发布时间:2023-09-24 15:38:52
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇医学影像和医学影像技术范例,将为您的写作提供有力的支持和灵感!
【中图分类号】R445-4【文献标识码】AA
【文章编号】2095-6851(2014)05-0478-02
1引言
人体成像包括对健康人的成像和对病人的成像,对于前者的成像主要用于科研和教学,后者主要用于医学临床诊断和治疗。医学影像物理和技术是医学物理学的重要分支,研究的对象包括了所有人体成像。
目前临床广泛使用的模态按照成像时使用的物质波不同,分为X射线成像、γ射线成像、磁共振成像和超声成像。
2对目前各种医学成像模态现状的分析
2.1X射线成像
X射线成像模态分为平面X射线成像和断层成像。人体不同器官和组织对X射线的吸收可以用组织密度进行表征,因此,可以利用平面x射线、x射线照相术对人体内脏器官和骨骼的损伤和病灶进行诊断和定位,同时也把胶片带进了医学领域。随着x射线显像增强技术的发展,x射线的血管造影术和其他脏器的专用x线机相继诞生,扩大了x射线成像的应用范围。平面x射线成像的未来发展方向是数字化的x光机技术其中,x线机是全世界的发展方向,但是其价格使得大多数用户望而怯步。
作为传统影像技术中最为成熟的成像模式之一的x射线断层成像,其速度对于心脏动态成像完全没有问题,加上显像增强剂,还可以对用于血管病变及其血脑屏障是否被病灶破坏进行检查,属于功能成像的范畴。当前,三维控件x射线断层成像的实验室样机已经问世,将会为x射线成像带来新的生命力。
2.2核磁共振成像
目前,各种各样的核磁共振设备产品已经大量进入市场。核磁共振成像集中体现了各种高新技术在医学成像设备中的应用。目前核磁共振主要应用包括人脑认知功能成像,用于揭示大脑工具机制的认知心理实验测量。
2.3核医学成像
核医学成像包括平面和断层成像两种方式。目前,以单光子计算机断层成像和正电子断层成像为主,为动物正电子断层成像主要是用于基础研究,而平面的γ相机已经处于被淘汰的水平。
核医学成像设备可以定量地检测到由于基因突变而引起的大分子运动紊乱继而引起的脏器功能变化,例如代谢紊乱、血流变化等。这是其他设备如超声波检查不可能完成的任务。这就是临床医学上所说的早期诊断,核医学影像设备能够快速发展归功于此。但是核医学成像存在空间分辨率差、病理和周围组织的相互关系很难准确定位的确定,因此,还需要医学物理工作的不懈努力。
2.4超声波成像
超声波是非电离辐射的成像模态,以二维成像的功能为主,也包括平面和断层成像两类产品。超声波成像由于其安全可靠、价格低廉,多以在诊断、介入治疗和预后影像检测中得到发展。目前,超声波设备已有超过x射线成像的势头。同样,超声波成像也存在一定的缺点,如图像对比度差、信噪比不好、图像的重复性依赖于操作人员等。
3关于医学软件问题
3.1基本情况分析
成像的硬件设备要完成功能离不开医学软件的支持,对于这些医学软件按照和硬件设备的关系,可分为三个层次:
第一层,工作和硬件紧密结合的软件。主要功能是负责成像设备的运动控制,对数据的采集,图像预处理和重建,完成数据分析。
第二层,主要负责对医疗器械产生的数据进行分析、处理软件。这种软件的应用需要来自医学物理人员,软件编程人员和医生三方的合作,目前,由于我国还没有建立这种三方合作机制,这类软件应用情况明显滞后。
第三层,主要功能是完成医学信息的整合的软件,用于医疗过程中医疗信息,医学工作的管理。例如PACS。这种软件也需要医生的参与,但是并没有依赖性。
3.2PACS
PACS是医疗发展信息化的体现,是医学影像技术集成管理和开拓影像资源应用范围的重要技术手段。PACS将医学影像中的各种软件和图像工作站连接起来,使之成为局域网中的节点,实现了资源的共享。不同科室的医生在完成对病人的信息收集和诊断后可以完成信息的录入。还可以利用商业设备上采集的数据运用于病人的诊疗中,结合数据和医学影像,对诊断信息综合处理,以此提高诊断的准确率。
4医学影像物理和技术学科今后的发展
虽然存在各种不同的医学影像模态,但是目标只有一个,即为了更好的进行医学研究诊断,随着物理和计算机技术的发展,医学影像技术会随之提高。为了更好的为医疗服务,在今后的发展中,医学影响物理和技术学科还需在以下几方面继续努力。
第一,用于成像的物质波产生装置还需要不断进行提升,为更好的满足成像需求,在提高波源产生物质波的同时,还需要改变物质波的束流品质;
第二,将物质波和人体组织发生相互作用的规律模型化,为减少误诊率和定位误差,把模型参数的最佳化,改善从影像中提取信息的质量和速度。同时努力消除探测中的噪声和伪影;
第三,把探测的信号收集,放大、成形实现数字化;
第四,为满足影像诊断和治疗中的监督需要,高质量的实现图像重建和显示等。
在科学技术方面,开展医学影像在脑功能成像研究中的应用、临床诊断中的应用等,有利于拓宽医学影像的市场。
5结语
本文介绍了当今主流的几种医学成像技术,对各种成像方式的优缺点进行了阐述,对日后医学影像物理和技术的发展提出了自己的看法,希望能为那些为医疗服务的工作者们提供一些参考。随着医学影像物理和技术的不断进步,医疗服务行业的科学化加速发展。
1.1岗位能力培养的需要
“能力本位”是职业教育的基本思想,其突出特点在于以现实职业分析为基础设计课程内容,以现实职业需要为出发点组织教学活动。因此,将现实职业中的工作任务进行有机的整合,形成医学影像技术的职业模块,并按此模块组织教学是高等职业教育进行岗位能力培养的必然需要。
1.2.知识经济时代的需要
当今系知识经济时代,随着职业的日益分化,科技发展的趋势亦高度综合,综合成为科技发展的主流。为了适应这种变化,人们认识到,必须从教育思想、教育观念和教育模式、教育内容和教育方法上作出理性的“应变”,即使受教育者得到尽可能多的全面发展的教育,以适应社会的变化。一方面拓宽专业口径,充实专业教育,另一方面实施全面素质教育,以弥补专业教育的不足,克服其局限性和片面性。高校模块课程正是适应这种趋势的一种有力尝试。可以说,在人类知识大综合的时代,课程也正在辩证综合的道路上发展,模块课程是科技发展的必然要求,是国际课程改革的发展趋势。
1.3培养创新人才的需要
人的发展,其根本标志就是人的创造性发展。一般而言,人人都具有创造潜能,但是,开发人的潜能,发展人的创造性是后天教育的一个最为主要的任务。职业院校的模块课程改革有利于学生的创造性思维的发展。模块课程改革实质是针对我国高等教育培养人才模式的单一而提出的。它提供了考察世界的整体观念,接近现实生活,易于达成学校与社会的联系,校内学习与校外学习的统一。正因为高校模块课程所形成的结构性的知识体系是学科之间、学科与社会之间和学科与学习者之间的整合的产物,所以学生在学习这些课程体系时,有利于增强思维的独创性、整合性、变通性及流畅性,有利于思维广度、深度与灵活性的发展,从而促进创造性思维的发展。其内涵符合职业技术教育对学生综合技能培养的要求。
1.4课程改革的需要
职业院校的现行课程体系是以学科划分设置的,而知识是一个联系紧密的整体,人为地将知识分解为不同的学科,首先导致学科与学科之间的分离,而学科与学科之间的分化直接导致了高校课程科目的增多。其次形成课程与社会要求的分离,当今社会的复杂化使得诸多社会问题都具有综合性。同时,职业转换速度的加快也要求人才知识结构和素质的综合性。最后是课程与学习者的分离。认知与情感的发展被一度冲突的教育课程割裂,人的发展走向片面化。然而,随着社会的进步和发展,对人才的要求不仅需要知识的深度,而且要求知识的综合,以适应社会对综合性人才的需求和转型。
1.5培养学生综合技能的需要
因为原有高职课程结构在培养学生增强人生规划能力、发展个性与形成健全人格上存在很大的矛盾,其课程结构按照知识线性结构组织,侧重于知识和技能的教学,过于强调学科本位,片面强调各自的系统性和完整性,学科间内容缺乏联系,无法形成一个整体,难以解决实际问题;课程几乎难以根据学生个性而具有多样性和选择性;简单的教学模式导致学生知识结构不合理,使教学目标难以全面得到落实,所以职业教育呼唤模块化教学设计。
2.医学影像技术专业培养目标研究
由于培养目标的确定是课程改革的关键,而课程是培养目标的具体化,因此,改革课程首先必须从确定培养目标开始。
医学影像技术专业人才的培养目标是:培养适应现代化医学科学飞速发展的、具有较扎实的医学影像学的基本理论、基本知识、基本技能的临床实用型的医学影像医技人员。由于该目标是医学影像人才的总体目标,比较宏观,为使其具体化,我校开展了培养目标的调研。
2.1调查方法与对象
根据总体目标,围绕专业知识、临床技能、职业相关学科知识、身心素质、政治素质、一般知识、现代社会适应能力、自我提高能力、职业道德、创新意识与能力等12个因素,设计80个子因素测验题,对盐城卫生职业技术学院、南京卫生学校、湖北职业技术学院、襄樊职业技术学院、湖北仙桃职业技术学院、北京301医院、宜春职业技术学院、盐城市第一人民医院、江苏中大医院等9所院校与单位的教师、学生、临床医生、医学教育专家、病人及其家属问卷,发放调查表2256份,有效问卷2158份,有效率95.66%。经SPSS13.0软件包处理,结果见表1。
2.2结论
由表1可见,被试者对培养目标的期望,按重视程度排列,依次是:专业知识、职业道德、现代社会适应能力、创新意识和创新能力、临床技能、自我提高能力、政治素质、道德品质、职业心理素质、身心素质、一般知识、职业相关学科知识。
上述结果提示我们在进行课程改革是应注意以下几点:
第一,专业知识是影像技术专业教育的首要目标,医学教育应构建合理的课程体系,促进影像技术学生掌握坚实的影像技术专业基础理论与知识。
第二,要加强影像学科间及影像学科与人文社科等课程的交叉渗透,强化人文教育、拓展实践教学,改革训练方法与内容,注重学生素质养成、自主学习、创新能力的培养,体现职业道德、现代社会适应能力、创新意识与能力、自我提高能力目标的要求。
第三,影像技能目标包括影像检查的基本技能、基本的影像操作和处置技能、诊疗结果的解释、良好的临床思维品质等,可通过加强基础与临床的融通、早期接触病人、强化实践训练等得以实现。
第四,医学课程设置在体现主要目标的同时,应照顾到一般目标,如一般知识、职业相关学科知识等,这些目标可通过开设选修课来实现。
【关键词】 诊断显像;图像融合
0引言
医学影像学是临床诊断信息的重要来源之一. 根据医学图像所提供的信息内涵,可将医学影像分为两大类: 解剖结构图像(CT, MRI, B超等)和功能图像(SPECT, PET等). 这两类图像各有其优缺点: 功能图像分辨率较差,但它提供的脏器功能代谢信息是解剖图像所不能替代的;解剖图像以高分辨率提供了脏器的解剖形态信息(功能图像无法提供脏器或病灶的解剖细节),但无法反映脏器的功能情况.
目前这两类成像设备的研究都已取得了很大的进步,一方面,双方都在逐步弥补自身弱点,如MR的功能成像开发以拓展其功能,SPECT, PET新型晶体开发以增强自身的空间分辨率;另一方面,双方均在不断地增强自身强项,如MR开发不同新型成像序列,CT的螺旋层数不断增加,PET的晶体数目越来越多. 这使得各自图像的空间分辨率和图像质量有很大的提高,但由于成像原理不同所造成的图像信息局限性,使得单独使用某一类图像的效果并不理想,且进展缓慢,往往事倍功半. 由于上述原因,医学图像融合技术应运而生[1].
1图像融合(image fusion)技术的内涵
图像融合是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理[2]. 简单来说,医学图像融合就是将解剖结构成像与功能成像两种医学成像的优点结合起来,为临床提供更多、更准确的信息. 其最终结果是1+1>2.
20世纪90年代以来,医学图像融合技术随着计算机技术、通讯技术、传感器技术、材料技术等的飞速发展而获得重大发展,经历了异机图像融合和同机图像融合两个阶段.
2异机图像融合
2.1异机图像融合的研究内容在同机融合显像设备没有出现以前,图像融合的研究仅限于异机图像融合. 最初其研究内容仅限于相同或不同成像模式(imaging modality)所得图像经过必要的几何变换,空间分辨率统一和位置匹配后,进行叠加获得互补信息,增加信息量. 而现在,异机图像融合的研究范围包括: 图像对位、融合图像的显示和分析,利用从对应解剖结构图像(MRI, CT)获取的先验信息对发射型数据(SPECT, PET)做有效的衰减校正、数据重建等[3].
2.2异机图像融合的基本方法按图像融合对象的来源可分为同类图像融合(innermodality,如SPECTSPECT, CTCT等等)和异类图像融合(intermodality,如SPECTCT, PETMRI, MRICT, MRB超等). 按图像融合的分析方法可分为同一患者的图像融合、不同患者间的图像融合和患者图像与模板图像融合. 按图像融合对象的获取时间可分为短期图像融合(如跟踪肿瘤的发展情况时在1~3 mo内做的图像进行融合)和长期图像融合(如进行治疗效果评估时进行的治疗后2~3 a的图像与治疗后当时的图像进行融合). 临床工作人员根据自己的研究目的不断设计出更多的融合方式.
2.3异机图像融合的主要技术图像融合的步骤大致为: 特征提取,设计误差评估方法,对图像数据进行处理使误差最小,将变换后的图像数据进行对位和综合显示,分析综合数据. 其中对位技术是图像融合的关键和难点[4].
2.3.1特征提取特征提取可分为内部特征提取和外部特征提取内部特征主要是人体解剖结构特征,如颅骨、脊柱、胸骨、肋骨、关节;膈下软组织,如脾、肝、肾等等. 外部特征是为进行融合处理而特制在两幅图像上均可见的体表标记物. 据文献报道使用的外标志物有进行脑图像融合的头罩、牙环,胸部、腹部图像融合采用的背带,四肢图像融合采用的支架,甚至颅骨嵌入螺钉等等. 采用内部特征的优点是不需要对患者做预处理,可进行多次融合方法分析,缺点是难以实现融合自动化处理,需要人工干预,融合的精确性往往与经验有关. 外部特征的优点是特征明确,易于进行计算机自动处理,缺点是预处理复杂,并且由于而引起的脏器与体表标记之间的位移误差难以避免.
2.3.2误差评估方法常用的有基于相似度的误差评估方法(以相似度最大为最优)和基于距离的误差评估方法(以距离最小为最优).
2.3.3图像处理图像预处理: 对于有条件的图像进行重新断层分层(reslice)以确保图像在空间分辨率和空间方位上的大体接近. 几何变换: 主要包括尺度变换、平移、旋转等.
2.3.4图像的对位将处理好的图像按误差最小的原则进行对位. 按外部特征进行对位的方法以两幅图像上的特征点配准为对位成功. 按内部特征进行图像对位法主要有两种:图像分割配准和像素特征配准[5].
图像分割配准法分为曲线法和表面法,在目前实际应用中较多采用. 因分割算法通常是半自动的,需人为参与,其配准的精度受限于分割的精度. 理论上此法可用于全身各部位的配准,但现在常用于神经系统成像和矫形外科成像. 曲线法是将一些具有几何特征的线条(如脊线)或栅格提取出来进行配准. 但是,曲线法要求图像有较高分辨率,以便提取几何特征. 表面法的代表算法是“头帽法”: 从一幅图中提取一组轮廓点作为“帽子”,从另一幅图中提取表面模型作为“头”,然后使用Powell搜索算法(使帽点和头表面间的距离平均平方和最小)来确定变换关系. 采用表面匹配技术可以对SPECT和PET的心脏图像进行了对位融合.
表面配准算法不仅用于3D刚性(rigid)变换,而且可用于3D弹性(elastic)变换,从而为一些组织器官的配准,如心脏、肝脏、肺等,提供了可能性. 但这种方法与其他基于组织分割的算法一样,配准精度受限于组织分割的精度. 近年来,由于分割算法的复杂程度降低、自动化程度提高以及斜面匹配技术在计算距离变换上的优势,此法被普遍应用. 表面配准法主要应用于PETMR图像的配准,由于SPECT图像的边界模糊,不宜使用此法. 像素特征配准法[6]: 像素特征配准法与其他内部特征配准方法不同之处在于,他是以图像灰度为配准依据,不需要对图像原始数据进行预归纳或预分割,其常用算法有主轴矩配准、全图像信息配准和图谱法配准. 主轴矩配准: 是将图像灰度内容转换为数量和方向的几何表示. 目前大多是从零阶及一阶矩中计算出图像的质心及主轴,再通过平移和旋转使两幅图像的质心和主轴对齐,达到配准目的. 此法对于数据缺失比较敏感,细节丢失或形状的病理性改变均会影响配准结果. 但此法实现了自动化,且十分快捷,易于移植,目前多用于粗配准. 全图像信息配准: 是在配准全过程中使用全部图像信息,使用的算法有区域相似性测量法、最大互信息法、相关法、联合熵法、条件熵法等. 此方法适用性最广,它不象其他内部特征法那样需先进行灰度图像的信息压缩提取,而是在配准过程中利用所有可获得的信息. 图谱法: 用于患者间的图像配准同一解剖结构的形状、大小、位置都会因解剖和生理上的个体差异有很大不同,这就使患者间的图像配准问题成为当今医学图像分析中的最大难题. 因此就要有一个详细标记人体各个解剖位置的标准化图谱. 用图谱法对两个患者的PET或MRI图像进行比较时,首先把二者的图像都映射到一个标准化的图谱空间去,然后在此空间中进行比较. 使用内部特征定位不需外加定位装置,但要求两幅图像要有相似结构或共同特征才可进行匹配. 定位的精确度是由具体的算法来决定的.
2.3.5融合数据的分析以某种算法将融合图像数据综合显示并做定量分析. 有些影像学工作者提出了如融合图像中像素CT值/SPECT计数等数值分析方法,但由于图像融合技术研究时间较短,各种融合数据对临床的指导意义有待进一步检验确定.
融合图像有多种直观的显示方法. 常用的有断层显示法和三维显示法. 融合图像的显示往往以某个图像为基准,该图像用灰度色阶显示,另一个图像迭加在基准图像上,用彩阶显示[7]: ① 断层显示法: 对于某些(得到原始数据)图像融合,可以将融合的三维数据以横断面、冠状面和矢状面断层图像同步地显示,便于观察者进行诊断. 这是融合图像最常用的显示方法. 这种显示要求观察者对于图像三维层面的特征有丰富的经验; ② 三维显示法: 将融合的三维数据以三维图像的形式显示使观察者可更加直观地观察病灶的解剖位置,在外科手术设计和放疗计划制定中有重要的意义.
2.4异机图像融合的现状目前对于刚性组织的对位已基本解决,如脑部异机图像融合[8],而对于非刚性组织(如腹部)的对位有待进一步研究. 因此在图像对位技术上目前尚未找到一种确保完全、通用、有效的方法.
3同机图像融合
同机图像融合是伴随着同机显像设备的发展而发展的. 1991年,Hasegawa等[9,10]人首先提出了同机图像融合设备的设想. 1999年,通用电器公司(GE)推出了全球第一台医用同机图像融合设备Hawkeye,它将XCT球管、探测器及放射性核素探头装在同一旋转机架上,患者可同时进行CT和SPECT检查. 得到的X线图像不仅可以用来与SPECT图像进行融合,还可以通过不同软组织及骨骼对X线与γ光子的不同衰减比例因子,由CT值计算线性衰减系数,进行SPECT的衰减校正. 由于这一台划时代设备的出现,使得图像融合技术发生了根本性的变化.
由于图像融合设备显像过程中,患者同时进行两种不同的检查,其变化由计算机精确控制,且不同显像间的时间间隔非常短暂,从根本上解决了异机图像融合中的最大难题:对位技术的准确性. 在CT与SPECT图像融合的领域内,它具有了所有异机图像融合的优势,而且实现过程更为简单,并广泛应用于临床医学的各个领域[11]. 因此,这一设备从产生之日起,就对影像医学特别是影像核医学产生了革命性的影响. 目前已广泛应用于国内、外影像医学临床诊断.
在Hawkeye之后,GE公司、西门子公司及飞利浦先后推出了第二代图像融合设备: PET/CT[12],其功能在Hawkeye基础上更进一步,定位更加准确,诊断准确性进一步提高. 目前国内有此设备十余台.
相比PET/CT,PET/MR的研究更加令影像医学工作者期待. PET/MR除具有所有PET/CT的优点外,还可以提供更多的软组织信息,其提供的组织信息可应用于高精度的PET图像衰减校正,从而进一步提高图像质量和空间分辨率. 目前,美国将PET晶体置于MR内部,已研制出一种新型的PET/MR,并已获得了大鼠脑部同机融合图像[13],相信PET/MR很快将进入临床.
4展望
总之,在医学影像设备的发展中,功能图像和解剖图像的结合是一个发展趋势,而图像融合的潜力在于综合处理应用这些成像设备所得信息以获得新的有助于临床诊断的信息[14],在肿瘤的精确定位、癌症的早期诊断和治疗中发挥重要的作用. 随着功能成像设备和解剖成像设备杂交技术的出现,图像融合技术将得到进一步的发展,给临床诊断带来一场新的变革.
参考文献
[1] Davide W, Simon R. Combining anatomy and function the pathto image fusion [J]. Eur Radiol, 2001;11:1968-1974.
[2] 蒋长英. 什么是“医学图像融合”[J]? 抗癌,2003;(1):36-37.
[3] 张孝飞,王强. 医学图像融合技术研究综述[J]. 广西科学,2002;9(1):64-68.
[4] 刘敬华,钱宗才. 医学图像融合技术及其应用[J]. 医学信息医学与计算机应用,2002;15(5):258-259.
[5] 俞亚青,田学隆,闫春红. 医学图像配准方法分类及现状[J]. 重庆大学学报(自然科学版),2003;26(8):114-118.
[6] 姜庆娟,谭景信. 像素级图像融合方法与选择[J]. 计算机工程与应用,2003;39(25):116-120.
[7] 唐庆玉,王宇. 医学图像融合显示的几种方法[J]. 中国医疗器械信息,2002;8(3):14-15.
[8] Ferroli P, Franzini A, Marras C, et al. A simple method to assess accuracy of deep brain stimulation electrode placement: Preoperative stereotactic CT + postoperative MR image fusion [J]. Stereotact Funct Neurosurg, 2004;82:14-19.
[9] Hasegawa BH, Stebler B, Butt BK, et al. A prototype highpurity germanium detector system with fast photoncounting circuiry for medical imaging [J]. Med Phys, 1991;18:900-999.
[10] Lang TF, Hasegawa BH, Liew SC, et al. Description of a prototype emissiontransmission computed tomography imaging system [J]. J Nucl Med, 1991;33:1881-1887.
[11] Schillaci O. Functionalanatomical image fusion in neuroendocrine tumors [J]. Cancer Biother Radiopharm, 2004;19:129-134.
(一)提高查阅效率
传统的影像存储需要很大空间,对场地、温度、湿度、设备及档案管理人员均有较高要求,在进行影像资料查阅时,也耗费较多的人力和时间。此外,传统保管模式下的影像资料具有独占性,一张胶片被借走后,其他人就无法再借阅此胶片。影像信息共享后,可从根本上解决独占问题,在系统中的影像资源能被多人同时访问。电子检索功能使档案管理人员从繁重的查找工作中解放出来,大大提高了查阅效率。
(二)减轻患者看病成本
所有临床医护人员在熟练掌握影像系统的具体操作之后,各种影像及报告均可通过院内信息网络及时、迅速传输。工作流程监控和管理从患者登记、检查、报告编辑、报告审核到报告打印等均有时间记载,可反映影像链的每个环节所用的时间、参与人员等。报告及质量审核管理诊断报告除上级医生对报告审核把关外,科主任可调阅已发出的报告,指出报告和审核中出现的问题,使诊断质量得到持续性提高。如此,能使患者得到迅速、正确的诊断和治疗,有效加快急诊患者的流通和住院患者的床位周转率,减少平均住院日。患者看病成本降低、候诊时间缩短、满意程度提高,能真正体现“以病人为中心”的服务理念。
(三)提供完善的统计功能,为科学决策提供依据
医学影像档案信息共享系统还提供完善的统计功能,翔实的报表能使医院管理者及时准确地掌握各种设备的使用情况和工作效率,管理者可据此了解不同时期、不同检查患者的分布情况,据此进行调配管理,科学决策。
二、信息技术拓展医学影像档案功能的途径
(一)使诊断与治疗更加密切
由于信息共享,影像科与介入病房、门诊之间的相互联系和沟通更加便捷,有利于全方位管理。例如:治疗前图像的直接调阅和多种影像学图像的综合显示、比较、分析,能避免术前误诊、漏诊,也便于介入治疗操作,有利于病灶的准确定位;影像学图像直接传入手术室,手术医生在工作站上进行虚拟手术预演,设计手术入路和方案,更好地为外科医生服务;影像学图像连接激光导航系统,直接指导外科医生术中操作等。医学影像档案的信息共享,从根本上对学科进行了全方位的资源整合,使整个学科在统一的轨道上运作,有利于学科管理。
(二)提高对医疗资源的有效利用
为充分开发、利用好这一庞大的影像档案资源,医疗单位应利用已建成的局域网,开发医院影像资料信息化系统,不但实现医院内部影像资料各科室的共享,同时还应开发对外影像信息的交流和远程会诊。影像信息跨国传阅,实现了国内医院与国际级医院相互之间临床信息的采集、分析和处理,提高对患者的诊治水平,提高对医疗资源的有效整合和利用,同时医护人员自身的综合素质和能力也得到跨越式提高。
(三)为患者建立个人健康档案
医学影像技术专业是随着医学影像学科和新设备的快速发展而建立的利用医学影像设备获取、处理和分析医学影像信息,为临床诊断和治疗提供技术支持的新专业。目前国内各医学院校对四年制医学影像技术专业学生的毕业考核,在内容、项目上各有千秋,没有统一的标准。以往传统的理论笔试存在很多弊端, 这种考试重知识轻能力,只能检验学生掌握的理论知识,无法检查学生的临床实际操作能力,制约着学生综合素质和创新能力的培养,阻碍了教育改革的深入和教学质量的提高[1]。
客观结构化临床考试( objective structured clinical examination, OSCE) 概念始于1975 年,由英国Dundee大学的Harden 博士倡导,目前已在世界许多国家和地区广为应用[ 2] 。近年来,国内有部分医学院校采用了OSCE模式来评价医学生或护理专业学生综合应用基础理论和操作技术的能力[3,4]。自2010年开始, 我院对医学影像技术专业本科学生的毕业考核进行了全面的改革, 改变了传统、单一的理论考试形式, 采取了OSCE 模式的综合考核方式,取得良好的效果。
1 考核对象
考核对象为我院2010~ 2014 届医学影像技术专业本科学生。分别为2010 届48人;2011届30人;2012 届33人;2013届21人;2014 届36人。其中男生91名、女生77名;年龄21~ 24岁,平均( 22±0.8) 岁。所有学生都经过一年的临床实践学习并取得合格的实习成绩,同时取得参加毕业考核资格。
2 考核方法
2.1考核内容与要求
第一部分:综合笔试(时间120min)
综合笔试由学校组织专家统一命题,采用100 分制,按40%纳入毕业考核总成绩。综合笔试含基本理论考核( 占60 分) 和病例分析( 占40 分) 两部分。
综合考试的内容及要求如下: 基本理论考核主要由5 门主干基础课―――医学影像检查技术学、x线摄影技术、医学影像设备学、医学影像诊断学、超声诊断学组成,病例分析由1 例骨科病例和选做1 例相关专业病例组成。
第二部分:临床实践考核
毕业临床实践技能考核时间一般在学生实习结束返校后第2 周进行,采取三站式方法考核。临床实践技能考核按60%纳入毕业考核成绩。
第一站: X线片阅片( 时间10 min, 占30分):考试采用笔试,利用交互式阅片系统提供十个选择题,内容为x线诊断病例,每个病例提供患者的一般情况,主诉,临床表现,体征和必要的实验室检查,要求学生选择最可能的诊断。
第二站:CT、MR片阅片( 时间25 min, 占40分):考试采用现场胶片阅片,考生根据胶片所见书写诊断报告,提出可能诊断。
第三站:x线摄影摆放(时间5 min, 占30分):选择难易度相差不大的临床常用X线摄影操作40题 ,采用抽签制,每人抽选1 题。两人一组,互为模拟病人,要求考生边摆放边讲解,考官在考生进行操作时或操作后,提出相关问题。
2.2组织实施
每一站考核题目由教研室主任组织人员命题,实行考教分离。考官由各教研室选派,要求为讲师以上职称,有丰富教学经验的人员,我院教学部负责审核。理论考核和实践考核第一站统一进行,第二、三站由学生抽选题目,每一站考核都安排2名考官,一名为主考官。学生则由教务干事及班干部组织,按抽签顺序参加考核。
2.3 成绩评定
临床技能学生每站考完后,考核教师当场给予打分。 X线片阅片满分30分,18 分以上为合格;CT、MR片阅片满分为40 分,24分以上为合格;x线摄影摆放满分30分,18 分以上为合格;每站考核分数低于相应合格线者,须进行该站的补考,补考仍不合格者须补实习1~2 周后再行补考。第二次补考不通过者不予以毕业。每站考核成绩之和便是学生临床实践技能最终考核得分。
3 讨论
3.1促进了学生临床技能的培养
经过连续五年实施多站式临床技能考核,使学生在平时的学习、实习中更加重视临床实践操作,更加注重自己的动手操作能力培养。
3.2以“考”促“教”
通过分站考核,可以发现我们在临床实践教学方面的优势和存在的不足。如我们充分利用设备齐全、师资力量雄厚的临床技能模拟实验室,加强对见习、实习生的临床技能培训,有效提高了他们的动手操能力;通过考核,我们发现学生理论知识方面存在不足,说明我们的理论教学还有待加强。
3.3 解决“一元化”的问题,形成“多元化”的模式
多站式考核改变以往一张试卷决定最终毕业成绩的做法,客观上改变了以往医学教育多注重知识的传授,忽略能力的培养做法。使学生由被动的应付考试,变为积极主动地获取知识,灵活的运用所学的知识,对疾病错综复杂的临床表现进行综合分析,逻辑推理,鉴别诊断及临床技能操作,充分发挥其主观能动性和创造性。
经过对多站式考核不断深入地研究和探索,我们将会建立一套符合专业目标和教学大纲的要求,遵循医学影像学专业的特点及基本规律,将教学目的与考核内容、考核方式、考核途径及考核原则等要素形成有机的组合,形成多层次、多功能、操作性强的结构系统。使其既符合国际医学教育组织要求,又适合中国国情的医学影像技术多站式考核模式。
参考文献:
[1]白波, 李伟, 王家富. 高等医学院校素质教育中的考试改革[ J].中国高等医学教育, 2003( 3) : 15- 17.