当前位置: 首页 精选范文 初中数学概念课教学

初中数学概念课教学范文

发布时间:2023-09-24 15:40:11

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇初中数学概念课教学范例,将为您的写作提供有力的支持和灵感!

初中数学概念课教学

篇1

初中数学概念本身具有判定特征与性质特征双重性质,判定性质有助于理清概念的外延,性质特征有助于认识概念的内涵。

初中数学教材出现的概念根据特征的不同可以分为四种:

1、具有"过程性"特征概念

此类概念的定义本身就反映了解决数学问题的过程或规定了操作过程。比如合并同类项、平均数等概念,这些概念隐含着运算操作过程。

2、具有"对象"特征概念

此类概念是一类对象的泛指。比如三角形、四边形、有理数等。

3、具有"关系"特征概念

此类概念反映了对象之间的关系。如互为相反数、倒数、垂直、平行、相切等,这些概念都反映了两个对象的相互关系,具有关联性、对称性、相依性。

4、具有"形态"特征的概念

此类概念直接描述了数学对象的形态,从形态上规定了概念的基本属性。一般而言,用"形如…的对象叫…"来表达此概念,比如函数,一次函数等。

概括而言初中数学教材出现的概念总的来说具有以下两种特点:

(一)是从现实生活中来,具有清晰的现实原型或直观模型,从心理学角度分析也就是概念的形成;

(二)是产生于已知的相对初级的概念,是在学生掌握概念基础上抽象而形成的,从心理学角度分析也就是概念的同化。

两大类概念也就对应着两种教学方式:

一、 概念形成

概念形成的过程是发现学习的过程。

1、 准备阶段

(1) 创设情境。

教师设计并提出一些与所要学习的新概念相关的问题或者提供一组所要学习的新概念外延的特例,这些特例中包含共同的本质属性。需要注意的是问题的个数要适当,既要能显现新概念的所有特征,又不要重复出现。比如讲单项式这个概念时,就设计如下几个问题:

填空,并观察式子的特点:

①边长为m的正方形的周长是_______,面积是_______.

②一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为_______千米.

③半径为b的圆的周长为______,面积为________.

④设a表示一个数,则它的相反数是_______.

观察得到的式子,将知识发生的过程清楚地展现在学生面前,同时也使学生对学习本章有一个感性的认识,为下一步概念的教学奠定基础.

(2)通过学生实验引入概念。

比如讲圆的概念时,教师指导学生固定钉子在纸板上,同时用铅笔拉紧绳子划线,最终得到圆。学生动手实验,可以在学生脑海留下深刻的印象。

2、归类阶段

学生独立或者以小组合作的形式,找出准备阶段问题的共同属性,逐步概括出概念的初步定义。

3、抽象阶段

教师进一步引导学生对所得出的初步定义进行实验、观察和比较,更准确的揭示出概念的内涵和外延,再给出准确定义。

4、类比阶段

分析相关概念的异同,明确其联系。用类比的方法找出容易混淆的概念的异同点,有助于学生区分概念,获取准确、清晰的认识

5、验证阶段

检验确认概念的本质属性,提供变式材料。通过对变式材料的辨析,可以更鲜明地揭示概念的数学结构,帮助学生摆脱概念的具体情境对概念的数学本质的干扰,促使学生对数学概念理解的"精致化"。同时变式材料还要强调概念"表达形式的可变性和数学结构的不变性"。比如在讲一元一次方程的概念时,就要出示这个变式材料:

下列式子是一元一次方程么?

2x2+5x=2-x+2x2。。。

6、转化阶段

把数学概念的文字语言转化为数学符号,找出关键词,帮助学生更好的理解概念。

7、框架阶段

把得到的数学概念放在相关的概念系中,建立一个全新的概念体系,帮助学生从宏观上理解概念,比如学完正方形后,就可以给学生建立这样的概念体系:

(1)框架表示,理清关系

(2)集合表示,突出关系

8、应用阶段

巩固概念,利用概念的定义,进行简单的应用活动。

9、升华阶段

用概念解决问题,要注意在概念的正用、逆用和变用中获得解决问题的方法。

二、 概念同化

1、呈现概念

①利用学生已有的知识经验引入概念。例如,在引入算法概念时,学生对二元一次方程组以很熟悉,强调求解一般的二元一次方程组的步骤就是算法概念,也就容易的多了。

②从概念的历史背景出发,激发学生的兴趣,如在引入平面直角坐标系的概念时,可以讲笛卡尔的故事,既激发学生学习数学的兴趣,又达到教育的目的。

2、概括概念

刻画定义,揭示概念的本质属性,揭示概念的内涵和外延,给出概念的名称和符号。

3、解剖概念

采用类比方法,加深概念的了解;使用对比,稳固概念的了解;数形结合,加深概念的了解。抓住概念的重点词进行概念教学。对概念进行特殊分类,揭示概念的外延。

4、联系概念

用概念解决问题,建立所学概念与其他概念间的联系。

篇2

一、引言

数学概念是学好数学的基本步骤.受传统应试教育的影响,大部分教师往往习惯于教授学生更多的解题技巧,造成了“重解题,轻概念”的不良教学与学习风气,结果致使解题技巧与数学概念难以进行结合应用,学生们自然抓不住题目的精髓,也很难进行进一步的知识探索.通过学习数学基础概念,有利于学生抓住数学题目的本质,并且运用一系列系统知识对答案进行分解与转换,从而更好地完成数学任务,提高整体数学水平.本文基于数学概念课程的重要性以及其本身的关键程度,对初中数学概念课程教学中存在的问题以及具体的应对措施进行了系统的阐述,并提出了深入的见解与具体的应对措施.

二、数学概念课程教学的意义

经过广泛的调查发现,在众多初中课堂的概念性教学中,如果教师能够很好地重视概念性的详细讲解与实`,并将数学概念合理地应用到具体的解题过程中,恰当把握概念与解题之间的关系.通过这种教学方式,不但能够使学生直接掌握基本数学概念,而且容易调动学生的学习积极性,充分展现“以学生为本”的基本教学理念,增强学生主体的思维力、创造力以及良好的应试能力,从而循序渐进地引导学生在学习中学会思考、学会发现、学会探索.

在此基础上,教师真正成为一名教学的引导者、实践者与传授者,因为有了基础概念的铺垫,教师在教授具体的题目应用时便会轻松很多.因此,教师可以在引导的基础上鼓励学生学会探寻、学会思考、学会举一反三,从而更有利于培养学生良好的数学学习素养,提高学生数学学习成绩,完成数学教学目标.

三、数学概念课程的教学问题浅析

在初中教学中,由于数学知识繁复杂乱,学生又面临升学的强大压力.因此,在进行实际的教学实践时,教师往往不自觉地将讲课重点偏向于习题的练习与讲解,而对于基本的概念便只是一带而过,从而导致学生对概念理解不清.具体看来,在数学概念性教学中,主要存在以下几个主要问题.

(一)教师对概念课程不够重视

初中数学概念往往繁多复杂,有许多重要的概念又有许多次要的概念,除了根据概念本身进行区分,教师的引导也起到了很大的作用.有的教师喜欢根据自己的理解为学生区分概念的重点,而不是从数学体系的完整性出发,就更谈不上结合学生的具体学习情况了.比如,笔者有一次随意性听课时,一位教师讲相交线时,对邻补角概念生搬硬套,没有去理解几何定义,抽象、归纳出这个定义的本质.有些核心的数学概念,就是可以反映数学现象、揭示数学本质的概念,是教师在教学过程中不容忽视的重点概念,比如,方程概念及其性质;而有些概念只在教材上出现过一次或者是很少出现,这种概念教师应该引导学生进行自主学习,比如,加权平均数中的权的定义.

(二)问题设置存在缺陷,学生学习质量不高

数学问题是学生学好数学的关键,教师要注意培养学生的“质疑”能力,养成良好的问题思维和问题意识.通过大量的调研发现,教师的问题设置质量不高,学生学习的积极性远远不够.教师布置课前预习,其实就是对数学概念的提前理解、深入思考.通过课前预习,学生可以借此机会认真研读教材的概念,根据自己所学发现问题、提出问题,从而解决问题,这就要求教师在进行问题设置时,要明确界定问题的针对性领域.

(三)数学模型引用不当

所谓学生的思维能力就是指在数学概念、数学公式、数学计算、数学应用技能的学习中,学生所能开发的最大思考力.数学概念是对客观数学关系进行抽象的整合、概括的结果,因此,在教授数学概念时要格外注意通过具体的习题案例引导学生进行分析、掌握,从而启发学生的思维能力.比如,教学同底数幂的乘法时,可以采取探究法和类比的方法.目前,数学教学缺乏具体的实践模型,学生凭空想象一个数学概念,思维能力自然得不到很好的启发,也不可能提出针对性的创新见解.

四、数学概念课程的教学对策研究

(一)教师要培养系统的概念课程思维

教师在进行具体的概念课程教学时,首先要从整体上把握该概念在整章中的重要价值,再根据概念的价值性进行系统的教学.例如,对于极其重要的反比例函数的应用,教师在进行授课时,首先,要具体讲解反比例函数的性质,然后,根据反比例函数的性质,为学生们讲述反比例函数在实际应用中的具体应用.将应用中所表达的具体含义形象地转化成数学语言,用正确的数学符号将题目正确地解答出来.另外,反比例函数图像性质的具体理解是解答实际应用的基础,因此,教师必须对此进行系统的讲解,形成一个完整的网络体系,使知识环环紧扣、无限延伸.

(二)整合新旧数学概念,提高问题设置质量

初中数学知识容量大、视野广,知识繁多且不易掌握.在初中三年的学习过程中,学生会学到诸多的数学基础概念,其中不免有许多极其相似、容易混淆又难以具体区分的基础概念.因此,在学习过程中要格外注意以前学过的数学概念与新知识之间的结合.比如,在讲解“各种方程”概念时,教师要注意重点讲解一次方程与二次方程的基本不同,要注意两者概念之间的具体联系,形成基本的概念体系并且教授给学生.让学生在原有概念理解的基础上,对新概念进一步区分,并且抓住学习重点,引导学生融会贯通,对数学概念做到充分的理解.

(三)结合实际,具体应用

数学是一门研究数量关系和逻辑符号的科学,具有抽象性、应用性和复杂的逻辑思维性.初中数学的抽象性更加明显,在学习数学的过程中,如果学生不能充分理解数学概念的深层含义,将会对数学题目的解答造成很大的困扰.数学知识源于实际,同时又高于实际,怎样更好地做好概念性教学,一个基本的教学准则就是将所教概念进行合理的转换,将其与具体实际相结合,让学生对数学基本概念进行实际的应用.比如,在学习第一章“有理数”的相关概念时,教师可以形象地将有理数与加减法充分结合起来,再引入符号进行实际计算.通过具体例子的具体讲解,使学生能够更加直观地了解到相关概念的实际意义,便于学生开展新的学习内容,提高整体学习效率.

(四)合理建模,因材施教

由于数学概念的重要性不同,学生的实际学习水平不一,因此,在进行具体的概念课程教授时,要根据学生不同的掌握水平建立合理的数学模型,对学生做到因材施教.比如,对于成绩较差的学生要先引导其掌握基本概念,对于理解能力强、分析透彻的学生,教师要引导其在理解概念的基础上进行深入的探索,掌握概念的应用以及实际的习题训练.比如,对于等腰三角形,我们要从边来看,也要从角去判断.这是从形上和数量上来看,体现数形结合和分类讨论,也是几何学习的一大通类,从形上定义和数量(位置)上理解.

五、结语

数学概念课程在初中数学教学中起到了决定性的作用,抓牢数学概念不仅有利于数学知识点的有效整合,更有利于数学成绩的整体提高.因此,本文结合初中学生具体学习情况,对数学概念课程的教学进行了具体有效的研究.旨在从根本上打牢学生的数学学习基础,从而提高数学成绩,培养学生灵活的数学思维和完备的数学技能.

篇3

2.教学现况 学生方面:年龄、生活经验和智力发展等方面的限制,不容易接受教材中的所有概念,学生花大量时间学数学,但数学基础仍很弱。教师方面:把握不准中学数学概念的核心,对概念所反映的思想方法的理解水平较低;不知如何教概念或忽视概念教学的重要性,导致教学缺乏必要的根基。

3.时代背景 广东实施新课改以来,对教师提出更高的要求。强调在教学中,要以学生为主体,教师为主导的教学理念,强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构。

二、初中数学概念课教学案例剖析

下面以省骨干培训名师工作室赵连华老师主讲《圆的有关概念》“圆的定义”一课教学为载体,谈谈笔者对初中数学概念课的教学分析。

圆的两种定义:

(1)(动态定义)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

(2)(静态定义)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形。

1.恰当的教学手段,体验概念的形成过程

概念的形成阶段,教师可以通过大量典型、丰富的实例,让学生进行分析、比较、综合等活动,揭示概念的本质。采用恰当的教学手段,激励学生实现对概念的理解。

为帮助学生获得感性认识,赵老师要学生课前准备了小图钉、铅笔和一条长度为定长的细线。在课上,老师让学生亲自动手感受圆的形成过程,得到圆的第一个定义(动态定义)。

赵老师为了得出圆的第二个定义(静态定义),采用了探究发现法,设计如下:

提问:同学们,你们在所画的圆中还发现了什么?(赵老师让学生小组讨论后,学生发言)

学生甲:老师,我发现,圆是由圆心与半径决定的。

学生乙:老师,圆上有很多点,这些点到圆心的距离都相等。

学生丙:老师,圆心到圆上的点距离都相等,而且都等于半径。

学生丁:老师,我发现,圆外、圆内的点到圆心的距离都不等于半径。

……

赵老师在总结了学生的发言后,指导学生得出了圆的第二个定义。

老师通过学生探究、讨论、发现,充分调动了学生的积极性,体现了以学生为主体的教学理念,体现了学生对知识的探求和发现过程以及认知主体作用,既培养了学生的实践能力和创造能力,又培养了学生的探索精神,从而加深对新概念的理解和记忆。

2.淡化概念表述,抓住概念内涵

赵老师在让学生充分感受圆的形成过程都是直接给出圆的两个定义,而没有让学生自发表述。

新课标指出,初中数学概念教学,有些数学概念表述需淡化,抓住概念内涵才是关键。对于圆的第二个定义,初中生所储备的知识结构中缺乏“定点”、“定长”和“集合”等观点,也不知道这些词语在定义句子中的语法功能。如果太强调概念表述,就会增加学生的负担,增加学生的理解程度,从而降低学生学习的信心。概念教学的本质不是低水平的概念言语连锁学习,而是要帮助学生获得概念的心理意义,即形成概念内涵的心理表象,或者说建构起良好的概念图式。

3.应用概念,巩固“双基”,提升数学能力

数学概念是数学知识的基础,是数学教材结构的最基本的因素,是数学思想与方法的载体,是进行数学推理和证明的基础和依据。正确理解数学概念才能让学生学好基础知识和掌握基本技能。反过来,通过一定的双基训练和综合训练,对理解概念、巩固概念,挖掘概念内涵和外延有重要的作用。

三、初中数学概念教学处理策略

为了帮助学生透彻理解并掌握所学的数学概念,教师在教学中可以用以下四个方法处理:

1.剖析法

有些数学概念是借助于数学语言符号来表达的,其用语、用词非常精炼,具有高度的概括性。对这些概念,教师必须抓住概念中的关键词进行解剖分析,揭示词、句、符号、式子的内在含义,使学生深刻理解概念的本质属性。

2.变式法

变式是指概念例证在非本质属性方面的变化。利用变式的目的是通过非本质属性的变化突出本质属性,使学生获得的概念更精确、更稳定。

3.类比法

数学中有许多是平行相关的概念,如果将它们有机地联系在一起进行类比,就可以收到由此及彼的效果;有些概念之间,联系紧密,差别较小容易被学生混淆。对这些概念让学生比较它们的内涵和外延,在比较中加以鉴别,澄清模糊。

例如,正比例函数与反比例函数的定义;一次函数与二次函数的概念;平行四边形与梯形的定义;等腰三角形与等边三角形的概念;不等式的解与方程的解的概念;等式■=|a|与(■)2=a的含义;全等三角形与相似三角形的概念;有理数与无理数的概念;平方根与立方根的定义等。

篇4

数学概念课是通过各种数学形式、手段,揭示和概括研究对象的本质属性,引导学生把握某类事物的共同属性的关键特征,解决好概念的“内涵”与“外延”的认识和理解. 数学概念课是数学的常见课型,也是教学的难点,一般推理过程复杂,学生理解较难. 以往数学概念教学中存在着抓不住数学概念的核心,在学生没有基本理解数学概念和思想方法时就进行大量解题操练,导致教学缺乏必要的根基,教学活动不得要领. 因此,数学概念教学需要学生更多地动手操作,需要通过形象的演示推导出概念.

交互式电子白板可以与电脑进行信息通讯,并利用投影机将计算机上的内容投影到电子白板屏幕上. 利用特定的定位笔代替鼠标在白板上进行操作,可以运行任何应用程序,可以对文件进行编辑、注释、保存等在计算机上利用键盘及鼠标可以实现的任何操作.

交互式电子白板与数学概念课教学的有效融合并不是将技术手段与学科教学简单叠加,而是按照各自的知识体系、特点进行无缝融合,是通过将信息技术有效地融合于数学概念课的教学过程,来营造一种新型的教学环境,实现一种既能发挥教师主导作用,又能充分体现学生主体地位的以“自主、合作、探究”为主的新型教学方式.

利用交互式电子白板的形象性、互动性、生成性等特点与数学概念课的有效融合,能更形象地向学生展示推理的过程,能更多地让学生在电子白板上操作,增强对数学概念的认识与理解.

教学案例

“你的判断对吗”

教学目标

1. 让学生亲身经历一些观察、操作等活动,并对获得的数学猜想进行实验验证,体验直观判断有时不一定正确,从而尝试从数学的角度运用所学的知识和方法寻求证据、给出证明.

2. 使学生初步体验证明说理的方法和重要性.

3. 引导学生在交流中感受数学思考的合理性和严密性,从而培养学生在生活、学习等过程中处理问题应认真分析,有理有据,切勿跟着感觉走,养成以理服人的良好品质.

教学重难点

重点:亲身经历观察、操作、猜想等活动,体验直观判断有时不一定正确,从而体会说理证明的必要性.

难点:尝试从数学的角度运用所学的知识和方法寻求证据、给出证明.

学情分析

本章是在前面对基本图形有了一定的直观认识的基础上设计的,目的是通过生活中、数学中的具体例子,使学生认识到仅凭观察、实验、归纳、类比得到的结论,其正确性有待确认,得到合乎逻辑的推理证明是必要的这一共识,从而进一步发展有条理地思考与表达的能力,并初步感受公理化思想.

本节课是命题说理证明的预备课,起着承上启下的作用. 本节课的教学主要通过学生身边熟悉的一些情景实例,让学生通过亲身体验,如线段的长短比较,正方形拼图等,通过活动的体验使学生亲身感受观察、实验、操作得到的结论常常是正确的,但仅凭观察、实验、操作是不够的,有时甚至是错误的. 所以亲身发现、观察事物和分析评价时,不能仅靠直觉观察等方法,还应有严密的推理证明,并进一步尝试从数学的角度运用所学的知识和方法寻求证据、给出证明.

教学反思

通过应用交互式电子白板的使用,突破了传统数学几何课所不能攻克的操作验证的难点,尤其是对图形进行叠加法验证是否全等,开放性的多方法验证等问题.

与传统课堂的教学相比,应用交互式电子白板的课堂教学,不仅能最大限度地激发学生的学习兴趣,还触发了学生自主学习、探索求知的欲望.

篇5

一、生动恰当的引入概念

每当学生用一个新的概念时,教师都应让其感到有必要学习这个概念,从而使他全身心地投入到下面的学习中去。要做到这一点有时并非轻而易举,而是要费一番周折的。因此,合理地“引入”就显得尤为重要。

1.以史为引。

在讲授新概念时,教师结合课题内容,适当引入数学史、数学典故或数学家的故事,往往能激起学生的学习兴趣、热情。如讲“无理数”时,教师可由无理数的发现者希伯索斯捍卫真理的英勇故事引入等。

2.以旧带新。

在数学中有很多概念和以往学习的旧概念有密切的联系。因此,在学习这些概念时,教师可在复习旧概念的基础上类比引入新概念。如在讲“一元二次方程”概念时,教师可先复习一元一次方程的概念,让学生理解什么是“元”和“次”,接着写出一个一元二次方程如x2+2x-1=0,让学生将其与一元一次方程进行比较,找出异同,从而得出一元二次方程的概念。这样既自然,又利于学生理解、记忆。再如不等式可类比方程引入,分式可类比分数引入,等等。

3.猜想导入。

“数学的发展并非是无可怀疑的真理在数学上的单纯积累,而是一个充满了猜想与反驳的过程”。因此,在概念引入时,教师应让学生依据已有的材料和知识作出符合一定经验与事实的推测性想像,让学生经历数学家发现新概念的最初阶段,以培养学生敢于猜想的习惯,形成数学直觉,发展数学思维。

4.从“需要”入手。

有的概念可以从解决数学内部的需要来引入,如“负数”概念的教学,教师可以从温度计上的零下温度入手,引导学生感知现实生活中存在比零更小的数,但用以前学过的数无法表示出来,产生了思维冲突,从而有必要引入“负数”这一比零更小的数来表示这一部分数,导入自然,恰到好处。

5.直观操作导入。

实践出真知。手是脑的老师,学生通过动手操作、实践,往往可以理解一些难以理解的概念。因此在教学中,教师可密切联系数学概念在现实世界中的实际模型,通过对事物、模型的观察、操作、比较、分析,进而自然地引入概念。

二、自主合理地形成概念

从学生学习数学概念的心理过程来看,概念的形成大致有概念同化和概念形成两类。其中概念同化是指学生以原有知识为基础,教师以定义的方式直接向学生揭示概念的方式;概念形成是指从大量的具体例子出发,从学生肯定经验的例证中,以归纳的方式概括出事物的本质属性。

但是,初中生已有的认知结构还不够充分,知识经验还很贫乏。显然,概念同化的方式对其是不适的。所以,初中生掌握概念的典型方式还是概念形成。因此,在具体的教学中,教师应重视概念的形成过程。此环节教师绝不能包办代替,应让学生积极、主动地参与概念的形成过程。

三、准确、无误地理解概念

1.语言表述要准确。

概念形成之后,教师应及时让学生用语言表述出来,以加深对概念的印象。语言作为思维的物质外壳,教师可从学生的表述中得到反馈信息,了解、评价学生的思维结果。如概括圆的定义时,有的学生会漏掉“在同一平面内”这个条件;讲分式的基本性质时,有的学生会了“零除外”这一条件等。教师让学生自己把这些概念表述出来,及时发现问题,并加以纠正,给学生一个准确的表象,这样既能培养学生的语言表达能力,又能发展他们的思维能力。

2.揭示概念的外延与内涵。

数学概念的内涵是指概念所反映的数学对象的本质属性,反映的是“质”的方面,如“由不在同一条直线上的三条线段首尾顺次连接所组成的图形”、“两边之和大于第三边”、“内角和为180?”等都是“三角形”这一概念的内涵。数学概念的外延是指数学概念所反映的对象的数量或范围,反映的是“量”的方面。如锐角三角形、直角三角形、钝角三角形是“三角形”这个概念的外延。充分揭示概念的内涵和外延有助于学生加深对概念的理解。

3.加深对表示数学概念的符号理解。

数学概念本身就较为抽象,加上符号表示,从而更加抽象化,因此教师必须使学生真正理解符号的含义。如有学生会将sin(-θ)中的记号sin与(-θ)认为是相乘而错误地理解为sin(-θ)=-sinθ中左边的符号是提出来的,所以教师要一开始就帮助学生正确地理解这些符号的意义,尽量克服学生发生类似的错误。

四、在灵活运用中巩固概念

巩固是概念教学的重要环节。心理学原理告诉我们:概念一旦获得,如不及时巩固,便会被遗忘。除了正确复述之外,教师还要引导学生在灵活运用中发展巩固相应的概念。

1.尝试错误,巩固概念。

每一个数学概念都有这样或那样的限制条件,如果忽略了这些条件就可能导致解题的失误。因此,学生巩固概念时可以允许适当“示错”,以加深印象,从而真正认识概念的本质。

2.利用变式,巩固概念。

所谓变式,就是教师使提供给学生的各种感性材料不断变换其表现形式,使非本质属性时有时无,而本质属性保持恒在。在几何教学中教师常常采用“标准图形”,学生就有可能把非本质的属性如图形的位置、大小等当作本质属性,而造成错误。恰当运用变式,能使学生的思维不受消极定势的束缚,实现思维方向的灵活转换。

五、在概念系统中深化概念

数学是一门系统性很强的科学。布鲁纳说:“获得的知识,如果没有圆满的结构把它联在一起,那是一种多半会被遗忘的知识。一连串不连贯的论据在记忆中仅有短促得可怜的寿命。”因此,在每一教学单元结束后,教师要及时进行概念总结,在总结时要特别重视同类概念的区别和联系,从不同角度出发,制作较合理的概念系统归类表。这样不但可使学生的知识、概念网络化,而且可培养学生的综合能力。

总之,概念教学是初中数学教学的重要环节,教师在平时的教学中要加以足够的重视,并遵循一定的教与学的规律,不断探索、不断创新,这样一定能收到意想不到的教学效果。

参考文献:

友情链接