发布时间:2023-09-24 15:39:10
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇石油化工基础知识范例,将为您的写作提供有力的支持和灵感!
在石化工业中,作为自动阀的安全阀是经常用到的一种安全泄压装置,是承压设备、容器和管线上的最后一道保护屏障,更是保证石油化工生产装置安全的重要措施。但很长一段时间以来,在石油化工装置安全阀工程设计中,我们往往较关注安全阀设定压力与排量的设计,对其管道的设计重视不足,其实,安全阀配管设计合理与否对安全阀能否在设定的压力与排量下工作影响极大,是确保安全阀正常运行的重要保证,基于此,本文结合实践经验,就石油化工装置安全阀的进、出口管道设计要点进行粗浅探讨,以供参考。
1 进口管道设计要点
(1)当被保护容器或管道内的压力高于安全阀整定压力,安全阀开始排放前,安全阀入口静压力即为容器内的静压力。当安全阀开始排放后,因安全阀入口内的动压头损失,安全阀入口静压力将小于容器内的静压力,此时若安全阀入口管线压降过大,安全阀入口静压力低于安全阀回座压力时,安全阀立即关闭,则此时入口管道内无介质流动,动压头损失为零。安全阀入口静压力回升到容器内的静压力,当超出其整定压力时又再次开启,如此,安全阀反复启闭,产生震颤,对设备造成一定损害。因此,为减免震颤的产生,保护设备,必须控制好安全阀入口管道的压力下降。一般而言,安全阀入口流体的压力降应低于安全阀整定压力的3%,流量应按照安全阀排放时通过安全阀的最大流量计算。在设计中,可采取如下措施减少压力降:一是安装安全阀时应尽量近被保护的设备或管道;二是管道或设备上的安全阀接管公称直径可等于安全阀入口管径,或者大于入口直径1~3级,其连接大小头的设置应以靠近安全阀的入口处为主;三是采用长半径弯头配管(R≥1.5DN);四是若采用先导式安全阀时,由容器或管道直接取压时,可不考虑入口管的压力降不大于安全阀定压3%的限制,但此时需设置两个分别接在主阀和导阀上的连接管。
(2)为避免完全阀误开启和因振动造成入口管道的损坏,对于一些大型设备振动源(如压缩机等),在设计中应尤为注意安全阀的设置位置,应安装在压力比较稳定、距波动源有一定距离的地方。具体可参照表1的参数。
(3)设计中,一般不在入口管道设置切断阀,若必须设置,为免阀杆及阀板连接的销钉松动或腐蚀滑板下滑而关闭阀门,应选用单闸板闸阀并铅封开启,水平安装阀杆。当安全阀设有旁通阀时,该阀应铅封关。为确保至少有一个安全阀能正常工作,设计中有时可设双安全阀,若几个安全阀共用一条入口管道,则设计中要确保入口管道满足几个安全阀的流量要求。
(4)为避免安全阀堵塞,设计时要考虑防堵问题,如采用蒸汽或气体反吹、蒸汽伴热等。对输送易凝结介质或腐蚀性介质的管道及设备,应在安全阀前加置爆破片,以免安全阀产生腐蚀或堵死现象,同时在安全阀和爆破片间增加检查阀,在计算安全阀通过能力时,要将爆破片对安全阀排放能力的影响考虑在内。
(5)入口管道坡度至少有5%,坡向被保护的系统,同时设计中应尽量避免袋形弯,若不能避免,则对于不凝介质,在袋形弯的最低点处应设计放净阀,对于易凝物质,在袋形弯低点设置连续流动的排液管连至同一压力系统,若凝液易变稠或成固态,则此排液管要伴热。
2出口管道设计要点
(1)化工生产中输送的介质多以易燃、易爆、剧毒、强腐蚀性流体为主,为减少对环境造成污染,设计中必须严格控制安全阀开启排放的流体,因此设计中应严格按照HG/T20570.2―95《安全阀的设置和选用》的规定,出口管道直径应不小于安全阀的出口直径。当多台安全阀向―个总管排放时,排放总管的截面积应保证能接受所有同时可能向其排放的安全阀的总排放量。
(2)安全阀背压过大,会造成开启压力偏差,流量下降,增加不稳定性,因此在设计中应考虑背压对阀的特性影响,按照安全阀的形式和整定压力以及最终的管道走向布置,核算背压是否符合规范要求。一般而言,对于弹簧式安全阀的普通型,背压不超过安全阀整定压力的10%;对于波纹管型安全阀,背压不超过安全阀整定压力的30%;对于先导式安全阀,背压不超过安全阀整定压力的60%。
(3)化工生产中输送的一些介质无害,可直接排向大气,对于排向大气的安全阀出口管端部可用三通,为使排出物直接向上高速排出,端部可切成平口,为避免冷凝液或雨雪等积聚在排出管处,设计中可在弯头最低处开一个6~10mm的泪孔,同时,设置放空管口时不可朝向临近的平台、设备、梯子、电器电缆以及人行通道;放空管口的高度应高出以安全阀为中心,半径为8m的范围内的最高操作平台3m;对有腐蚀性、易燃或有毒的介质,排放口要高出15m半径范围内的操作平台、设备3.5m以上;对于排放烃类气体的安全阀出口管道,应设置灭火用氮气管或蒸汽管,并在地面或楼面上控制,重组份气体的安全阀出口管道接火炬管网;气体安全阀出口管可设置为带排气管的,但为了预防在反力和位移的影响下弯头出口脱出放空管,设计中应考虑有足够的重叠尺寸。
(4)一般液体安全阀的出口须排入密闭系统,有些气体安全阀在某些条件下可能排液体时,也应排入密闭系统,此时安全阀出口应高于泄压总管,排放管须坡向泄压总管及分离罐,避免有袋形的配管,不能避免时在低点设置易接近的放净阀,排放管与主管连接时要从主管上部或侧面顺流向45度角插入。对可能有液化烃类排入的泄压管道,因介质气化而导致低温的管道,应采用低温钢并保温和伴热。对于有可能用蒸汽吹扫的泄压管道,应考虑到蒸汽吹扫产生的热膨胀。湿气体泄压系统排放管内不应有袋形积液处,安全阀的安装高度应高于泄压系统,若受实际情况限制,安全阀出口只能低于泄压总管或排除管需要抬高接入总管时,应在低处易于接近处设置手动放液阀,以免袋形管段积液。
(5)考虑到出口管的自重振动及热胀等力的作用,应在安全阀的出口管设 固定支架,支架位置应尽量靠近安全阀,经过管道应力计算后确定出口立管是否加导向架。多个安全阀排放汇集的总管,若排放介质中有高温、中压以上的工况,除进行汇集总管的大小计算以外,还应进行流速校核,管架及强度校核,包括应力计算。一般而言,安全阀进口管不设支架,但笔者认为当入口管段较长时,为降低对设备口的损害,进口管处也应设固定支架。
3 安全阀的反作用力
所谓安全阀的反作用力,是气体或蒸汽由安全阀出口排入大气时,在出口管中心线上产生的与流向相反的作用力。由于在物料泄放时,流体的流动会对排放管道产生作用力,并通过排出管道传至安全阀,进而以力矩的形式通过安全阀入口管道传至管道接管或设备接管,可能会对安全阀进出口管道和管道的接管或设备的接管、法兰产生不良影响,因此在设计中应考虑反作用力的影响,结合多年工作实践,为减小排放管的反作用力,可采取在安全阀排放管口上方设管套筒或消音器等措施来进行。
总之,石油化工装置安全阀对石油化工装置系统有着重要作用,而安全阀进、出口管道的设计直接关系到安全阀能否正常运行,因此在设计中必须加以重视,避免设计不当造成安全事故,切实保证整个石油化工系统的安全生产。
关键词:石油化;结构;设计
Abstract:
Petroleum chemical engineering design, steel tank is the necessary equipment. As designers, what we want to do is the basis of design storage tanks. The characteristics of large tanks is large in diameter, the load heavy, compared with general industrial foundation, the foundation and basic design and construction has its special requirements. Most of the storage tanks for cylindrical, according to the use function, can be divided into two kinds of storage tank and tanks.
Key words: the oil; Structure; design
中图分类号:TU276.7文献标识码:A 文章编号:
1 罐基础的设计,应具有下列工艺、安装、设备及总图等资料:
1、罐区平面布置及设计竖向标高,罐中心坐标。
2、储罐的型式、容积、几何尺寸、罐底坡高、及中心标高、环墙顶标高、设计地面标高。
3、罐区金属总重,保温及附件总重,罐壁、罐顶、罐底总重。
4、罐区内介质及最高储液面的高度、最高温度、介质重度。
5、罐区的罐前平台、排放口、沟、井、梯基础等辅助设施的位置及型式。
6、与储罐罐体有关的管道布置、预埋件、锚栓布置及罐周的排水设施。
7、储罐施工安装、试压等方法对罐基础的要求。
8、对罐基础的使用要求。
2 罐基础选型
罐基础的选型,应根据储罐的型式、容积、地质条件、材料供应情况、业主要求及施工技术条件、地基处理方法和经济合理性等条件综合考虑。当储罐基础座落在静流水源地及储存不可降解介质时,且储罐泄露物有可能污染地下水或附近环境时,储罐基础部分应采取防渗漏措施。
罐基础型式主要有护坡式、环墙式、外环墙式。本次所设计的储罐均位于山坡上,地质条件较好,而且不考虑地震,考虑到施工的方便,又节约用地,故决定采用钢筋混凝土环墙式基础。
3 环墙的计算
环墙可仅进行环向力计算,环墙式罐基础的环墙单位高环向力设计值按下式计算:
Ft=(rQwrwhw+rQmrmh)KR
3.1 环墙宽度
环墙宽度一般根据储罐容积大小(容积大则宽)和地基土的好坏(地基好可适当减小)及环墙设计总高度来决定,还应考虑环墙刚度能否适应可能出现的基础不均匀沉降情况(不均匀沉降大则要求环墙刚度大),储罐的类型(浮顶还是固定顶,浮顶罐要求环墙刚度大)和重要性程度。
为减少环墙不均匀沉降,假定环墙底面地基压力与环墙内侧同一深度处储罐底面地基压力相等,可推出环墙宽度计算公式,即《石油化工企业钢储罐地基与基础设计规范》6.1.1式,根据此式求得初步宽度后,根据储罐容积、地基土承载力、环墙高度、基础不均匀沉降可能性等因素,确定需要的环墙刚度,可适当调整截面宽度。
罐壁底端传给环墙顶端的线分布荷载当为浮顶罐时,应为罐壁的重量,当为固定顶罐时,应包括罐壁和罐顶的重量。有保温层时,也要计入。
3.2环墙高度
除考虑工艺安装标高和储罐基础周边高出设计地面至少30cm的要求,还要考虑最终沉降量而预抬高高度,环墙埋置深度还要满足《石油化工企业钢储罐地基与基础设计规范》8.1.9条,不宜小于600mm,在地震区,当地基土有液化可能时,埋深不宜小于1.0m。在寒冷地区罐基础埋深宜满足冻土深度要求。综合以上因素最终确定环墙的高度。
3.3环墙截面配筋
根据规范式5.2.3和式5.3.1计算即可。分充水预压和正常工作两种情况。按其中大者配筋。
关于留排污槽的环墙,缺口处环向力可根据环墙计算时得到的单位高度环向力计算出来,假定此部分力由加强筋承受,As=Ft/fy,我在外伸部分同样配置加强筋。因为此处应力集中,外伸部分也要按梁、板计算,经过计算发现,截面按构造配筋完全能满足要求,比我按加强筋配置法配筋要小。但为保险起见,对30000m3以上储罐环墙基础,还是要校核一下。
3.4后浇带
根据实际调查和计算分析,发现影响环墙内力的主要原因是环墙现浇混凝土的温差和收缩变形,这种因素是不容忽视的,特别是储罐直径较大,环墙的周长已超过规定的混凝土伸缩缝间距,再加上外露地面较高,以及配筋不恰当、施工时混凝土的水灰比较大等原因,引起环墙的裂缝。所以每隔30~40m留一处后浇带,宽度500mm左右,其间环向钢筋不得截断,待其他部分环墙基础施工完毕28天后,采用高一级微膨胀混凝土浇灌并振捣密实。
4 抗震设防的规定:
对储罐容积大于5x104m3的基础抗震设防分类应按乙类考虑;小于或等于5x104m3的油罐基础应按丙类考虑。
5 罐基础的构造
5.1 罐基础顶面,应自中心向周边做成15‰~35‰的坡度。当自己承载力及变形能满足要求或储罐容积较大时取较小坡度;不能满足要求或储罐容积较小时,取较大坡度。
5.2 罐基础顶面周边高出设计地面高度(不包括考虑最终沉降量而预抬高的高度)不宜小于300mm。
5.3 罐基础顶面,应设置沥青砂绝缘层,其厚度宜为80mm~150mm。中砂与石油沥青重量的配比宜为93:7.
5.4沥青砂绝缘层下面,应设置中粗砂垫层,其厚度不宜小于300mm。
5.5钢筋混凝土环墙宽度不宜小于250mm。环墙顶面应在罐壁向内20mm处做成1:2的坡度。罐壁至环墙外缘尺寸不宜小于100mm。环墙底部不应放角扩宽。
5.6钢筋混凝土环墙,应设置泄漏孔。泄露孔应沿罐周均匀设置,其间距宜为10m~15m。泄露孔的孔径为50mm,其进口处孔底宜与砂垫层底标高相同,并以不小于5‰的坡度坡向环墙外侧。泄露孔进口处应设置由砾石和粒径为20mm~40mm的卵石组成反滤层和钢筋滤网,出口应高于设计地面。
5.7钢筋混凝土环墙顶面,应设置厚度为20mm~30mm的1:2水泥砂浆或50mm厚C30细石混凝土找平层。
5.8钢筋混凝土环墙不宜开缺口,施工时当必须留活口时,其尺寸应尽量减小,环向钢筋应错开截断。罐体安装结束后,应采用比环墙高一强度等级的微膨胀混凝土立即将缺口封堵密实,钢筋接头应采用焊接。
5.9钢筋混凝土环墙的环向受力钢筋的混凝土保护层最小厚度(从钢筋外边缘算起),不应小于40mm。
5.10 钢筋混凝土环墙的配筋,应符合下列要求:
5.10.1向受力钢筋的截面最小总配筋率,不应小于0.4%。对于公称容积不小于10000m3或建在软土、软硬不一地基上的储罐,环墙顶端和底端宜各增加两圈附和环向钢筋,其直径应与环墙环筋相同。
5.10.2竖向构造钢筋的最小配筋率,不应小于0.15%~0.2%(每侧),钢筋直径宜为12mm~18mm,间距宜为150mm~200mm,竖向钢筋其上下两端宜为封闭式。
5.11环向受力钢筋接头,应采用机械连接或焊接连接。
5.12 钢筋混凝土环墙当圆周(中心圆)长度大于40m时,宜留宽度为900mm~1000mm后浇带,在保证钢筋连续的原则下分段浇灌,后浇带应采用提高一个强度等级的微膨胀混凝土浇灌并捣实或采取其它有效措施。
5.13 罐前操作平台的基础,应与钢筋混凝土环墙基础分开。
5.14 当储罐内储存介质最高温度高于90℃时,与罐底接触的罐基础表面应采取隔热措施。
5.15 储罐底板外周边应封口,封口应采用能适应罐底板变形的构造措施或材料,并应在储罐充水试压完毕罐体未保温前进行。
5.16钢筋混凝土环墙的混凝土强度等级,不应低于C25。环向钢筋宜用HRB335或HRB400级钢筋;竖向钢筋宜用HPB235或HRB335级钢筋。
6 地基处理
地基处理的目的,主要是改善地基土的水理性质和提高地基土的抗剪强度,改善土的变形性质,使其在上部结构荷载作用下,不致发生破坏或出现过大变形(绝对沉降和差异沉降), 以保证储罐的正常使用。为达此目的,须采取适当的对策来改善地基条件,这些对策主要包括下述四类:
1. 改善土的抗剪特性
2. 改善土的压缩性能
3. 改善饱和土的渗透性
4. 改善砂土的动力特性
经过20多年的开采,凝析气田目前已进入油田开发的中后期,井口产能随地层压力下降而下降,许多油井携液能力不足或无自喷能力,高压气减少,中压气、低压气增多,273装置原节流制冷工艺和增压气换热工艺已不能满足正常生产需要。随着低压气量增多,为满足下游炼化和民生用气,新增压缩机后,325装置来自井上的高压气逐渐减少,增压气量增多,致使增压气处理工艺不能满足生产现状。为了满足正常生产需要,简化工艺流程,提高设备的利用率和保护环境,故决定对两套装置进行优化。
1 生产现状及问题的提出
柯克亚集输首站目前拥有273、325两套天然气处理装置。
273装置始建于1987年5月,1988年7月竣工投产,设计天然气处理规模70万方/天,主要用于气田所产高压气和伴生气经压缩机压缩后形成的增压气的处理。高压气处理采用节流膨胀制冷、低温分离工艺。增压气处理采用外加氨制冷、低温分离工艺。两种工艺处理后的天然气汇合后经273输气管线外输。随着气田的开发,高压气逐渐变成中压气,273装置原高压气采用的节流膨胀制冷工艺已不再适用,经改造亦采用外加氨制冷工艺。由于增压气压力范围一般为4.8~5.5MPa,而中压气压力范围一般为3.4~4.0MPa,故增压气无法再和中压气进同一套装置生产,而改进325装置生产,于是273装置中增压气处理设备及工艺管线处于闲置状态,既造成浪费,又有碍于中压气系统操作,同时中压气处理部分流程还存在不合理,故273装置需要优化。
325装置为下游化肥厂的配套工程,于2000年12月竣工投产,设计天然气处理规模130万方/天,主要用于伴生气经压缩机压缩后形成的增压气的处理,亦采用外加氨制冷、低温分离工艺。随着气田的开发,伴生气增多,增压气亦随之增多,致使增压气冷却器的处理量不够而走旁通,从而增加了下段氨制冷系统的负荷,使氨机长期处于高档位运行;另一方面,低温分离器分离出的低温凝液需要升温,致使电磁加热器、凝液加热器满负荷工作,导致能量大量浪费。另外,储氨罐至氨蒸发器采用人工供氨,既增加了劳动强度,又无法达到平稳。故325装置也需要优化。
2 科学、针对性制定方案
2.1 工艺优化原则
(1)简化工艺流程,弥补现有流程缺陷。
(2)简化操作,降低劳动强度。
(3)有效回收能量,降低能耗。
(4)减少外排,保护环境。
2.2 研究制定工艺优化方案
2.2.11 273装置工艺优化方案
(1)拆除闲置的增压气处理设备和管线,简化工艺流程。
(2)将中压气低温分离器分离出的低温凝液在中压气预冷器中和进站天然气进行热交换,回收热量。
(3)中压气进预冷器前注醇、将“U”形管线截弯取直,防冻。
2.2 325装置工艺优化方案
(1)增加增压气冷却器,同时将低温分离器分离出的低温凝液引入和增压气进行热交换,既降低增压气进装置温度,减小氨冷系统负荷,又提高低温凝液温度,避免人为加热,降低能耗。
(2)拆除电磁加热器,简化流程。
(3)将该装置所产凝液输往273装置一同处理,同时将储氨罐向氨蒸发器供液氨由手动改为自动,以简化操作,降低员工劳动强度。
(4)将高压分离器凝液由进排污池改进273装置的污油罐(原缓冲罐),减少外排。
3 施工组织及方案实施
3.1 273装置现场实施优化
根据上述方案对273装置现场实施优化,具体为:
(1)拆除了增压气预冷器、增压气冷却器、增压气进料分离器、注入器、增压气低温分离器及其工艺管线,保留了压缩机来增压气进装置管线,并搭接于中压气进站管线上。
(2)将中压气低温分离器出口凝液管线与进料分离器出口凝液管线一起搭接于中压气预冷器,与进站中压气换热后进入三相分离器。
(3)中压气进预冷器前增加乙二醇雾化器,将中压气进料分离器至中压气换热器等多处“U”形管线进行了截弯取直。
3.2 325装置现场实施优化
根据上述方案对325装置现场实施优化,具体为:
(1)增加增压气冷却器一台,和原冷却器并联,同时拆除电磁加热器,将低温分离器凝液出口管线直接接进新冷却器管程。
(2)将该装置所产凝液由进其三相分离器或排污池改输至273装置的三相分离器或污油罐。
(3)将储氨罐向氨蒸发器供液氨由手动控制阀改为调节阀组,实现自动控制。
4 方案实施后效果分析
两套装置优化后,273装置已运行2年6个月,325装置已运行2年2个月,一切运行平稳,收到了良好的经济效益和社会效益。
4.1 经济效益
325装置增加了增压气冷却器后,实现了热量的有效回收利用,从而拆除了为低温凝液加热的电磁加热器,而且停用了一台老氨压缩机,为此节约了电力成本。
原电磁加热器功率75kW,每年冬季运行约4个月(计算按120天),老氨压缩机功率亦为75kW,每年夏季运行约5个月(计算按150天)。按目前工业电价0.44元/kW·h计算,则每年可节约电力成本:
0 . 4 4×7 5×2 4×(1 2 0+1 5 0)
/10000=21.384 (万元)
4.2 社会效益
(1)拆除了闲置设备,简化了工艺流程,使站场布局趋于简洁,操作更加方便。
(2)中压气一进273装置就开始注醇,同时将“U”形管线进行了截弯取直,防治了冬季管线冻堵,保证了平稳生产。
(3)325装置氨制冷系统实现连续自动供氨,减轻了员工操作强度。
(4)减少凝液外排,保护了环境。
关键词: 卡托普利;缓释制剂;体外释放度;制备
摘 要:目的 制备卡托普利缓释片剂. 方法 以体外释放度为筛选指标,通过三因素多水平的随机试验设计,比较研究不同的缓释材料(羟丙基甲基纤维素,黄原胶,聚丙烯酸树脂II号,乙基纤维素,十八醇)与工艺路线(粉末直接压片,湿法制粒,熔融制粒)的优劣,并在此基础上对填充剂(淀粉,乳糖,硫酸钙)进行筛选. 结果 最佳处方及制备工艺为:羟丙基甲基纤维素为缓释材料,粉末直接压片法为工艺路线,乳糖为填充剂.此外,聚丙烯酸树脂II号也具有较好的缓释作用. 结论 用优化的处方,工艺制备的三批卡托普利缓释片体外释放良好,符合Higuchi方程,持续释药12h以上.
Keywords:captopril;sustained-release preparation;dissolu-tion;preparation
Abstract:AIM To prepare captopril sustained-release tablets.METHODS With dissolution as the screening guideline,matrix materials(HPMC,XG,EII,EC,OA)and technical routine(direct compression method,wet granula-tion method,melting granulation method)were selected to design two-factor-multilevel complete random experiment.After these,the fillers(Starch,Lactose,CaSO4 )were sifted with the same guideline.RESULTS The optimal formula-tion and technology were as follows:H
PMC as the matrix material,Lactose as the filler and direct compression as the technical routine.Besides these,EII was also a rather good sustained release matrix material.CONCLUSION Three bates of Cap sustained release tablets prepared according to this optimal formulation and technology conform to Higuchi equation and the drug can be sustainedly released over12h in vitro.
0 引言
水溶性药物卡托普利(captopril,Cap)糖衣片或普通片,由于其生物半衰期仅为1.9h,需要日服3次,当摄入总量为37.5~75.0mg时作用仅可维持6~8h.单剂量po50mg,峰浓度可达600μg・L-1 以上[1] ,而其治疗浓度为50μg・L-1 .这种较大的峰谷浓度差别可能是引起眩晕,头疼,肠胃道紊乱等不良反应的原因.为减少峰谷差异及给药次数,减轻不良反应,有必要将其制为缓释剂型.国外已有Cap缓释胶囊上市[2] ,由于水溶性药物本身溶出很快,其释放较难被阻滞,国内尚无Cap的缓释品种上市.故借鉴国内外Cap缓释制剂处方、制备工艺[3-6] ,研制了Cap缓释骨架片.其经验对选择水易溶性药物的缓释材料,工艺路线等有一定的参考意义.
1 材料和方法
1.1 材料 LC-10AVP HPLC系统,配class-Vp色谱工作站(日本岛津公司);Model SF-83片剂释放仪(上海医械专机厂);ZP-19旋转式压片机(上海第一制药机械厂);羟丙基甲基纤维素(hydroxypropyl methylcellulose,HPMC,山东瑞泰纤维素公司);黄原胶(xanthan gum,XG,江苏金湖黄原胶厂);丙烯酸树脂II号(eudragit II,EII,江苏连云港制碘厂);十八醇(octadecyl alcohol,OA,分析纯,西安化学试剂厂);乙基纤维素(ethylcellulose,EC,山东瑞泰纤维素公司);淀粉(陕西黄河制药厂);硫酸钙(广东台山新宇制药厂);乳糖(河南焦作化工三厂);卡托普利(常州制药厂);其他试剂为分析纯.
1.2 方法
1.2.1 处方工艺筛选与随机试验 Cap易溶于水,要制备其缓释片剂,必须控制其在消化液中的释放度(30%70%)以确保制剂的生物利用度.故需选择最佳的片剂处方及工艺路线,以释放度为基础设计的综合评分Y值(Y=Q10h -[(Q2h -30)2 +(Q5h -50)2 ]1/2 )为筛选指标,对缓释材料(A)及工艺路线(B)进行了两因素多水平的完全随机试验设计[Tab1,2(1~9)],并在此基础上,固定A,B因素对C因素填充剂进行了筛选[Tab2(10~12)].为控制A因素的影响,各个缓释材料在片剂中的用量相同.其中综合评分Y值参考了法莫替丁缓释片综合评分的设计思想[13] ,并基于以下考虑,根据中国药典2000年版要求,缓释片应于2h时释放30%左右,5h时释放50%左右为宜,故以此作为Q2h 和Q5h 的期望值,[(Q2h -30)2 +(Q5h -50)2 ]1/2 反映了2h和5h时释放度的偏差,此偏差愈小愈佳;10h时应释放70%以上,Q10h 应愈大愈佳,故令Y=Q10h -[(Q2h -30)2 +(Q5h -50)2 ]1/2 可与释放度一起描述缓释片的体外释放情况.
表1 因素与水平的划分 略
表2 处方及工艺随机试验计算表 略
1.2.2 释放度测定 紫外扫描表明Cap在203nm处有吸收峰,但受波长影响大,吸收值不稳定,且某些辅料在此低波长下也有少量吸收,故参考美国药典 (USP24)采用HPLC法作为该药骨架片释放度的测定方法,检测波长:210nm,吸收值稳定;同时可将辅料与主药分离,避免辅料干扰测定.分别量取0.1mol・L-1 的盐酸溶液(人工胃液)750mL注入杯中,恒温(37±0.5)℃,采用浆法,转速50r・min-1 .取绕以等长等质量的不锈钢丝的药片投入杯中,开始计时,于设定时间抽取释放液2mL,同时补加人工胃液2mL,用0.48μm微孔滤膜过滤,弃去初滤液,留续滤液待测.2h时,取样完毕,并补充介质后,向杯中加入0.2mol・L-1 磷酸钠溶液250mL,使释放介质成为pH6.8的人工肠液.此后,同前于设定时间点取样,但补充介质为pH6.8的人工肠液.各时间点取样完毕后,即进样50μL测定,由标准曲线计算释放度.
1.2.3 体外分析方法 色谱条件色谱柱:Hypersil ODS C18柱(150mm×4.6mm,5μm),大连依利特科学仪器有限公司;流动相:甲醇∶水∶磷酸=350∶650∶0.3;检测波长:210nm;流速1.0mL・min-1 ;柱温:室温;进样量:50μL.标准曲线的制作精密称取Cap原料药(含量为98.9%)约为12mg于100mL容量瓶中,用溶出介质溶解后定容,得Cap母液.将此母液用溶出介质按1/2浓度逐步稀释,得到4~60mg・L-1 的一系列标准溶液,各进样50μL,将浓度(c,mg・L-1 )对峰面积(A)作回归,得c=0.74665+1.2586×10-5 A,r=0.9998.色谱方法评价经考察该方法在4~60mg・L-1 浓度范围内线性良好,专属性较高.辅料对测定无干扰,Cap的保留时间为5.035min.该方法高,中,低3个浓度的平均回收率为97.9%.相对标准偏差均小于2%.日内、日间精密度RSD均小于3%.方法的检测限为1mg・L-1 ,小于待测药物的量.
1.2.4 处方及工艺评价 根据初试结果,拟定最佳处方及工艺路线,填充剂,重复做3批样品,并对其释放度,重现性进行评估.
2 结果
根据实验设计,将12个处方的片剂分别按指定工艺压片,并测定其在2,5和10h的溶出样品,计算相应的累积释放百分率(Q2h ,Q5h ,Q10h )及各处方的综合评分(Y值)(Tab2).从而可得出各因素相应水平的综合评分均值(Tab3).
由Tab2和3中数据可知.以综合评分最高为判断标准,应选A因素的1水平,B因素的1水平,C因素的2水平,即A1,B1,C2.据此优化条件制备的3批样品片形佳,释放特性、重现性皆良好(Tab4).
表3 实验结果分析表 略
表4 样品累积释放百分率表 略
3 讨论
3.1 缓释材料 由Tab2和3可知,5种缓释材料均有不同程度的缓释效果,在5种缓释材料用量相同条件下,阻滞能力OA>EII>EC>HPMC>XG.即对水溶性药物的阻滞能力蜡质骨架片(OA)最强,溶蚀性骨架片(EII)及不溶性骨架片(EC)次之,亲水凝胶骨架片(HPMC及XG)较弱.但由于蜡质骨架片工艺(熔融制粒法)复杂,常温下粉碎很难达到粒度要求,且过筛制粒不易控制,工艺条件重现性差,造成缓释片质量不稳定,体外释放变异太大;而EC的5h累积释放百分率Q5h 偏离理想Q5h (50%)过大且成本太高,同样XG的2h累积释放百分率Q2h 太大,故将这3种骨架材料舍弃.EII的阻滞效果较佳,但仍需要调整其在处方中的用量.HPMC基本达到了理想的缓释效果,故选择它作为骨架材料.
3.2 工艺路线 由于骨架材料的性质决定OA只有工艺3可以使用,其余材料则可选择工艺1及2.OA的工艺复杂难于重现;湿法制粒虽然成熟,应用广泛,但由于骨架材料粘度均很大,存在制软材难,过筛难的问题,由于颗粒太硬,压片时,花片严重,片剂表面出现大量孔隙,加快了缓释片的释放,尤其是前2h突释严重.此外,由于难以得到性能较佳的软材,原 材料浪费高达30%~50%.而粉末直接压片较湿法制粒相应的释放度要小,且工艺简单,重现性好,原材料浪费很小,故选择粉末直接压片作为优选工艺. 3.3 填充剂 发现使用淀粉与乳糖作填充剂时,相差不大但用乳糖的片剂更洁白美观.硫酸钙易溶于矿酸,用作该片剂的填充剂时,导致片剂在介质中释放度过大,故最终采用乳糖作为该片剂的填充剂.
3.4 同类制剂比较 国外上市的Cap缓、控释制剂多为胶囊,其机制和工艺主要有:脂肪酸酯溶蚀性骨架小丸[4] ;将普通含药小丸包以不同厚度的Eudragit S100薄膜衣,再按适当比例混合装囊[5,6] ;或将熔融的含药固体分散体直接装囊而成[7] .在释放机制上,后两种更先进,但国内包衣技术不过关,又无适宜直接装囊术的设备,故无法实现工业化生产,本制剂机制与骨架小丸相当,而工艺更简单.与国内文献报道的缓释片[10,11] 相比,使用国产辅料,成本大大降低,采用粉末直接压片作为优选工艺,比湿法制粒,熔融制粒工艺简单,重现性好,适于工业化生产.
3.5 释放度测定 模拟人体胃肠pH环境进行实验,认为片剂服药后,开始2h在胃液中,2h以后过渡到pH较高的肠液中,这样有利于考察片剂的体内外相关性.虽然Cap在高pH值环境中降解较快[10] ,但仍不足以影响主药的释放度测定.
参考文献
[1]Zhong MK,Shi XJ,Wang HT,Zhang JH.The pharma-cokinetics of compound captopril tablets in healthy volunteers [J].Zhongguo Yiyuan Yaoxue Zazhi(J Chin Hosp Pharm),1997;17(8):339-341.
[2]Oozono H,Sato K,Yamada M.Controlled-release matrix con-taining polyglycerin fatty acid esters and oils [P].Jpn patent:1112195[9912,195].1999-01-19.
[3]Tsai T,San YP,HO HO,Wu JS,Sheu MT.Film-forming polymer-granulated excipients as the matrix material for con-trolled-release dosage forms [J].J Control Release,1998;51(2,3):289-299.
管道是设备或元件间介质传递的重要部件,是工业产品的神经。管道的设计是工业产品设计中最复杂、最繁琐的部分。石油化工装置是由机、泵、阀和塔、罐、容器等设备组成。按这些设备各自的功能,由管道将它们有机地结合在一起。
一、安全阀进口管道的设计
1.满足安全阀开启流速要求
安全阀按开启高度分类有微启式和全启式及中启式三种开启方式。
1.1微启式安全阀
微启式安全阀指阀瓣的开启高度是阀座内径的1/15~1/20。微启式安全阀的动作特性是比例作用式的。
1.2全启式安全阀
全启式安全阀是指阀瓣的开启高度是阀座内径1/3~1/4。全启式安全阀的动作特性属于两段作用式安全阀。
1.3中启式安全阀
中启式安全阀是指阀瓣的开启高度介于微启式与全启式之间。其动作特性通常相当于安全泄放阀。
对于液压系统上用的安全阀,采用微启式,而对大型石油化工工艺流程中用的安全阀,普遍采用全启式。安全阀的配管,入口管道直径不小于安全阀的入口直径;要求压力容器与泄压阀之间的所有管道和管件通孔的面积应与安全阀入口的面积相同。在一般设计工程中入口隔离阀的最小流道面积选用等于或大于安全阀的入口面积。
2.保证安全阀运行平稳、可靠
影响安全阀可靠运行的主要原因如下。
2.1入口管道的阻力降太大,安全阀产生颤振,安全阀既要满足正常的液流运行,又要防止容器和管道内的压力超压,起到保护作用。一般情况,安全阀设定的开启压力,为正常流程工作压力的1.15倍,排放压力为 1.05~1.15倍的开启压力。回座压力应 ≥0.8倍的开启压力。在国内外标准中均限制了入口管道的阻力降,且要求很严:国内标准 GB/T12241-2005《安全阀一般要求》、HG/T20570.2-95《安全阀的设置和选用》规定:入口管道的阻力降不大于安全阀设定压力(表压)3%。因此在任何情况下,该压力降都不得超过整定压力的3%或最大允许启闭压差的1/3(以两者中的较小值为准)。
结合 API标准,国内标准中的压力降应理解为管道总阻力降,包括:管道摩擦阻力降、管道静压力降、管道速度阻力降。管道摩擦阻力降由两部分组成:一部分是流体在管道内流动,由流体与管壁摩擦而引起的阻力降;另一部分是流体通过管件的变径、变方向的部位和阀门时引起的阻力降。由于管道进出口标高不同而产生的压力降称为管道静压力降。由于管道或系统的进、出口端截面不等使流体流速变化所产生的压差称为速度压力降。若安全阀入口管道的总压力降超过安全阀整定压力的3%,可增大入口管径以降低压力降。
2.2安全阀距离压力波动源太近影响安全阀的正常运行
通常安全阀应安装在受保护的设备或管道附近,这样到泄压装置入口所产生的压力损失会在允许的范围之内。但是,如果压力源处存在着压力波动,且压力的峰值接近于安全阀的整定压力,这时安全阀应安装在远离此压力源且压力较稳定的地方。在HG/T20570.2-95《安全阀的设置和选用》标准中对此有明确规定。
2.3管道应力对安全阀及其相连管道的破坏
核算在工作温度范围内管道是否需要补偿;同时要核算与安全阀入口管道相连的工艺管道热胀冷缩的长度变化。通常运用计算机来计算是否需要补偿,常用的软件为 CAESAR。
二、安全阀出口管道的设计
1.满足安全阀流速要求
由于石油化工流程中输送的介质大都为易燃、易爆、有毒有害、带腐蚀性液体,为防止环境污染。安全阀开启后排放的液体必须严格控制,在国内石油化工行业标准、国外ASME标准中也有相关要求。行业标准HG/T20570.2-95《安全阀的设置和选用》明确规定:安全阀出口管道直径不小于安全阀的出口直径;在ASME 第 VIII卷也有要求:推荐出口隔离阀的最小流道面积应等于或大于泄放阀的出口面积。因此安全阀管道设计时,排放管的通道截面积应不小于安全阀出口截面积。当多台安全阀向一个总管排放时,排放总管的截面积应保证能够接受所有可能同时向其排放的安全阀的总排放量。
2.保证安全阀运行平稳、可靠
2.1背压过大造成安全阀开启压力偏差,流量下降,不稳定性增加。背压是指由排放系统中的压力而在泄压装置出口处产生的压力,分为附加背压和排放背压。背压倾向于减小阀门开启的提升力,还会使安全阀产生颤振和频跳。在常规安全阀(非平衡弹簧承载式安全阀)使用中,附加背压为恒值时,可降低弹簧载荷以补偿附加背压,这时,建议排放背压不应超过允许的超压,当允许的超压为 10%时,排放背压不能超过整定压力的10%。在安全阀出口管道配置时,首先根据工艺流程图所给管径、安全阀的形式和整定压力以及最终管道走向布置,核算背压是否符合规范要求。一般总背压不大于 10%整定压力时选用非平衡弹簧承载式安全阀;总背压大于 10%整定压力,小于50%整定压力时选用平衡波纹式安全阀;当总背压大于5%整定压力时,可选用先导式安全阀。
2.2排放管道中静载荷以及排放时反作用力产生的入口应力。不正确的安全阀排放管道设计会产生应力并传递给安全阀及其入口管道。可通过正确的安装和支撑方式、合适的管道挠度设置来消除应力对系统的破坏。安全阀的排放系统分为开式和闭式两种,计算其应力分别采用不同的方法。
3.安全阀出口介质密闭排放
3.1安全阀出口管朝向向下,意味着安全阀的安装标高必须高于火炬气汇集管的标高,能自泄到排放总管内。
3.2安全阀的排放管道应坡向主管,尽量避免袋型弯,无法避免时,在低点要设易接近的放净阀,对于易凝汽体,在低点设蒸汽伴热管,以免积液。
3.3排放管与主管的连接,应顺介质流向45°角斜接到放空总管顶部,既可以防止总管内的凝液倒入支管,又可降低管路压力降,DN≤40的管子可以90°垂直连接。
3.4安全阀出口管道应妥善支撑,以防泄压时过大弯矩造成管道应力值超过许用应力范围,支撑方法应根据安全阀所在的设备或管道附属构件的具体情况而定。
3.5应防止出现任何可能导致排放管道阻塞的条件,必要时应设置排泄孔,以防止雨、雪、冷凝液等积聚在排放管中。安全阀的排放及疏液应导至安全地点,应特别注意危险介质的排放及疏液。
三、结语
安全阀为石油化工生产装置安全生产保驾护航,职责重大,其进、出口管道的设计关系安全阀能否正常运行。安全阀进、出口管道设计应该是比较复杂的,本文从满足安全阀流速要求,保证安全阀运行平稳、可靠等方面结合国内外相关标准对安全阀管道设计进行阐述,供设计同行以及石油化工生产企业参考。
参考文献
[1]HG/T20570.2-1995 安全阀的设置和选用[S].1996.
[2]王松汉等.石油化工设计手册:第4卷[M].北京:化学工业出版社,2002.