一部分则流入直流-交流逆变器,并在其作用下转化为交流电。产生的交流电经过一定的升压降压处理,便提供给用电端进行使用。产生过剩额部分电流则会在蓄电池内进行能量存储,以便下次使用。

3.5 计算机模拟太阳能光伏发电的结论

通过对太阳能光伏发电系统的数学建模,借助LabVIEW软件平台,可以动态地模拟真实太阳能光伏发电系统的发电过程,直观地了解了太阳能电池的输出特性随太阳辐射强度变化的应变关系。随着辐射强度的增加,I-U及P -U特性曲线上移,电流受光照强度影响很大,而电压受其影响较小。建立了太阳能光伏发电系统的最大功率跟踪模型,从而可确定任一太阳辐射强度下系统运行最佳电压Um和最佳电流Im,以达到最大输出功率的目的。

4.结语

随着国家对新能源发展的日趋重视,太阳能光伏发电已经成为仅次于风力发电的新能源发电力量,并且太阳能发电适宜推广、应用。利用计算机软件对太阳能光伏发电系统进行仿真建模分析,对太阳能光伏发电系统的设计、优化具有重要的意义。它使我们能够对系统有充分的认识,作出合理的判断,选择最佳的方案,以最少的代价获取最大的经济效益。

参考文献

[1]王默涵.利用计算机模拟太阳能光伏发电[J].节能,2005,05(15).

篇10

一、研究背景

近年来随着经济的快速发展和农民收入的连年提高,农民家庭的用电设备出现了快速增加势头,相应的农村地区的用电量也出现了快速增长,尤其是在夏季高负荷季节和节日时刻更是经常出现供电难以满足负荷的现象,这对电源建设和电网建设都提出了更高的要求。当前,中国相关部门出台了一些新能源发电相关补贴政策,而中国农村的建筑多以平房或低层小楼为主,有着发展光伏发电的先天性位置条件,这就给农村屋顶光伏发电带来一定的发展机遇。

二、农村发展光伏发电的优势及劣势分析

从物理布局上看,光伏发电要占用较多的土地面积,城市人口密集,人均建筑接触日光面积较小,因此不利于发展光伏发电。而农村人口密度较低,居民建筑多是平房或低层楼房,人均建筑接触日光面积较大,而且闲置或废弃的场地较多,这都给光伏发电提供了很多的安装地理位置。相较风电、生物质发电等其他发电方式,光伏发电占地面积更小,甚至不用占地面积,据相关统计,光伏发电、风电、生物质发电三者的占地面积比大概为1:10:100,农村光伏发电占地少的优越性非常明显。从光伏产业本身来看,随着光伏产业技术的进步和规模效应的显现,其制造成本也在呈现下降趋势。从历史来看,光伏材料成本相较刚出现时也已经出现了大量的下降。从全球范围来看,中国是一个光伏组件制造大国,目前面临着外需不足和西方贸易制裁的不利,国内光伏产业面临着产能过剩的局面,光伏价格处于一个下降的通道,这也为光伏组件在农村的销售提供了便利条件。尽管如此,光伏发电在农村发电也面临着一些劣势。光伏组件相对农村居民收入来讲仍是一笔不小的支出。农村居民的素质相对来说较低,多数都不愿也无力进行中长期的投资投入产出核算。因此,化解农村居民的财务核算劣势也是构建农村光伏发电经济型评价模型的原因。

三、影响农村光伏发电的经济因素分析及模型构建

单位装机年发电量Q:在光伏材料一定的条件下,该数值主要与当地的年平均日照时间有关,在进行投资经济性测算时,为简化起见,可以根据历史平均日照时间来测算该地农村的年发电量。光伏设备使用寿命L:该因素是决定净现值大小的一个很重要的因素。初始单位装机光伏设备投资I:光伏材料不同,初始投资也不同。政府对于光伏单位装机的一次性购买设备补贴A:政府的补贴方式可能会因为时间和其他因素而出现形式上的不同,在模型具体数据处理过程中,可以折算成投资初期的现值。农村居民用电消费价格P:针对不同地区的农村用电,价格可能会有所不同。模型中的p应该是未来一段时间内的售电平均价格。国家对光伏发电的电价补贴C:在不同的时间和地区,这个数字可能会出现不同。折现率R:由于光伏发电设备的使用寿命较长,该因素必须要考虑在内,对于不同的地区来说,资金的使用效率也会有所不同,因此该数字根据不同的地区可以有机动的变化。光伏发电并网政策:不同的并网政策不仅会对农村光伏发电的经济型产生重要的影响,还会对农村的电能使用效率产生重要的影响。在理出影响模型评价结果的主要因素后,我们可以根据技术经济学原理建立模型,这里利用静现金流量方法,即NPV法。分两种情况考虑(这里不考虑设计光伏初次安装和后续维护的人工及相关成本),当农村光伏发电不能卖给电网时,也就不存在上网电价补贴了,因此这里的p指的就是未来一段时间内的售电平均价格。NPV=-I

根据模型,农户居民和政府可以判断自己的投资及补贴是否合理。对影响NPV的因素进行敏感性分析,进而制定自己的方案。

参 考 文 献

篇11

中图分类号:TM615 文献标识码:A 文章编号:1674-7712 (2014) 04-0000-01

随着能源短缺与能源需求的矛盾日益突出,能源价格会不断升高,严重阻碍了社会发展的步伐,寻找可再生能源,走可持续发展道路迫在眉睫。太阳能作为一种最常见的可再生能源,不仅分布广,无污染,而且可再生,被国际上认为是最好的化石能源替代品[1]。

太阳能光伏产业作为可再生能源产业,引起了各国政府的重视和大力支持。很多国家正积极研究光伏发电技术,并出台分布式光伏发电的财政补贴等政策,以促进光伏产业的快速发展,来应对能源短缺现象[2]。

光伏发电技术是一项优化未来能源构成的高新发电技术,分布式光伏电站的快速发展将加速远程监控系统的开发和推进相关技术的市场需求。随着计算机网络技术和通信技术的快速发展,远程监控系统将成为一种重要的手段。

一、分布式光伏电站简介

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,支持现存配电网的经济运行,或者同时满足这两个方面的要求。

二、分布式光伏发电特点

分布式光伏发电是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近使用,就近转换,就近并网的原则,以满足特定用户的需求,可以有效提高同等规模光伏电站的发电量,还可以降低电力在升压及长途运输中的损耗。具有以下特点:

一是输出功率相对较小,一般而言,一个分布式光伏发电项目的容量控制在数千瓦以内但小型光伏系统相比大型的投资收益率并不会降低;

二是污染相对很小,没有噪声,也不会对空气和水产生污染,环保效益突出;

三是可以在一定程度上改善当地的用电状况,但是分布式光伏发电的能量密度相对较低,并不能从根本上解决用电紧张问题,而且具有间歇性;

此外,还有安全可靠性高,抗灾能力强,非常适合于远离大电网的边远农村、牧区、山区供电,不需要远距离输送电力,成本低、效率高[3]。

三、分布式光伏电站监控体系结构

分布式光伏发电系统的基本设备包括光伏电池阵列、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。其运行模式是在有太阳辐射的条件下,分布式光伏发电系统的太阳能电池阵列组件将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。

四、分布式光伏电站监控系统技术

分布式光伏发电倡导尽可能就地消纳,通过配电网接入电力系统,配电自动化系统需要对光伏发电进行监控和管理,以保证电网的安全可靠运行。分布式光伏发电一般在农村、牧区、山区,发展中的大、中、小城市或商业区附近建造,通常建在工业厂房、公共建筑以及居民屋顶上。这给分布式光伏电站的监控和管理都带来了挑战,我们可以通过远程监控来解决这一难题。

(一)通讯技术。分布式光伏发电系统的通信方式有多种类型。主要取决于城市中心、市区、郊区、农电等不同的地理位置。通信介质也分多种,包括:光纤、电力线载波、无线等方式。光纤通信具有容量大、传输距离远、抗电磁干扰、无辐射等特点,是市区配电网自动化首选的一种通信方式。随着光纤通信技术的不断普及和发展,其性价比也比较适中。无线方式通信实施比较方便,而且布置灵活,但容易受干扰。电力线载波通信方式比较适合农电及远距离线路,价格也相对便宜。

(二)监测系统的构成。由数据采集系统、数据传输系统、数据中心组成。数据采集系统应至少包括环境监测设备,电参数监测设备等。

1.数据采集。数据采集是指从传感器和其它待测设备等被测单元中采集需要的数据,送到上位机中进行分析、处理的行为。电压传感器用于采集光伏阵列的输出电压、蓄电池电压、逆变器输入电压、直流负载的输入电压。电流传感器用于采集光伏阵列的输出电流、蓄电池电流、逆变器输入电流、直流负载的输入电流。智能传感器用于采集逆变器的输出电压、电流、功率、功率因数。温度传感器和调理板用于采集室外、光伏组件和蓄电池的温度。辐照仪用于测量水平面的太阳总辐照度和光伏阵列表面的辐照度。

2.数据传输系统。电站数据监测系统中监测装置与数据采集装置之间、数据采集装置与数据中心之间的数据传输。根据分布式光伏电站、电力部门的不同情况选择相应的通讯方式进行数据传输,并确保数据传输的方便和安全。

3.数据中心。通过实现统一的数据定义与命名规范,集中多个光伏电站数据的环境。软件部分是整个监测系统的核心,从传感器采集得到的信息量将全部送至该部分进行数据处理和显示。提供了强大的图形界面,显示画面生动,一目了然。

五、我国分布式光伏电站发展现状与前景

中国光伏产业的发展曾过度依赖国外市场,尤其是欧洲市场,受欧债危机、欧盟及美国“双反”等事件的影响,国外市场持续低迷,中国光伏产业的持续发展也因此呼吁国内光伏市场的快速启动。

目前分布式光伏发电已被广泛应用在家庭供电、道路照明、景观照明、交通监控、大型广告牌、发电站,市场规模逐步扩大,呈现出广阔的市场前景。2012年12月19日,国务院召开常务会议提出要着力推进分布式光伏发电,鼓励单位、社区和家庭安装和使用分布式光伏发电系统。在《关于申报分布式光伏发电规模化应用示范区的通知》文件中,将在每个省建设500MW分布式光伏的规模化应用示范区[4],这是国内启动的至今最大的光伏项目,这些政策极大鼓舞了国内分布式光伏产业的发展,我国分布式光伏产业迎来了重大的挑战和机遇。

参考文献:

[1]陈晨,陈明明.太阳能光伏发电现状分析及发展方向[J].动力与电气工程,2013.

篇12

1. 太阳能光伏发电系统的组成

太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是:

光伏电池:光电转换。

控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。

蓄电池:蓄电池是光伏发电系统中的关键部件,用于存储从光伏电池转换来的电力。目前我国还没有用于光伏系统的专用蓄电池,而是使用常规的铅酸蓄电池。

交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。

2. 太阳能光伏电池板:

太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的P-N结。工作原理和二极管类似。只不过在二极管中,推动P-N结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响P-N结空穴和电子运动的是太阳光子和光辐射热(*)。也就是通常所说的光生伏特效应原理。目前光电转换的效率,也就是光伏电池效率大约是单晶硅13%-15%,多晶硅11%-13%。目前最新的技术还包括光伏薄膜电池。

3. 太阳能光伏发电系统的分类:

目前太阳能光伏发电系统大致可分为三类,离网光伏蓄电系统,光伏并网发电系统及前两者混合系统。

A)离网光伏蓄电系统。这是一种常见的太阳能应用方式。在国内外应用已有若干年。系统比较简单,而且适应性广。只因其一系列种类蓄电池的体积偏大和维护困难而限制了使用范围。

B)光伏并网发电系统,当用电负荷较大时,太阳能电力不足就向市电购电。而负荷较小时,或用不完电力时,就可将多余的电力卖给市电。在背靠电网的前提下,该系统省掉了蓄电池,从而扩张了使用的范围和灵活性,并降低了造价。

C)A, B两者混合系统,这是介于上述两个方之间的系统。该方案有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略。但是其造价和运行成本较上述两种方案高。

二、光伏发电的优点

进入70年代后,由于2次石油危机的影响,光伏发电在世界范围内受到高度重视,发展非常迅速。从远期看,光伏发电将以分散式电源进入电力市场,并部分取代常规能源。不论从近期和从近期看,光伏发电可以作为常规能源的补充,在解决特殊应用领域,如通信、信号电源,和边远无电地区民用生活用电需求方面,从环境保护及能源战略上都具有重大的意义。光伏发电的优点充分体现在以下几个方面:

1. 充分的清洁性。 (如果采用蓄电池方案,要考虑对废旧蓄电池的处理)

2. 绝对的安全性。 (并网电压一般在220V以下)

3. 相对的广泛性。

4. 确实的长寿命和免维护性。

5. 初步的实用性。

6. 资源的充足性及潜在的经济性等。

三、光伏发电局限性。

任何事物总是具有两面性。目前有太多的文章介绍光伏发电的优点和优势,这里有必要指出光伏发电的一些局限性。太阳能具有能量密度低,稳定性差的弱点,并受到地理分布、季节变化、昼夜交替等影响。光伏发电的局限性包括以下几个方面:

1. 时间周期局限。由于光伏发电的条件是出太阳时,光伏发电设备才能正常工作发电。因此,白昼黑夜,一年当中春夏秋冬各个季节对光伏发电的负荷影响巨大。为了应付这个情况,电网不得不配备相应容量的发电机处于旋转备用状态。

2. 地理位置局限。光伏发电设备基本上只能依附建筑物安装建设,也就是所谓的光伏屋顶就地供电。如果离开建筑物来建设光伏发电,将会大大增加成本或者破坏环境和生态。

3. 气象条件局限。气候对光伏发电影响。采用光伏并网发电无蓄电池方案时,如果一个城市上空的气候大幅变化,将造成电力负荷的大幅波动;当一个城市上空的空气质量比如空气污染,或能见度变差比如雾天,阴天等都将使光伏发电在线或实时出力下降。

4. 容量传输局限。在解决了光伏发电的成本问题后,大功率,高电压,远距离从荒漠面积输送电力到负荷中心,由于光伏发电没有传统电机的旋转惯量,调速器及励磁系统,将给交流电网带来新的经济和稳定问题。不论采用交流或是直流高电压大功率远距离从荒漠地区输送电力,由于上述1,2,3的局限性将大大增加单位千瓦的输送成本。下面将会讨论这个问题。

5. 光能转换效率偏低。和传统能源(矿物能源,石油,水能,原子能,等)的转换效率相比,光伏能量的转换效率不能令人满意。

四、光伏发电未来展望

我国光伏产业正以每年30%的速度增长。最近三年全球太阳能电池总产量平均年增长率高达49.8%以上。按照日本新能源计划、欧盟可再生能源白皮书、美国光伏计划等推算,2010年全球光伏发电并网装机容量将达到15GW(1500万千瓦,届时仍不到全球发电总装机容量的1%),至2030年全球光伏发电装机容量将达到300GW(届时整个产业的产值有可能突破3000亿美元),至2040年光伏发电将达到全球发电总量的15%-20%。按此计划推算,2010-2040年,光伏行业的复合增长率将高达25%以上(参看资料:15)。其中并网应用会有较大的发展,从而形成并网发电(约46%)、离网供电(约27%)和通讯机站(约21%) 3个主要应用领域(参看资料:16)。

太阳的能量对人类而言几乎是无限的,但是实际上,在地球上能够获取太阳能资源的资源是有限的。并不象有些文章中所说的那样巨大。例如,当我们在在屋顶安装太阳能热水器时,就失去了安装太阳能电池的机会。除建筑物和荒漠外,在其他地点建设太阳能电池板群将是不现实和得不偿失。这不仅仅是因为成本巨大的原因,问题是显而易见的,主要的问题是离开建筑物和荒漠来建设光伏发电站将破坏环境和生态,你会发现在太阳能电池板下面将寸草不生。总之,节能降耗是人类的一个永恒话题。从某种意义上讲,淘汰旧技术和产品的同时,也就浪费掉了当初生产这些技术和产品的能源。出国考察的人往往会发现,西方发达国家有些场合还在使用20-30年代的产品和设备,他们并非要保护“古迹”,某种意义上讲是在节约能源。新旧产品和技术的换代是要以耗费能源为代价的,过快的产品更新换代,将加快能源的消耗。当然,这里需要有一个总体的经济指标来判断能耗。我们是否应该考虑节约“used能源”的问题?(**)

另一方面,任何先进的技术,进入商业使用的必要条件是价格能为市场所接受。如果使用成本太高,再好的技术必将只能停留在试验室中或者示范工程阶段。

转贴于

五、光伏发电并网对未来电网的影响

随着我国《可再生能源法》的颁布实施,常规能源价格的不断升高和石油价格逼近$100,世界范围内围绕利用太阳能科技,商业发展非常迅速,其中光伏并网发电技术发展非常快。目前制约光伏发电的主要因素是成本问题。太阳能光伏发电造价高(每千瓦3万元以上),发电成本贵(1.5元/千瓦时以上)。随着光伏发电成本的降低和耗能发电成本的提高,总有一天光伏发电的成本将会与传统发电成本相当。到那时侯,光伏发电将会进入商业化应用阶段。为了提早迎接这一天的到来,我们将有必要提前考虑光伏并网发电对现有发电模式的技术、经济、政策和环境效益的影响。我们先假设这个时代已经到来,并且现有的发电模式并未发生较大的改变。那么光伏发电给我们带来好处的同时将会对现有的电网产生什么样的问题?

由于太阳能光伏发电属于能量密度低、稳定差,调节能力差的能源,发电量受天气及地域的影响较大,并网发电后会对电网安全,稳定,经济运行以及电网的供电质量造成一定影响。至于有多大的影响目前尚不清楚。我们知道目前电能是不能大规模低成本储存的,在可以预见的将来也不能大规模低成本储存。这就使得光伏发电的应用受到物理因素的制约,同时也受到地理上的限制。但是随着技术和市场的发展,当光伏发电的上网电量在电网中与火电厂,水电,核电等电厂的发电量处于可比较的数量级和成为不可忽略的一部分时,光伏并网发电将对现有发电模式和电网的技术、经济、政策和环境效益带来如下问题:(如果光伏并网发电系统采用有蓄电池方案,光伏并网发电的优点和优势将大打折扣。但是为光伏并网发电优化配置的蓄电池系统可以部分解决以下1,2和3点提出的问题。)

1. 负荷峰谷对电网的影响。由于光伏并网发电系统不具备调峰和调频能力,这将对电网的早峰负荷和晚峰负荷造成冲击。光伏并网发电系统增加的发电能力并不能减少传统旋转机组的拥有量,电网必须为光伏发电系统准备大量的旋转备用机组来解决早峰和晚峰的调峰问题。光伏并网发电系统向电网供电是以机组利用小时数下降为代价的。这当然是发电商所不愿意看到的。

2. 昼夜变化,东西部时差以及季节的变化对电网的影响。由于阳光和负荷出现的周期性,光伏并网发电量的增加并不能减少对电网装机容量的需求。

3. 气象条件的变化。当一个城市的光伏屋顶并网发电达到一定规模时,如果地理气象出现大幅变化,电网将为光伏并网发电系统提供足够的区域性旋转备用机组和无功补偿容量,来控制和调整系统的频率和电压。在这种情况下,电网将以牺牲经济运行方式为代价来保证电网的安全稳定运行。

4. 远距离光伏电能输送。当光伏并网发电远距离输送电力在经济和技术上成为可能时,由于光伏并网发电没有旋转惯量,调速器及励磁系统,它将给交流电网带来新的稳定问题。如果光伏并网发电形成规模采用高压交直流送电,将会给与光伏发电直流输电系统相邻的交流系统带来稳定和经济问题,(专门用于光伏并网发电的输电线路,由于使用效率低,将对荒漠太阳能的利用形成制约。用于借道或者兼顾输送光伏并网发电系统电能的输电线路,由于负荷率低下,显得很不经济。)不论采用高压交流或直流送出,光伏并网发电站都必须配备自动无功调压装置。至于对电网稳定的影响,目前还未见到光伏发电在电网稳定计算中的数学模型(包括电源模型和负荷模型)。光伏并网发电将对电网安全稳定运行有多大的影响目前尚不清楚。

5. 降耗问题;光伏并网发电的一个主要优势是可替代矿物燃料的消耗。由于光伏并网发电增加了发电厂旋转发电机的旋转备用或者是热备用,因此,光伏并网发电的实际降耗比率应该扣除旋转备用或热备用损失的能量。光伏并网发电的降耗效率应该考虑到由于光伏并网发电系统提供的电力导致发电公司机组利用小时数降低带来的效率损失。由于电力系统是作为一个整体来运行的,光伏并网发电向电网输送电力将侵害其他发电商的利益,这是作为政策制定者需要考虑的问题。这是由于电网在考虑安全,稳定和经济运行时,不仅仅只由水电厂担任旋转备用。因此,系统中总的光伏并网发电量所等效的理论降耗标煤量前应该乘以一个小于1的系数,并且等比例的减去旋转备用机组的厂用电损耗。

这里给出一个公式来判断光伏发电实际的降耗作用:

W=[(Wc/Wn)*Wp -(Pc/Pn)Pd);1

1)W--光伏并网发电实际获得的降耗量(标煤);

2)Wc--电网火电总发电量;

3)Wn--电网总发电量;

4)Wp--光伏并网发电理论降耗量(标煤)

5)Pc--火电机组总的厂用电损耗(标煤);

6)Pn--电网中总的厂用电损耗(标煤);

7)Pd--旋转备用机组的厂用电损耗(标煤)。

6. 环保问题;光伏发电带来的减排效果是否应该只考虑火电排放的二氧化硫和二氧化碳还有待研究,因为当光伏并网发电时,同样电网在考虑电网安全,稳定和经济运行时,往往减少出力的不仅仅是火电厂,而考虑旋转备用时,也不仅仅是水电厂来承担旋转备用的任务(水电厂承当旋转备用任务损失较小)。因此,在考虑光伏并网发电系统的减排贡献时,也应该在理论值前乘以一个小于一的系数。这个结论并不象一些文章中所讲的那么乐观。

7. 顺便指出,风力发电也存在环保生态问题。国外有环保人士指出大型的风力发电站往往建在季风的风道上,这往往是候鸟迁徙的最佳路线。

结束语

光伏发电的优势在于解决离网地区通信,微波等设备的能源动力,分散人口地区的小容量电力消费及为有条件建立光伏屋顶的建筑就地提供电力。未来电网在做发展规划时,对负荷预测应充分考虑离网光伏发电和光伏并网发电对电网的影响和数学模型。离网光伏发电系统可以作为在线有源可变负荷模型来考虑(这里指的是城市中既可由离网的光伏发电系统,也可以由市电网供电的负荷)。光伏并网发电系统如果以110V或220V并网供电时,也可以把光伏并网发电系统考虑为可从负到正变化的有源负荷模型。通过上述分析,光伏并网发电远期定位只能作为电网节能降耗的重要补充手段。如果超出这个战略定位,将造成投资和额外的能源浪费,对减少污染排放量的乐观看法也要大打折扣。

本文仅仅代表作者个人观点。

初稿于昆明,2007.11.8,

* 太阳能中包含了可见光能,不可见光能,光热辐射能等等。从物理学能量守恒定律来看,只要在同系统中形成差值的物理量都包含着能量。比如,水力发电的水位差,或“落差”;热力发电中的“温差”,风力发电中气流的“压差”等等。

根据半导体物理原理,P-N结整体温度上升,使P-N结呈现负的温度系数。单片太阳电池的电压随温度的上升而下降(见参考资料3,P49,图2-16,图2-19,太阳能电池组件温度对效率的影响;参考资料5,P174)。也就是说温度的变化将引起P-N结内空穴和电子运动,数量及平衡点的变化(见参考资料2,P26)。随着温度的增加,太阳能电池效率下降(见参考资料5,P43-44)。Isc对温度T很敏感,温度还对Voc起主要作用。对于Si温度每增加一度,Voc下降室温值的0.4%,效率也因而降低同样的百分数。例如,一个硅电池在20度时的效率为20%,当温度生到120度时,效率仅为12%(见参考资料4,P36)。

可以猜想,如果P-N结两侧的温差上升,或者P-N结的结温差上升,势必打破空穴和电子对的平衡。结温差的变化是呈现正的还是负的温度系数,以及对太阳能电池IV特性的影响目前尚未见到试验报道。可能存在着一个类似光伏效应的热伏效应--辐射热生伏特效应(当然不一定就是P-N结)。准确的在P-N结上制造一个结温差,或一个较大的温度梯度,在技术上可能是一个非常困难的事情。总之增加“光差”和“结温差”或许是提高光伏发电效率一个有用途径。

** 作者实在无法用中文来表示 “used 能源”的意思,只好用英文来代替了。

参考资料:

1. 太阳能发电原理与应用,冯垛生,宋金莲;

2. 太阳能电池材料,杨德仁;

3. 并网型太阳能光伏发电系统,崔容强,赵春江,吴达成;

4. 可再生能源概论,左然,施明恒,王希麟;

5. 新能源和可再生能源的利用,吴治坚;

6. 太阳能发电系统状况及发展趋势,沈阳建筑大学交通与机械工程学院 2007-9-6;

7. 光伏并网发电系统的若干问题研究,华中科技大学刘飞,段善旭,徐鹏威,王志峰2006年04期;

8. 可再生能源发电有关管理规定,2006-7-12 中国电力报;

9. 新能源和可再生能源产业发展“十五”规划,国家经贸委;

10. 对《可再生能源法》颁布并实施一周年的思考中国环境 薛惠锋 2007-05-25;

11. 中国光伏发电的市场情况,中美清洁能源技术论坛,中国新能源网 2003-11-11;

12. 2007年中国太阳能光伏发电产业分析及投资咨询报告;

13. 光伏市场规则与变数,刘文平2006-12-30;

14. 2005~2030年电力需求预测及发展战略研究,太阳能光伏网,2007-10-13 08:18:09;

15. 点燃中国光伏市场还须迈几道坎, 能源世界-中国建筑节能网,2007-9-24;

16. 全球光伏产业分析报告(上),上海电子网,2007年06月28日;

17. 太阳能电池的丝网印刷技术,:Solar168,杰克`肖,06-12-25 ;

18. 太阳能光伏发电综述,广州科技网,2007-02-15;

19. 太阳能电池发电的原理,中国绿色能源资讯网 作者:佚名 时间:2007-10-24;

20. 光伏产业在全球的发展,杨学林,中国科学院上海硅酸盐研究所;

篇13

中图分类号:TK511文献标识码: A

引言

太阳能是指太阳光的辐射能量,在现代一般用作集热或发电。太阳能是可再生能源,既可免费使用,又无需运输,对环境无任何污染。自1995年以后,世界太阳能利用进入一个新的发展期,太阳能利用与世界可持续发展和环境保护紧密结合;在加大太阳能研究开发力度的同时,注意将科技成果转化为生产力,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高。

当今世界,化石能源日趋紧张,环境污染日益严重,为了顺应节能环保、绿色低碳的能源利用趋势,本文从太阳能发电系统组成入手,分析了太阳能光伏发电的投资费用、运营成本、政策补贴、发展前景等问题,对太阳能发电的前景做出展望。

太阳能系统介绍

2.1太阳能光伏发电系统组成

太阳能光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。太阳能光伏发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。各部分的作用为:

(1)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

(2)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。

(3)蓄电池:一般为铅酸电池,一般有12V和24V这两种,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(4)逆变器:在很多场合,都需要提供AC220V、AC110V的交流电源。由于太阳能的直接输出一般都是DC12V、DC24V、DC48V。为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

太阳能相关政策

国家相关政策

2013年8月31日,国家发展改革委出台《关于发挥价格杠杆作用促进光伏产业健康发展的通知》(发改价格[2013]1638号),对光伏电站实行分区域的标杆上网电价政策。

通知明确,对光伏电站实行分区域的标杆上网电价政策。根据各地太阳能资源条件和建设成本,将全国分为三类资源区,分别执行每千瓦时0.9元、0.95元、1元的电价标准。对分布式光伏发电项目,实行按照发电量进行电价补贴的政策,电价补贴标准为每千瓦时0.42元。 通知指出,分区标杆上网电价政策适用于今年9月1日后备案(核准),以及9月1日前备案(核准)但于2014年1月1日及以后投运的光伏电站项目;电价补贴标准适用于除享受中央财政投资补贴之外的分布式光伏发电项目。标杆上网电价和电价补贴标准的执行期限原则上为20年。国家将根据光伏发电规模、成本等变化,逐步调减电价和补贴标准,以促进科技进步,提高光伏发电市场竞争力。

北京市太阳能光伏发电经济价值分析

北京市气候条件

根据调查北京市历年气候条件得知,北京的气候为典型的暖温带半湿润大陆性季风气候,年平均日照2780.2小时,属于比较优质的太阳能发电区域,平均每年为115.84天,平均每天约7小时40分钟。

经济测算补充说明

1. 分布式太阳能发电享受0.42元/度的光伏发电补贴政策;

2. 对于屋顶放置的分布式光伏发电项目来说,1MW的装机容量大概需要1.2万-1.5万平米的屋顶面积;

3. 目前太阳能发电的投资成本在8-10元/W左右,本测算中取9元/W;

4. 对于北京市来说,适用于光伏发电的全年满发小时数为1100-1300小时,鉴于北京市雾霾天气严重,而雾霾对于太阳能发电的影响较大,所以本测算中取1100小时;

5. 光伏发电项目的后期维护成本很低, 10MW的光伏发电项目,其每年的维护费用约为50万元(包含人工费用)。

太阳能光伏发电经济价值数据分析

以北京地区为例,根据北京市气候条件及能源公司到京仪集团和中材天华国际光伏工程技术有限公司调研的数据得知,目前北京市分布式太阳能发电相关数据如下表所示:

由上表计算得出,在比较理想的光照条件下,1MW光伏发电项目经济分析如下:

下面列举北京某太阳能项目经济分析的实际案例,进一步佐证本文中对太阳能发电经济价值分析的结果。

北京某影视产业园屋顶光伏电站项目

项目地址:北京东五环外,可利用屋顶面积约3800平米。项目所在地太阳资源辐射量在120-140千卡/cm2(5020-5840MJ/m2 )之间。鉴于光伏行业现状综合考虑,计算发电量时,太阳能年辐射量取4000-4650MJ/㎡,峰值日照时数取1250h。

初步估算可安装光伏发电容量350kW,本工程实际安装容量为348.4kW,得出本工程第一年理论发电量为43.55万千瓦时。电池组件在光照及常规大气环境中使用会有衰减,按系统每年输出衰减0.8%计算,25年累计发电量为783.46万kwh,平均每年发电31.34万kWh/年。

下表为该项目经济价值分析:

根据两个太阳能项目的对比结果可知:理论研究得出的数值与实际案例相符。不同项目条件下,太阳能屋顶光伏发电项目的投资回收期一般为6-9年左右,在现有补贴政策下,太阳能发电具有较好的经济收益和投资价值。

结语

分布式光伏电站工程的建设,符合我国可持续发展能源战略规划,也是发展循环经济模式,建设和谐社会的具体体现。对于促进节能减排、打造低碳城市将产生积极的推动作用,同时对推进太阳能利用及光伏发电产业的发展进程具有非常大的意义。

自1995年起,太阳能光伏发电进入了一个新的发展阶段,由于技术水平的提高,太阳能项目初投资的关键——太阳能板的造价平均每五年降低一半,由此发展下去,太阳能发电必将迎来发展的黄金期。

参考文献:

[1] 王亦南.对我国太阳能热发电的一点看法[J].中国能源,2006(8).

[2] 刘静静,杨帆,金以明.太阳能热发电系统的研究开发现状[J].电力与能源,2012(6).

[3] 孙德胜,陈雁.太阳能热发电技术最新进展与前景研究[J].电源技术,2010(8).

[4] 刘爽.太阳能资源利用与太阳能建筑发展.科技成果纵横,2007(6).

[5] 郑拴虎.2013北京能源发展报告. 2013.

友情链接