当前位置: 首页 精选范文 数字医学

数字医学范文

发布时间:2024-04-18 16:09:21

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇数字医学范例,将为您的写作提供有力的支持和灵感!

数字医学

篇1

2DICOM的主要内容和信息模型

2.1DICOM标准的组成、功能及其相互

关系完整的DICOM3.02000标准由15个部分构成[1],各部分是相互关联的独立文件。虽然某些部分的内容在不断补充和完善,但总体框架已经最终确定:(1)介绍与总论:全面介绍DICOM的历史、目的、结构和适用范围,并对其他部分的内容做了简介。(2)兼容性(或称遵从性):详细说明DICOM的兼容性目的和架构,同时给出了在开放互联方面对遵守该协议的设备的具体要求。(3)信息实体定义:针对用于数字化交流的实际医学影像给出一个抽象的定义,同时定义了可以使用DICOM进行通信的类别。(4)服务类的说明:对一系列的服务类进行了定义,给出用于数字化交流的操作行为的抽象定义,即定义使用DI-COM进行通信的服务的类别。(5)数据结构和语义:对数据结构及数据的编码进行说明。(6)数据字典:包括对所有DICOM数据以及所有在DICOM标准内部定义的数据的注册和认可信息。(7)信息交换:本部分定义了DI-COM命令的结构(命令结合相关数据即组成DICOM消息),同时也定义了DI-COM应用实体间的协议握手方式。(8)网络通信支持下的数据交换:这一部分说明了在网络中,DICOM如何使用TCP/IP和OSI网络传输协议。(9)点对点传输下的信息交换:说明在点对点传输下支持应用DICOM协议进行数据交换的服务器和网络上层协议。说明DICOM如何支持50针点对点消息通信的服务和协议。(10)介质储存和存储介质间交换的文件格式:它提供了一个用于不同类型医学影像间数据交换及不同物理介质相关信息交换的框架。(11)介质存储的应用方式:说明将医学影像信息存储于可移动介质的的模式。(12)介质格式和用于内部交换的物理介质:描述了如何便利医疗环境中数字影像计算机间的内部信息交换。这样的交换可应用于医学图像诊断或其他潜在的临床领域。(13)点对点传输下的打印管理:详细说明打印提供者在点对点联接的情况下支持DICOM打印管理所必须的服务和协议。(14)显示的灰度标准:详细说明灰度图像的标准显示功能,它提供了一些样例方法,说明如何调整灰度图像与显示系统。(15)安全策略方法:说明了具体应用所应遵循安全策略的兼容方式。DICOM的15个部分之间既相互独立,又互相联系,从涉及的主要内容和关联程度出发可分为3个集合[4]。数据传输协议集包括第7、8、9部分及第13部分,描述了点对点连接与网络环境下的数据传输协议,定义了网络环境下的打印管理应用。数据格式(编码、储存)集包括第5、6部分及第10、11、12部分,描述了不同条件下数据存储的标准格式。标准框架及其他包括第1、2、3、4部分、第14部分及第15部分,描述整个DI-COM标准的结构、目的和要求及图像灰度标准,并定义了安全策略。

2.2DICOM的一些重要概念

DICOM标准中定义了一些重要的概念,有关模型和协议也是以这些概念为基础来设计和制定的。(1)应用实体:应用实体是指一个具体的DICOM应用程序。(2)服务类:服务类是对现实中医学信息的传递和通信的抽象概括,它包括作用于信息对象的命令及结果。DICOM服务类提供客户/服务角色,通过网络要求DICOM服务的应用实体称为服务类使用者(SCU)。提供DICOM服务的应用实体称为服务类提供者(SCP)。(3)信息模型(informationmodel):信息模型描述了实体之间的关系。通常,用“E-R”模型定义一对多或多对多的关系。(4)消息服务元素(DICOMmessageserviceelements,DIMSE):DICOM标准定义了一系列系统网络命令。SCU/SCP利用消息服务元素在网络上进行服务,消息服务元素可以被认为是网络通信的最基本单位。(5)协议握手:应用实体间必须达成一个协议,才能相互通信。这个协议包括:①哪些服务可以操作,命令和数据如何相互交流;②传输规则,消息流(包括命令和信息对象)如何在通信过程中进行编码。

2.3DICOM的信息模型

DICOM的信息模型,DI-COM协议为外界提供服务的最高层次是服务类,每个服务类可包含多个服务对象对,信息实体定义包含了大量的相关属性。图1清晰的给出了SOP、IOD和服务类之间的关系。下面据DICOM的信息模型,讨论其中的概念。

2.3.1DICOM信息实体的概念DI-COM标准采用了信息实体关系模型E-R模型(如图2)。信息实体代表一个实际的对象、实际对象类或者DICOM内部定义的数据类如信息对象(informationob-jects);关系定义有多少其他实体与该实体有联系[5]。通过建立这个模型,DI-COM标准能够方便的描述医学实践中的事物如病人、报告、图像及它们之间的关系。由E-R模型和真实实体可以抽象出模型定义的实体,每一个实体的特征用属性来描述,例如“病人”这个实体的属性包括“病人姓名”、“病人ID号”等。DICOM称基于其模型的对象为信息对象,对应于某类图像如CT、MR;称定义它们属性的表格和模型为信息实体定义(IOD)。

2.3.2服务类/服务对象对类(serviceclass/SOPclass)服务类指能够发生的各种服务和操作,DICOM中的服务类包括验证服务类;存储服务类;病人管理服务类;查询检索服务类;打印管理类等[3]。服务/对象对类由信息实体定义和消息服务元素组一一对应组合定义。SOP类是DICOM信息传递活动的基本功能单位,它包括了限定消息服务元素组服务和信息实体属性的规则和语意,可以将它类比为ISO/OSI中的管理对象类。

3DICOM的网络通信

3.1DICOM的网络通信

DICOM为了传输医学影像和相关的信息,结合ISO/OSI和TCP/IP协议设计了自己的网络通信协议和消息交换机制[1]。图3的参考模型表明,DI-COM应用实体属于网络分层模型的应用层,它使用上层服务完成消息交换和信息传输。为了实现应用实体间的通信,相应于ISO/OSI协议模型,DICOM标准使用关联控制服务元素、表示层内核、会话层内核提供上层协议服务;相应于TCP/IP协议模型,DICOM标准定义TCP/IP上层协议提供上层协议服务。

3.2DICOM的通信方式符合DICOM标准通信模式的应用实体间的信息交换采用了客户/服务器模型。服务类使用者(SCU)和服务类提供者(SCP)分别扮演了客户/服务器的角色。SCU/SCP采用了DICOM定义的消息机制完成相关信息的交换。实际通信中,应用实体间首先需要建立协商,协商的内容包括:①哪些服务可以操作,哪些命令和数据可以相互交流;②传输语法,消息流(包括命令和信息实体)如何在通信过程中进行编码。给出了遵从DICOM标准的通信方式。第一步和第二步合称为连接协商,确定交换哪些数据以及数据如何编码交换,交换内容包括应用层上下文,其中定义了应用服务元素组、相关操作以及其他相关互操作应用实体的必要信息;表示层上下文,定义连接中的数据表示方式;应用连接信息,列出了与DIMSE协议相关的一些所需信息,包括SCP/SCU角色选择、应用层协议数据单元最大长度等。第三步建立协商,进行数据传输,应用实体间进行信息的传递,DICOM命令和DICOM文件被组装成协议数据单元,并通过协议数据单元服务传送数据。第四步撤销协商,中止应用实体间的通信,可以是连接方发出的正常释放方式或连接某一方发出的突发中止方式。

4DICOM数据结构及文件格式

数据结构是针对如何组织数据而定义的。给出了具体的数据结构,其中数据集(DataSet)定义为DICOM信息对象和服务类信息的集合,如病人IOD就可以用一个数据集合来表示;数据元素用来表示信息对象的属性如病人性别、姓名等,每一个数据元素又可以再分为标识(Tag)、数值表征(VR)、数据长度(valuelength)和数据域(valuefield),其中数值表征只存在于特定的情况下,而其余三个部分是所有数据元素共有的。DICOM文件结构提供了一种打包文件的手段,将代表SOP实例的数据集保存到DICOM文件中。图6给出了DI-COM文件格式。图中,SOP实例必须经过编码,编码的规定涉及JPEG压缩编码描述及传输语法规定等,图中的DICOMFileMetaInformation是必须的,相当于DICOM文件头,它的组成元素见表1。

5DICOM支持的影像压缩方法

篇2

中华医学会、重庆市政府、总后卫生部、第三军医大学等单位的领导,以及来自全国医疗行业的专家教授200余人出会。大会选举张绍祥教授为中华医学会数字医学分会第一届委员会主任委员。

张绍祥教授认为:数字医学是指现代医学和数字技术相结合,包括医学、计算机科学、数学、电子学、机械工程等多学科的一门新兴的交叉学科。数字医学具有强大的生命力,它不仅突破了传统的学科架构,而且渗透到医学的各个方面,带来医学的革命性变化,现已成为当今世界最为活跃的前沿学科之一。数字医学涉及许多方面,目前在外科手术导航、影像立体重建、人体器官个性化制造等方面有所建树和突破,为临床医学带来全新的手段。

在医学界,钟世镇院士被誉为中国现代临床解剖学的奠基人、中国数字人和数字医学研究的倡导者。2001年,钟世镇院士在第174次“香山科学会议”上首次研讨了“中国数字化虚拟人体的科技问题”。中国人体数据库初步建成后,钟世镇院士开始担任“中国数字人研究联络组组长”。

钟院士介绍,数字医学由“虚拟人”发展而来,而“虚拟人”研究分为四个发展阶段:第一阶段是数字可视人;第二阶段是数字物理人,拥有人体的物理性能,可以模拟肌肉的运动;第三阶段是数字生理人,可模拟人的生理功能,到达第四个阶段的数字智能人则将具备一定的思维能力。

目前,中国对“虚拟人”的研究已经达到第三个阶段――数字生理人。数字人课题组已构建了八套男女全身数据集,数十套人体器官数据集,以及数十套用于了解人体结构的数字化解剖软件。

“虚拟人”技术一经推出便吸引了各个领域的目光。除医学领域,在汽车碰撞实验、航天技术、服装设计业、影视等方面,“虚拟人”技术也充分得到运用。在“神六”返回舱设计和着陆过程中,“虚拟人”数据集同样功不可没。

然而,令钟世镇更为关心的是,如何能让“虚拟人”技术在医学领域推陈出新,将解剖学这一古老的学科变为真正的“朝阳学科”。“要解决‘治病救人’的问题,现在我们更应该倡导‘数字医学’,转向临床当中的实际运用问题。”钟院士说。

为了使“数字医学”这门新兴的学科更好的发展,在钟世镇、戴戎、王正国等院士和傅征教授的联名提议下,经中华医学会、中国科协、国家民政部批准,中华医学会数字医学分会于2011年5月正式成立。

“虚拟人”研究

人体是由一百多万亿个细胞组成的复杂整体,仅人的神经系统就约有1000亿个神经元,而且由细胞构成的组织器官间的相互作用,人体与外界环境的冲突与和谐,这些极为复杂的变化对于人类自身至今还是一个充满未知的神秘世界。

1895年德国科学家伦琴在一次实验中偶然看到了射线下妻子的手骨,这是人类有史以来第一次透过皮肤看到自身内部,由此揭开了人类利用以X线为代表的透视工具探索人体内部奥秘的序幕。

今天科学家们掌握的透视工具越来越多,但是仍然无法满足人类更为全面了解自身的渴望。科学家们为此所做的全部努力都在指向同一个问题,究竟利用什么样的手段能重建可以真实的反应人类生理机能活动的虚拟人体。

1989年美国人在这个领域率先跨出了关键性的一步,他们设想:能否将人体标本通过计算机技术转换成人体数据集,能够让使用者象检索图书资料那样方便的查询、获取人体信息。这个项目由美国国立医学图书馆发起,计划的名字通俗易懂而且充满想象力,它被正式命名为:虚拟人类计划。这个大胆的设想在当时一度引起医学界的怀疑。要采集这些数据必须先将人体标本切成薄片,并用数码相机和扫描仪对切面进行拍照、扫描,之后将数据在计算机里合成三维的立体模型,其中的精心程度与庞大的工作量可想而知。1991年和1994年研究小组分别选择了男女各一具尸体作为标本获取了完整的人体数据,这些数据称为V.H.P.数据集。在1989年到1994年的五年里,美国人把虚拟人类的构想推进到了试验阶段,这意味着美国“虚拟人”技术已经达到了可视程度。

虚拟人类自己这显然是一个大胆的设想,而当人们通过理性分析发现“虚拟人”绝不是另外一种克隆时,“虚拟人”研究就必然成为一项激动人心的重大科研项目。

1996年在美国国防部非致命武器委员会的积极支持下,橡树岭国家实验室牵头酝酿“虚拟人”创新计划。在他们的构想中,“虚拟人”应该能够模拟人体在外界物理刺激下的反应,他会象真人一样骨头会断、血管会出血,有专家称之为:虚拟物理人。如果说虚拟可视人还仅仅是一个可供人们观看的人体模型,虚拟物理人则使得这个模型有史以来第一次对外界刺激有了反应。在科学家的计划中它不再是一个静止的标本,人类将在计算机建造的虚拟世界中看到另一个自己在呼吸、走动,更会通过模拟各种环境的变化,探测人体极限。这个计划的目标已经非常接近科学家一直梦想的虚拟人类。

由于构成“虚拟人”的数据来源于自然人,因而“虚拟人”具有民族、区域等特征,东方人的特点明显的与欧美人不同,因此中国建立具有自已国家人种特征的数字化人体模型成为填补空白的问题。

美国“虚拟人”研究小组在2000年就已经建立了人体主要器官的三维模型,中国的“虚拟人”计划要在技术上占领哪个制高点?人体内的血管系统可以分为四级,数量达到上千万条,手术时医生往往需要更为完整、微观的血管地图,以制定安全的手术方案。长期以来尽管医学专家尝试了很多办法,但是这些大大小小错综复杂的血管网络的具体形态分布仍然充满未知,因此怎样将人体血管系统通过不同颜色准确区分出来,成为一项具有挑战性的课题。

从1996年开始,美国“虚拟人”研究小组就面向全球征集建立血管模型的解决方案,但是其中的关键问题一直没有获得解决,而钟世镇院士独有的血管铸型技术为中国人在这个领域有所突破提供了可能。由此中国“虚拟人”项目的关键技术被正式确定为攻克血管模型。2001年11月举行的第174次香山科学会议被认为是中国数字“虚拟人”研究的开篇。中科院李华博士、第一军医大学钟世镇院士、首都医科大学罗述谦教授等人向国家提出了研究中国“虚拟人”的设想,很快“虚拟人”技术研究被列入国家863项目。

2002年12月,广西一名19岁的女孩因不慎误食毒蘑菇引起食物中毒死于广州,家属同意捐献其遗体。经过科学家们仔细检查与评估,最终决定以她作为人体标本采集数据。中国第一例“虚拟人”――虚拟人女一号数据开始采集。中国第一例“虚拟人”数据采集,每片标本的切削间距为0.2mm,对每片标本进行拍摄平均需要3分钟,为保证切削连续性,工作人员要在低温环境下昼夜轮换持续工作,整个切削过程持续了一个月。2003年2月16日虚拟人女一号完成图像采集。中国第一例虚拟人体数据采集共获得8556张断层图片,每片间距0.2mm,总数据量149.7GB,切片数据被存成计算机可以识别的数字信息,进行数据处理。罗述谦教授领导着一个研究小组,海量数据汇集到这里,他们面对的问题就是将近万张二维图片在计算机里合成,并将其数字化变为三维立体人。要完成这个工作,首先要解决的是数据的精确配准问题,所谓配准就是把这8556层对齐,因为切削加工时间比较长,前后有一个多月的时间,由于机械加工的一些晃动,数码相机的移动,以及照明的不一致性,因此就造成一些断层图像有相对左右位移和上下位移,如果不能有效地校正这些位移的话,重建出来的这个人体周围就是虚的。将8556张图片中大大小小上千个器官组织一一对准,是一个要付出极大耐心的工作。尽管可以利用专门的软件作为工具,要完成这样的任务对于负责模型重建的工作人员仍然是一项极大的挑战。

大脑是人体最为重要的生命器官,人体许多疾病的发生、发展与大脑深度的核团密切相关,长期以来大脑核团的具体形态与结构一直是一个谜。研究人员希望通过“虚拟人”技术将这些大脑核团准确标识出来,为临床医学家提供更为精确的三维图谱。

人体三维模型建立的精确与否直接关系到“虚拟人”数据集的应用价值。血管模型的精确重建为将来临床上的进一步应用奠定了基础。同时李华博士的小组还进行了另一项具有挑战性的工作,他们尝试对人体最为复杂的神经组织进行重建。从2003年虚拟人女一号数据集采集完成以来,经过近一年多的努力,基本完成了人体标本大部分器官组织的重建工作。

数字医学研究取得重要进展

“虚拟人”能做什么?究竟有什么用?成为大家日益关心的问题。

近百年来尽管人类医疗手段在不断更新,但是针对人体重要器官的手术风险依然严重威胁着患者的健康与生命。医生一直致力于建立更为有效地模拟手术平台,训练临床医生便捷的获得手术经验。“虚拟人”技术的出现有助于这个梦想成为现实。它给全球的医学工作者在改变现有手术训练模式方面提供了极大的想象空间。

眼睛是人身上最为脆弱的器官之一,长期以来眼科手术的复杂性以及高危险性,一直是令临床医生头疼的问题。一名眼科医生在走上手术台之前至少要经过50次手术训练。医学上一直在探索一种能够低成本、耗时短、有效的手术培训方式。

针对眼科医生在手术训练方面遇到的困难,厦门大学计算机系王博亮教授尝试建立人体眼球单个器官的模型。在他的实验中,眼球的切削精度达到了20μm的细胞级别。为了使自己的研究成果能够紧密结合临床,王博亮找到了眼科手术专家吴医师作为合作伙伴,共同研究虚拟眼球在临床上应用的可能性。他们的目标是建造一只能模拟人类眼睛的各种生理机能的虚拟眼球。它不仅能够帮助眼科医生进行手术训练,还帮助眼科专家揭示人类眼科疾病的发生机理。

今天已经有越来越多的科学家从自己的专业角度出发加入“虚拟人”技术研究领域。他们纷纷从人体单元器官的重建入手,尝试对人体主要组织器官进行更为细致、精确的重建。他们设想在不远的将来可以通过复杂技术将这些分散的器官整合为一个三维的立体人体模型。这个模型的建立将把人类对自身的认知提高到一个前所未有的水平。尽管目前还处于研究的初级阶段,但是科学家们坚信:他们目前所做的种种努力正在为将来激动人心的各种可能性铺平道路。

在完成可视化人体模型的基础上,科学家们还希望“虚拟人”还能像真实的人类那样具有各种物理、生化反应。在以往的科学实验中,大量的采用动物甚至是真人来得到实验数据,在成本居高不下的同时,实验结果还存在各种不确定性。“虚拟人”技术的成熟有助于改变这种现状。在“虚拟人”身上加载人体物理反应模型之后,能够很方便的获取各种反应数据,从而让“虚拟人”代替人类在不可想象的严酷环境中完成人类不可能完成的任务。

今天“虚拟人”技术的应用设想还在不断延伸,更多领域专家的介入使得我们看到“虚拟人”应用的更多可能,在交通、体育、服装、航空、航天等领域,“虚拟人”将如何改变我们的生活,这个充满诱惑的问题正在不断激发着人类的想象力。毫无疑问“虚拟人”技术的发展为人类生活的改变展现了广阔的前景,与民众对此表现出的极大热情相对应,科学家们对于这种预测表现出更为谨慎的态度。

以“虚拟人”技术为基础的数字医学是新兴的学科,在我国已经有了积极的探索和长足的发展,在服务临床方面进行了积极有益的探索。

第三军医大学交通医学研究所尹志勇等人采用计算机仿真技术开展模拟颅脑、胸部撞击伤的研究,深化了对损伤机制的认识,事故再现的分析研究,协助交通管理部门更准确地判断事故的发生情况和肇事者的责任,受到有关部门的高度评价。第三军医大学野战外科研究所陈青等利用计算机图像重建技术,采用三维图像对外周神经再生规律进行可视化研究。类似的研究工作在全国多家研究机构已经大量开展。

2007年,“怪头娃”刘京在厦门市第一医院手术成功。这是我国完成的首例颅腔重建全颅再造手术,也是国内首例在临床上成功运用计算机三维仿真技术设计全颅再造。厦门大学计算机系王博亮教授带领团队应邀参加设计了颅骨切割和重建的计算机模拟手术过程,精确测算了刘京大脑的容积与颅腔的容积,为手术的成功奠定了基础。

张绍祥教授主持的“中国人体三维结构数据库建立”、“中国数字化可视人体数据获取关键技术研究”、“中国数字化可视人体分割数据集的建立”等6项国家自然科学基金课题获重要研究成果。

北京天坛医院开展的“颅内肿瘤虚拟仿真研究”;昆明军区总医院开展的“数字技术在脊柱侧弯手术治疗中的应用”;广东省自然科学基金支持的“数字医学技术在肝胆胰外科疾病诊断和治疗的应用研究”;南方医科大学珠江医院开展的“数字医学技术在肝血管瘤切除术中的应用研究”、数字医学技术在V、VI段肝癌切除术中的应用”等研究对推动我国数字医学研究的发展做出了重要的贡献。

数字化医学内植物技术研究工程化

植入物在医学领域的应用已非常普遍,仅以在骨科的应用为例, 2002年世界骨科植入物的销售额已达到140亿美元,随着人口的老龄化和严重创伤疾病等的增加,这一数字还以每年20%的速度增长。近年来,随着数字化高新技术和生物科学技术的发展,借助计算机辅助设计与制造技术(CAD/CAM技术)、快速原型技术、计算机图像处理与三维建模等手段,上海交大以人工关节为切入点,研发人工关节设计、制造及临床应用中的数字医学关键技术,同时借助已开发的系列细胞学和分子生物学的手段,增强植入物的生物学功能,促进与人体组织的整合。

1. 个体化人工关节的快速化制作技术和应用

在国家863项目基金支持下,为了进一步克服影响个体化人工关节临床应用与推广的主要障碍,缩短假体的生产周期、降低成本,上海交大基于大批量定制理念开展了有关个体化人工关节的快速化制作技术的研发。依靠CAD/CAE/CAM/PDM技术、参数化变量化设计技术、虚拟制造技术、成组技术等新技术,对各关节假体的个性化需求进行分类,找出尽量多的共性元素,除关节优先区外,在不影响人工关节的力学性能和功能条件下,通过改变肩、肘、髋、膝、踝关节的设计,增加人工关节的共用组件,并减少共用组件的规格品种;统一原材料探伤、表面喷涂、焊接、杀菌、包装的工艺装备。对手术辅助器械设计和工艺流程采用同样的原则,生产用模具、夹具设计尽可能采用互换件,使制造技术合理化,优质、高效、快速地制造出满足用户个体化需求的假体。

2. 人体化人工关节的结构仿生和生物学优化

个体化人工关节多数以形态仿生为主。手术以恢复病损部位的大体形态和基本的生理功能为目的,甚至仅为了保肢,远未达到功能仿生的要求。为了进一步提高个体化人工关节对毁损关节功能替代的质量,上海交大开展了人工关节结构仿生优化研究:包括运动学仿生和稳定性仿生,研发符合正常肩、膝、髋、肘、踝关节的三维共轭活动模式以及重建大节段骨切除和软组织切除患者的关节稳定性,研发出具有自主知识产权的新型个体化假体。同时为了提高人工关节的生物相容性,上海交大开展了假体材料的优化研究,如在β型钛合金中加入生物相容性良好的铌和锆,使钛合金在保持其抗腐蚀性和力学强度的同时,进一步提高生物相容性、降低弹性模量,从而有效降低假体的应力遮挡效应;又如对假体表面真空等离子喷涂生物活性钛(Ti)、氧化钛(TiO2)涂层,使其具有优良的力学性能,加强涂层与合金基体的结合以及假体-骨整合,并实现个体化加工。

数字医学研究机构

全国各地纷纷成立数字医学研究机构,第三军医大学、上海交大、复旦大学分别成立了数字医学研究院和研究中心,国内至今已经构建了8个高精密度的中国人体数据集。

篇3

doi:10.3969/j.issn.1673 - 0194.2017.04.094

[中图分类号]R197.3;G270.7 [文献标识码]A [文章编号]1673-0194(2017)04-0-02

医学档案是医院最关键的信息源,其具备记录、收集、分类、贮存以及管理等功能。而医学档案信息的价值以及其在医学研究等方面的应用,得到了越来越多人的关注。对于新时期的医学档案管理工作,医院必须要积极应用数字化技术,构建医学档案管理网络,实现档案的开发、利用与服务的信息化,这对促进医院发展和医疗事业的发展来说具有重要意义。

1 现代医学档案的特点分析

第一,数量和类型逐渐增多。现代人的生活条件和医疗条件得到了改善,致使医学档案不管是数量亦或是类型上都有很大程度的增加。这给医学档案管理人员带来了大量的工作量,并对其工作效率产生了很大影响,工作内容变得更加复杂,工作范围也逐渐扩大。

第二,医学档案的来源和内容越来越广。随着时代的发展,人们的健康理念也在逐渐加强,医学服务体系的日益完善,使医学档案的来源方式也呈现出了更加多元化的局面,其内容也更为丰富。医学档案自身的跨越性长、时间跨度大、综合性较强,其与其他诸多专业学科之间有着较为紧密的联系。

第三,载体形式日益多元化。医学档案管理从过去的纸质管理发展到如今,即便是电子化信息化技术已经得以较多的应用,但因为医学档案自身存在的特殊性,纸质档案依旧在医学档案中占据了较多的比重。另外,以缩微医学档案、声像医学档案等其他不同类型的医学档案也越来越多,医学档案载体多元化的形式为档案的查找、保存和传递提供了更多的便利。

第四,社会需求逐渐增多。在现代社会中,互联网信息技术飞速发展,现代人的信息需求量也越来越大。对医学档案信息来说,其与现代人的实际生活联系紧密,社会需求量也持续增多。另外,生活水平的提升与生活节奏的加快让社会对医学档案的需求也越来越高。医院医疗服务中的各项工作几乎都在很大程度上涉及医学档案,其种类多、强度大、需求广,需要进一步促进医学档案管理工作的变革。

2 数字化技术在医学档案管理中应用的必要性

2.1 顺应时代的需要

过去的医学档案管理往往是手工作业的方式,以纸质档案为主要载体。近年来,随着数字化信息技术的飞速发展,其在人们的生活与工作中得到了更加广泛的应用,医学档案管理工作也开始朝着信息化的方向发展。即便是计算机在医学档案管理中已经有了非常普遍的应用,但其具体功能依旧集中于存储目录信息、档案检索等方面,没有真正实现用户自行使用计算机对档案信息进行检索或者提供其他相关服务的能力。所以为了顺应时展的要求,医学档案管理工作也要坚持与时俱进,大力推进数字化建设。

2.2 提高工作的质量

把医学档案从过去纸质的管理模式逐渐转化为现代的数字化管理模式,可以在很大程度上促进医学档案管理工作质量的提升。过去的医学档案管理一般是在档案管理人员根据相应的管理规范所进行的,这样的管理模式可能会由于工作人员自身业务水平和素质能力的差异,而造成医学档案管理工作的效率和质量存在差异。而借助于数字化技术,应用现代的信息管理模式,其最主要的工作内容可以说是计算机代劳,计算机根据已经编制好的程序完成相关工作,能有效避免人工作业时可能出现的失误。

2.3 提高档案利用率

应用数字化技术开展医学档案管理工作,和过去的管理模式相比,最大的优势在于促进医学档案管理工作效率的提升,进一步完善医学档案信息管理系统,提升医学档案的利用率。选择现代化的管理模式,让用户在查找所需档案材料的过程中更为便捷,对一部分保密文件也能够借助设置密码的办法来设置权限,进一步简化了授权与查找的流程,最终实现医学档案信息Y源的共享。

3 数字化技术在医学档案管理中的应用

3.1 融传统档案管理与数字化于一体

数字化技术应用于医学档案管理工作中,可以说是传统档案管理工作的一次创新与改革,过去的医学档案管理系统是数字化技术应用于医学档案管理的前提和基础。数字化医学档案管理能够极大地促进档案管理工作效率的提升,降低人力、物力的消耗。数字化管理模式和过去人工管理模式既有区别,也有联系,随着档案管理工作的改革,医院要意识到数字化技术与传统档案管理手段的融合是医学档案管理工作未来的主要发展趋势,把互联网环境和各种高效的数字化技术有机结合起来,让医学档案管理能够焕发出新的活力,在医院管理系统甚至于其他相关领域中发挥作用,最终实现医学档案管理工作的重组建设。

3.2 加强硬件设施的投入

数字化技术应用于医学档案管理工作,必须要拥有较为全面的硬件设施作为工作开展的前提与基础,医院方面要加强对硬件设施的资金投入,确保硬件设施的建设和完善具备一定的科学性与预见性,在医院发展的过程中要“一步一个脚印”的构建网络信息系统,为数字化技术在医学档案管理工作中的应用提供更大的发展空间。同时,还应对医学档案信息材料予以有效保存,对网络系统的设置与选择方面,必须要充分考虑其可维护性和先进性。在现代医院中已经建立了局域网,可在某一范围内实现信息共享,在这种形势下,数字化技术必然能够在医学档案管理中得以更加全面的应用。

3.3 整合医学档案数字化的原始资源

数字化技术在医学档案管理中的有效应用的基本前提是数字化资源,缺乏资源的医学档案信息化建设管理工作就如同无根之水,不能真正发挥出有效的作用。医学档案数字化管理工作必须要从两个方面出发:一是对医院医学档案资源的数字化管理,二是对社会化资源的开发管理。医院内部医学档案资源的信息化建设,是按照医疗机构的实际情况和发展方向所构建的全面数据资料库,并提供医学档案的检索查询功能,另外,对相应的病例和学术论文进行信息化处理。在这样的前提下,才能对所掌控的档案信息实施全面立体化的索引,进而提供更具有针对性的查阅与下载功能。社会化资源的开发管理,是对部分拥有较高学术价值的医学档案进行收集整理,尽可能地对医疗信息予以过滤、整合,确保医学档案资源更加高效的应用。

3.4 创新数字化档案管理的组织模式

现代社会的飞速发展和社会主义建设的逐渐推进,医疗机构、医学档案作为与现代人实际生活密切相关的一个重要因素也得到了发展,不管是从行政管理、学术研究亦或是确保普通百姓的合法权益等方面来说,医学档案管理工作都是至关重要的。要构建完善的数字化档案管理的组织模式,建立一个和现代社会发展相符合的医学档案管理新模式,必须要努力开展好下面几方面的工作:一是从数字资源、网络化存取和分布的角度进行创新;二是从档案需求者与使用者的查询、处理、检索系统等基础系统实施创新;三是站在社会组织机构的角度实施创新。唯有循序渐进的开拓发展,才能确保数字化技术更为有效地应用于医学档案管理工作中。

3.5 加强档案数字化的安全保障措施

近年来,数字化技术在医学档案管理工作中得到了更加广泛的应用,但与此同时,医院也必须要注重其安全防范。医院信息技术工作人员和档案管理人员必须要主动树立安全防范意识,通过有针对性的信息安全技术确保数字化医学档案在开发利用过程中的安全性,对医院内部网络系统给予充分的保护,如设置防火墙、数据加密或者设置登陆动态口令等方法有效避免医学档案信息资源的泄露。医学档案如果被泄露必然会引起非常严重的后果,因此,档案工作人员必须要主动学习数字化技术,掌握一定的安全防范技术措施,确保医学档案的高效利用。

4 结 语

随着现代科学技术的飞速发展,数字化技术在医学档案管理工作中的应用已成为医院档案管理工作的发展趋势。但数字化技术的应用,并非是短期内能够得以全面推广的,它还需要一个发展与延伸的过程,医院档案管理人员必须要主动树立信息化、数字化的管理理念,把数字化资源更加科学地应用到各项工作中去。唯有逐渐推进医学档案管理工作的数字化建设,才能真正提升医学档案管理工作的实效性,并开辟出一条具有自身特色的数字化医学档案管理之路。

主要参考文献

篇4

中图分类号:TP391.41 文献标识码:A 文章编号:1009-3044(2007)18-31717-01

A Method of Receiving Medical Digital Imaging

LIANG Yu-en,SHEN Jian-gang

(Computer Application Engineering,Zhejiang Institute Mechanical &Electrical Engineering, Hangzhou 310053,China)

Abstract:According to the Digital Imaging and Communications in Medicine(DICOM) Network Architecture, this paper proposes a method of receiving medical digital imaging based on message processing and library function (DCMTK) call, and of their components.

Key words:Medical Image;Message;Component

1 引言

医学数字影像与通信(DICOM)标准是美国放射学会和全美电子制造商协会联合制定的。该标准共分十三章,从1985年1.0版发展到现在的3.0版,已成为医学影像信息的国际通用标准。DICOM标准涵盖了有关医学数字影像的采集、通信、显示及查询等方面的信息交换协议,大大简化了医学影像信息的交换。如今,大部分医学影像设备(如CR,CT,DR,US,MRI等)出厂时都配备有标准DICOM端口,通过DICOM端口获取医学影像信息是医学应用系统的一项基本而重要的工作。本文阐述了DICOM通信原理,给出了一种实用的影像接收方法和实验结果。

2 基本原理

2.1 DICOM通信原理

DICOM网络体系结构如图1所示。最底层物理网络(同轴电缆、双绞线、集线器、分布式光纤接口等)是应用广泛的TCP/IP协议。在这之上是DICOM上层协议(Upper Layer) 。它利用OSI模型的表示层和联合控制服务元素(ACSE)对上层消息交换提供通信支持;另一方面,DICOM上层协议又是构建在TCP/IP协议之上,这赋予DICOM标准良好的兼容性和可扩展性。DICOM应用消息交换(Message Exchange)是DICOM网络中消息交换的规则。消息是由单条或多条命令组成的命令流,其后可跟数据流。消息是信息的载体,DICOM网络通过消息交换实现信息互通。医学影像应用(Medical Imaging Application)处于最顶层,是医学影像信息的使用者或提供者。

图1DICOM网络体系结构

在DICOM标准中,通信活动发生在应用实体(Application Entity)之间,而应用实体包含消息交换及部分上层协议功能。应用实体根据角色的不同分为两类,一类是服务类用户(SCU);另一类是服务提供者(SCP),这类似客户/服务器结构。SCU与SCP配对使用,相互通信过程如下:

(1)SCU向SCP发出连接请求,SCP确认并响应连接。

(2)SCU与SCP之间进行消息交换。DICOM把这些消息称为DICOM服务单元(DICMSE),例如C-Store消息(影像存储用)、C-Find消息(按属性查询用) 、N-Set消息(修改信息用)等。

(3)消息交换完成后,SCU发出连接释放请求,SCP确认并响应后释放连接,整个通信

活动结束。

步骤(1)和步骤(3)使用DICOM上层协议,步骤(2)涉及消息交换。

2.2 应用框架

在DICOM标准中,把发送影像的一方即医学影像设备称为SCU,接收影像的一方如医学影像工作站称为SCP。根据通信原理可知,实现DICOM影像的接收功能,实际上就是对SCP应用实体的实现。SCP的实现途径,一是直接根据协议文本编码,其优点是能完整实现DICOM标准,可维护性好,但工作量大;二是购买商用DICOM接口软件,经过二次开发实现所需功能,其优点是能显著缩短开发周期,不要求使用者对DICOM标准有很深了解,但要付出一定的经济代价,所购的接口软件不一定能与应用系统完全兼容,所提供的功能也不能完全满足特定的使用要求。本文提出的方法是:设计消息处理算法,DICOM消息交换和上层协议则调用的DCMTK函数库.这样既避免了大量的协议编码工作,又可灵活修改满足不同场合的使用要求,且较经济。图2是影像接收的应用框图。为了便于使用,用VC++将C-Store消息处理算法和DCMTK函数库封装在动态链接库Dcm.dll中,然后,用Borland C++ Builder 6.0写成一个VCL组件StorageSCP,调用Dcm中的函数,医学影像应用再调用组件,从而完成影像文件的接收工作。

图2应用框架

3 实现方法及结果

3.1 影像接收处理算法

由DICOM通信原理可知,要接收DICOM格式的医学影像文件需要完成三个步骤:TCP/IP通信;DICOM上层协议;C-Store消息处理。TCP/IP通信通过Windows Sockets API实现,后两项调用DCMTK库函数实现。Dcm.dll中的函数RunStroageSCP是影像接收的具体实现,算法如下:

(1)启动Windows Sockets,初始化网络。

TCP/IP初始化调用Windows Sockets API函数执行,函数原型为:

int WSAStartup(WORDwVersionRequested,LPWSADATAIpWSAData);

DICOM网络初始化调用DCMTK库函数,其原型为:

OFCondition ASC_initalizedNetwork(T_ASC_NetworkRole role,

int acceptorPort,

int timeout,

T_ASC_Network * * network);

其中,第一项参数指定应用实体所承担的角色,SCP 是接收者,所以应填NET_ACCEPTOR;第二项参数设置监听端口号。

(2)SCU连接请求处理。判断是否支持请求数据包中所列的通信条件(传输语法、编码顺序、压缩算法等),若支持就返回连接确认,否则拒绝连接。接收连接请求用如下函数完成:

OFCondition ASC_receiveAssociation(T_ASC_Network * network,

T_ASC_Association * * association,

long maxReceivePDUSize,

void * * associatePDU=NULL,

unsigned long * associatePDULength=NULL,

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

OFBool useSecureLaye=OFFalse,

DL_BLOCKOPTIONS block=DUL_BLOCK,

int timeout=0);

(3)处理C-Store消息。监听是否收到影像存储请求C-STORE-RQ消息,若收到则调用DIMSE_sotreProvider函数接收并存储影像文件。函数原型为:

OFCondition DIMSE_storeProvider(T_Assocation*assoc,

T_ASC_PresentationContextID presIdCmd,

T_DIMSE_C_StoreRQ* request,

Const char* imageFileName,

Int writeMetaheader,

DcmDataset * * imageDataSet,

DIMSE_StoreProviderCallback callback,

Void * callbackData,

T_DIMSE_BlockingMode blockMode,

Int timeout);

接收完成后向父窗口(通常是StorageSCP组件)发送自定义消息DICOM_STORAGE_RECEPTION,产生通知事件.重复执行步骤(3),直至应用结束再转步骤(4)。

(4) 关闭连接。调用的函数原型为

OFCondition ASC_dropSCPAssociation(T_ASC_Association * association);

3.2 StorageSCP组件

将接收影像的功能封装成VCL组件主要是为了便于使用。组件中利用线程技术实现对接收功能函数RunStorageSCP的调用,因此,该组件在与SCU进行的同时不影响其他任务的执行。组件主要属性、成员函数和事件如下:

属性StorageSCPOptiom Option;SCP参数

成员函数 Run();运行SCP

事件 OnReception;单幅影像接收完成

OnEndOfStudy;一组影像接收完成

成员函数 Run启动影像接收SCP,过程如下:

(1)载入Dcm.dll库,注册RLE/JPEG解码器,因为因为发送DICOM影像像素部分可能是以压缩格式存储的。

(2)创建StorageSCPThread线程。

(3)启动线程,调用Dcm.dll库中的RunStroageSCP影像接收函数,监听网络,接收影像。

(4)收到影像,触发事件函数。

成员函数ConfigStoreSCP对 StoreSCP的属性进行配置,如监听端口号、传输语法、编码顺序等,如果存入ini文件,每次组件启动时读入这些参数,并对组件进行初始化设置。

3.3 结果

StoreSCP组件作为医学影像应用的一部分,在医院放射科进行了测试,接收到计算X线成像设备(CR)发送的数字化胸片影像。图像完整清晰,无信息丢失;接收过程耗时符合要求,无明显迟滞;组件工作稳定,与应用系统兼容性好,可维护性强。测试中发现,组件因调用Dcm.dll库函数,对内存需求相应要大一些。

4 结论

本文所讨论的基于DCMTK函数库调用的DICOM影像接收方法,经医学应用证明是可行的、有效的。DICOM标准中的其他信息交换可以用类似于本文所提方法实现,可对StoreSCP进行功能扩充,或者构建新的SCU、SCP组件,并在Dcm.dll库中增加与之相应的消息处理算法。

参考文献:

[1]DICOMPS3-2004Digital Imaging and Communications in Medicine[S].

[2]John M,Tom C, Harold H. Borland C + + Builder编程指南[M].北京:电子工业出版社,1998.420-517.

篇5

目前,网络化和数字化越来越渗透到我们的工作和生活中,而且影响力在不断增强。作为学术科研信息及成果、传播、交流和推广平台的科技期刊,同样也进入到数字化发展的新阶段。借助于网络信息技术的成熟发展和急速扩张,整个科技期刊的编辑出版工作模式和流程已经发生了根本改变[1]。目前,科技期刊的出版虽然仍是传统模式占据主流,但数字出版的发展趋势已不可逆转[2]。2014年中国新闻出版研究院了《2013—2014中国数字出版产业年度报告》,2014年我国的数字出版产业收入为3387.7亿元,比2013年增长了33.36%;数字出版产业收入在新闻出版产业收入中的占比由2013年的13.9%提升到了17.1%[3]。医学期刊是医学学术交流的重要平台,同时也是医学发展的重要组成部分。医学期刊登载内容专业性强,信息更新及时,受众群众教育程度较高,能更好地适应医学期刊的数字化出版,数字化出版是医学期刊发展的必然趋势。

1医学期刊数字出版目前存在的问题

1.1版权保护难度大

数字技术使作品的复制、整合、传播更加简便,导致版权保护较为困难。目前,我国保护数字化出版产权的法律、法规尚不健全,导致作者、期刊的利益无法保障,知识产权的纠纷日益增多,引起了公众的普遍关注。

1.2期刊数字化破坏了期刊的特色

期刊数字化后,读者应用网络对文献进行浏览、下载的是单篇、零散的文章,期刊特色不能得到体现。而期刊的学术特色是期刊编辑工作的创造性所在,是期刊的生命所在。

1.3期刊出版网络化程度参差不齐

国内各医学期刊数字化出版的程度各不相同。大多数医学期刊数字出版的主要方式是将纸质期刊的内容简单地数字化后以PDF等文件格式进行网上的陈列与阅读,缺乏对其内容的深度加工及延伸开发。目前,大部分期刊与中国知网、万方数据库、维普数据库等信息服务商合作,进行期刊的二次出版发行;部分期刊自建网站,采用开放存取的方式将纸质期刊内容网络化,供读者阅读下载;仅极少数期刊自创网络杂志,实现了一定程度的期刊出版网络化[4]。

1.4网站建设不完善

国内医学期刊自建网站日益增多,但有不少网站疏于管理和维护,内容不能及时的更新。网站功能也较局限,缺乏对作者和读者的个性化服务,无法进行读者—编辑—作者间的实时交流和信息反馈。

1.5复合型人才短缺

医学期刊数字出版对编辑部人员提出了更高的要求,既要拥有传统出版技能,又要拥有数字技术,同时还要懂得经营和市场运作。而大多数医学期刊编辑部人员学习的是医学专业或生物学专业毕业,缺乏相关的信息化知识,未能完全实现无纸化编辑出版,不能满足期刊数字出版的要求,阻碍了医学期刊数字化出版的进程。

2医学期刊数字化出版的对策及建议

2.1健全保护知识产权的法律、法规

目前,数字版权保护标准的建设正在有序推进。2014年9月开始实施的《使用文字作品支付报酬办法》提高了原创作品的基本稿酬,并将适用范围从出版领域扩大到了数字网络等领域[5]。只有保护好了数字版权,才能兼顾作者、医学期刊和数字出版商的合法利益,建议签订授权许可或转让协议合同,以此来协调三方的数字出版利益,保证数字版权不受侵犯。

2.2加快医学期刊数字化出版的进程

积极加入中国知网、万方数据库、维普等技术提供商的数据库,努力做到优先数字出版,有研究[6]表明,优先数字出版能将期刊影响因子提高15%。目前,大部分医学期刊建设有自己的网站,并多与采编系统相结合。自建网站可以保留并突出期刊的特色,能与读者、作者及时互动,但需要一定的物力、财力的支持,并由专人维护管理。期刊社应加大力度,完善网站建设,加快期刊的数字化出版的进程。开放获取(OA)是上个世纪末发展起来的一种全新的出版发行模式,目前我国已有5个开放存取数据库[7]。这种模式促进了资源共享,扩大了期刊影响力,有利于期刊的发展,应积极加入。有研究[8]显示,全媒体出版是医学期刊出版的发展趋势。移动出版是全媒体出版的形式之一,读者可以通过手机、平板随时查询需要的文献。医务工作者在临床工作中遇到罕见或棘手的病例,可以随时随地通过手机、平板等移动设备查询相关文献,使患者得到及时正确的诊治。同时,可以充分利用微博、微信等平台宣传期刊,目前仅个别医学期刊有微信公众平台订阅号[9]。

2.3注重培养、引进适应期刊网络化发展的复合型人才

医学期刊的数字出版对编辑的能力提出了更高的要求,急需熟悉或精通传统出版流程、数字技术及经营管理的应用型、实践型、复合型人才。一方面可以建立有计划的培训机制,安排编辑人员参加短期培训学习数字出版技术,提高业务能力;另一方面,可以引进相关的复合型人才,使期刊能满足网络数字化出版的要求[10]。综上所述,作为综合性医学期刊的编辑出版工作者,要有开阔的视野,抓住数字出版的新趋势,自觉学习数字出版化技术知识,提高数字化出版专业技能,一定能做出高质量的精品期刊。

【参考文献】

[1]龙玲.网络时代期刊数字出版的现状及对策[J].科技传播,2013,5:17-18.[2]李禧娜,何以平,郑巧玲.期刊网络化的现状分析[J].编辑学报,2011,23(Sup.1):12-14.

[3]龙亮,郭建秀,冷怀明.科技期刊数字出版及相关问题的思考[J].2014,26(6):517-520.

[4]陈华,巩倩.医学期刊文献优先数字出版模式[J].中国出版,2010,10:69-71.

[5]朱佩玲,邬加佳,吴秋玲,等.国内外医学期刊优先数字出版现状分析[J].韶关学院学报:自然科学版,2012,33(4):95-97.

[6]陈志贤.期刊数字化版权问题[J].编辑之友,2011(7):99-101.

[7]高美凤,李谦,王研.我国科技期刊的网络化运营方式探讨[J].出版科学,2010,18(1):57-59.

[8]马英,胡永成.国内医学期刊的全媒体出版任重而道远[J].编辑之窗,2011,38(1):94-96.

友情链接