发布时间:2023-09-22 18:13:44
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇新能源科学工程范例,将为您的写作提供有力的支持和灵感!
【基金项目】常州工学院教学改革研究课题(项目编号:J120324;J120305)。
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2013)10-0247-02
引言
新能源产业人才培养落后于产业发展,培养新能源方面专业技术人才已经成为当务之急[1-4]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,涉及的学科领域广泛,属于交叉学科,涉及物理、能源与动力工程等多个学科。目前国内对该专业的专业课程体系设置存在专业定位、培养方向模糊;专业基础课程与专业课程的知识结构不成体系;缺乏合理的实践、实训体系等诸多问题。如何依托众多的所属学科,明确准确的培养人才定位,构建可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的问题。
1.以地方产业背景为引导,明确培养方向定位
围绕长三角地区光伏产业背景,依据学校创新型应用人才培养目标,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色。
为适应创新型应用人才培养目标,围绕学校“让每一个学生都获得成功”的办学理念,创建“以人为本,因材施教,学、做、创并举”的教学理念,为教学改革和创新型人才培养引领方向。围绕长三角地区的新能源产业背景,尤其是光伏产业,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。
2.以“新能源产业链”为主线,构建纵横协同的专业课程体系
根据学生的认知规律,依据“以人为本,因材施教,学、做、创并举”的教学理念,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系,课程体系如图1所示。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。
纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。
3.以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系
以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系,如图2所示。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。
将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。
4.结语
紧密围绕长江三角洲地方光伏产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。
参考文献:
[1]王伟东、艾建军、杨坤,新能源产业人才培养问题与对策[J].中国电力教育,2011.(12).5-6
[2]王彦辉、齐威娜,新能源产业人才培养存在的问题及对策[J].中国成人教育,2010.(2).54
[3]王永、张渊、刘浩、程超,长三角地区高职光伏专业建设研究[J].职业教育研究,2012.(2).31-32
[4]刘学东、邵理堂、孟春站、宋祥磊,新能源科学与工程(太阳能利用方向)人才培养探讨[J].淮海工学院学报(社会科学版 教育论坛),2010.(8).46-47
“新能源科学与工程”是高校根据国务院关于加快培育发展战略性新兴产业的决定而新设的。国务院提出的七大战略性新兴产业包括节能环保产业、新一代信息技术产业、生物产业、高端装备制造产业、新能源产业、新材料产业、新能源汽车产业。其中,对于新能源产业,国家要积极研发新一代核能技术和先进反应堆,发展核能产业。加快太阳能热利用技术推广应用,开拓多元化的太阳能光伏光热发电市场。提高风电技术装备水平,有序推进风电规模化发展,加快适应新能源发展的智能电网及运行体系建设。因地制宜开发利用生物质能。
2011年,“新能源科学与工程”专业将在南京理工大学、华北电力大学、东北大学、河海大学、浙江大学、华中科技大学、中南大学、重庆大学、西安交通大学、上海理工大学、江苏大学等十所高校“生根发芽”。仅江苏就有3所高校设立了这个专业。国家战略性新兴产业把新能源产业作为其中的一部分提出来,可见其重要性,为什么这个产业会受到这么关注?新兴专业学什么?就业前景怎样?本文将对“新能源科学与工程”专业的相关状况做个详细分析,为考生了解、有的放矢的报考服务。
发展前景
东北大学博士生导师蔡九菊教授认为,发展新能源符合社会发展的需要,市场前景广阔,同时相关的专业人才需求量大。近年来我国经济持续高速增长,传统能源消耗量大幅增长,引发的能源短缺和环境污染等问题成为制约我国经济又好又快发展的瓶颈,为此,发展新能源产业势在必行。一方面,发展新能源产业孕育着巨大的投资机会,将有效拉动经济增长;另一方面,也可以有效地改变经济增长方式,引领中国经济走向低碳化。
目前,中国大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%,规划到2020年,中国在新能源领域的总投资将超过3万亿元。虽然我国新能源产业迅速发展,然而推动新能源行业前进的人才供给却显得捉襟见肘。高素质专业人才和核心技术的缺失,已严重阻碍了我国当前新能源产业的健康发展。据估算,到2020年在风电领域的从业人员就将会有几十万,其中包括几万名专业人员。根据《核电中长期发展规划(2005―2020)》,在未来10年内,国家每年平均要开工建设5-8台以上的核电机组,预计每年对核电人才的需求有数千人,而全国每年相关专业的毕业生总量不超过500人。对于快速发展的太阳能产业而言,人才供应同样面临严重不足。因此,亟待加大新能源产业人才的培养力度,以满足新能源产业发展对高素质人才的迫切需求。
专业培养目标
新能源科学与工程专业面向新能源产业,根据能源领域的发展趋势和国民经济发展需要,培养在新能源科学研究及其利用的技术开发与实施等方面既有扎实的理论基础,又有较强的实践和创新能力的专门人才,以满足国家战略性新兴产业发展对该领域教学、科研、技术开发、工程应用、经营管理等方面的专业人才需求。学生的修业年限为4年,对于完成培养要求者授予工学学士学位。
专业课程体系
新能源科学与工程专业在课程内容体系的设置上紧密结合培养目标要求,既注重“厚基础”,突出基本理论与方法,又注重“宽方向”,丰富课程知识结构。注重学生“知识结构”的构建和“能力结构”的形成。
理论部分:在基础教育系列中重点强调基础性与综合性相结合的原则。包括高等数学、大学物理等工程技术基础课群;大学外语、原理等社会科学课群。在专业教育系列中重点遵循厚基础、宽口径的原则。包括工程热力学、流体力学、传热学、能源系统工程、可再生能源及其利用、光伏科学与工程、风力发电原理、生物质能工程、核能利用基础等专业平台课群;光伏材料与太阳能电池、风力发电场等专业选修课群等。
实践部分:重点培养学生的独立思考能力、动手能力和工程实践能力。单独设立“能源工程综合实验”课程,目的是充分利用学科的开放式实验室,指导学生开展设计性、综合性实验项目,培养学生发现问题、解决问题的创新能力。
毕业生就业去向
毕业生就业前景广阔,可在核能、风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。
如河海大学主修课程包括:理论力学、材料力学、机械设计基础、电工技术基础、微型计算机原理及应用、工程热力学、气象学、太阳能发电电气设备与系统、太阳能发电并网技术、项目及企业管理等。毕业生就业方向:培养太阳能利用工程系统设计、研究、运行、施工管理等方面知识的高级工程技术人才。
南京理工大学主要以新能源的能源转换过程、高效清洁能源利用与功率转换技术为核心,培养掌握上述领域基础知识和专业技能、具备良好综合素质的高级工程技术人才,为太阳能、风能电站和供电公司等电力部门提供后续人才及技术支持。南京理工大学对新能源科学研究与人才培养已有25年的历史,包括太阳能、风能以及能效节能的可持续能源投资中,还有一个巨大的市场有待开发――能效和节能。可再生能源的开发在中国有广阔的空间,新能源科学与工程专业人才的缺口很大,目前学校在此方向培养的硕士生一入校就被用人单位盯上。
新闻链接
北大世界新能源战略研究中心成立
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)36-0222-02
著名数学家华罗庚教授曾精彩地叙述了数学的各种应用:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁……人类生活的各个方面无处不有数学的重要贡献。数学是一切科学得力的助手和工具。当代社会科技发展日新月异,可以说,高技术本质上就是数学技术。而工科正是以数学为基础,通过物理学、化学等基础科学的原理,结合生产实践所积累的技术经验而发展起来的学科。其中,理论基础的重要性是非常明显的。而在整个教学计划中,数学课程是工科的主干课程之一,并且根据不同专业的发展和需要,提供相关的数学基础理论知识和计算方法。在某种程度上,数学工程能力已成为衡量科技人员科学水平、科学素质的重要标志。但是随着高等教育的大众化与产业化的快速发展,高校的生源等情况也发生了很大的变化,这就使得工科院校的数学教学面临着巨大的困难与挑战。
长期以来,工程院校对数学的教育教学重视不够,认为数学仅是传统的必修科目,不必大张旗鼓地花费很大精力和时间去教授,只需掌握简单的计算即可,甚至压缩数学的学时以满足专业科目的需要。这些认识都是有误区和局限性的。同样,数学教学要求统一,教学模式单一,缺乏层次和种类,不仅不能很好适应不同专业、不同培养目标的需要,也不利于因材施教和优秀人才的培养。同时,相对于高等数学,工程数学课时越来越少,而后继专业课对工程数学的要求又在不断提高,对学生能力的培养更加重视,这使得工程数学的教学压力逐渐加大。因此,如何利用逐渐减少的授课时间来获得较高的教学质量,在体现课程实用性的同时兼顾对学生逻辑思维的培养,是工程数学教学人员必须解决的一个问题。根据上面的分析,对于新时代培养工科院校的数学工程能力这一课题,做出下面几点分析和和见解
一、调动学生学习数学的积极性,提高数学素质
高校数学教师有责任调动生学习数学的积极性与主动性。阐明工科专业学习数学的重要性。与学生多交流学习的体会和心得,及时解惑。这就要求高校数学教师不仅要对所授的数学内容熟练掌握,还要适当了解一些教授对象的所学专业知识。根据其专业需要及特点,讲明数学在专业学习中的作用。同时,鼓励学生利用广阔的网络资源和图书资源,扩大自己的知识面。从而调动学生的学习兴趣。在教育学的过程中,积极思考,不仅对于学生,教师也应如此。数学教学的过程实质上就是逐步培养学生思维能力的过程。因此,发展学生思维能力是对学生进行数学教育的重要内容。而思维能力主要包括抽象思维能力和逻辑思维能力。一旦学生具备了这些能力,他就“像一个活的泉眼一样能流出一道水流。正像树木的蓓蕾一样,会生叶、花、果”。
二、以高等数学为基础,与专业相结合,有针对性学习数学
高等数学作为一门重要的基础课,既是学习后继专业课程的基础,又是培养学生学习方法和提高学生解决问题能力的重要途径。结合学生所学的具体专业,其后继课程还有“积分变换”、“复变函数”、“线性代数”、“概率论”、“场论”等。这些科目兼具了工具实用性和逻辑思辨性两个特点,是为了让工科学生用更加方便的理论工具来处理工程常见问题。对数学的学习可以促进对专业课的学习和掌握。有的学生对某些专业的知识感到难以理解,很多情况都是因为相关的数学知识掌握得不好。如工科的很多专业课经常会和数学紧密地联系在一起。如自动化专业的学生在学习电路的知识时就需要高等数学中的微积分运算,以及微分方程,线性代数,和复变函数的初步知识等。并且,有些内容像复变函数和积分变换等是贯穿于此专业适始终的,有些科目可能被认为是非主流的课程而被忽视,导致在专业课的学习过程中总是不能彻底清楚知识的来龙去脉。更有一些专业课的教师在涉及到数学理论推导的时候也以简略之笔一带而过,这在学生的进一步学习中会带来很大的阻力,也减弱其学习的信心。国内的工科院校数目极多,教学水平也是参差不齐。一些学校出于某些考虑没能选择恰当的教材也影响了数学的教学。有些自编教材内容过于抽象或过于简单,不能满足学生的认识需要,难以提高学生的数学素养,培养学生的创新能力;或超越大多数学生的接受能力,造成学生学习的兴趣降低。对于那些不合时宜的教材应做到及时改进或彻底摒弃,长此以往,必然贻害大方。随着这几年高校中普遍使用教材的改版,可以发现在高等数学等教科书中添加了相当数量的应用例子。这些多是物理等工程相关问题,这些大大促进了工科学生应用数学解决专业问题的能力。
三、让考研成为学习数学的动力
近些年,由于社会和就业等的压力,出现了本科学生考研究生的热潮。众所周知,数学是工科考研科目中必考的一门,且所占分值较多。为了顺利通过升学考试,学生会努力学习高等数学、线性代数等数学课程。这当然是好的一面。但不难发现,很多学生学习数学的目的性过强,对于考研中不考的知识学习的激情很弱,从而很多重要的内容被忽视了。这也使得教师在教学过程中显得很被动,因为很多理科的内容都存在一定的联系,只从表面上去区分什么学什么不学是不理智的,会对未来的教学带来压力。特别对于跨专业的考研更是使得知识内容杂乱无章,不成体系,这也会为其以后的学习和研究工作造成阻碍。所以,要进一步完善考研体制,对于数学试卷中的考点要求要有所改革,涉及面要宽。但这却是需要很多学者和一线教师的共同努力。
四、问题与思考
在国内,工科院校的数学教学模式基本上相同。要想从根本上改变需要社会及相关部门的支持。特别是,工科院校的管理者和数学教师的努力。提高工科院校的数学工程能力,培养学生的创造性思维和创新能力,使学生真正理解会用,使数学真正成为学生学习专业课程的基础和工具,是摆在我们数学教育工作者面前一个亟待解决的问题。
参考文献:
[1]于巍,许爽爽.提高大学生的数学阅读能力[J].数学学习与研究,2011,(21).
[2]于涛.工科数学培养学生创新能力的探索与实践[J].四川教育学院学报,2008,24(10):10-11.
[3]刘守宗,黄明湛.与专业相结合探讨工程数学教学模式[J].廊坊师范学院学报,2009,9(6):123-124.
[4]周后卿.试论工程数学的教学改革与实践[J].甘肃科技,2009,(24):185-187.
【Abstract】New energy science and engineering is a typical multi subject cross specialty and has already become an emerging industries which our nation prefers to develop. Based on the analysis of the current situation of the new energy profession, this paper proposes a distinctive training program for new energy science and engineering, combing with our own advantages.
【Key words】New energy science and Engineering; Multi discipline; Training program
随着社会经济的发展,传统能源产业已经成为制约当今社会经济发展的关键因素,新能源产业的发展必然是未来中国可持续发展的趋势。然而与发达国家相比,我国的新能源产业化发展起步相对较晚,技术也较为落后,总体产业化程度不高,且新能源领域的科技创新能力明显不足。特别是我国高校新能源专业人才培养方案尚处于摸索阶段[1-3]。
目前,国内大部分高校的新能源科学与工程专业都是以能源与动力工程专业为基础,再开设几门与新能源领域相关的课程,并没有从根本上解决培养方案的问题,因此,在课程体系设置、专业素质培养、本科生就业等方面存在不少问题。例如:(1)专业特色不明确;(2)专业基础课程与专业课程脱节;(3)实践教学和创新教学的形式化[4-5]。因此,本文针对目前各高校在新能源科学与工程专业人才模式培养中存在的主要问题,提出了具有特色的新能源科学与工程专业培养方案。
1 一体化人才培养
本校新能源科学与工程专业的课程体系由四个主要模块组成:通识课程71学分(人文社科课程和公共基础课程)、学科课程58学分(学科基础课程、专业核心课程和专业选修课课程)、集中实践教学38学分(毕业设计、课程设计、项目设计、电工实习、金工实习、生产实习、课外实践教学等)和素质、创新、创业教育16学分。在本课程体系中,一方面开设了本专业的基础技术知识课程,让学生能够掌握与新能源体系设计、开发和测试相关的知识,另一方面开设了能源管理等方面的课程,最终培养的学生能够熟悉规划-设计-制造-运营-管理环节中关键的技术和方式,使得他们能更好的适应社会的需求。
2 供求关系引导特色学科
目前,各高校根据自身专业设置的特点和学科发展的优势,制定了稍有不同的新能源科学与工程专业人才的培养方案,如华北电力大学新能源科学与工程专业以生物质能、太阳能和风能三个专业为主;江苏大学的新能源科学与工程专业则围绕风能发展相关课程,实行单方向发展模式。本专业由于是新组建专业,暂时还未形成特色学科,因此,在专业核心课程设置时,以全面介绍新能源的动力系统、新能源的利用、新能源的储存和节能方式为目的,未涉及具体的特色方向,同时,河南省是以农业产品为主,结合目前太阳能热泵技术的大力推进,因此,在设置专业选修课程时,主要以热泵技术、太阳能制冷和冷热源工程为主导。在以后的实践过程中,发展出自身特色后,再利用选修课色学科对专业核心课程进行替换,从而形成“从发展中找特色”的人才培养方式。
3 “1+1”就业模式
新能源科学与工程专业属于新生学科,该方向毕业的学生较少,在能源行业中并未站稳脚步,在考虑学生就业问题时,一方面要以新能源学科为基础,开设新能源就业较好的课程,另一方面,也要重视我们现状,新能源比重小于20%,目前仍然以传统能源为主,因此,也开设了传统能源的节能技术课程,从而形成新能源利用和传统能源升级改造并行的“1+1”就业模式。
4 “分层次”创新教学
高校的教学模式必须具有连贯性,才能保证教学的质量。因此,本专业在设置相关软件学习课程时,尝试性地在大学一年级开设程序设计技术(C语言),大学二年级开设工程软件基础,让学生掌握工程软件基本知识,大学三年级时开设工程软件应用技术,让学生能熟练的利用三维软件进行实物绘制,在大学四年级的素质教育时,开设CAD-CFD综合应用创新教育课,更进一步让学生掌握模型的网格划分和传热与流动方面的简单编程计算。在上述的课程学习中,既保证的课程学习的连贯性,也形成了“分层次”创新教学的发展模式。
5 结语
新能源领域的发展,关键在于人才的培养。由于新能源科学与工程专业涉及物理学、化学、传热学、材料科学、管理学等学科,是一个典型的多学科交叉的新兴专业。因此,其培养方式和课程设置必须紧跟新能源科学技术的发展步伐,与时俱进。在贯彻厚基础、宽方向、重实践原则的基础上,积极培养具有扎实的自然科学基础、人文社会科学基础和专业知识,能够承担新能源工程的设计、运行管理、技术开发、科学技术教育与教学等工作,富有社会责任感,具有创新精神、实践能力和竞争力的高级专门人才。
【参考文献】
[1]冯大千,刘国良,范大和,等.浅谈《新能源概论》课程教学实践[J].科技视界, 2016(19):157-157.
[2]张宏丽,王存旭,郭瑞.美国俄勒冈州技术学院新能源专业人才培养的启示[J]. 当代教育理论与实践,2015(12):103-105.
中图分类号:G642.3 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.19.023
新能源产业人才培养落后于产业发展,已严重阻碍了我国当前新能源产业的健康发展,培养新能源方面专业技术人才已经成为当务之急[1-3]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,目前处于初步形成和探索阶段,没有现成的经验和模式可以借鉴。明确准确的培养人才定位,形成可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的一项重大课题。
1 新能源科学与工程专业存在的问题
新能源科学与工程专业是2011年开始招生的战略性新兴产业专业,大部分高校都是在原有能源与动力工程专业基础上开始几门新能源领域相关的课程,专业培养方向、课程体系设置等方面存在不少问题。
第一,专业定位、培养方向模糊。在原有能源与动力工程专业基础上开设几门新能源领域相关的课程,培养出来的学生无法满足企业对专业人才的需求。
第二,设置的专业基础课程与专业课程的知识结构不成体系、不能相互支撑。新能源本身涵盖学科知识领域广,学生学习困难,难以达到理想的学习效果。
第三,缺乏合理的实践、实训体系。新能源技术涉及到多个领域,多种技术,要想达到理想的教学效果,培养合格的具备实践应用能力和创新能力的复合型人才,必须开设多种实践、实训教学,但教学设备状况根本无法满足人才培养的需求。
2 新能源科学与工程专业人才培养方案的制定思路
江苏是光伏产业大省,立足地方,结合光伏产业背景,构建常州工学院新能源科学与工程专业的课程体系,探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。
第一,依据学校创新型应用人才培养目标,结合新能源技术的理论与实践特点,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色,为教学改革和创新型人才培养引领方向。
第二,根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。
第三,以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。
3 新能源科学与工程专业人才培养方案构建
3.1 结合江苏省的光伏产业背景,以及学校的实际情况明确培养方向
围绕常州的新能源产业背景,尤其是光伏产业,依托常州新能源学院,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。
3.2 以“新能源产业链”为主线,构建纵横协同的课程体系
依据“以人为本,因材施教,学、做、创并举”的教学理念,构建纵横协同教学课程体系。纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。
3.3 以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系
以“实践创新能力培养”为主线构建“分层次、递进式”实践能力训练体系。将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。
4 结语
紧密围绕长江三角洲地方产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。
参考文献:
[1]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12):5-6.
[2]王彦辉,齐威娜.新能源产业人才培养存在的问题及对策[J].中国成人教育,2010,(2):54.
[3]王永,张渊,刘浩,程超.长三角地区高职光伏专业建设研究[J].职业教育研究,2012,(2):31-32.
作者简介:熊超,常州工学院光电工程学院,江苏常州 213002