你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 人工智能对医疗的帮助

人工智能对医疗的帮助范文

发布时间:2023-09-22 18:13:59

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇人工智能对医疗的帮助范例,将为您的写作提供有力的支持和灵感!

人工智能对医疗的帮助

篇1

1引言

新一轮科学技术和产业革命的深刻变革,推动社会各个领域实现深刻变化。人工智能是这一轮产业革命的重要成果,国家也将人工智能作为中国产业发展的重要组成。中医作为我国的国粹之一,由于主要强调临床经验,治疗方式上也是因人施治,一人一方,异病同治、同病异治,存在着发展的短板。人工智能的应用为中医的信息化发展以及中医研究的深入推进提供了机遇。如何用人工智能为中医研究应用赋能,是一个非常重要的研究课题。

2大数据为中医智能化提供基础

大数据时代已经来临,已经成为全世界的共识。大数据时代纷繁复杂的信息在为人们带来挑战的同时,更多的是一种机遇。中医与互联网大数据的深度结合是国家战略,也是中医药研究领域关注的重点,于进一步研究和发展中医药大数据产业,提升中医药国际地位,具有重要意义。“互联网+中医”早在几年前就已经成为国家战略,我国《中医药发展战略规划纲要2016-2030》明确提出推动“互联网+”中医医疗,对“互联网+”中医医疗做了具体和全面的部署。具体而言,大数据对中医发展的智能化推动有几个方面。首先是中医药数据的挖掘使用,我国中医博大精深,是一套深奥成体系的学术、临床体系,中华几千年的中医药发展积累了极其丰富的大数据,是一座亟待开发挖掘的金矿。将这些丰富的数据进行智能化,对中医发展的促进作用将是无与伦比的。其次,大数据结合中医的核心理念,实现中医的有序发展。中医的临床疗效评价实质上是中医辨证论治与临床结局之间的因果关联分析,大数据理念恰恰可以反映关联及因果关系。中医生更多是临床过程的记录,在日积月累的经验积累和案例分析中形成独特的临床经验,将这些经验通过大数据建模的形式刻画出来,将大大实现中医的智能化。最后,大数据为中医发展的现代化和标准化提供条件。中医的发展需要标准体系的支撑,落点应该在于制定标准体系,促进共享应用,进而实现中医药大数据在互联网医疗等领域的创新和应用,在更大意义上推动世界范围内中医药大数据的发展,进而促进中医药国际化。

3运用人工智能促进中医研究应用的意义

人工智能和中医的结合,不仅可以对中医的研究和应用起到促进、推广作用,也是对人工智能应用领域的丰富和拓展。具体来看,人工智能对中医研究应用的意义有以下几个方面。(1)有助于推动中医的信息化发展。上文已经提到,我国几千年的中医研究建立了极为庞大且秩序井然的中医知识图谱,但是如何通过对数据价值的挖掘,进一步促进中医药发展是一个重要的课题。而互联网的出现,特别是大数据时代的到来,更为中西药的信息化提供了难得的机遇。人工智能对发掘中医隐性知识有着得天独厚的优势。当前,以大数据为支撑的人工智能在医疗领域的应用很多,比如医学影像、语音识别、病人看护等。延伸到中医研究和应用领域的还不多,可以利用人工智能将大量的中医诊疗数据进行深度挖掘,从而拓展中医人工智能的市场前景。(2)有助于推动中医传承发展。可以说,传统中医存在传承、推广应用和发展方面存在较大的痛点和难点。一般情况下,知名中医的传承主要是流派传承或者人传人的方式进行,这种传承方式成长周期长,无法复制,规模化推广应用受到限制。而通过人工智能则可以有效解决以上痛点,可以将知名老中医的诊疗思想、辨证逻辑和处方经验进行整合,形成在线的辅助学习和辅助诊疗系统,带动更多普通医师提升诊疗能力,也可以帮助中医的传承及推广应用。(3)人工智能有助于推动中医诊疗智能化。诊疗是医学的核心环节。中医药的诊断流程一般分为三步,第一是望闻问切、采集信息;第二是四诊参合、辨证分型;第三是君臣佐使,构思方剂。不过,传统中医在很大程度上需要依赖医生的个人经验,这意味着必然存在一定局限性。但是,利用人工智能,普通医师可以通过第一步采集到患者信息,进而借助网络实现规范化处理,后台通过人工智能模拟名老中医的辨证治疗的方式,给出一定的方剂建议,从而使一般医师也可以开出相对更有效的大处方。因此,也可以说,人工智能是放大中医产能的重要工具,是中医智能化发展的重要抓手。

4人工智能推动中医研究中智能化的建议

篇2

(讯)发展目标明确,到2020年产业规模超过1000亿元。此次《实施意见》为上海市人工智能发展提出了明确目标。到2020年,人工智能对上海市创新驱动发展、经济转型升级和社会精细化治理的引领带动效能显著提升,基本建成国家人工智能发展高地,局部领域达到全球先进水平。具体来看,到2020年要打造6个左右人工智能创新示范区域,形成60个左右人工智能深度应用场景,建设100个以上人工智能应用示范项目,建设10个左右人工智能创新平台,培育10家左右人工智能创新标杆企业,人工智能重点产业规模超过1000亿元。到2030年,人工智能总体发展水平进入国际先进行列,初步建成具有全球影响力的人工智能发展高地。我们认为,上海市在产业基础、科研基础、信息化程度、数据丰富程度、应用场景等方面在国内具有领先地位,具有发展人工智能的先天优势。大城市在城市管理、公共服务、交通、医疗、产业转型升级等领域存在的现有问题也有望通过人工智能技术而得以缓解,这进一步加强了上海这样的大型城市对于人工智能的需求。此前广州市的《建设“中国制造2025”试点示范城市实施方案》也将人工智能、新一代信息技术作为重点聚焦产业。政府的大力支持将推动人工智能在前沿技术、应用落地、产业集群、创新生态等方面的快速发展。

政务数据开放有望加快,AI产业基金成立可期。大数据是人工智能的基石。在政务数据开放共享上,上海市政府也将加大开放力度。目前上海已经形成最大的数据开放清单,有1500多项数据开放,下一步还将建立公共数据分级分类开放制度,出台相关的政务数据申请公开使用的细则,建立公共数据开放的应急工作机制,推进数据管理、数据利用、安全保护形成标准和规范。目前,上海已编制政务数据资源共享目录1.7万多条,有26万个数据项,年底前将启动建设全市政务信息交换共享平台。上海市政府下一步将建立跟企业合作的开放性行业大数据训练库,建设人工智能应用多场景验证环境。在资金扶持层面,市政府将加强财政资金扶持力度,引导企业和社会资本投入。目前,上海正在开展第一批人工智能产业基金和人工智能创新项目的组织遴选。在市场支持层面,将推动各级政府部门率先运用人工智能提升业务效率和管理服务水平,支持人工智能创新产品开拓市场应用。我们认为,人工智能的发展离不开政府,除了数据开放、资金扶持等实质性支持外,政府在社会资源引导、产业集群建设、应用场景开拓等方面会对整个行业带来帮助。

投资评级:我们认为,人工智能赋能是产业发展的大趋势。远期来看,人工智能与各行各业的融合有望带来新一轮产业变革。近期来看,图像识别、语音识别等人工智能技术在安防、金融、交通、零售、医疗等领域的应用呈现快速增长趋势。我们看好人工智能产业链发展,具体包括上游的人工智能芯片、智能传感器,中游的人工智能算法、人工智能软件以及下游的行业应用。对于计算机行业,我们维持行业“看好”评级。(来源:信达证券 文/边铁城 编选:中国电子商务研究中心)

篇3

利用人工智能诊治疾病是人类一个雄心勃勃的计划,而且,这一计划早就有一些初步结果,例如2007年,美国国际商业机器公司(IBM)就推出了人工智能软件――沃森医生(Watson)。现在,人们特别希望利用人工智能去征服某些严重危害人们生命和健康的疾病,如癌症,而且也已经进入实践,并且有不小的收获。

要让人工智能诊治癌症,第一步需要人工智能有像人一样的感知,即知道周围的环境,尤其是生物体和人的机体环境,什么是正常的机体,什么是异常的机体,甚至是癌变的机体,尤其是只具有微小变化的机体,例如,只有几个发生癌变细胞的乳腺或肺。

第二步是,人工智能不仅要感知正常和异常机体的不同,还要理解为何有这样的不同,是癌变引起的不同,还是其他疾病引起的不同。最后第三步才是判断和决策,即得出结论,在感知和正确理解的基础上,向医生提供对某个个体检测的结果,是患癌还是没有患癌,抑或是患了其他疾病。

要让人工智能感知和理解人体环境和器官,就要让其学习,包括利用大数据的机器学习(算法)和深度学习,这两者有时是相互结合的,同时也是相互渗透的。大数据学习和处理是人工智能的强项,可以达到比人类能力强几百倍几千倍的快速数据运算、分析和理解。而在癌症诊治的深度学习上,更需要人工智能像人一样进行学习,例如对通过物理和化学方式拍摄的人体各种部位,以及深浅度不同组织的图像要有正确的感知和理解,如对X线图像、磁共振成像和CT扫描图像的感知、解读,并得出结论,即诊断。

但是,人工智能的癌症诊治深度学习并不仅限于对癌症和正常组织图像的解读,而是包括更多的深度学习的内容,例如,对癌症标记物和特异分子的识别。

癌症诊治的人工智能学习内容

2016年1月,美国总统奥巴马宣布了“癌症登月计划”,由副总统拜登全面负责。“癌症登月计划”的其中一个项目就是让人工智能进行机器学习(算法)和深度学习,以识别癌症。为此,美国能源部与美国国家卫生研究院下属的国家癌症研究所合作,提出了“高级癌症计算解决方案的联合设计任务”,这个项目就是致力于解决三个基于计算机学习的人工智能抗癌难题。

首先是从认识癌症的分子层面学习,要让人工智能了解RAS/Raf通路的蛋白质相互作用。RAS基因在20世纪60年代被发现是致癌基因,存在于30%的癌症患者中。1982年,美国科学家温伯格等人从膀胱癌细胞中克隆得到第一个人类癌基因,由于它和之前发现的鼠肉瘤病毒基因C-RAS高度同源,因此被命名为RAS基因。RAS基因编码产生的蛋白定位于细胞膜内侧,为GTP/GDP结合蛋白(GDP为鸟嘌呤二核苷酸磷酸,GTP是鸟嘌呤三核苷酸磷酸),通过GTP与GDP的相互转化来调节信号通路的传递。由于RAS蛋白的相对分子量是21千道尔顿(kDa),故又被称为p21蛋白。

之后,人们又发现了RAS蛋白的直接效应因子Raf-1蛋白激酶。Raf-1激酶对细胞增殖、细胞分化、细胞凋亡和细胞周期停滞有重要作用,利用这些作用可以知道癌症的发生、发展,以及找到治疗癌症的药物和方法。

“癌症登月计划”让人工智能进行的第二个学习任务是,进行临床前的药物筛查。这是一种研发癌症药物的预测模型,在临床试验前进行最大化的药物筛选,为癌症病人提供精准医疗方案。具体而言是对临床前和临床试验时的癌症数据进行筛选,结合小鼠模型中的新数据,通过反馈循环让实验模型指导计算模型的设计,建立肿瘤药物反应的预测模型。其实,这也是基于特殊数据和大数据的学习和分析。

“癌症登月计划”让人工智能进行的第三个学习任务是,学习和建立人口模型。这就要求人工智能根据不同人群的生活方式、生活环境、所患癌症的种类、不同的医疗体系等,从数百万癌症病人的病历数据中自动分析,从而获取最佳治疗策略。当然,海量病人的数据来自美国国家卫生研究院、美国食品和药物管理局、制公司和第三方付款机构。

可以看到,美国的“癌症登月计划”中的人工智能学习并不包含肿瘤图像的识别,所以人工智能诊治癌症的学习在不同的国家有不同的内容。

人工智能帮助诊治癌症

人工智能对癌症的识别和诊断首先体现于对癌症数据的解读上,其中最重要的是对癌症基因和基因组的识别和解读。

机器学习(算法)是人工智能的一个基本内容,其中,数据的输入、输出、赋值等运算可以让人工智能对某一问题进行计算分析,从而得出初步结果。对癌症的诊断和治疗也可以利用这一点。加拿大西方大学的罗根等人研发了一套算法,通过对基因数据的分析得出最可能的有效治疗癌症的方案,并且让该治疗方案变得更加个性化。

研究人员使用了一套含有40个基因的数据,这些基因可以在90%的乳腺癌中找到。在接受试验的近350名癌症病人当中,至少都会接受紫杉醇或吉西他滨一种化疗药物治疗。之后,研究人员让人工智能对数据展开处理并找出药物与病人基因之间存在的关系。结果显示,同时接受两种药物的治疗有效率为84%,只接受紫杉醇的治疗有效率为82%,只接受吉西他滨的治疗有效率则在62%~71%之间。

这就为医生提供了选择更好或最佳治疗方案的决策基础,例如,在上述方案中,医生选择对病人同时使用紫杉醇和吉西他滨,可以达到最高的84%的治疗有效率。

2016年,日本研究人员称,他们开发的人工智能软件能够准确诊断出女性患者所患的罕见类型的白血病,而且,这种软件对肿瘤大数据的提取和分析是其优势之一,它仅需要花费10分钟时间就能够对临床肿瘤研究所提供的来自2000万名女性的遗传信息进行对比分析,从而做出诊断。

但是,最早开发应用于医疗领域的人工智能的美国国际商业机器公司更是走在了前面。

沃森癌症医生

美国国际商业机器公司之前推出的人工智能软件――沃森医生诊治疾病是建立在对大数据的检索、使用和算法之上。沃森医生储存了数百万的文档资料,包括字典、百科全书、新闻、文学以及其他可以建立知识库的参考材料。沃森的硬件配置可以使它每秒处理500GB的数据,相当于1秒阅读100万本书。

沃森在面临一位就诊者的时候,会进行一系列的算法,包括语法语义分析、对各个知识库进行搜索、提取备选答案、对备选答案证据搜寻、对证据强度的计算和综合等。此外,沃森医生还可以通过询问病人的症状、病史,迅速给出诊断提示和治疗意见。通过这些程序进行诊断,沃森的诊断准确率达到73%。

现在经过多年的改进,研究人员把沃森医生的突破之一选择为对癌症的识别和诊断。最近,美国国际商业机器公司和美国著名的基因公司Illumina进行合作,在沃森医生的基础上,专门进行癌症基因组的标准化测序和解读,以诊断癌症。根据这个目标,美国国际商业机器公司研发了一个新的专门对基因组进行测序和分析的软件,即沃森基因组(相当于专门诊治肿瘤的专科医生),并将这个软件整合到Illumina公司的Base Space和肿瘤测序计划中,这就可以让沃森基因组使用Illumina公司的实体肿瘤分析面板TruSight Tumor 170。TruSight Tumor 170汇集了一套整合DNA与RNA的靶向癌症相关的基因突变,包括突变与微缺失、基因扩增、基因融合以及剪接变异,使得肿瘤谱分析从一系列单基因检测向多基因检测转变,为肿瘤基因组提供了更加全面的视图。教会机器识别这些肿瘤基因数据,可以快速辨识和诊断肿瘤。

新的智能软件融合后,沃森基因组可以在短短的几分钟之内读取TruSight Tumor 170生成的遗传信息文件,梳理专业指南、医学文献、临床试验汇编和其他知识来源。然后,系统将生成包含每个基因组改变的注释报告。使用沃森基因组可以大幅减少解释结果所花费的时间。比较起来,研究人员也可以使用TruSight Tumor 170进行癌症基因的检测,但是,速度很慢。沃森基因组在几分钟内做的事情,研究人员一般需要一个多星期才能做完。

不仅在速度上沃森基因组可以比人类快得多,而且在检测的准确性以及提供治疗癌症的方式上,沃森基因组与临床大夫和肿瘤专家提供的方案基本一致。美国北卡罗来纳大学教堂山分校的夏普尼斯博士研究了1000余名癌症患者的数据,发现在99%的病例中,沃森基因组提出的治疗建议与分子肿瘤专家团队提出的治疗建议相同。此外,美国国际商业机器公司旗下的沃森健康的副总裁哈韦还指出,在30%的肿瘤病例中,沃森基因组还发现癌症专家遗漏的一些细节。

基于这些结果,研究人员认为,教会人工智能诊治肿瘤大有可为。现在,美国20个专注于基因组学和肿瘤学领域的癌症研究所,包括纪念斯隆・凯特林癌症中心和北卡罗来纳大学教堂山分校的肿瘤研究机构正在进一步培训沃森基因组,以便让沃森基因组能更快和更好地诊治癌症。

对癌症图像的智能解读

诊断癌症不仅要靠解读癌症特有的基因、分子标记物等,还要认识和判断采用各种物理和化学方式拍摄的人体肿瘤的图像,这既是人工智能深度学习的内容,又是人工智能帮助人类诊治癌症的一个重要途径,在这个方面,人工智能也取得了一些进展。

2016年8月,美国休斯顿卫理公会医院的研究人员在《癌症》杂志上发表文章称,他们研发的一款人工智能软件在解析乳腺X线图片时比普通医生快30倍,诊断乳腺癌的准确率更是高达99%。这个癌症诊断软件可以直观地将X光图片的信息转译成诊断信息,方便医生快速对病人病情做出判断,避免耽误病情。

即便是肿瘤科的专科医生,对诸如X线片、CT和核磁共振成像图片的解读都不会是百分之百的准确,而且有很多误读。美国疾病预防控制中心(CDC)和癌症协会的数据显示,每年美国大约有1210万人接受乳腺X线图片检测,其中差不多有一半人在X图片上会出现阳性结果,但实际上是假阳性。为此,又迫使大量女性为了求得安心而进一步接受乳腺活组织检查,进行这一检查的人每年有160万人左右,其中20%的女性根本就没病。这给许多女性和其家庭造成极大经济和精神负担。

篇4

一、人工智能与企业人力资源管理

人工智能简称AI,主要是用于模拟、延伸人脑的思维方式的计算机科学技术,包括人类行为模式的识别、数据储存、运用、机器学习、算法等。人工智能的研究最早诞生于1956年美国达特茅斯小镇的一次研讨会,在这次会议上,摩尔、麦卡锡、塞弗里奇、所罗门诺夫等学者共同研讨,为人工智能的发展奠定了基础。此后人工智能得到不断发展,尤其是进入21世纪以来人工智能取得了令人叹为观止的发展,开始在人类的生产活动中发挥着越来越重要的作用,比如,无人超市、智能翻译、人脸识别、智能医疗、智能驾驶、云计算、物联网等。我国人工智能的发展也非常迅速,我国的人工智能发展水平目前处于世界的第一梯队。目前,人工智能在许多企业得到了很大的发展,如科大讯飞的语音识别、百度的自动驾驶等,在世界上都是处于领先地位。我国还制定了人工智能发展的中长期规划,按照规划,我国人工智能到2030年,总体水平达到世界领先水平,成为世界人工智能的创新中心。

企业人力资源管理是企业管理的重要组成部分,最终目标是实现企业的总体目标,一般认为包括人力资源规划、人员招聘、绩效管理、培训与开发、薪酬管理、员工关系管理等六大模块。目前,企业的人力资源管理尚存在许多不足之处,如企业不太重视,认为人力资源管理可有可无;企业人力资源管理人员的素质普遍不高,不够专业,人力资源管理过程中效率不高,绩效考核过程不够公平、薪酬制度不能反映市场工资水平、人工成本的控制还存在不足等,而人工智能的发展,为企业人力资源管理带来了新的挑战,也带来了新的机遇。

二、人工智能对企业人力资源管理的挑战

人工智能对部分人力资源管理的工作存在一定的替代作用,这会减少企业对人力资源管理人员的需求。人工智能在数据信息处理、分析预测等方面具有巨大的优势,因此,未来人工智能的发展与使用中,会替代许多人力资源管理的活动,导致人工智能取代部分人力资源管理人员,使得企业对人力资源管理人员的需求减少,对人力资源管理人员的求职、就业提出了严峻的挑战。

人工智能虽然能代替部分人力资源管理活动,但也必然会对企业的人力资源管理带来一系列不利的影响,概括起来,主要有这些方面的不利影响:

( 一)不利于企业人际关系的维持与发展

人工智能虽然具有许多优点,在人力资源管理中的很多方面能代替人的劳动,但是人工智能的广泛使用将会使员工更多的依赖人工智能,而越来越缺乏必要的人际沟通,这将不利于企业人际关系的构建,这对企业员工队伍建设、和谐劳动关系的形成提出新的挑战。

( 二)不利于良好的企业文化的形成与维持

企业文化需要企业的全体员工共同参与建设、维持。而人工智能的使用,使得员工之间的交流日益简单,员工更多的通过机器来交流,缺乏必要的面对面交流与沟通,也使得企业原有的规章制度不再完全有效,这些都对企业文化的建设不利。

三、人工智能为企业人力资源管理带来的机遇

人工智能虽然对企业人力资源管理带来了一些挑战,但人工智能并不能完全取代人的工作,人工智能在决策、人际关系、团队建设等方面并不能代替人的作用,人工智能在人力资源管理中的运用并不能完全取代人力资源管理人员的工作,会促进人力资源管理人员素质的提高,同时会大大提高企业人力资源管理的效率和有效性。

( 一)人力资源规划方面

人工智能在相关的数据分析、处理、预测方面大大优于人类,因此,人工智能将提高人力资源规划的准确性。在人力资源规划中,合理发挥人工智能的优势,将使企业的人力资源规划更科学、更准确。

( 二)员工的招聘与配置

人工智能对人力资源招聘的影响表现在两个方面,一是人工智能的使用,使得企业的一些简单劳动大量的被人工智能所代替,因此,企业的招聘对象将更多是具有专业技术能力的专业人才。另一方面,人工智能在人员甄选中具有无与伦比的优势,比如在简历筛选中,人工智能能在海量的简历中迅速、快捷地筛选出合适的简历,大大减轻了招聘人员的负担,极大地提高了招聘工作的效率。另外,在人员配置过程中,人工智能通过对员工的工作状况、工作能力、工作经历进行跟踪调查、分析,能够分析出该员工最合适处于的岗位。同时,人工智能不会带着主观意见完成人员的筛选工作,能够最大限度地发现员工的潜在能力,找到与其相适应的岗位。

( 三)在企业培训与开发中,人工智能同样有重要的作用

人工智能能够在建立大数据的基础上来分析员工的培训需求,然后根据员工的知识、技能、岗位等进行课程的个性化推荐。在未来的培训中,人工智能也极有可能部分或完全替代培训讲师的工作,人工智能还可以在培训完成之后,直接将员工培训的相关数据传送到企业终端,企业能够最快地得到员工的数据,帮助企业更好地完成培训评估工作。

( 四)绩效管理

由于人工智能没有私人情感,因此其在绩效考核过程中更加公正、客观。并且,由于人工智能效率极高,人工智能代替了大量人的简单工作,让绩效管理工作更容易、准确地完成,大大减少了管理人员的工作量,增加了企业绩效考核的公正性,也有利于发挥企业绩效考核的作用。

( 五)薪酬福利管理

运用人工智能可以对市场的工资水平、员工的薪酬水平等进行分析,人工智能在人工成本核算、控制等方面具有较大的优势,这些能为企业管理人员进行薪酬管理决策提供支持。另外,人工智能能更加合理、准确地完成工资计算、员工薪酬的发放。

( 六)劳动关系管理

运用人工智能能更好地分析员工离职的原因,分析影响员工离职的主要因素,能有效地对员工离职率进行统计,继而管理人员可以采取针对性的解决办法,降低企业员工的离职率,这样可以降低因员工离职而进行再次招聘的成本及相应的机会成本。

四、结语

随着科学技术的发展,人工智能技术同人力资源管理的融合将是未来人力资源管理的一个重要发展趋势。企业的发展关键是人才,传统的人力资源管理模式效率较低,已经不能完全满足信息化时代的需要。人工智能技术的不断成熟发展必然会对传统的人力资源管理模式带来冲击,也带来了巨大的机遇。人工智能在信息处理、分析等方面具有巨大的优势,在人力资源管理中合理地使用人工智能将极大地提高人力资源管理的效率和准确性,人工智能的使用,将出现机器部分代替管理人员的现象,但这也将促使人力资源管理人员不断学习以提高自身的素质,这反而有利于企业人力资源管理的发展。总之,不久的将来人工智能必然会成为人力资源管理的重要组成部分,这是大的趋势。

参考文献

篇5

浙医一院的医生接待了一家来自兄弟单位的医疗人工智能创业团队――德尚韵兴的专家们。

这个团队的背景很牛,首席科学家孔德兴是知名数学家,浙大求是特聘教授。10多年前,当国际上刚开始把数理模型和高性能数学算法应用到医学图像领域时,这个团队也极为敏锐地进入这个新兴领域探索。他们开发的“DE三维可视化系统”,用于精准外科手g的术前规划、术中导航和术后定量评估,是北京301医院的必备软件之一。

最近几年,他们将深度学习技术应用于超声声像,开发了甲状腺结节智能诊断系统DE-超声机器人(以下简称超声机器人)。在此过程中,他们对原本“均码”的算法和神经网络,针对疾病特点进行“量体裁衣”。相关技术文章发表后,谷歌深度学习团队DeepMind也关注并引用了文章。

“副主任医师水平”

德尚韵兴团队此行就是带着“超声机器人”来跟浙医一院的超声医生“PK”的。医生只要坐在B超机前,用探头给病人检查后,将采集的图像保存发送给超声机器人,超声机器人就能实时生成检查结果――找到甲状腺结节,标注位置和尺寸,并提示良性或恶性的可能性。

不过,面对这个“超声机器人”,浙医一院的医生心中充满疑问――这个系统怎么能像他们一样做判断?结果准吗?出于礼貌,他并未当场提出。

当德尚韵兴专家离开后,这位主任医生准备了202个病例(恶性结节有病理对照,良性结节有三年以上随访期)发送给超声机器人,并认真记录机器人的诊断结果, 结果显示机器人的诊断准确率为85.7%。一段时间后,当他再次见到德尚韵兴的专家时,主动告诉他们:“我判断,超声机器人达到了医院副主任医师的水平,确实挺好。”

好的开始是成功的一半――这也开启了浙医一院和德尚韵兴后续的合作。

实际上,人工智能在医学领域的发展,在国内外都是刚刚起步。

“不能说是完全空白,但这个方向有很多值得我们研究的东西。”德尚韵兴总经理胡海蓉说。

德尚韵兴扮演着领域的“拓荒者”。胡海蓉向《IT经理世界》坦言,在这几年人工智能的落地实践中,她认为,组建跨学科团队,选择合适的切入点,收集和规范数据,开发让医生得心应手的产品是较为关键的环节。

跨学科明星队

人工智能+医学的落地实践,需要跨学科明星队。

“这里的关键体现在‘交叉’上。”胡海蓉说,“在医学重大需求上,数学家、计算机科学家或医学专家,任何单一力量是无法实现的。”

在这类团队中,数学专家负责提出高性能数学模型,“好的模型就像具有高IQ的大脑。”医学专家提供临床知识和经验,让机器能学到“真知灼见”,计算机软件专家要把数学家的语言转化成高效的计算机语言。

“可是,数学家、医学家和计算机专家都有各自的语言,怎么把他们串起来呢?”胡海蓉继续分析说,“我们就需要找到一个具有生物医学工程背景的人来做产品经理。他来负责产品的市场调研和规划,管理整个团队,充当‘多种部队’之间的翻译和桥梁。”

切入甲状腺超声诊断

选择切入点也很有讲究。这个切入点不能太过复杂――它要让团队能小步快跑,保障后续项目的进一步深入拓展;也不能太容易――它要能对医疗痛点有质的帮助,才有推广的价值,容易被市场接受。

“甲状腺结节诊断”最终跳入德尚韵兴团队的视线。

甲状腺癌在中国女性癌症发病率排名第五,在德尚韵兴所在的杭州,甚至排在第一位。但由于个体化差异,目前三甲医院甲状腺结节的诊断准确率平均只有60%~70%。用人工智能提升诊断准确率能造福老百姓。

相对肺、肝脏等器官,甲状腺是一个浅表器官,器官结构相对简单,没有复杂的血管。根据超声声像,就能对甲状腺结节的良恶性作出诊断。

但同时,甲状腺超声诊断也有一定复杂度――不像CT和核磁,超声因每位医生的扫描手法不同,得到的数据千变万化,因此对影像识别算法有很高要求。从这样一个诊断既有其简便性,又有其复杂度的疾病做起,可以在过程中积累足够经验,为开发难度更高的疾病,如乳腺肿块、肝脏肿块、肺结节的良恶性诊断打下基础。

数据!数据!

对于医疗人工智能团队来说,数据的收集、规范和标注是行业性难题。

“数据收集不能全靠医院。”胡海蓉总结说。深度学习靠的是“吃透”大量样本。但目前大部分医疗机构并不愿公开数据。德尚韵兴尝试通过多个渠道,有社区检查,有付费志愿者,也有试点医院。

“我们已收集了两三万张超声图像,这是不多的。”胡海蓉客观地说,“如果样本量能提高一倍,我们的诊断准确率还有较高的提升空间。”现在德尚韵兴的甲状腺超声机器人诊断准确率已达85%以上。

除了数据收集,数据的规范和标注是另一项需要大量调研和沟通协作的活。

以甲状腺结节超声诊断为例,数据规范要从“医生的扫描手法”开始。团队走访了多家医院,听取多位医生建议,规范扫描手法,形成最终文档。

拿到超声影像后,还要找到结节进行勾画。现实中,医生和算法工程师对结节的勾画有不同标准,哪一种勾画对计算机算法更有利?团队要综合考虑,制定出适合的标准。

在数据规范化过程中,对那些疑难病例的判断和标注,特别需要医学专家的指导。“但高水平医生的工作是最繁忙的,他们往往没有时间和兴趣参与标注。”德尚韵兴要想办法争取医学专家的支持。

线上线下的商业探索

目前,国内业界对医疗人工智能的定位有一个共识――定位在辅助诊断上。人工智能系统可取代医生重复性、机械性的工作,让医生能够看更多的病人,做更多有价值的医学探索。

德尚韵兴的超声机器人也是这样定位的。它可以先选出有问题的声像图给医生,及时提醒恶性风险,让医生能更仔细的查看把关。

经过一段时间的试点后,德尚韵兴的超声机器人将首先向基层医院推广,这将提高基层医院患者首诊的诊断水平,让更多患者不出远门就能获得“专家级”服务,再根据诊断结果到不同级别医院治疗。

超声机器人可部署在云端,这特别适合新疆、等基层医院分散的地域。通过英特尔联合创新实验室的牵线,在新疆人民医院联合130多家医院建立的远程会诊体系中,超声机器人将成为关键服务之一。同时,与远程医疗平台汇医在线的合作,超声机器人也为平台上签约的全国基层医院服务。

友情链接