当前位置: 首页 精选范文 生物信息学产生的背景

生物信息学产生的背景范文

发布时间:2024-04-09 14:46:34

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇生物信息学产生的背景范例,将为您的写作提供有力的支持和灵感!

生物信息学产生的背景

篇1

一、生物信息学的产生

生物学是一门古老的学科,在人类历史发展的长河中,人类从未停止过对生命奥秘的探索。人们逐渐认识到,虽然生物种类多种多样,但是它们的最基本分子却是相同的。DNA、RNA和蛋白质等分子构成了生命的基本单位,再由细胞到组织、器官,最后器官系统组成完整的生物体。

传统的生物学研究中,由于受到技术水平的限制,生物学家多采用低通量的生物实验方法,其研究对象通常是一个基因或者几个基因组成的通路。在这种情况下,实验后的简单观察就可以满足研究需要。随着生物研究的不断深入,积累了大量实验数据,人们不禁想到,如何把不同的实验结果整合起来?另一方面,随着生物技术的发展,大量新兴技术出现,产生了海量的数据。例如90年代兴起的基因芯片技术,单张芯片就可以测定成千上万个基因在某一状态下的表达情况。1990年启动的人类基因组计划更为生命科学的研究提供了海量的序列数据。面对如此多的数据,以前依靠生物实验研究单个或几个基因的方法很难再适用,生命科学、统计学、计算机科学和信息科学等若干学科的交叉学科――生物信息学应运而生。生物信息学以计算机、统计、模式识别等方法为手段,以生物数据为研究对象,通过对大量生物数据的储存、处理和分析,提取其中有意义的生物知识[1],从而最终揭示蕴藏在核酸序列和蛋白质序列中的信息,对了解生命活动的基本规律出贡献。

二、生物信息学在生命科学研究中的作用

作为一门新兴的学科,大家对生物信息的作用并不十分明确。很多人认为生物信息学只是为实验科学服务。从广义上讲,这种说法也不无道理,但是生物信息学并不是实验科学的附属品,与生物实验一样,它也是解决生物问题的一种手段。为了解决生物问题,生物学家依靠的是实验台,生物信息学家依靠的是计算机。

在生命科学的发展过程中,以分子生物学的产生为界,可以分为传统生物学和现代生物学。传统生物学和现代生物学取得的成就为生命科学的发展做出了巨大贡献。人类基因组计划启动以来,人们一度认为只要把各种生物基因组的全部碱基排列顺序测定清楚,生命的遗传奥秘就会显露无余,但是真实的情况远不像想象的那样简单。人类的个体发育开始于一个单细胞受精卵,受精卵经过一系列的细胞分裂和分化,产生具有不同形态和功能的细胞,不同细胞之间相互作用构成各种组织和器官。虽然人类基因组中有两万多个基因,但是在单个细胞当中,同时起作用的基因往往是很少的。有些基因只在特定阶段起作用,有些基因只在特定组织起作用。只关心某个基因或蛋白的功能是不够的,因为在不同时空条件下,同一个基因或蛋白的功能可能不同。生物是一个复杂的系统,其表型和功能不仅体现于基因数量和序列的不同,更体现在基因、蛋白以及其他生物分子之间的相互作用之中。因此,把研究对象当成一个整体,系统地分析内部的相互关系尤其重要。但是无论是传统生物学还是现代生物学,都是一门实验学科,生物学的发展中缺乏一种系统思想。生物信息学可以从大量生物数据中提取有意义的生物知识,通过对已有数据的总结,进一步推测生物体的某些性质和变化趋势,生物信息学为大量生物数据的整合提供了可能,与生物实验一样,是生物研究中的一种重要途径。

三、生物信息学学生的培养

生物信息学是一门交叉学科,要求学生具有较好的分子生物学、计算机科学、数学和统计学素养,目前国内只有少数几个学校设立了生物信息学本科专业,大部分的学生都是进入研究生阶段才开始生物信息学的培养。在进入生物信息学专业前,本科阶段可能接受过计算机、统计学、信息学、生物学等某一方面的教育,但要进行生物信息学的研究,大多需要补充其他方面的知识。

生物信息学研究可以分为两类:第一,在深刻理解生物问题的基础上,利用计算技术解决生物问题,第二,为生物学家提供性能更好的方法(算法)。理工科背景学生的生物知识较少,但是对于各种计算方法的原理和使用非常熟悉,对于这类学生的培养,第二类问题比较适合他们入门。在生物信息领域,有很多经典的分类问题。这些问题已经明确了分类目标,并且大都有通用的数据集。但是这类工作也受到了生物学家的质疑,因为大部分工作都是把已有的经典算法用在生物数据上,由于对生物问题不够了解,最后成为只有做生物信息的人才看的方法。这也在一定程度上导致了部分生物学家对生物信息存在偏见,认为生物信息就是提出新算法,做一些数据库。要想真正让生物学家认识到生物信息学的重要性,就要以解决生物问题为根本出发点,即使是做预测方法,也要建立在解决生物问题的基础上。做出更好预测方法的关键是深入理解生物问题并抓住关键特征。举个例子,要把男生和女生分开,我们可以根据很多特征,比如身高、体重、头发长短,虽然大多数情况下来说,男生比女生高、比女生重、比女生头发短。但是只基于这些特征还是会造成很多的分类错误,因为这些特征不是男生女生差别的最根本因素。如果我们是根据性染色体来分,那正确率的提高就非常显著了。在预测问题中,利用五花八门的方法并不是关键,如何能够对生物问题深入了解并找到关键特征,才是最主要的。

作为一门新兴的学科,大家对生物信息的了解还很少,很多人对它的定位也不同。但既然是生物信息,就是先生物后信息,可见生物的重要性。所以,在生物信息的研究过程中,对生物问题只限于表面地理解,势必不能做出好的工作。只有对生物问题有了深入了解,才能发现其中的问题。能够找到值得做的问题,可以说工作已经成功了一大半。当然,解决问题过程中也会有很多困难,比如发现了值得研究的课题,但在解决的过程当中发现某些数据无法获得,或者某些技术超出了自己的能力范围。在这种情况下,可以首先想想有没有其它变通的办法可以解决问题,如果经过慎重的考虑都无法找到,就要果断的放弃。这里要强调一定要慎重考虑,不能遇到一点困难就放弃。

相比理工科背景的学生,生物背景的学生有着扎实的生物学知识基础。但是如果是从本科阶段直接进入生物信息学,由于还没有进行过实验操作,他们对生物问题的理解也很难非常深入。不管是理工科背景还是生物背景的学生,丰富的生物学知识都是进行好的生物信息学研究的前提。在培养学生时不可忽视对其基础生物学知识的传授和教育,并适当引导其对生物学问题的思考。生物学问题可以很大也可以很小。大的生物学问题任何一个懂得基础生物学知识的人都可以提出,但也是最难解决的,比如到底是什么改变使细胞恶变,自身免疫病是如何形成的,心血管病糖尿病等复杂疾病是如何发生的,为何有人容易生某种病而其他人不易感。小的生物学问题就是各自领域的具体研究课题,比如表观遗传学领域的DNA去甲基化酶是否存在,基因表达调控领域的转录起始频率是如何决定的,RNA领域的大量非编码RNA的作用,蛋白修饰领域新发现的修饰如何调控蛋白的功能等等。在脑中提出并试图思考一系列大大小小的生物学问题是对学生培养目标的第一步。这些问题的产生的前提是对生物学知识的熟悉掌握。然而在对学生培养的过程中没必要也不可能告诉他们所有的知识,生物学知识教育的原则是为他们打开门,当他们思考问题的时候知道去哪里找到相关的知识。

另一方面,只有生物学基础知识和问题是不够的。很多问题在生物信息学产生之前就存在了,传统的方法无法带给人们问题的答案。人们一直期待新的方法去理解和解决这些问题。生物信息学的产生无疑提供给人们另一种思考生物问题的方式,为一些经典问题的解决提供了可能。例如最近的大规模的肿瘤基因组测序和分析使我们发现了很多新的肿瘤相关基因[2]。对于生物背景的学生,在教学中要把这样的例子介绍给学生,生物背景的学生在理解信息学理论方面会存在困难。最初很难要求他们理解所有具体过程。但是至少要让他们知道这些方法的基本原理,还有在什么情况下使用。这样在以后的研究中遇到类似问题才能想到应该选择什么样的信息学工具去解决,在具体应用过程中加深对整个过程的理解。生物背景的学生如果想成为生物信息学专家,只会应用是不够的,补充一些计算机、统计、信息方面的基础知识是必不可少的。

生物信息学是一门仍处在快速发展之中的学科。还没有一本教材能够满足生物信息学教学的需要,生物信息学立足于分子生物学、模式识别、计算机科学与技术、数学和统计学等学科,所以学生要先对这些学科的基本概念和系统有一个较为全面和直观的认识,为日后的科研打下坚实的基础。另外,培养过程中要包括大量的实例介绍,对一些重要的应用还加以详细解剖,使得同学们不再仅掌握理论,而是能够学会如何在实际工作中灵活应用这些理论。在此基础之上,向同学们推荐一些最新的论文、期刊、参考读物和相关的学术报告,让同学们能够切身感受到学科发展的前沿,培养学生的创新能力。21世纪是生命科学的时代,也是信息科学的时代。生物信息学在这样的历史条件下产生并壮大,它作为多个领域的交叉新兴学科,对生命科学研究有着巨大的推动力。生物信息学是一门应用性非常强的学科,也是一门非常活跃的前沿学科,良好的教学效果必须以先进的内容体系为基础,我们应时刻注意以科研促进教学,教学科研相长,使教学研究达到更高的水平。

[参考文献]

篇2

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)36-0134-02

生物信息学(Bioinformatics)的发展与上世纪90年代人类基因组计划的启动密切相关,它综合运用生物学、计算机科学和数学等多方面知识与方法来阐明和理解大量生物数据所包含的生物学意义。生物信息学已成为当今生命科学的重大前沿领域之一,是生命科学研究中重要的、不可或缺的研究工具。

我校生物信息学课程开设较晚,所以课程教学仍处于探索阶段,尚未形成成熟的课程体系。本文针对本校学生的需求、课堂教学反馈等情况对教学内容、教学方法等多方面开展了改革与实践,以期提高教学的质量和效果,培养全面发展的人才。

一、生物信息学课程教学现状

(一)教材较多,因此难以选择一本适合的教材

生物信息学教材很多,有些教材侧重于生物信息学理论和算法,如许忠能主编的《生物信息学》对生物信息学的理论和算法讲解详细,但是对于师范院校生物科学专业的本科生而言较为深奥,不易理解;有些教材侧重于生物信息学软件使用,学生对于软件分析所需要的背景知识掌握不够,即使能够运用软件,却不能正确分析和理解所得到的分析结果;由于生物信息学发展较快,教材更新速度相对较慢,一些新的生物信息学知识未能及时纳入到已出版的教材中,而且有些书中所讲的数据库资源早已停用,有些软件及其应用也早已更新版本。

(二)学生理论基础薄弱,学习主动性不够

虽然这门课程在我校是专业选修课程,考核方式以考查为主,但是选修这门课程的学生都对生物信息学有浓厚的兴趣。这门课程开设在大三下学期,很多同学尚未开展或即将毕业课题设计,希望通过本课程的学习对毕业论文或将来考研深造有所帮助。然而在学习过程中,由于对分子生物学、生物化学、遗传学等理论知识掌握不扎实,并且对学科前沿进展关注不够,很少阅读实验性论文,在学习生物信息学相关理论知识时理解困难,而且对于如何将生物信息学应用于实际的课题研究也感到困惑。

(三)学生英语基础不同,学习过程中容易产生消极情绪

要学好生物信息学,离不开大量专业文献的阅读,尤其是外文文献,追踪学科前沿研究进展,这就需要具备一定的专业英语基础。此外,很多生物信息学数据库以及应用软件都是全英文的,涉及专业英语词汇较多。由于学生的英语基础不同,在学习过程中有些学生感觉专业英语阅读和理解方面较吃力,容易产生畏难情绪。

二、教学改革与实践

(一)修改教学大纲,理论与实践结合

生物信息学是一门实践性很强的学科,仅仅靠教师单一的讲解理论和软件的使用方法学生是很难理解和掌握的,因此在教学过程中要理论和上机实践结合。教学大纲中原36学时为理论24学时、上机实践12学时。考虑到我校学生学习该门课程的实际需求,强化实践运用,将理论和上机实践课时均调整为18学时,学生在实践的过程中带着问题主动去思考,发现问题、解决问题,更好地去理解生物信息学的理论知识。原教学大纲中理论课学习结束后再进行上机实践,但是教学过程中发现理论课信息量大,有些知识学生初次接触没有较好地理解,或者当时能够理解,但过了一段时间后再进行上机实践时又要重新学习。在课程安排方面,调整为一个章节的理论课学习结束后开设相应的上机实践,通过实际操作练习有利于巩固所学理论知识,学生也比较喜欢这样的教学方式。

(二)调整教学目标,优化教学内容

生物信息学内涵广泛,应用领域广,但是生物信息学在不同研究领域中的研究内容和应用程度有所不同。选修本课程的学生都是生物学背景,主要希望运用生物信息学知识去解释课题研究中的生物学问题。考虑到本科生理论知识基础相对较弱,很多学生尚未开展课题研究,因此应该在有限的学时里让学生掌握与专业需求相关的生物信息学知识和实用技术,教学的重点和难点要根据本校学生特点进行调整,对教学内容进行优化、精简。例如多序列比对算法、马尔科夫模型等涉及数学、计算机知识,可以简要介绍,但不做深入的讲解。理论和上机实践部分主要介绍生物信息学数据库资源、序列比对、核酸序列分析、系统进化分析、蛋白质结构与预测,同时理论部分还包括生物芯片、高通量测序技术、介绍生物信息学的前沿进展。此外,还结合学生的需求在上机实践课中增加了引物设计内容。

课堂教学内容并不拘泥于一套教材,而是根据讲授的章节选择该章节适合的2~3套教材综合讲解,最终形成适合我校学生学习的讲义。例如在讲系统进化发育时,理论讲解选择由Masatoshi Nei和Sudhir Kumar编写的高等教育出版社出版的《分子进化与系统发育》和蔡禄编写的《生物信息学教程》,上机实践选择吴祖建等编写的《生物信息学分析实践》。

(三)教学与科研相结合,学以致用

生物信息学有很多分析软件,应用很广,即使是分章节按照序列比对、核酸序列分析、系统进化树构建等给学生逐一讲解相关的算法和实际的应用,学生仍然感觉知识零散,信息量太大难以掌握,容易产生畏难情绪而导致学习积极性不高。有些应用软件学生即使有所了解,却又不知道在科研中如何运用。所以在教学过程中,我们以课题研究为例,再结合相关的文献来进行讲解。例如选择DNA条形码开展物种鉴定为例,让学生去查阅相关文献,如DNA条形码在中药材混伪品鉴定中的应用、DNA条形码在肉制品掺假中的鉴定等。这个课题应用性强,对本科生而言阅读专业文献的难度相对较小,仅涉及DNA提取、PCR扩增等实验内容,容易激发学生的学习兴趣。在学生理解课题背景知识的基础上,让学生重点看文献中涉及的生物信息学相关知识,要求学生下载文献中涉及的基因序列,根据下载的序列用MEGA软件进行序列比对,计算遗传距离,同时利用MEGA软件构建NJ树。这个过程就把生物信息数据库、序列比对、系统发育分析等几个章节的教学知识串联起来,学生就知道为什么要下载序列、做序列比对,更好地理解系统进化树构建的原理及意义。同时,也促进了学生阅读专业文献,尤其是外文文献,增加专业英语词汇量,主动关注学科前沿发展动态,更好的利用生物信息开展课题研究,做到学以致用。

(四)改革教学手段和教学方法

生物信息学理论教学中往往是教师主讲、学生听,学生被动接受,这种“灌输式”的学习让学生感觉枯燥乏味,教学效果较差。教学时应突出学生的主体地位,教师起主导作用,引导学生积极思考,参与课堂教学,激发学生的学习热情。例如讲解生物信息学数据库资源时,可以布置课后作业,要求学生搜索国外生物信息学数据库资源,并将查阅的资料制作成PPT,下一次上课时让学生利用PPT讲解搜索情况,分享经验。教师在学生讲完后点评,鼓励学生关注生物信息学的前沿进展,在学习生物信息学的同时提高专业英语的水平。在讲解生物芯片与高通量测序技术时,布置课前预习作业,针对高通量测序技术原理、应用、数据分析等教学内容设置几个选题,让学生分小组,每个小组选择一个选题,通过查阅文献资料,以PPT形式在课堂上讲解。学生根据讲解内容提问,交流讨论。教师根据学生的汇报内容进行点评,进行有针对性的讲解、补充。这样的形式使学生主动去探究问题,而不是被动地接受教师传递的信息,对知识的理解更加深入,学生也反馈这种教学活动提高了学习的积极性,并留下深刻的印象。

三、结语

生物信息学作为一门新兴学科,仍然在不断的发展中,知识更新速度快,因此生物信息学课程的教学内容、教学方式应紧跟学科前沿发展,立足学校专业特点及培养特色,不断摸索教学经验,在教学模式上深入研究,提高教学质量,实现培养学生理论与实践运用综合能力的教学目标。

参考文献:

[1]许忠能.生物信息学[M].北京:清华大学出版社,2008.

[2]Masatoshi Nei,Sudhir Kumar.分子进化与系统发育[M].北京:高等教育出版社,2002.

[3]蔡禄.生物信息学教程[M].北京:化学工业出版社,2007.

篇3

作者简介:刘伟(1979-),女,辽宁铁岭人,国防科技大学机电工程与自动化学院,讲师;张纪阳(1979-),男,湖南泌阳人,国防科技大学机电工程与自动化学院,讲师。(湖南?长沙?410073)

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)23-0060-02

21世纪是生命科学的世纪,生物技术飞速发展,生物学数据大量积累。而生物信息学正是在这种大背景下蓬勃兴起的交叉型学科,旨在用信息学方法解决生物学问题。为了培养复合型人才,大力发展交叉学科,国防科技大学(以下简称“我校”)近年来面向全校理工科研究生开设了“生物信息学”选修课程。

“生物信息学”作为新兴的交叉学科,具有融合性、发展性和开放性的特点。[1]融合性是指生物信息学涉及的生物、计算机、数学等多个学科的交叉与融合。从20世纪90年代到现在,该学科发展非常迅速,研究热点发生了数次改变。开放性是指该学科存在大量有待探索和研究的新问题。这些特点一方面为课堂教学提供了大量的主题和素材,一方面也对授课方式提出了较高的要求。经过认真分析,选定研讨式教学作为该课程的主要授课方式。研讨式教学即研究讨论式教学,是将研究与讨论贯穿于教学的全过程。[2]在教师的具体指导下,充分发挥学生的主体作用,通过自我学习、自我教育、自我提高来获取知识和强化能力培养。[3]通过确立教学目标,精心设计和组织教学内容,在实践中贯彻研讨式教学理念和方法,在生物信息学课程中对研讨式教学模式进行了理论探索和实践创新。

一、教学目标的确立

合理的课程目标与定位是决定课程建设成败和教学效果的基础,其主要依据是人才培养需求和授课对象的实际情况。首先,教学对象是研究生,已具备一定的自主学习和创新思维的能力。教师不仅要传授知识,而且要讲解基本的研究方法,让学生具备独立思考问题、分析问题和解决问题的能力。其次,作为军校学生,以后从事的工作可能涉及很多学科方向,展现如何针对一门新的学科方向进行研究的整体思路显得很有意义。最后,考虑到学生不同的知识背景,对于各部分内容的理解程度不同,必须兼顾不同的专业方向,让每个学生都能有所收获。因此,确立教学目标为:介绍生物信息学的基本概念和方法,通过案例分析展现科学研究的基本方法和实践过程。

二、教学内容的设计和组织

1.教学内容的总体设计

确定了教学目标之后,需要对课程的教学内容进行总体设计。参考国内外多所高校的相关课程设置,如北京大学的“生物信息学导论”、中科大的“生物信息学”、中科院的“生物信息学与系统生物学”和MIT的“Bioinformatics and Proteomics”等,发现这些课程主要是针对生物专业的学生开设,侧重于方法学介绍。而我校学生大部分是工科背景,对于统计和机器学习方法有一定基础,重点是了解相关的生物学问题,并应用已有的工科知识去分析和解决这些问题。同时,随着生物信息学的快速发展,研究领域不断扩大,有必要展现该学科的最新进展。

因此,课程内容总体设计上以生物学问题为主线,结合最新的研究成果,对各种计算方法的应用过程进行深入和细致的讲解。在介绍生物信息学的研究现状和生物学基础知识之后,分多个专题详述生物信息学最新的研究进展,各专题在内容上相互衔接,由浅入深,以便学生理解和接受。以问题为导向的课程设计对于启发学生思考,积极参与课堂研讨具有重要作用。

进一步,为了突出部分重点专题及其分析方法,采用案例分析课的形式,针对一些重要问题进行深入探讨。鼓励学生应用所学知识,结合自身的专业背景,通过积极地思考和讨论提出相应的解决方案。案例选择为教师有一定研究基础的开放性问题,一方面介绍已有的研究成果,一方面结合教师的研究体会,通过积极讨论拓展新的研究思路。案例分析课有助于学生更多地参与课堂研讨,对于知识的综合应用和科学研究过程产生切身体会。

2.教学内容的组织

研讨式教学的关键是调动学生的积极性,鼓励学生踊跃地参与课堂讨论,提出自己的观点。通过集中备课,学习和吸取老教师的成功经验,总结调动学生积极性的基本要素,对授课内容进行了认真的组织和编排。

(1)重点突出,详略得当。由于生物信息学涵盖内容非常丰富,有必要对课程内容进行取舍,在保证知识面的基础上,突出授课的重点。减少或删除重要性较低的部分,采用图片和动画等形式对重要的知识点加以强调,以深化学生的理解。只有学生对重点内容理解透彻,才能激发出浓厚的学习兴趣,积极参与课堂研讨,碰撞出智慧的火花。

篇4

1.生物信息学学科特点

生物信息学是当今生命科学的重大前沿领域之一,是一门交叉学科,包含生命过程中各种信息的获取、加工、存储、分配、分析、解释等在内的所有方面,综合运用数学、计算机科学和生物学等方法与技术,阐明和理解大量数据包含的生物学意义[1]。随着20世纪80年代人类基因组计划的实施,生物信息学蓬勃发展,并渗透到生物学研究的各个领域。掌握生物信息学相关技术及分析能力已成为生物专业本科毕业生的必要要求[2]。因此,做好生物信息学教学工作对提高生物信息学研究水平具有重要的理论和实践意义[3]。然而由于学科的综合性和学科本身的迅猛发展,生物信息学课程教学仍然处于探索阶段,目前还没有成熟的生物信息学教学模式,各高校尚处于摸索探讨阶段。

2.案例教学法概述

案例教学法(Case-Based Learning),指在教师的指导下,根据教学目的,通过呈现案例材料,组织学生以团体和小组讨论、角色扮演等方式对案例进行调查、阅读、思考、分析、讨论和交流等活动;经过分析讨论,将课本中的理论与案例材料结合起来,并利用理论分析说明复杂的案例内容。案例教学法引导学生学习新的知识,加深对理论的认识,训练学生运用所学知识分析和解决实际生物学问题[4]。

不同于传统教学模式注重“知识的传授”,案例教学法更注重“能力培养”。案例教学法不直接给学生提供解决案例问题的标准答案或者具体方法,而通过教师引导学生积极讨论得出问题的解决方法,侧重于理论应用,是一种“以学习者为中心的学习方法”。

案例教学可划分为讲解定义型、综合分析型和操作技能型三种类型。(1)讲解定义型,引入案例,对基本概念和原理进行讲解;(2)综合分析型,提出问题,学生通过讨论给出解决案例问题的方案或者对已有方案进行评价;(3)操作技能型,引入案例,使学生掌握相关理论课程的基本应用技能。案例教学还可以综合其他教学方法,如以问题为基础的教学法共同改善课堂教学效果[5]。

案例教学法基本环节包括:教师根据学科特点提出案例;引导学生辩论交流、提出解决方案;完成与解决案例;教师评价与总结[4],[6],[7]。案例教学过程中,首先教师把握整体教学进度,选用与本专业课程有关的案例,案例选择要具体、易于学习和理解,能够引起学生的兴趣,调动学生学习主动性;其次,将案例分解,从子案例中提出问题,启发学生思考,鼓励学生对案例进行分析、讨论甚至辩论,提出解决方法,逐步完成案例;最后,引导学生完成和解决案例,分析点评整个案例教学过程及结果[4]。

3.案例教学法应用于生物信息学本科教学的意义

生物信息学课堂讲授以介绍生物信息学的相关算法、原理、方法为主,这也是教学的重点和难点。传统“知识传授”型讲课方式容易让学生觉得枯燥乏味、晦涩难懂,产生畏惧心理[8]。运用案例教学法,能够帮助学生更深入理解算法的思想,真正掌握解决问题的思路,培养科学的思维能力。

另外,生物信息学是一门实用性较强的学科,大学本科阶段开设生物信息学课程主要目的不是开发新的数据库和发展新的生物数据分析方法,而是如何利用现有数据库资源查找特定数据,并根据科研实践需要分析整合数据资源,为后续科研奠定基础,具有极强的实践意义。要达到实践目的,除了让学生掌握生物信息学的基本理论和方法、数据库和软件的原理外,更重要的是让学生亲身实践,在实践中对所学理论进行验证、对数据和软件的使用加以熟悉[9]。但生物信息学涉及专业领域内容广泛,学生不可能做到完全亲身实践,因此,案例教学法能替代亲身实践,吸取前人经验,是理论联系实践的一个便捷通道,是培养学生解决实际问题能力的好方法[7]。

4.案例教学法在生物信息学本科教学中的应用

4.1 案例选择

笔者针对生物信息学本科的教学大纲和知识体系,以及多年从事昆虫线粒体基因组分析的科研工作情况,精心选择了一系列分析案例,其中以鳞翅目灰蝶科线粒体基因组[10]数据分析为例说明。

4.2 教学过程

4.2.1学生分组。根据学生专业、兴趣分组,每组6人,统一采用同一案例。

4.2.2案例背景介绍。让学生了解该论文的目的、操作过程及意义。学生查找相关文献资料,归纳总结知识背景。

4.2.3案例分解。将整个案例分为若干个子案例:①序列数据来源;②序列比对分析③计算遗传距离;④分子系统发育重建;⑤蛋白质家族和基序与结构域分析;⑥蛋白质三级结构与结构分类分析。对每一个子案例完成的关键步骤提出问题,启发学生思考,鼓励学生对案例进行分析、讨论甚至辩论,提出解决方法,逐步完成案例。每个子案例的顺利完成都需要特定的生物信息知识作为基础,对应于教学大纲中完整的知识体系。

4.2.4评价考核。引导学生完成案例,教师归纳学生在整个案例教学过程中出现的普遍性问题并进一步讲解,对于个别小组在解决案例过程中展现出来的创造性解决方案进行分享学习。采用PPT成果展示、提交每一个子案例生物信息分析结果和解释报告,考查学生对案例设计的相关生物信息学理论知识和操作技能的掌握情况。

案例教学法作为一种具有启发性和实践性的教学方法,有效提高学生利用生物信息学工具获取相关知识解决生物学问题的学习兴趣和能力,增强教学效果。然而实践过程中还存在一些问题,例如:如何选择合适的案例既能激发学生的学习兴趣又反映生物信息学教学大纲的知识体系内容、如何有效把握课堂讨论的节奏和方向及与其他教学方法的融合,在今后教学工作中还需要不断改进教学方法,优化教学模式,丰富教学案例库,在实践中不断探索案例教学法在生物信息学本科教学中的适用性和有效性。

参考文献:

[1]石生林,韩艳君,刘彦群等.非专业研究生生物信息学课程教学中存在的问题及对策[J].生物信息学,2009,7(2):125-127.

[2]袁道军,杨细燕.农学专业生物信息学概论本科教学实践探讨[J].安徽农业科学,2016,44(13):304-305.

[3]李广林.大数据背景下的生物信息学教学探索[J].教育教学论坛,2015,(29):210-211.

[4]张林,柴惠.CM教学法和PBL教学法的结合应用研究――以医学生物信息学为平台[J].中国高等医学教育,2012(8):116-117.

[5]武亚军,孙轶.中国情境下的哈佛案例教学法:多案例比较研究[J].管理案例研究与评论,2010,3(1):12-25.

[6]吴东,王福成,孙畅等.案例教学法在计算机绘图课程中的应用[J].山东工业技术,2016(1):145-146.

[7]胡珊珊,刘兴起.案例教学法在水文学教学中的应用[J].首都师范大学学报(自然科学版),2016,37(2):93-95.

[8]高亚梅,韩毅强.《生物信息学》本科教学初探[J].生物信息学,2007,5(1):46-48.

篇5

生物信息学作为一门新兴的交叉性学科,综合生物学、计算机科学和信息技术试图,从大量数据中寻找具有指导和开创性价值的依据,为生命科学研究提供必要的、有效的系统模拟和信息预测结果。目前,生物信息学在生物医学、生物工程、植物学、动物学、生态学、遗传学、制药和高科技产业领域中的应用越来越广泛,产生巨大的影响力和推动力。

一、生物信息学在生物科学领域的作用

生物科学是研究生物结构、功能、发生和发展规律,及其与周围环境关系的科学。在分子生物学技术突飞猛进的发展过程中,生物科学从传统的个体及群体表征研究逐步演变为内在分子机制的研究,随着基因测序技术的发展,生物科学领域的研究不仅聚焦于生物个体的内在分子机制,同时还从大量的生物个体的基因数据中获取和解析生命的本质和规律,并以此尝试对生命过程进行干涉和改造。而在获取、解析、干涉和改造的过程中扮演重要角色的就是生物信息学。

生物信息学是在生物科学领域各个学科发展的过程中逐步产生的一门综合性学科,该学科在生物科学领域的应用极为广泛。目前,植物基因组研究取得了重大进展,水稻、大豆、小麦等农作物的遗传图谱、基因序列、基因组注释已公布于美国国立生物技术信息中心(NCBI)的生物信息数据库中。利用生物信息学的相关方法和技术能够对这些数据进行查询、统计和分析,从而更好地理解和认识植物基因组的功能,指导后续的科学研究和生产应用。传统的生物学分类方法已经鉴定及分类了成千上万的物种,但是随着生物科学的发展和认知,越来越多的物种在遗传进化上的分类依据较为模糊,而利用生物信息学结合传统的分类学可以更好的研究生物类群间(植物、动物、微生物等)的异同性、亲缘关系、遗传进化过程和发展规律,这在当今的生物分类学中应用日趋广泛。生物信息学还可以综合利用数学、统计学和计算机等学科对生态系统进行模拟和计算分析,探索物种间基因流动的本质,揭示生态系统的物质和能量循环规律,从而为找到决定生态系统平衡和稳定的根本因素提供重要的依据,帮助生态系统平衡的恢复。此外,通过生物信息学技术构建遗传工程菌,降解目标污染物的分子遗传物质,从而达到催化目标污染物的降解,维护生态环境的空气、水源、土地等质量,也是当今生态环境保护的新兴研究方向。

二、生物信息学的学科内容和课程要求

生物信息学主要由基因组学、蛋白质组学、系统生物学、比较基因组学、计算生物学等学科构成,主要涉及的内容有生物数据的收集、存档、显示和分析,体外预测、模拟基因及蛋白质的结构和功能,对生物的遗传基因图谱进行分析处理,对大量的核苷酸和氨基酸序列进行比对分析,确定进化地位等。从生物信息学的概念及其涉及的内容中可以明确生物信息学不是一门独立的学科,所以要求教师在教学过程中掌握多领域的知识和技能,才能较好地把握该课程。

1.高等数学和统计学基础

生物信息学将数学和统计学作为主要的计算理论基础,主要包括数学建模、统计方法、动态规划方法、数据挖掘等方面。此外还包括隐马尔科夫链模型(HMM)在序列识别上的应用,蛋白质空间结构预测的最优理论,DNA超螺旋结构的拓扑学,遗传密码和DNA序列的对称性方面的群论等。因此,在生物信息学教学过程中要求教师具备数学及统计学的计算方法的基础知识,能够利用牛顿迭代法、线性方程回归分析、矩阵求拟、最小二乘法等进行数学建模和计算,从而对基因和蛋白质序列进行比对、进化分析和绘制遗传图谱等。

2.生物科学基础

生物信息学包含的生物类学科有,生物化学、分子生物学、遗传学等基础学科,基因工程、蛋白工程、生物技术等应用学科。根据其课程特点,学生在学习生物信息学课程前需要学习生物化学、分子生物学、遗传学、基因组学、蛋白质组学等基本生物学课程,对于基因序列、蛋白质序列、启动子、非编码区等概念有深刻的理解,同时需要对一些重要的生物学数据库有一定的了解,如美国基因数据库(GeneBank)、欧洲分子生物学实验室数据库(Embl)和日本核酸数据库(DDBJ)等。此外,要求学生能够利用生物学数据库查找基因序列、蛋白质序列、基因及蛋白质结构模型,能够读懂数据库中基因和蛋白质的信息注释,能够计算蛋白质序列的分子量和等电点,能够为扩增特定的基因片段设计引物,能够对特定物种进行系统发育分析等。

3.计算机科学基础

计算机是生物信息学的主要辅助工具,利用生物信息学研究生物系统的过程需要能够熟练使用计算机对大量的生物信息数据进行处理和分析,这主要包括对数据信息进行搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。所以,学生在学习生物信息学的过程中需要了解和掌握一些常用的生物信息学软件,如BLAST和FASTA序列比对分析软件,Oligo和Primer引物设计软件,VectorNTI、DNASTAR、DNASIS等综合分析软件。此外,学生还需要学习和掌握一些常用的计算机语言,如正则表达式、Unix shell脚本语言和Perl语言。

利用生物信息学在处理和分析海量生物数据的过程中,计算机软硬件资源需要配合处理分析软件的运行,因此要求计算机操作系统使用Unix和Linux操作系统,这些操作系统需要大量的操作命令进行输入执行过程,对于经常使用Windows操作系统的学生来说是一个较难跨越的障碍。

三、生物信息学课程教学中存在的问题

目前国内大多数高校的生物信息学教学采用传统的教学模式,即以课堂式的理论教学为主,缺乏必要的实践教学。理论教学模式固定、教学方法单一、教学内容狭窄,通常是介绍性、科普性的课程,甚至作为公选课程。少数高校开展生物信息学的实践课程教学,但多以验证性实验为主,缺乏和专业相适应的综合性、设计性实验,而开放性实验更无从谈起。

1.教学模式固定单一

生物信息学在内容层面涵盖诸多学科领域,注重应用性和实践性。然而,目前大部分高校把生物信息学作为一门孤立的课程,这导致教师需要将大多数课程内容压缩到一门课程进行教学,在有限的教学时数下灌输大量内容,增加了学生学习的难度,降低了教学质量。再者,大多数高校仅开展生物信息学的理论教学,忽视实践教学过程,造成生物信息学理论与实践内容的脱节,使学生在学习完理论知识后难以深入理解和吸收,无法将所学的知识应用到后续的工作和学习中,最终未能体现出该门课程的价值。

2.教师专业背景薄弱

作为一门交叉学科,生物信息学的教学要求教师具有较强的数学、生物学和计算机科学背景。然而,目前从事生物信息学教学的教师即便具备深厚的生物学背景,但是多数教师在数学和计算机方面较为薄弱,并不具备完整的生物信息学知识体系,对生物信息学发展趋势也了解不多。在师资缺乏的情况下,院系开设生物信息学课程,教师为了完成教学任务,仅仅在教学中进行介绍性的讲解,在课程考查方式上通过小论文、综述和课外活动等方式完成该课程的学习。因此,无论是理论教学还是实践教学均无法实现该课程大纲的要求,从而影响学生对生物信息学课程的理解和掌握,生物信息学的实践操作能力更无从谈起。

3.实践教学薄弱,专业教材缺乏

生物信息学实践课需要学生在网络环境下用计算机学习NCBI数据库的检索与使用、序列比对分析软件的应用、蛋白质空间结构图视软件的应用、序列拼接软件的应用等。但是目前,大多数高校开设的生物信息学课程多以理论教学为主,实践教学课时非常少或者为零,学生对于生物信息学课程的学习仅仅通过教材上抽象的文字描述进行理解和掌握,这导致学生在理论课中学到的知识无法在实践课中进行验证或操作,严重影响了生物信息学的教学质量,也偏离了教学大纲中强调的重在培养学生实践操作能力的培养目标。

另外,目前还没有适用于生物科学专业的生物信息学教材。国内各大高校使用的教材多为国外教材的影印版或者中文翻译版本,这些教材偏重介绍生物信息学的理论和方法,涉及的实践内容较少,学生需要具有较高的相关知识才能接受和使用这些教材。因此,部分高校在生物信息学教学过程中往往使用自家编写的简化教材,从而造成生物信息学教学内容不统一,教学大纲混乱等情况。

4.实践课程经费不足,实践教学环境落后

当今,许多发达国家都很重视生物信息学的教学和研究,积极开展各种生物信息资源的收集和分析工作,培养大量生物信息学人才,为整个生物学的理论研究及其相关产业创新(主要是医药和农业)提供指导和支撑。国内对生物信息学的关注和认识起步较晚,其发展落后于国际发达国家。国家和高校对生物信息学的教学和科研资金投入力度不大,缺乏必要的仪器设备,生物信息学的实践教学条件得不到保障,比如大多数高校的生物科学专业没有相应的计算机实训室,配套软件也相对匮乏,落后于国际发展水平。

四、生物信息学教学模式改革的探索

1.修改理论和实践教学大纲,编写适用的实践教材

根据当今生物信息学的发展方向,制定和修改理论教学大纲,除了引物设计、基因和蛋白质序列比对、基因和蛋白质结构功能预测等基本内容外,还需添加系统进化树分析、聚类分析、蛋白质互作网络谱图等较为综合的内容。另外,增加实践教学课程比例,充实实践教学内容,结合理论教学内容增加综合性、设计性实验,适当提供科研环境,鼓励开展开放性实验。

目前国内并没有系统的、专业的生物信息学实践教材,因此针对高校生物科学专业方向的特点,联合多学科领域(数学、生物科学、计算机科学)编写相应的生物信息学实践教材,在制定、修改实践教学大纲和编写教材的过程中结合学生的接受能力,由浅入深,多设实例和相关练习,使学生循序渐进的理解和掌握生物信息学的原理和方法,掌握更多的生物信息学工具。

2.紧密联系科研、基于实践问题开展教学

通过实践教学把生物信息学教学与科研有机结合起来,能够促进教学与科研的共同发展。在紧密联系科研的过程中,采用基于问题的教学(PBL)方法,通过实践教学环节,培养和训练学生把所学的生物信息学的知识和方法应用于各种生物科学领域的科研活动中,通过解决实际问题训练学生的实践技能,从而促进教学与科研的双重发展。例如,在生物信息学实践教学中多加入生产和科研中遇到的经典实例,鼓励学生利用相关的生物信息学软件及相关的理论和方法解决问题。学生也可以选择自己感兴趣的课题,利用自己熟悉的、合适的生物信息学软件和相关知识开展课题研究。此外,专业教师在指导学生课题研究的过程中还可以发现理论和实践教学的不足,不断的完善生物信息学理论和实践课程大纲和内容,提高教学质量。

3.开展多学科实践结合的教学模式

生物信息学属交叉学科,包含了不同领域的专业知识和技能,为使生物信息学教学达到教学的目标,该课程教学需要采用多学科实践结合的教学模式。

多学科实践结合的教学模式是指联合不同领域、不同学科、不同专业的课程在教学的过程中结合生物信息学涉及到的知识和技能进行基础性、铺垫性教学。比如,在高等数学和统计学的教学过程中,针对生物信息学的需求,适当增加数学建模、统计方法、动态规划方法、数据挖掘等方面的基础内容,同时,开设实例实践教学,使学生理解和掌握隐马尔科夫链模型,牛顿迭代法、最小二乘法等方法的应用原理和规则;在生物科学专业课程设置上,尤其是实践课程的教学过程中,结合生物信息学涉及的引物设计、序列比对分析、基因及蛋白质结构功能预测等方面开展相应的设计性、综合性、开放性实验项目,使学生了解和掌握基本的生物信息学原理及软件的应用;在计算机科学的教学过程中,应根据生物信息学的需求,开设正则表达式、Perl语言、R语言等课程学习,以及增加Linux和Unix操作系统课程学习,使学生在学习生物信息学前打好坚实的基础。

值得注意的是,生物信息学课程与其他课程的开设时间和顺序需要有一定的探索和评估,对于开设该课程的时间把握是开展多学科实践结合的教学模式的关键因素。过早开设生物信息学则会导致学生在不具备相应学科基础的条件下跨越式的接触生物信息学,无法理解和掌握相关的知识和技能;过晚开设则会使学生学习了相关学科知识和技能后,由于课程衔接不紧,导致在学习生物信息学时出现理解滞后和无法适应的现象。因此,针对不同专业和学科的特点,根据具体情况进行统筹安排,使生物信息学和其他相关学科课程有很好的衔接和过渡,以确保和提高生物信息学的教学质量。

五、结语

生物信息学是现代基因组学时代的开阔者,也是生物科学研究的重要的工具和载体。针对生物信息学的特点,高校生物科学专业课程设置、教学方法、教学模式和教学软硬件等需进行一定的改革,将多学科实践结合的教学模式运用到生物信息学的教学实践中,在提高教学质量的同时将更好的提升学生科研、应用和创新能力。

参考文献:

[1] 郝柏林,张淑誉.生物信息学手册[M].上海:上海科学技术出版社,2002.1-10.

[2]GUYD, NOELE, MIKEA. Using bioinformatics to analyse germplasm collections [J]. Springer Netherlands,2004.39-54.

[3]王春华,谢小保,曾海燕.深圳市空气微生物污染状况监测分析[J].微生物学杂志,2008,28(4):93-97.

[4]张菁晶,冯晶,朱英国.全基因组预测目标基因的新方法及其应用.遗传,2006, 28(10):1299-1305.

友情链接