当前位置: 首页 精选范文 医学图像诊断

医学图像诊断范文

发布时间:2023-09-22 18:14:42

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇医学图像诊断范例,将为您的写作提供有力的支持和灵感!

医学图像诊断

篇1

【关键词】 小波变换 中医诊断 中医图像处理 中医脉象特征分析

【Abstract】 Wavelet transformation has been developing for many years,as the inheritor and the offspring of traditional Fourier transformation, it resolves several problems which Fourier transformation cannot solve(such as mutative signal and unquiet signal).The main methods of the Chinese medical diagnosis are observing, smelling, consulting and pulse-taking,especially the observing and pulse-taking. This article give a summarize about the new application of wavelet transformation in Chinese medical observing and pulse-taking, that diagnostic image processing of Chinese medicine(including image enhancement ,noise elimination ,fusion ,coding compression) and pulse signal of Chinese medicine .

【Key words】 wavelet transform; Chinese medical diagnosis; Chinese medical image processing; Chinese medical pulse signal

小波的概念最初是由法国地球物理学家J.Morlet提出,最初是为了更好地分析地震波的特性。经过20余年的发展,目前小波理论在图像处理、医学信号处理、信号分析、语音合成、计算机视觉、数据压缩、大气与海洋波分析、地震信号处理、分形及数字电视等许多领域得到了巨大的发展。在中医诊断方面,小波变换主要具体应用在对中医诊断图像的处理和中医脉象信号处理上,使望诊和切诊更准确,从而大大提高了中医师诊断的准确率,使古老传统的中医通过计算机科学技术这一新的途径发扬光大。

1 基本原理

小波变换是时间(空间)和频率的局部化分析,通过伸缩和平移运算对信号或函数逐步进行多尺度细化的分析,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意一个细节,所以说小波变换有两个特点,即自适应性和数学显微镜性质,能根据对象调整各项参数和调焦。

2 小波变换对中医诊断图像的处理

小波变换对中医诊断图像中的处理和对西医诊断图像中的处理大体相同,都是利用小波变换的特点使得医学诊断图像更有利于识别病征[1],具体作用主要表现为以下几个方面。

2.1 中医诊断图像增强 在中医诊断图像中,图像会难免有对比度差或者图像边缘模糊一系列不利于诊断的因素,对于中医师的准确诊断有不少的障碍。传统的图像增强的方法往往基于像素灰度变换的空间域增强和基于滤波操作的频率域增强来达到图像增强的目的,这样会或多或少产生图像的局部失真和噪声增强。小波变换刚好弥补了这一缺点,即在不改变图像的精确度的情况下,对图像的轮廓进行一种补偿式的增强,使得中医师在对诊断图像进行分析诊断时,更好的把握病人的病情,基于小波变换的医学图像增强的方法有很多,其中李清顺等[2]分析了采用分形增强的方法,在分形增强后又采用了小波增强图像的方法,使图像边缘轮廓增强,达到了更好的视觉效果,并且避免了单纯采用小波增强方法会使图像噪声也增强的不足。侯艳芹等[3]分析了将尺度系数和小波系数进行不同的处理,分别利用两步提升增强法对小波变换后的图像低频信息进行增强和软域值算法对小波变换后的图像高频信息先进行去噪, 然后再增强,最后把这两部分综合起来进行小波反变换得到图像的一种新的方法。王修信等[4]提出将超声医学图像投影到小波变换域,然后利用软阈值技术方法进行降噪处理最后使用非线性增强技术提高图像对比度。处理结果有效地去除原图像的斑点噪声,使图像中较模糊、对比度差的细节得到增强,优于传统的直方图均衡增强方法。武杰等[5]在基于小波变换的医学图像增强方法中,分析比较了3种基于小波变换的医学图像增强方法,得出小波变换避免了窗口滤波运算,在变换域中更加灵活,更加有效,得到的处理图像层次感更分明,增强效果更明显,更有利于医师做出及时准确的判断。综上所述,通过小波变换能够使中医诊断图像更为准确的反映病人的身体各项机能,使中医师根据中医诊断图像做出更精确的判断。

2.2 中医诊断图像去噪 在中医师进行诊断的过程中,所得到的图像难免会混入噪声,使图像的信噪比下降,提高了中医师对中医诊断图像分析的难度,对中医师的正确诊断有诸多不利的影响,降低中医师诊断的准确率。对于医学图像处理的传统去噪方法主要有:邻域平均法、多幅图像平均法、中值滤波等。小波变换在此基础上更进一步提高了图像的信噪比,张昌林等[6]概括提出了一种改进的基于小波变换尺度间相关性的去噪方法,小波变换对整个图像变换从时域变换到频域,然后再量化、编码、输出,这样就保留图像的精细信息,满足中医疾病诊断图像的要求。对诊断图像进行去噪处理和方法二维小波变换大大提高了中医师对图像的准确率,可以检测出患者病患的轮廓线,从而有助于提高中医师对各种疾病的诊断准确率。陶玲等[7]分析了医学图像的噪声主要分布在图像的高频成分上,对小波分解的高频系数作处理来达到去噪的目的。二维小波变换在当高频噪声含量较高时,可以采取低频滤波法;当高频噪声含量不高时,可采用小波阈值化去噪法对小波变换域的系数进行筛选。郭敏等[8]分析提出了一种基于小波分析理论的医学超声图像噪声的综合抑制方法,首先对医学超声图像进行对数变换,将乘性噪声变成加性噪声;然后进行多尺度小波变换,将图像分解成一系列不同尺度上的小波系数,对变换后不同尺度的高频子图像进行非线性小波软阈值处理,阈值处理后的高频子图像进行增强;最后,经小波逆变换和指数变换恢复去噪后图像。结果证明该方法可有效保留细节信号,极大限度地去除斑纹噪声。这些文献均证明了基于小波变换不仅可以去除残留的噪声,而且去噪后获得的图像更加清晰,这样一种方法运用在中医诊断图像上,使中医疾病诊断图像有很好的视觉效果,消除噪声带来的不利影响,提高中医师诊断的准确率。

2.3 中医诊断图像融合 图像融合在医学方面的应用是通过对多幅图像的冗余信息和互补信息进行处理, 将不同模态图像的信息综合起来,集中到一幅图像中表达, 为医生提供更加有效的诊断信息。这种方法在西医诊断中应用广泛 (如CT、MRI、PET等),为临床诊断和治疗提供了不同模态的图像。同样我们也可以将此方法运用到中医的中医诊断图像中。唐晶磊等[9]提出了一种基于小波变换的医学图像融合方法,而且证明基于小波变换的图像融合效果非常好。对图像进行小波分解后, 形成了不同频率分辨率的细节信息, 针对不同频带子图像的小波系数进行组合, 形成融合图像的小波系数。融合后的图像保留了原始图像的纹理和边缘特征, 消除了图像的块状伪影, 有效地将图像所提供的信息融合在一起, 图像的主观视觉质量有明显的提高。陶观群等[10]分析了基于小波变换的医学图像融合方法不仅可用于 CT图像上观察到的骨组织结构和MR图像上对照软组织信息的融合,而且还用于来源于CT或MR图像的解剖信息与来源于PET或SPECT图像的功能信息融合。在外科手术导航系统中,将手术前所得的 CT和MR的病灶三维图像与手术中所得到的实时X荧光图像或超声图像进行融合,有利于实时地指导和观察,确保手术顺利准确地进行。

2.4 中医诊断图像数据压缩 中医诊断图像经过小波变换后生成的小波图像的数据总量与原图像的数据量相等,即小波变换本身并不具有压缩功能。之所以将它用于中医诊断图像压缩,是因为生成的小波图像具有与原图像不同的特性,表现在图像的能量主要集中于低频部分,而水平、垂直和对角线部分的能量则较少。汤乐民等[11]证明了小波变换非常适合于医学图像压缩编码等医学图像的处理。樊华等[12]也提出建立在小波分析基础上的心电信号准无损压缩算法是可行的。小波分析的优点是重建后的信号同原始信号相比几乎没有损耗;而且由于小波只需分解一层还具有算法简单和运算速度快的特点。该方法不仅可用于心电信号压缩方面,而且当所采集的信号其数据变化范围较大时,也可应用基于小波分析的准无损压缩算法来进行压缩。

3 小波变换在中医脉象信号特征分析中的应用

脉诊是中医诊察疾病的重要手段,脉象反映的是人体的生理与病理信息,脉象信号具有随机性和非线性等特点。由于小波变换有“数学显微镜”这一特性和良好的时-频局域化性质,我们可以通过小波变换这一方法对脉象信号进行处理。谢家宇等[13]应用连续小波变换分析了15例海洛因吸毒者和15例正常人的脉象信号,提取了吸毒者脉象信号中的异常信息,为戒毒治疗的评估与改进提供客观依据。研究结果表明,连续小波变换是处理脉象信号的有效方法。岳沛平等[14]分析了小波变换对脉象信号处理的另一种具体方法,即先将脉象信号消噪,利用小波变换具有良好的时-频局部化的能力和对非平稳信号突变点的检测能力,对脉象信号同时进行时域、频域特征值的提取和分析,然后对脉象信号的特征值采用不同尺度的分析,在信号的不同部位得到最佳时域分辨率和频域分辨率,此外再提取脉象在不同时间尺度上的能量这一表征脉象的新的特征值。结果表明小波变换有助于提高系统对不同脉象的识别能力,尤其是对相兼脉的辨识。

4 总结

小波变换这一技术在近几年发展迅速,在各行各业都有着巨大的发展前景,在中医诊断这一领域内不断有所突破,然而中医古老悠远且博大精深,相信这一领域还有很大的发展空间。小波变换在中医诊断中的应用发展可以借鉴小波变换在西医诊断运用中的成功经验,这样有利用将小波变换这一现代化技术更好的辅助中医诊断,推动中医的积极发展,小波变换也必将对于未来中医的远程医疗、中医医院信息化(HIS、PACS)、中医电子健康工程项目(E-HEALTH)等中医诊断与现代化技术相结合的诊疗方案的开发有着积极促进作用。

【参考文献】

1 李莹.小波变换在医学图像处理上的应用.计算机工程与设计,2006,27(7):1279-1280.

2 李清顺,杨定楚,秦前清.基于分形小波变换的医学图像增强.计算机工程与设计,2005,26(3):807-809.

3 侯艳芹,李均利,魏平,等.一种基于二维离散小波变换的医学图像增强算法.计算机工程与应用,2006,7:227-228.

4 王修信,胡维平,梁冬冬,等.基于小波分析的超声医学图像非线性增强.计算机工程与应用,2005,18(8):197-199.

5 武杰,聂生东,黄勇,等.基于小波变换的医学图像增强方法的比较分析.生物医学工程研究,2005,24(2):67-69.

6 张昌林,高红艳,侯玉,等.小波变换在中医诊断图像中去噪处理的应用.上海中医药大学学报,2006,20(4):70-72.

7 陶玲,王惠南,颜廷勇.二维小波变换及其在医学图像处理中的应用.南京航空航天大学学报,2004,36(3):373-377.

8 郭敏,马远良,朱霆.基于小波变换的医学超声图像去噪及增强方法.中国医学影像技术,2006,22(9):1435-1437.

9 唐晶磊,何东健,赵文文,等.小波变换在医学图像融合中的应用.医学信息,2007,20(1):1-3.

10 陶观群,李大鹏,陆光华.小波分析方法在医学图像融合中的应用.西安电子科技大学学报(自然科学版),2004, 31(1):82-86.

11 汤乐民,李敏.医学图像压缩中的小波变换技术.南通医学院学报,2003,23(4):503-505.

篇2

中图分类号:TP319 文献标识码:A 文章编号:1009-3044(2015)27-0135-01

1引言

近年来,医学影像技术已成为医疗技术中发展最快的领域之一,图像拼接(Image Mosaic)是指将多幅具有重叠区域的序列图像通过图像预处理、图像变换、图像配准、图像融合等处理后,形成一幅包含各个图像序列内容的宽视角全景图像的技术。图像拼接技术是图像处理的重要研究领域,被广泛应用于卫星遥感、图像识别、医学图像分析及无人机监视和搜索、虚拟现实等方面。Shmuel Peleg等人在图像拼接理论和图像拼接方法上做了大量工作,为图像拼接在工程技术上的应用奠定了理论基础。Masanobu Shimada等人将图像拼接技术应用于雷达图像处理领域,用于监控森林植被的变化情况。国外Mustafa Suphi Erden课题组研制了针式共聚焦显微腹腔镜,在微创手术中截取部分视频图像,拼接成全景图像指导医生诊断治疗。国内的严壮志课题组提出基于特征检测、特征匹配、空间坐标转换和图像融合等方法的图像拼接技术,实现了连续X光片拼接的医学全景成像。

现有的传统医学成像设备,特别是显微成像设备,基本都是对组织的某一较小视野进行成像,设备最后采集到的是不同组织部位的多帧医学图像,需要医生对这些图像进行观察分析,根据自身医学知识与医疗经验来做出诊断。图像拼接技术的应用,能将多幅具有重叠区域的医学图像,通过图像变换、图像配准、图像融合等方法,自动拼接为大视野的清晰图像。该图像包含完整的医学病理信息,有助于医生全面了解病人病情。同时,系统能够自动追踪图像中的感兴趣区域,做出标记和注释,为医生提供诊断辅助。

2主要研究内容及关键技术

2.1主要研究内容

本系统的研究是通过研发基于实时自动图像拼接技术的医学图像分析系统,为医学实践中,实现显微镜、眼科设备、内窥镜等设备的数字化图像采集、图像自动分析处理,从而对医生的诊断、治疗起到辅助作用。

本系统的主要研究内容有基于CMOS的图像采集、实时自动图像拼接技术。

(1) 基于CMOS的图像采集

基于CMOS的高清图像采集系统的研发,包括图像和视频采集、图像的编码技术。兼顾红外光和可见光,实现图像的多波段自适应采集。具体功能还包括自动对焦、自动识别拍照功能,以及图像采集模块在各种医疗设备使用的适应性研究。

(2) 实时自动图像拼接技术

研究图像灰度处理、图像变换、图像配准、图像融合等算法,实现多帧医学图像或视频序列的实时自动图像拼接,输出具有计算机诊断辅助功能的大视野全景医学图像。能够自动跟踪图像中的感兴趣区域并做出标识和注释。

2.2关键技术

图像的拼接技术是本设计的关键,本设计提出对采集的多帧医学图像进行实时自动拼接,提供宽角度全景图像。同时,能够自动跟踪图像中的感兴趣区域并做出标识和注释。

3 系统设计思路

3.1 图像处理模块

图像传感器模块计划采用CMOS传感器为核心做成独立硬件模块,通过高速数据线与图像处理模块连接。这样设计的优点在于模块可以根据不同的应用场合,进行合理布置。

图像编解码和图像处理模块的方案计划采用TI的soc方案。该方案可以完成图像编解码、图像处理功能。

3.2实时自动图像拼接技术研究

图像拼接的核心技术是图像配准,关键在于准确找到相邻图像间重叠区域的位置及范围,进而通过图像融合的方法实现全景图像构建。图像配准通常有三类方法:基于灰度值的图像配准、基于变换域的图像配准和基于特征的图像配准。基于灰度值的图像配准方法实现方便,计算量小,但该方法对图像间的细微差别较敏感,抗干扰能力不强。基于变换域的图像配准可以缓解这个问题,且算法简洁,利于硬件的实现。不过该方法要求两幅图像的重叠区域不能少于50%,如果重叠区域过小,容易造成误配准。为了提高图像配准的精确度和速度,达到实时自动图像拼接的功能,本设计提出将基于灰度的网格配准和基于特征值配准相结合的方法。首先,对输入图像进行粗网格的分块处理,利用基于灰度的配准方法确定相似重叠区域。然后在重叠区域内进行基于SIFT(Scale-invariant feature transform)特征点提取和配准,这样就可以大大提高图像配准的速度。图像拼接算法的流程如图1所示。

4 结论

本文探讨了基于实时自动拼接技术的医学图像处理系统的主要技术和设计思路,有了自动的图像拼接技术,就能将多幅具有重叠区域的医学图像,通过图像处理的方法,自动拼接为大视野的清晰图像,为医生的诊断提供参考。

参考文献:

篇3

人们幵始利用计算机对二维切片进行分析和处理,比如分割提取,三维重建,显示等。这种技术便于医生从多角度,多层次对人体器官,软组织和病变体进行观察和分析,可以帮助医生对人体的病变部位或感兴趣区域做出定性甚至准确的定量分析,这大大提高了医疗诊断的正确性和准确性。这些变化大大的提高了影像数据的应用价值,具有十分深远的意义。随着传统的医学影像处理技术和计算机图形处理技术的融合,逐渐产生了专门研究医学影像三维可视化技术的新学科。所谓的医学影像三维可视化技术[2],是指使用一系列通过二维图像重建成三维模型同时进行定性,定量分析的技术。该技术可以从二维图像得到三维的结构信息,为医生提供更逼真的显示和定量分析工具和手段,能够弥补成像设备在成像方面的不足,为医生提供了一个更有真实感的三维医学影像,而且可以使医生可以直接参与到数据的处理和分析中,便于医生从多个角度,多层次进行观察和分析。

这种技术在模拟手术,引导治疗中都可以发挥重要的作用。但是,重建出医学影像的三维模型并不是人们追求的最终目标,人们不仅仅要“看”到三维模型,还需要能够和三维模型进行交互,如旋转,缩放和平移等,使得医生们可以获得更好的视角,以便对疾病做出正确的判断。医学影像的三维重建和交互应用是当前的两个研究热点,它在医学上具有重要的意义。首先,它能够提高医生的诊断准确率和医院的效率。因为将二维数据重建成三维模型,能够方便医生观察人体内部的结构,使医生获得感兴趣的器官的定量描述,比如大小,形状和空间位置等,这将提高医生的诊断水平。第二,由于现在大多数医院仍使用传统形式的胶片来帮助医生诊断,这些胶片不仅有存储的问题,而且本身就是一笔不小的开支。实现数字化医院,可以将这些胶片保存成电子文档,这将大大的节省医院的支出。因此,展开医学影像的三维重建研究具有十分重要的意义。

1.2医学影像三维重建的临床应用

临床医学应用是可视化技术应用得最早最成功的领域之一,过去医生主要根据CT图像,磁共振成像和超声图像对病人做出诊断。但这些图像都是2维的图像序列,只有经过培训的医生才能通过这些图像获得器官或组织的整体认知。所以可视化的任务是揭示物体内部的复杂结构,让人们可以看到通常看不到的内部结构。由于三维可视化技术的日渐成熟,医学图像三维重建技术在临床医学中应用越来越广泛,具体概括如下:

一、 在检测诊断中的应用

在对病人身体的检测过程中,CT图像、磁共振图像和超声波图像一直都是一种十分重要的医疗诊断手段。而三维可视化技术可以对图像进行处理,构造出三维的几何模型,而且对重建出的模型能够从不同的方向进行观察,使得医生对感兴趣的部位的大小、形状和空间位置不仅有定性的认识,也能够得到定量的认识,这样可以极大的提局医生的诊断水平。

第二章医学图像和医学图像的预处理技术

在三维医学影像重建中,首先需要获得二维的医学图像即医学体数据,才能在此基础上进行三维重处理,本章将侧重于介绍各种医学体数据的采集方法和医学影像的预处理方法,及对比各方法的优缺点。

2.1医学体数据来源

医学体数据是一个数据场,人们通过医疗成像设备扫描器官和软组织得到断层图像后,将这些图像叠加在空间中的同一个方向,这样便构成一个立体的数据场,这个数据场就称为体数据。目前,医学影像数据的采集主要通过以下途径:X射线断层扫描(CT),磁共振成像(MRI),超声成像(UI),正电子发射计算机断层扫描(PET)等,其中两个最常用的医学影像来源是CT和MRI图像[5]。

篇4

纹理一般指从图像中观察到的图像像元的灰度变化规律,人们将图像中存在的局部不规则的,二宏观有规律的特征称为纹理。在图像分析学中用数字特征描述灰度变化特征称为图像的纹理特征。纹理分析的主要内容可以分为图像变换和图像量化两大类。图像变换将传统的图像滤除为其基本分量(空间、频率等),生成派生的子图像。纹理分析已经在诸多领域应用,医学研究人员尝试将纹理特征分析用于医学图像,探索疾病诊断、治疗及预后等,并取得了一定的研究成果。

1纹理分析方法

纹理量化技术包括结构、模型(分形维数)、基于统计和频率的方法。统计分析纹理特征的方法简单,易于实现,所以目前医学研究中应用的较多。统计分析方法是通过统计图像的空间及边界频率、空间灰度依赖关系等,纹理的细致和粗糙程度与空间频率有关,低空间频率与粗糙的纹理相关,细致的纹理具有高空间频率。基于统计的方法:灰度共生矩阵、灰度行程统计、灰度差分统计、局部灰度统计、半方差图、自相关函数等。灰度共生矩阵(GLCM)是统计分析方法中最重要的方法。GLCM是建立在估计图像的二阶组合条件概率密度函数基础上的统计方法,主要描述纹理基元或局部模式随机和空间统计特征,以表示区域的一致性及区域间的相对性。其它方法在医学影像研究中应用的较少,所以在此不再赘述。

2纹理分析用于超声医学研究现状

国内外研究者尝试利用各种纹理分析技术对多种医学成像图像(CT、MRI、数字X线片、超声)进行分析,探索无创诊疗新途径。在新兴领域-影像组学中纹理分析也是一个重要组成部分,它通过评估图像中像素或体素灰度的分布和关系,可以定量客观地评估组织的异质性。纹理分析应用于计算机断层扫描(CT)和磁共振成像(MRI)较超声图像较超声图像早,在预测病理特征、预后和对各种疾病的治疗反应方面已经显示出了良好的效果。近些年有学者将纹理分析用于超声成像,并取得了一定的研究成果。超声图像的纹理是由于不同的组织、同一组织不同病变及正常组织对超声脉冲的吸收、衰退、反射有差异,由超声脉冲相互作用而形成。因此,研究者假设图像的纹理的不同,可定量分析来区分不同疾病,甚至预测基因、蛋白表达等的差异。从而为疾病的无创诊断、疾病的分期、基因相关性分析及预后预测等提供新的可参考依据。

2.1乳腺肿瘤研究现状

因全球女性发病率最高的恶性肿瘤,一直以来对乳腺癌的早期诊断和治疗是临床持续关注的热点问题。超声诊断是乳腺癌的普查和早期诊断的重要工具。超声图像纹理分析有望提高乳腺癌的诊断率,并有望为乳腺癌的分型及放化疗预后等提供有价值的参考依据。种美玲等对113个病理证实的乳腺结节行灰阶超声及剪切波弹性成像回顾性分析,利用灰度共生矩阵特征提取,获得对比度、同质性、相关性,角二距等4个参数建立诊断模型,实验结果显示灰阶超声及剪切波弹性图像的多参数纹理分析及建立的诊断模型对乳腺结节良恶性有较高的诊断效能[1]。诸多关于乳腺病变的基于超声图像纹理特征分析的影像组学研究为无创分类乳腺肿瘤的可能性奠定了基础。

2.2肝脏疾病中的研究现状

纹理分析可以进一步提取和量化超声图像中的纹理特征,为进一步的视觉信息提供补充,对肝脏疾病,尤其对肝纤维化有较高的诊断准确性。张慧等对经病理检查证实的120个肝脏超声影像(其中包括正常肝脏、肝脏恶性病变、肝脏良性病变等)行纹理特征提取分析,并结合决策树算法进行分类诊断,结果显示提取的纹理特征对图像内容有较好的分区性[2]。纹理分析作为影像组学图像特征提取的重要方法多个实验研究证实该方法可为临床上辅助诊断肿瘤性疾病提供依据,也为后期图像识别,图像检索和图像数据挖掘提供了特征数据。

2.3骨骼肌疾病的研究现状

灰度共生矩阵(GLCM)灰度分析是一种考虑图像像素空间分布的图像纹理分析方法。在研究运动诱导肌肉损伤(EIMD)中灰度共生矩阵(GLCM)一种很有前途的方法。Matta等跟踪了骨骼肌偏心收缩后超声图像上两个GLCM纹理参数(对比度、相关度)和回声强度(EI)的时间变化。将13名未经训练的妇女分为两组,行肘部屈曲的偏心收缩。运动后24小时、48小时、72小时和96小时分别获得超声图像。计算肱肌两种GLCM纹理参数:对比(CON)和相关(COR)。测量峰值扭矩、EI、肌肉厚度(MT)和疼痛。与所有措施相比,干预后峰值扭矩和疼痛立即下降。干预后72hMT立刻升高(P<0.05)。COR(48、72、96h)和EI仅在72、96h时显著升高(P<0.05),COR升高代表灰度级之间高度相似,这在肘关节屈肌偏心训练后几天的超声图像上可以观察到。最终通过实验得出结论:肌肉组织超声图像熵的变化与其能量消耗程度的相关度很高。肌骨超声影像组学研究主要通过纹理分析方法实现,为运动医学、康复医学的发展提供了更多的定量诊断信息。

2.4其它疾病中的研究现状

随着纹理分析相关研究的发展,纹理特征被用于更多的领域,如甲状腺肿瘤、卵巢肿瘤、心肌疾病及肾脏肿瘤等。Vidaurreta提出了一种基于神经网络的附件肿瘤自动判别方法。研究者首先从卵巢超声图像中计算出7种不同类型的纹理特征(局部二进制模式、分形维数、熵、不变矩、灰度共生矩阵、法则纹理能量和Gabor小波),从中提取若干特征并随临床患者年龄一起收集。采用145例患者的卵巢肿瘤超声图像实验,其中106张良性图像,39张恶性图像,将提取的图像特征进行分类后,对分类器进行评价,其准确率为98.78%,灵敏度为98.50%,特异度为98.90%,曲线下面积为0.997。Priyank等对肾脏超声图像进行预处理后利用灰度共生矩阵方法生成能量、熵、均匀性、相关性、对比度、差异性等多个二阶统计纹理特征,将特征行主成分分析(PCA)将得到的特征简化为最优子集,经统计分析结果显示出较高的分类准确率。

3对医学超声图像的纹理分析方法的问题及未来展望

纹理分析虽发展较早,但用于医学图像,尤其用于超声图像较晚,在超声医学中的相关研究也较少,目前,对超声图像的纹理分析主要应用乳腺良恶性肿瘤的鉴别诊断,肝脏纤维化程度的分期,骨骼肌的损伤定量分析等疾病的诊断中,对恶性肿瘤的基因相关性研究、恶性肿瘤化疗及放疗效评估、肿瘤分级分期等研究仍较为缺乏。后续的更深入的研究中需要解决的问题仍有很多。最大的问题在于对图像进行标准化。在不同的研究者采用的设备及参数设置、图像的预处理、对兴趣区的分割方式的不同、特征提取等过程差异很大,因此实验的重复性较差[3]。今后的研究需要重新关注研究设计、报告实践和图像采集的标准化、特征计算和特征提取等,以推动纹理分析在医学超声领域的发展。近些年,基于先进计算机运算能力、云计算、大数据以及机器学习及深度学习应用于医学图像的纹理分析,为开发正在生成的大量图像数据财富的潜力创造了有利条件大大加快临床数据分析的步伐。纹理分析作为影像组学的重要图像特征也因此成为了多学科合作研究的新的研究领域。超声医学以其实时、无创、操作简单、廉价、便于多次重复检查等优势,用过纹理分析的定量诊断方法必将为精准医疗及疾病的个体化诊疗方案提供更多选择,因此需要进一步研究及探索。

【参考文献】

[1]种美玲,时白雪,张禧,等.超声联合纹理分析对乳腺结节良恶性的诊断价值[J].中华医学超声杂志(电子版),2019,16(08):581-585.

篇5

[中图分类号] R730 [文献标识码] A [文章编号] 1674-0742(2015)11(b)-0196-03

[Abstract] Objective To discuss the application effect of medical image fusion technology in cancer radiotherapy by takeing CT-MRI image fusion technology as an example. Methods 50 patients with prostate cancer admitted to this hospital from January 2013 and January 2014 were included. They all underwent CT and MRI scanning. We compared CT image and fusion image in determining the target volume and radiation dose. Results The tumor volume was 72.45cm3 on the CT image and 51.12cm3 on the CT-MRI fusion image, and the area of target tumour cells determined by the CT-MRI fusion image was precise than that determined by CT image. Calculation results of dose of radiation to the bladder and rectum showed that the minimum radiation dose and maximum radiation dose of the fusion image were both smaller than that of the CT image, and the difference was statistically significant,(P

[Key words] Medical image fusion technology; Tumor; Radiotherapy

医学图像融合技术[1]作为当代科技与医学影像相结合的计算机信息融合工程,为临床肿瘤诊断、治疗提供多模态图像,为医学诊断提供了更确切的医学信息。医学图像融合技术最重要的应用领域在于肿瘤的放射治疗,通过各种模态医学图像的融合,准确勾勒出肿瘤靶区轮廓,使肿瘤放射治疗更加精准和有效[2]。该文将通过对该院2013年1月-2014年1月收治的50名前列腺癌症患者,应用CT―MRI融合技术确定前列腺癌强调放疗靶区,综合分析、探讨医学图像融合技术在肿瘤放射治疗中的应用效果,现报道如下。

1 资料与方法

1.1 一般资料

整群选取该院2013年1月-2014年1月收治的前列腺癌症患者50名为研究对象。病例年龄5678岁,平均年龄(65.32.2)岁。所有患者经医学图像及病理学检查符合前列腺癌的临床诊断标准,癌症病程情况为T2bT3a期21例,T3bT4期9例。

1.2 方法

1.2.1 扫描方法 所有患者检查当天清晨保持空腹状态。医学图像扫描前1 h饮用1.5%泛影葡胺水(金陵药业股份有限公司浙江天峰制药厂,生产批号:国药准字H33021004),扫面前15 min肌肉注射15 mg盐酸山莨菪(国药集团容声制药有限公司,生产批号:国药准字H41023400)。由本科专业医师操作行CT扫描,扫描范围从第3腰椎至坐骨结节下缘约 5 cm。患者于第二天CT扫描时间短进行MRI扫描,扫描前1 h喝800 ml温开水,其他操作与CT扫描一致。

1.2.2 放疗靶区勾画 运用图像配准软件对CT扫描及MRI扫描图像进行配准,并将配准图片传入放疗计划系统,根据CT及CT-MRI融合图像勾画患者前列腺、精囊的体积,并勾画出膀胱、直肠、股骨头周围的正常组织。对勾画的肿瘤体积进行化疗,化疗剂量根据照射体积计算。比较患者CT图像与融合图像放疗靶区体积大小,以及各部位的照射剂量。

1.3 统计方法

采用SPSS18.0统计学软件进行数据处理,计量资料采用(x±s)表示,行t检验,P

2 结果

2.1 肿瘤体积勾画体积比较

50例患者采用CT图像勾画的肿瘤体积为(72.45±2.35)mm3,采用CT-MRI融合图像勾画的肿瘤体积为(51.12±2.12)mm3,CT-MRI融合图像确定的肿瘤靶细胞范围更加精准。差异具有统计学意义(t=6.424,P

2.2 放疗照射剂量比较

对膀胱、直肠等部位的照射剂量选择上,CT图像技术的放疗最小照射量为与最大照射量均大于CT-MRI融合图像的放疗照射剂量,(详见表1)。采用CT图像与CT-MR融合技术,两组数据比较:膀胱最小照射剂量,差异有统计学意义(t=5.456,P

3 讨论

3.1 医学图像融合技术的应用讨论

3.1.1 几种主要的医学图像融合技术 目前临床成像设备主要有CT、MRI、SPECT、PET等[3],为临床提供多模态的医学图像。图像融合技术在放疗中的应用主要有:①CT与MRI融合。CT图像应用于肿瘤放疗中对高密度组织比较敏感,图形稳定不易发生变形的优点,但对软组织边界显示不清晰[4]。MRI图像则提供了较高的空间分辨度,对浸润性肿瘤软组织更加敏感,能清晰显示图像的边界。二者的融合对某些特殊部位,如脑部、前列腺要求精度更高的靶区位置时,图像融合就起到了互补作用,可以帮助医师确定肿瘤边界。②CT与MRSI融合[5]。在胶质瘤的放疗中,MRI图像技术对肿瘤的局部控制和复发控制效果不明显。MRSI技术相比于MRI技术能更加清楚显示肿瘤位置及形状,还可以同时显示代谢水平的有关信息。CT与MRSI融合能提高部分肿瘤的控制效果。③ CT与PET融合[6]。肿瘤细胞具有增殖快、转移速度快的特点,PET可以根据失踪化合物在组织内的浓度,对比肿瘤细胞的增殖及代谢水平。PET显示的活性肿瘤区域图像与CT图像图像融合技术可提高图像对肿瘤病灶的敏感性和特异性,有助于指导精确肿瘤化疗区域与化疗药物的剂量控制。

3.1.2 医学图像融合技术操作步骤 第一,预处理。医学图像预处理是对选定的图像信息进行增强对比度、噪声去除、统一图像大小、格式、分辨率,对感兴趣区域进行分割等各项处理[7]。

第二,图像配准。配准首先应选择适合的图像特征量进行图像特征提取;再根据图像的特征量确定几何变换,以相似性测度函数检验所选图像与参考图像的相似程度,并通过改变参数使测度函数值达到最优,最后执行整体变换。

第三,创建融合图像。首先应进行图像数据的融合,以图像为基础的融合是通过各种图像预处理方法使图像最终呈现的效果达到最佳,以像素为基础的融合即尽量提高图像清晰度。完成图像数据融合后,最终通过伪彩色显示法、断层显示法和三维显示法等显示方法使临床医师能够通过直观的图像进行疾病诊断。

3.2 该次研究结果讨论

医学图像融合技术使传统化疗计划的确定摆脱了单一模态数据指引,以不同图像技术的优点弥补不同技术存中在的不足,具有广泛的临床应用价值。医学图像融合技术应用于肿瘤放射治疗,可确定肿瘤分布位置,有效提高诊断准确性与灵活性,对恶性肿瘤的控制与提高患者生存率具有重要意义。

该次研究中采用CT-MRI融合图像确定前列腺癌强调放疗靶区的应用中,可以看到,CT图像勾画的肿瘤体积为(72.45±2.35)mm3,采用CT-MRI融合图像勾画的肿瘤体积为(51.12±2.12)mm3,CT-MRI融合图像确定的肿瘤靶细胞范围更加精准。另外,肿瘤靶细胞区域的体积大小与放疗照射剂量密切相关,放疗区域确定越大,使用的放疗剂量越多,对患者身体造成的危害更大。CT-MRI融合图像放疗剂量明显少于CT图像,化疗的毒副作用更少。该次研究与胡玉兰等[8]关于CT-MRI融合图像确定前列腺癌放疗靶区的结果具有一致性,认为可以利用图形融合技术进行靶区勾勒,以减小误差。

综上所述,医学融合技术在肿瘤放疗中已有广泛应用,各种医学显像技术取长补短,提高了诊断的灵敏度和准确性。

[参考文献]

[1] 李兴波,陈炀,叶岭,等.医学图像融合技术在肿瘤放射治疗中的应用分析[J].中国卫生产业,2013,10(31):105-106.

[2] 赵琦,钱永红,王琨,等.CT、MRI 图像融合技术在头部肿瘤放疗中的应用[J].中国医师杂志,2014(z2):163-164.

[3] 宋永浩,夏海波,周诚忠,等.CT/MRI图像融合在骨转移瘤放射治疗中的应用和价值[J].现代肿瘤医学,2015,23(3):412-144.

[4] 金烁.医学图像配准技术的研究及其在放射治疗PET-CT系统中的应用[D].济南:山东大学,2013.

[5] 李凯,苏中振,郑荣琴,等.三维超声-CT图像融合评价肝癌消融安全边界[J].中华超声影像学杂志,2012,21(8):719-722.

[6] 吕宗烨.常规超声、CT检查及超声/CT融合成像对肾肿瘤诊断价值的对比研究[D].济南:山东大学,2014:21.

友情链接