发布时间:2023-09-24 15:40:38
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇工程结构优化设计范例,将为您的写作提供有力的支持和灵感!
中图分类号:TU2 文献标识码: A
引言
最优化设计的初衷在于从所有可能的设计中寻找最佳的设计进而促进目标的实现,这个寻找最优方法的过程就是最优化设计。工程结构优化设计就是指将力学概念与优化技术加以结合,然后在设计要求的指导下,将参与工程计算的部分参数以变量的形式出现在方案的设计中,然后再通过数学计算方法完成能够实现既定目标而且行之有效的方案的搜索,实践经验显示,采用优化了的工程结构方案可以最大限度地实现施工周期的压缩和工程质量的提升,与原来的施工方案相比较,可以降低将近三成的施工造价。
一、现代环境中的工程解耦优化设计
1、多目标优化
多目标优化过程中所考虑的优化目标不是单一的。一般情况下各目标函数之间往往相互矛盾,比如要取得好的安全性,就要求结构的截面面积要大,而为了取得最少重量,又要求截面面积较小。因此不存在使所有目标都达到最优的“绝对最优解”,只能求得“满意解集”,由决策者最终选定某一个满意解作为最后定解。实际工程中,多目标优化一般用于工程系统决策,即在工程决策方面先采用多目标优化进行方案确定,
再优化各个分目标。不同的优化设计数学模型有不同的求解方法。主要有以下几种方法:一是约束法。在多个分目标中选择一个为主目标,对其余分日标给出希望值,进而转化为单目标优化问题求解。二是功效系数法。将各分目标的“坏”价值用统一的功效系数表达,而后采用几何平均构成评价函数,进而转化成单目标优化问题求解。三是评价函数法。采用线性加权、平方和加权等方法将分目标函数综合成一个总函数进而转化为单目标优化问题求解。四是目的规划法。希望值与真实值之间的差值称为约束偏差,以约束偏差和目标偏差的某种组合作为总函数进而转化为单目标优化问题求解。五是多属性效用函数法。实际多目标优化时往往得到的不是某一个最优解,而是最优解的一个集合,再在这个集合中选出需要的最优解。为此可应用效用理论建立决策者的效用函数(曲线),按此曲线从有限解集中选出最终的合适方案。
2、拓扑优化
相较于形状优化,拓扑优化的优势在于可以在施工的初始阶段找到最佳的施工布局的方案,实现工程施工过程中的经济效益的提升,而且由于设计简单方便,为众多设计者接受和认可,在拓扑优化中,拓扑变量主要有两种,分别是连续型变量和离散型变量。
2.1 离散变量拓扑优化。1964年,Dom等以结构节点、支座点及荷载作用点为节点集合,集合中所有节点之问采用杆件单元连接的基结构,并以内力为设计变量,以应力为约束函数,建立单工况线性规划优化设计模型。该法计算效率较高,但不能应用于多工况和有位移约束的优化设计问题上。Dobbs等以截面面积为设计变量,采用最速下降法(steepestdescentmethod,SDM)成功地解决了多工况应力约束下桁架结构的拓扑优化问题。Kirsch等提出了两阶段算法,第一阶段以杆件截面积和赘余内力为设计变量,不考虑位移约束和变形协调条件,将离散变量拓扑优化转化为线性规划优化设计;第二阶段考虑所有约束,在已有的拓扑结构上,将离散变量拓扑优化转化为非线性规划优化设计。Lipson等建议在多l况下以杆件内力为准则来判断应删除的杆件。
2.2 连续变量拓扑优化。连续变量拓扑优化设计是一种0―1离散变量的组合优化问题。其基本思想是将设计区域离散为有限网格,根据相应的准则,删除某些网格。其主要方法有:均匀化法、变密度法和变厚法。均匀化法以微结构的单胞尺寸为设计变量,以单胞尺寸的增减实现微结构的增删和复合。其特点是:数学理论推导严密,可获得宏观的弹性常数和局部应力应变,容易收敛到局部最优解,计算量大,求解的问题类型有限,容易引起棋盘效应。
3、形状优化
该种优化是以对工程的边界进行调整的方式实现工程造价的降低和施工性能的提升,主要用于合理的系统构件的边界形状的挖掘,也具有两种方式,即连续性形状优化和离散型形状优化。
连续型形状的边界通常用曲线或者曲面来描述,在采用数值法进行优化设计时可以应用发展相对成熟的约束线性法进行,比如GRG和SQP法,在利用解析法进行泛函分析时可以得到优化函数的变形,从而导出满足最优解要求的形状函数,当然了,以上两种计算方式的使用顺序并没有严格的限制。
离散型形状优化通常是以节点坐标在几何空间中的变化为基础的,而且对于尺寸和形状的优化要求比较高,其设计方法也有两种,一是把两种变量一起处理,再进行无量纲化,此种计算方法的优点是可以实现对两种变量的同时考虑,但缺点是工作量比较大;另一种方法是将尺寸和形状优化拆分为两个层次进行优化,并在优化的过程中对两个参数进行交替变化,这种计算方法的优点是得到较大规模的求解问题规模。缺点是对形状和尺寸的耦合能力较差。
二、探索新的工程结构优化设计的思路
通常而言,工程结构优化设计主要包括三种,分别是现代优化算法、数学算法和最优算法,其中最优算法对于问题的考虑相对来说比较具有局限性,因此需要采用不同的原则对不同性质的约束进行计算,得到的结果也不是最优的,数学算法由于其巨大的计算量而使得结果的收敛比较慢,因此诞生了现代优化算法,在科技的不断发展的过程中,随着人们对自然的认识的加强,已经逐渐的开始应用仿生学的原理进行新的更加优质的算法进行计算,比如神经网络算法和遗传算法。
神经网络算法主要是由大量的神经元通过某种规律继续拧连接从而形成新的仿生学的网络,利用的是相对比较简单的线性神经单元为基础实现工程结构的优化计算,在工程结构优化领域中,首先提出神经元的数学模型的是法国的心理学家W.S.McCuloch,进而引导人们进入了神经网络的研究,此种算法能够比较准确地反映出神经网络对于知识的摄入能力和表达能力。其优点在于具有较强的运算能力和适应能力,而且对于非线性的映射能力比较强,但是这种算法容易陷入对最优解的求解中,具有非常大的计算量。
遗传算法是对于自然淘汰和遗传选择的模拟,此算法的优势在于具有较强的解题能力,缺点是操作与计算的随机性比较大,在工程结构中,遗传算法主要应用于框架结构和网络结构等的优化,比如将遗传算法应用于地震灾害的预测中,可以建立有效而准确的桥梁结构的保护措施。
三、结束语
总的来说,工程结构的优化设计的发展经历了从尺寸优化到形状优化再到拓扑优化的不同的阶段,从目标方面来看,经历了从单目标到多目标的转化,实现了结构优化的确定性与不确定性的转变,脱离于传统的算法和准则,向着仿生学的方向迈进,进而促使工程结构优化向着更高的方向发展,不论是数学计算法还是最优准则法,或者是仿生学算法都存在着一定的局限性,在进行实际的工程操作的时候需要针对实际情况研究和确定最佳的算法,不过,在工程结构优化设计过程中,对于目标函数的寻找和约束函数的精度的控制仍然是结构优化发展的重要方向。
参考文献
[1]赵同彬,谭云亮,王虹,孙振武,肖亚勋.挡土墙库仑土压力的遗传算法求解分析[J].岩土力学,2012(04).
1.高层建筑混凝土结构
在我国城市建设中常用的建筑结构主要有钢混结构、组合结构、智能建筑、新型材料结构等几种,下面我就逐一进行分析。
1.1钢筋混凝土结构
钢筋混凝土结构式目前建筑工程中涉及最广的建筑形式,它有着刚度大、整体性好、耐久性强、维修简单、成本低廉的特点。我国目前的钢筋混凝土技术在不断发展,高强混凝土、纤维混凝土、轻型混凝土都在建筑工程中被广泛应用,并且施工水平已经达到了国际先进水平,这更加加大了钢筋混凝土结构的适用性,使其发展成为了房屋建筑工程的首选结构形式。
1.2组合结构
组合结构的诞生不仅是一场技术革命,更使整个建筑行业像前迈进了一大步,结合结构使建造超高层建筑的设想成为可能。组合结构不仅有传统钢筋混凝
土的所有优点,并且在材料使用上相对节省,这对提高施工进度,降低施工成本都起到不可替代的作用。组合混凝土在施工中使混凝土本身经过三轴受压的状态,使自身的承载能力得到提高,并且组合结构混凝土可以取代很多钢结构和混凝土结构的应用,这直接降低了建筑物的自重,为超高层建筑的设计提供了理论支持。
1.3新型结构
传统的高层建筑分为框剪结构、剪力墙结构、框架结构三种,而随着建筑结构学研究的不断深入,诞生了以筒体为结构的新型结构形式。筒体结构主要分为筒中筒体系、框筒体系、和多束筒体系。新型结构筒体与传统平面结构有很大的不同点,首先它的抗位移能力和承载力要大于传统结构,它将水平力看成固定在基础上的悬臂结构。所以这种结构形式在功能性强、应用范围广的建筑施工中多有使用。
1.4智能建筑
智能建筑是高科技的产物,它在施工技术、工程材料、工程检测方式上都与传统建筑有着很大的区别,但就目前发展来看,智能建筑是未来建筑发展的主体。智能建筑的几大优点集合在建筑结构、内部系统、适用范围等方面。它直接为使用者提供了一个安全、快捷、舒适的使用环境。
2.高层建筑结构设计的基本原则
建筑结构在设计中必须以实用、便于施工、安全可靠为设计点进行设计,通常情况下要满足以下几大原则:
2.1结构安全
建筑的结构必须满足在使用年限中可以承受的各种情况,一旦在使用过程中出现了不可抗拒力的破坏,建筑的结构必须保证稳定性,不至于直接倒塌。
2.2可施工性
不论任何设计,必须在设计的过程中将施工问题首先进行考虑,如果设计标准与实际施工背道而驰,在好的建筑设计业不可能转化为实体建筑,来为我们服务。
使用寿命。当建筑物投入使用后,建筑物的必须满足设计年限中的使用要求,不能再无外力扰动的情况下出现裂缝、变形等质量问题。
3.高层建筑混凝土结构设计易出现的问题
在高层建筑结构的设计中需要考虑的问题很多,尤其是高层建筑中的钢筋混凝土结构的设计。
3.1结构选型问题
在新执行的规范中对建筑的结构选型设计增加了很多限制性,首先限制了结构的规则性然后对建筑设计中出现的超高问题和抗震问题加以深化,对于高层建筑结构设计的规则性,在新出台的建筑规范章程的相关规定中,变动挺大,新的规范标准在结构设计方面增加了一系列的限制条件。比如,新的规范制度用强制
性的条文规定了“建筑物不应该采用严重不规则的建筑设计方案”。所以,在进行高层建筑结构设计时,相关人员应注意遵守新规范制度中的限制性条件,对于设计中的不符合规定问题根据实际情况及时的调整,避免为后期设计工作留下隐患。
3.2地基和基础设计中的问题
在柱下独立基础带梁板式的地下室底板设计中,往往会忽视建筑物沉降带来的附加应力的影响,而产生沉降变形以及共同受力,如果没有考虑其产生的附加应力,会使底板偏于不安全,还可能导致地下室底板承载能力不足而引起其开裂,在采用天然地基状况下,会带来更为显著的影响。
3.3结构分析计算的问题
在计算机使用非常广泛的今天,计算机带给了人们极大的便利,工作效率大大提高的同时,社会日常工作和生活对计算机的依赖程度越来越深。在建筑结构设计中,深化计算机的应用,合理地使用计算机,使建筑物更安全舒适、更美观经济是建筑设计人员任重而道远的责任。我们在设计中及与其它设计单位交往的过程中发现,虽然采用了CAD,但在结构施工图中出现了许多概念性的错误和计算错误,有些错误可能会导致严重的后果。在实际工程中,我们应该重视抗震概念设计和构造设计的问题,避免过分依赖计算机,这样才能设计出更经济,更安全舒适、更美观经济的建筑。
4.高层建筑混凝土结构优化设计的对策
在高层建筑中筒体结构的抗震能力最好。假设发生6。7级地震时,只要在设计中针对楼面钢梁或型钢混凝土梁与筒体交接处及筒体四角墙内设置结构柱,
就会有效缓解地震影响。如果当地震达到8-9度抗震时,我们在设计中要在钢混凝土梁与筒体交接处及简体墙内设置型钢柱。这些设计都能有效增加建筑的抗
1优化钢结构之ANSYS软件应用原理
目前,国际学者在对小型水电工程之钢结构进行优化设计时,通常运用美国ANSYS公司研制之有限元分析软件进行数据分析、整理。该软件内含包括零阶方法及一阶方法在内的两种优化设计模式,能够满足我国对钢结构进行优化设计的绝大部分需求。这两种优化设计模式旨在促进不同目标的达成,对于零阶方法而言,其主要用于测量目标函数是否达到足以适应广谱色合计变量的状态及其完善度的高低,在小型水电工程中可以普遍适用;而对一阶方法而言,其主要用于检测目标函数是否能对存在细微差异之不同设计变量作出灵敏的反应,多用于计算精密、准确的数据以供优化设计分析。ANSYS有限元分析软件遵循“系列分析—数据评估—优化修正”三个主体循环流程,也即在对输入软件之工程初步设计进行系统分析,再参照工程设计拟达之功效、目的的指标对该初步设计进行评估,最后根据评估结果展现出的缺漏、不足之处进行有针对性的、有助于工程达到安全、高效之优化修正;并借助软件反复循环的设计轨道,通过数据的反复检验、配试不断完善初步设计、整体化提升其性能,直到所有数据显示达标也即设计臻于完美状态。具体操作中,分析文件作为系统与用户最直接的对接窗口,一旦用户输入其初始设计,文件便将该设计编码成命令流进入到ANSYS的系统分析流程,经历前后两次处理及求解这三个环节;此外,系统通过预先设定之参数化模型对目标、状态及设计这三个变量进行比照分析。ANSYS软件经分析文件运作后,将自动反馈生成一个优化循环文件,该文件已经生成便进入到计算机系统的循环优化处理环节中。其具体的优化流程原理如图1所示[1]。
2优化钢结构之ANSYS软件应用实例
2.1问题的提出
在小型水电工程中,作为工程“心脏”之泵与泵站必不可少,广泛用于农业灌溉供水、排水系统以及城乡日常生产、生活供水等多个领域,为工程提供源源不断的动力支持。而作为泵站建设中的最重要之部分,泵房容纳配备了小型水电工程中包括主机、辅机部分及相关电气设备在内的重要配件,其泵房设计质量的高低直接决定了工程是否能够在保障安全、可靠运行的前提下,最大限度地降低对机电设备的不必要损耗,延长其使用年限,达到最佳经济效益的工程目标。因此,工程设计者对泵房的承重体系,也即钢结构进行科学、合理的优化设计尤为必要。常见的泵房主体设计架构包括吊车梁、房屋面板、基础承重梁、屋架、屋梁等几部分,优良的泵房构架设计能通过使得泵房的各个部分分工协作,实现了承重压力的均衡、合理分配,防止压力集中在某一部位而导致断裂、崩塌现象的出现。而那种为了赶工期而不惜一切代价、忽视泵房主体构架进行优化设计之必要性的小型水电工程在设计之初便存在严重的安全隐患,不仅极易酿成人身伤亡事故、其实际上还造成了工程无法投入正常使用、资源浪费的低效益局面,真可谓是“得不偿失”。目前,我国的城镇、农村在建设小型水电工程时普遍采用如上图之稳定性较强的三角型作为屋架,该设计方案简单便利、施工难度也相对较低。在三角屋架的设计中,如何对屋盖承受的包括恒定之屋盖自身结构重量以及工程中不定之设备、人员及风力重量带来的压力进行合理配置、优化设计是设计的难点所在。对钢结构屋架进行横向截面模拟可得出一矩形,图2为经对称性考量而简化之半边屋架构造之平面视图[2]。为了便利计算,在实验中尽量缩减设计变量的数值,将矩形截面的宽和高分别设为1:2。从优化设计的视角来看,AB、AC、AD、BC、BD、CD杆是可以进行数据模型优化的变量,其初始值一律设为80毫米,在进入ANSYS软件后系统自调幅度为20毫米到180毫米之间。在整个优化设计的流程中,上述可进行数据模型优化之变量也即钢结构屋架的各个组成部位的可承受最大拉力值、压强值以及挠度是优化设计中的状态变量。系统根据安全性、可靠性评估得出各组成部分的可承受之最大拉力值必须控制在191MPa范围内,可承受之压强极限必须控制在187.39MPa范围内,挠度的极限值不得超出13毫米。
2.2问题的分析
ANSYS软件对初始输入设值与最终得出之优化设计数据的对比图如表1所示。根据数据显示,研究者可以直接得出经过优化设计,工程原设定之初始数据的合理性、可靠性大大增强,且优化设计所得出的钢结构用料仅为原设计拟投入用料的百分之六十。为了更加直观地体现出优化设计前后各变量的具体变化,可绘制出其优化设计中随着迭代次数的递增而各部分杆干的数值渐趋合理的曲线变化图如下。由图可知,经优化设计修正后之钢结构屋架的各个杆干钢材用量最省,比原先设计拟投入使用的钢料相比实现了162.12kg的下降,在达到节约成本的经济效益的同时还最大限度地满足了可承受之压强、拉力值、挠度介于一个安全区间,也即保障了工程建设的可靠性和安全性,因而在我国城镇供水、农业灌溉供水、排水系统中具有可推广价值。
摘要:建筑结构优化设计对于项目的成本控制起着重要的作用。在建筑结构优化设计中引入价值工程理论,通过功能成本分析,将技术问题与经济问题紧密结合,以最低的成本费用,可靠地实现产品的必要功能,从而提高产品的价值,弥补设计工作的不足。本文通过价值工程在建筑结构优化设计中的使用,说明价值工程在结构优化设计中的意义,确保有效优选。
关键词 : 建筑结构;优化设计;价值工程
中图分类号:TU2 文献标识码:A 文章编号:1006-4311(2015)24-0130-02
作者简介:罗利波(1978-),男,湖南长沙人,高级工程师,研究方向为结构设计及加固。
1 建筑结构优化设计概述
1.1 传统的建筑结构设计方法
传统的建筑结构设计方法,过程大致是根据经验给出一个设计方案和做法,用力学方法进行结构分析,检验结构及构件是否满足规范规定的强度、刚度、稳定性、使用等方面的要求,或通过对少数几个方案进行比较而选出可用方案。通常的步骤是假设、分析、校核、重新设计。
1.2 建筑结构优化设计方法
我国建筑结构设计优化设计理论研究始于六十年代,1973年钱令希教授发表《结构优化设计的近展》,将数学规划法和准则法结合在一起,假定结构构件处于满应力状态,分别对构件进行优化。由于结构优化设计的重要性,很多学者对结构优化设计做出大量的研究,使结构优化设计理论研究不断发展。1982年,钱令希教授在《我国结构优化设计的现况》中详细总结了这十年的结构优化设计研究和应用方面的成果,为我国进行优化设计研究指明方向。2001年,大连召开第四届WCSMO会议,30多个国际200多位学者参加了会议,会议内容包括结构与多学科问题的灵敏度计算、分析计算、优化设计及其工程应用等。
目前,建筑结构优化设计主要指结构综合与优选,过程大致是假设、分析、修改设计、最优设计,这种修改设计是在满足各种规范或特定要求的条件下,通过优化方法,从管理、技术、经济各方面综合考虑,采用结构优化程序、应用优化理论方法,找出最优级的方案(材料最省、造价最低、或某些指标最佳的方案),以达到最优目标。
1.3 大师对建筑结构优化设计的看法
中国工程院院士江欢成:“我国优化设计工作方兴未艾,大有可为。它符合可持续发展和科教兴国两大战略,它是我国建设方针的体现,是科学发展观在建筑行业中的落实。优化设计工作,私企、民企对此态度积极,国企相对不够重视。建议政府给予支持”。
中国工程院院士程耿东:“在建筑领域应用优化设计,不仅可行而且十分符合节约能源,保护环境的可持续发展观。结构优化设计作为一种基于计算机的快速自动设计过程,可以在满足规范等约束条件下得到优化的设计方案,降低成本造价,提高结构性能。增大使用空间,缩短施工工期,是设计者追求的终极目标,在建筑领域应用和推广结构优化设计更有着不同寻常的意义,对设计单位、开发商、百姓都是好消息,它是惠及百姓的环保设计理念,具有前瞻性,会带来多赢”。
2 运用价值工程优化建筑结构设计
价值工程,是一门技术与经济相结合的现代管理科学,是通过对产品的功能与费用系统分析,使之以最低的寿命周期成本,可靠地实现产品的必要功能的管理方法。运用这种方法,通过功能细化,去掉多余的功能,对功能实施重点控制,目的是以研究对象的最低寿命周期成本可靠地实现使用者所需功能,以获取建设项目经济效益、社会效益以及环境效益的最佳结合。
价值工程以功能分析为核心,着眼于建筑产品的寿命周期成本。建设费用、使用费用与功能水平的变化规律决定了寿命周期成本(图1),随着功能水平提高,建筑产品的使用费用降低,建设费用却在增高,反之,使用费用增高,建设费用降低;建设费用C1的曲线和使用费用C2的曲线的交点所对应的最低寿命周期成本Cmin才是最低的,最低寿命周期成本Cmin所对应的功能水平F0是从费用方面考虑的最为适宜的功能水平。
价值工程的目标表现为产品价值的提高,是对象所具有的功能与获得该功能的费用之比,可用公式表示为:价值(V)=功能(F)/成本(C)。
提高产品价值的途径:
某住宅小区在基础设计前对方案对比优化设计。该工程场地稳定,无不良地质作用。场地类型为软弱场地土,建筑场地类别属II类,拟建场地可不考虑地震液化的影响。场地自上而下各地层为:
①素填土①:平均层厚10.78m,结构松散,未完成自重固结,局部有建筑垃圾分布,承载力低。
②粉质粘土②:分布连续,埋深大,层厚0.90m~5.00m,可塑~硬塑,稍湿,不宜选择该层作为拟建多层建筑物基础持力层,fa=240kPa。
③强风化板岩③:厚度较大,岩心呈块状,遇水易软化,失水易干裂,fa=340kPa,qpa=2100kPa(人工挖孔灌注桩),qpa=2500kPa(沉管夯扩灌注桩)。地下水:主要类型为强风化板岩③基岩裂隙水,微承压性,该段地下水水量较少。在勘察期间,稳定地下水位埋深为5.32~13.20m,高程为52.77m~59.36m。拟建场地有一层地下室。地下水在直接临水或强透水层中对混凝土具有中等腐蚀性,在弱透水层中不具腐蚀性;对钢结构具弱腐蚀性。
可选桩型及优缺点:
①沉管夯扩灌注桩,优点:在桩端处夯出扩大头,单桩承载力较高;桩身质量高;施工机械轻便;施工速度快、工期短、造价低;无泥浆排放。缺点:遇中间硬夹层,桩管很难沉入;遇承压水层,成桩困难;振动较大,噪声较高;属挤土桩,设桩时对周边建筑物和地下管线产生挤土效应;扩大头形状很难保证与确定。
②预应力管桩,优点:单桩承载力高;单桩承载力造价便宜;运输吊装方便;施工快、工效快,工期短。缺点:噪音大,挤土量大,会造成一定的环境污染和影响;打桩时送桩深度受限制,在深基坑开挖后截去余桩较多;在“上软下硬、软硬突变”的地质条件下,不宜采用锤击法施工;不适合桩端持力层为遇水易软化的风化岩层。
③长螺旋钻孔灌注桩,优点:不受地下水位的限制,穿透力强,施工过程无噪音,振动小、无排浆、无塌孔,成桩效率高。缺点:桩身强度不足;桩底不能入岩,单桩承载力低。
④人工挖孔桩,优点:单桩承载力高;可以极大降低生产成本;适用于大型机械无法作业的山区;生产条件要求低,可多孔同时作业。缺点:机械化低,施工进度慢;成孔质量不易控制;现场施工不易控制。人工挖孔桩技术适合直径超过800mm并且地下水较少或无水的土质,不适合地下水位高、有流沙、大水量冲击区域、含水量多的淤泥、淤泥质土层等。
⑤旋挖桩,优点:钻进能力强;不易产生泥皮,有利于增加桩的摩阻力,提高桩的质量;振动与噪音较低;成孔速度快,尤其在砂质土内成孔;机械设备较简单。缺点:护壁相对较差,容易缩径、塌孔;设备价格昂贵,设备维修费用高、时间长,工成本与其他成孔方式相对较高,卵砂石层中钻进存在成孔困难。
以上5种方案,各有优缺点。利用价值工程理论,①、④两种方案更具经济性,满足功能不变化同时降低造价,以此来提高产品价值。本工程多为墙下线荷载及柱下集中荷载,其墙柱荷载为5000kN~8000kN,2600kN~5600kN(纯地下室的框架柱),依据价值工程理论综合比较采用人工挖孔桩基础,以强风化板岩③为持力层,该持力层的桩的端阻力特征值为qpa=2100kPa,桩端进入持力层的深度大于等于≥1.0m,相邻桩端底标高应按规范进行控制,平均桩径为0.9~1.5不等(主楼部分),0.9~1.0不等(纯地下室部分);扩底直径分别为1.3~2.4m(主楼部分),1.3~1.6m(纯地下室)。施工完成后经济效果良好。
3 结语
价值工程着重产品功能的分析,以最低的成本费用,可靠地实现产品的必要功能,提高产品价值,而这可以弥补结构设计优化的不足。所以,价值工程在结构设计优化中的运用,能够很好地解决工程成本的控制,优选出最佳的设计方案。价值工程存在于项目进行的方方面面,设计、施工以及管理等等,不能只靠个别人员、部门,而要通过有组织的活动,发挥集体智慧,经过多个部门的配合,才能收到良好的效果,达到项目的利益最大化。
参考文献:
[1]钱令希.我国结构优化设计的现况[J].大连工学院学报,1982(03):1-5.
[2]张炳华,侯昶.土建结构优化设计[M].上海:同济大学出版社,1998.
[3]蔡新,郭兴文,张旭明.工程结构优化设计[M].北京:中国水利水电出版社,2003.
[4]李芳,凌道盛.工程结构优化设计的现况[J].工程设计学报,2002(12):229-235.
[5]江欢成.优化设计的探索和实践[J].建筑结构,2006(06):1-24.
Abstract: the engineering for a high-rise residential houses, of which the ground and layer, the standard 1 layer structure unit (see figure 1, 3 m tall; 9 layer has a jump layer for 10 layer, local outstanding roofing part is the elevator computer room. The paper, in combination with the characteristics of residential building structure, the optimization design for structure, for peer designers.
Keywords: small high-rise residential houses; Structure characteristics; Optimization design; explore
中图分类号:TU241.8文献标识码:A文章编号:
1 工程概况
该工程建筑总面积为4337.18m2 ,建筑总高27.600m,工程建筑结构的安全等级为二级,抗震设防类别为丙类,抗震设防烈度为8 度,设计基本地震加速度为0.2g ,设计地震分组为第一组,地面粗糙度为C 类,基本风压值取值0.35kN/ m2 ,场地土类别为Ⅱ类。
图1 标准1层结构单元图
2 结构方案布置
原结构方案采用一般的剪力墙结构,这种结构形式对于房屋高度不太大的小高层建筑来说,这种结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。所以,为了有效提高经济指标,经多方案论证,决定采用短肢剪力墙结构体系。在本住宅结构平面布置中,尽量使结构平面形状和刚度均匀对称。短肢剪力墙双向布置,尽量拉通、对直。竖向布置中,力求规划均匀,避免有过大的外挑、内收,以及楼层刚度沿竖向突变,使整个房屋的抗侧刚度中心靠近水平荷载合力的作用线,以免房屋发生扭转。根据建筑的平面布置,在房间、楼梯间、电梯间的四角,采用Z 形、L 形、T 形或异形的墙肢。在设计过程中还应注意同周期的关系,使结构的第一自振周期避开场地土的卓越周期,以免地基与结构形成共振或类共振,既保证结构在风和地震荷载作用下的变形控制在规范允许的范围内,又要保证建筑物有相对合理的自振周期,做到结构设计经济、合理且实用。
本方案根据上述建议经过多次调试,得到了几种结构方案,结构平面布置见图2。剪力墙截面厚度同相邻砌体填充墙厚度均为100mm。剪力墙、梁混凝土强度等级为C30。板的混凝土强度等级均为C25。主要连梁的尺寸大都为200mm×400mm。标准层楼板厚度为120mm ,顶层楼板厚度为150mm。有别于肢长肢厚比不大于4.0的异形柱,短肢剪力墙的肢长肢厚比按规范要a-方案1;b-方案2;c-方案3;d-方案4
图2 结构平面布置
求控制在5~8范围内,一般剪力墙的肢长肢厚比均大于8。值得注意的是,对肢长肢厚比为4~5范围内的墙肢,目前规范尚无明确条文规定其构件类型,故设计时建议不要采用。由于原方案的剪力墙过多,使底部剪力过大,使结构很不经济,同时布置了少量钢筋混凝土柱子,使结构不是很合理。故方案1在原方案的基础上去掉了构造柱并减少了少量的剪力墙(见图2a)。在方案1 基础上适当的减少一些剪力墙,从而使方案更经济,在调试过程中由于F 轴剪力墙较少,从而使电梯间X 方向的剪力墙承受过大的剪力造成超筋, 故把电梯间X 方向的剪力墙开洞口, 使结构X 向的刚度减少。(见图2b)方案3是在方案2的基础上改善了Y方向的刚度,使两个方向的刚度相接近,使结构更合理且均匀对称(见图2c)。
在方案3的基础上把Y方向的一些T型剪力墙变成一字型,虽然在多高层住宅设计中剪力墙结构应尽量避免一字型,但由于该结构的实际情况,所以采用了部分一字型(见图2d) 。
3 上部结构抗震计算结果分析
3.1 计算结果分析
从构件力学特性上来说,短肢剪力墙的肢长与肢厚比≥5.0,更接近于剪力墙,故计算时将短肢剪力墙作为剪力墙而不是柱考虑应更合理。因此,结构整体计算采用的是在每个节点有六个自由度的壳元基础上凝聚而成的墙元模拟剪力墙墙元不仅具有平面内刚度也具有平面外刚度,可以较好地模拟工程中剪力墙的真实受力状态,计算结果较精确;同时,对楼板SATWE 可以考虑其弹性变形。虽然主楼结构平面较规则,立面也无刚度突变现象,但由于刚度较大的电梯井处筒体有点偏置,会产生扭转的影响,为了计算准确,地震作用计算考虑了结构的扭转耦联和5 %偶然偏心的影响,取了27 个振型计算。
1) 自振周期的控制
考虑扭转耦联时的自振周期(计算时自振周期折减系数取0.8) 如表1(只列了前6个) 所示。从表1 可得,方案4 结构扭转为主的第一自振周期T3=0.9959s,平动为主的第一自振周期T1 =1.1656s,T3/T1=0.854
2) 结构位移的控制
最大层间位移角(应≤1/ 1 000) 、最大水平位移与层平均位移的比值( 不宜大于1.2 , 不应大于1.5)及最大层间位移与平均层间位移的比值(不宜大于1.2 ,不应大于1.5)见表2 。从中可以看出,结构在风荷载和地震作用下的位移均能很好地满足规范限值。
3) 剪重比控制
剪重比是反映结构承受地震作用大小的指标之一,地震力计算不能偏大,但也不能太小。因为短肢剪力墙本身抵抗地震的能力较差,如果短肢剪力墙分配的地震力太大,则很有可能不满足要求。本工程X方向的最小剪重比为4.50% , Y方向的最小剪重比为4.62 % ,根据“抗震规范”(5.2.5)条要求的X、Y向楼层最小剪重比均为3.20%,所以各层均满足要求。
4) 轴压比是体现墙肢抵抗重力荷载代表值作用下的能力“规范”对短肢剪力墙(尤其一字墙肢)要求更高一些。上述工程出现的短肢剪力墙轴压比在0.20~0.45之间,轴压比小于规范规定值。
表1结构自振周期
表2结构位移
表3结构轴压比
3.2 结构经济分析
为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比,钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。暂定单位材料综合价:混凝土单价为460元/m3 ,钢筋5500 元/T,由表4 可知, 方案4 比原方案在造价上要节约19 %,节约了成本,使材料得到了充分的发挥。
1土建结构优化设计技术的现实意义
每一个建筑企业都希望可以在满足土建结构长远利益的前提下付出最低的成本,最大程度地减少土建结构的近期投资。土建结构设计优化技术可以在保证建筑物结构科学合理性的前提下达到降低经济付出的效果。土建结构优化设计技术有利于促进实现可持续发展,可以用同样的资金获取更大的市场收益。现代的土建结构优化设计技术与传统的设计技术相比有很大的优越性,选择设计优化方法可以很好地降低工程成本。实现土建结构设计优化技术有利于合理性能材料的选择,可以最大程度上协调土建结构内部各个单元之间的关系,从而提高土建工程的建设效率和安全性。除此之外,优化设计技术也能够为土建的整体设计方案做出科学合理的决策,所以优化技术是有效实现土建结构设计的方法。随着建筑层数的增加,墙体面积和柱体积也会增加,这样一来土建结构的自重就会随之增加,基础和柱的承载力也因此而增加,这样土建内部装修等都要考虑这一问题。与此相反,如果层数减少就可以很好地节约建筑材料和建筑造价,也可以达到抗震效果。从日照等因素来看降低层高可以减少建筑间的日照距离,可以有效地节约建筑用地。在建筑面积一定的情况下,土建使用不同的形状可以改变外墙周长系数,也可以改变内外表面装修等,所以在土建结构设计中要优化设计方案,利用优化技术来提高建筑的经济性能。
2建筑结构优化技术应该注意的主要问题
2.1设计人员要注重细部优化
图1按单筋矩形截面设计建筑设计人员必须注重整体设计,在整体设计的基础上还要充分考虑细部设计,要加强对土建结构的精细设计。例如增加现浇板的受力程度避免拐角裂缝的出现、尽量划分矩形板块的现浇板设计,一般要保证建筑的稳定性,多采用按单筋矩形截面设计。在计算机技术和优化设计理论相互结合的时代,优化技术已经从工程实践问题逐渐向数学问题过渡,所以土建工程设计人员必须加强自身基于计算机技术的优化设计分析能力,从而提升自身设计的科学性。
2.2建筑结构优化技术的应用要注意到前期的参与
土建工程建设前期的设计方案将对建筑项目的造价产生直接的影响,对设计进行优化是节约成本很好的做法,但是大多数前期方案的确定中多不包括结构优化设计技术,这样就会导致相关的设计工作人员在进行土建结构设计时无法很好地考虑土建结构的可行性和合理性,这样只会增加土建结构设计的难度,会致使结构设计工作成本不断增加,所以土建结构设计人员在前期设计时必须充分融合优化设计方案,从而有效地节约土建成本。
3土建结构设计优化方法
3.1数学规划法
数学规划法是从结构的力学基本原理出发来对土建结构设计进行规划的一种方法。运用优选法和数学规划法等方法对设计变量寻找最优的解。一般情况下,数学规划法比较适用于处理非线性的规划问题,在其长期的应用发展中也形成了适用于多种情况的不同算法,有一定的通用性,也有非常严格的理论基础,合理运用可以找到局部的最优解。当然,对一种特定的结构优化设计,还是要具体问题具体分析,依据实际情况来选取优化方法。
3.2优化准则法
优化准则法是以工程本身为出发点在结构达到优化设计时要满足那些准则进行研究的一种方法,例如能量的准则和满应力的准则等。这种方法可以用迭代法来对这些准则的解进行准确的求解,所以这些优化的准则大部分都要依据现有的实践经验,通过一定的理论研究来分析并判断所得到的,其设计可以接近最优,所以说是一种工程方法。优化准则法有收敛较快的特点,其工作原理也比较简单、直观,一般是比较容易实现的。满应力设计准则是最早提出的准则,这个方法可以最大程度地发挥材料强度的潜力。另外,准则法也可以处理弹性稳定、位移、自振频率等方面的问题,一般是从Kuhn-Tucker条件出发来设计准则方程。但是准则法也有其缺陷,其主要适于土建结构布局和几何形式已确定的情况,所以其适应范围有一定的局限性。如果要同时考虑多种的约束,优化准则法就很难发挥其作用,在变量之间关系较为复杂的情况下就不适宜用优化准则法。
4优化技术在土建结构设计中的应用
4.1常见问题的优化措施
要实现土建结构的优化设计就必须在实际的工作中充分重视每一个环节的实用性和安全性,对于一些常见问题的优化措施可以归于以下六点:(1)设计要尽量加大抗震缝的宽度,以防止地震发生时抗震缝两侧碰撞问题的出现;(2)要合理地设计悬挑梁,保证其符合标准,将其设置为截面可以有效地降低悬挑梁截面的应力,从而达到防止梁体变形的效果;(3)科学地设计连续梁,要严格避免其按照单梁设计,另外要合理地对连续梁支座上部的负筋配置进行设计;(4)构造柱的刚性一般要比承重柱差很多,而对于一部分位于承重梁下的构造柱应该按照承重柱的刚性标准来进行设计,以满足其支撑作用;(5)筏、箱基础底板挑板的阳角应该呈斜角或直角,若地下水位较高就应用基础底板来增加建筑的抗浮性能;(6)在进行土建结构设计时要保证承重柱有充足的截面高度,要合理控制梁柱的线刚度比,从而增强建筑的耐久性和安全性,提高承重柱的抗震性能。
4.2实用性与艺术性相互融合
在土建结构设计工程中,将实用性和艺术性进行有机的结合可以达到土建结构优化设计的效果。在具体的实际工作中,土建结构设计人员要保证建筑的安全性及经济性,并在此基础上来实现土建工程的美学性,设计方案要尽量融合美学性、安全性和经济性。例如:土建结构的平面布局应具有一定的对称性和规律性,这样就可以有效地防止建筑物在巨大荷载作用下发生扭转,同时也可以提高土建结构的美观性。
4.3概念设计
保证土建工程在各种因素的影响下能够保持实用性和安全性是所谓概念设计的根本目标,要全面增强建筑的使用性能就必须重视概念设计,如果设计出现问题,就很有可能会造成严重的后果。例如:从地震对土建工程的影响来看,一般来说在地震发生之前我们是很难预见的,而且地震一旦发生凭借人的力量是根本无法控制的,所以在土建结构的概念设计过程中要把地震当作重要课题来进行研究。事后要尽量去降低地震带来的经济、社会损失,在土建结构设计中就要保证建筑材料的使用高性能,确保材料质量,要避免建筑物在受到地震作用后发生脆性破坏。除此之外,土建结构设计还可以采用延性设计,在地震发生时可以有效地降低地震对建筑物所产生的危害,可以起一定的防御作用。
5结语
运用结构设计优化方法与传统的结构设计相比较可以看出,优化技术能使土建工程造价降低约6%~34%,所以结构设计优化技术可以更好地实现土建工程的安全性,它可以使土建结构内部各个单元得到最好的协调,可以同时满足土建的美观性、经济性和安全性,是符合建筑行业的未来发展趋势的,但是其应用情况还不容乐观,所以要对其进行应用和研究。
参考文献
[1]饶远文.结构设计优化技术及其在土建工程结构设计中的应用[J].价值工程,2010,(9).
引言:
水利工程是通过修建堤坝、水闸、渡槽、溢洪道等水工建筑物,调控自然界的地表水和地下水资源,以防止洪涝干旱等自然灾害,满足社会生产生活的需要。由于水利工程规模大、工期长、技术难度高,所以在其建设中应用混凝土结构也就势在必行。混凝土是指以水泥为胶凝材料,以砂石为集料,与水等按比例混合搅拌形成的建筑工程复合材料。再以其作为承重材料,配以定量的钢筋、预应力筋等构件,则成为耐久耐火性好、整体灌注性高、广泛应用于大型工程建设中的混凝土结构。但我国混凝土结构应用于水利工程建设的时间较短、经验较少,尚未形成完善的优化设计方案。因此,探究水利工程中混凝土结构的优化设计,具有重要的理论和实践价值。
一、水利工程中混凝土结构设计存在的问题
水利工程中的混凝土结构设计是一项高难度的复杂技术,并且由于水利工程施工地点的地形地势复杂,加之混凝土本身成分的复杂状况,导致混凝土结构的设计施工难度骤然加大。也正因如此,我国水利工程混凝土结构的整体设计水平相较于发达国家而言,仍有较大差距,逐渐显露出根源于技术水平疲软的诸多问题。
(一)混凝土材料配比不稳定
混凝土并非是单一性质的材料,而是由水泥、砂、石等原料拌合胶凝而成。因此,材料配置比例的些许不同,就可能导致混凝土标号降低,在浇筑后则会使结构出现孔洞、气泡、麻面等不良现象,严重影响着混凝土结构的质量。例如,如果混凝土搅拌中砂石比例过高,则会因骨料集中而造成拌合物离折、混凝土料干硬,一定程度上降低了混凝土结构的牢固度。
(二)混凝土岔管设计不合理
现代水利工程常在地下网道中采用“一洞多机”的布局方案,这就需要利用混凝土岔管设计来完成。但是岔管对混凝土结构设计施工的技术水平要求较高,并且目前没有形成完善的、具体的混凝土岔管设计指导细则。因此,工作人员难以掌握混凝土岔管结构设计的承压能力,在复杂的地形和计算影响下,常常出现设计不合理现象,为混凝土结构安全埋下隐患。
(三)混凝土衬砌易出现渗漏
我国水利工程建设中混凝土结构设计的突出问题之一,即是混凝土衬砌容易出现透漏,对渠道结构安全不利。总的来说,衬砌易渗漏是由于混凝土结构出现裂缝,主要由四方面原因所造成。一是模板的设计布置存在偏差;二是通道的位置处理不到位,上方岩土层沉降对衬砌产生巨大压力形成裂缝;三则是混凝土原材料质量存在问题;四是在搅拌、运输以及浇筑过程中对混凝土疏于养护。
(四)建筑的准备过程不精细
混凝土结构设计过程存在的另一大问题,即是人员配合不力,建设前期准备不精细。这主要表现在两方面,一方面,工作人员在前期准备过程中没有对施工区域的地形地势、水文状况等进行细致考察,没有明确预计施工难度,不仅可能导致设计误差,还会延缓施工进程;另一方面,水利工程建设中的混凝土结构设计,有赖于设计人员、施工人员的通力配合。但是混凝土结构设计人员与具体施工人员之间没有形成及时、高效的沟通机制,容易造成设计与施工的脱节。
二、水利工程中混凝土结构设计的重要意义
近年来,随着三峡大坝、南水北调等国家重要水利工程的建设完工,水利工程建设中的混凝土设计吸引着社会的广泛关注,显现出其独特的重要意义。
(一)提高工程质量
水利工程利及千秋万代,其工程质量至关重要。混凝土的粘聚性使混凝土结构的密度增大,结构性质趋于稳定;同时,混凝土抵抗重压、抻拉、弯剪等作用力的能力较强,不易变形,能够确保水利工程结构的稳定性。此外,混凝土结构相较于其他土木结构来讲,还有良好的耐久性和耐火性,可以抵御较长时间的外力侵蚀。因此,混凝土结构能够有效提高水利工程建设质量。
(二)降低施工难度
水利工程体量复杂且庞大,而且大多修建在地势起伏大、地形复杂的山区,普遍来讲施工难度较大。但混凝土结构设计的引入,则可有效改善这一状况。一方面,混凝土的可塑性极强,可以根据预先设定好的模型进行浇灌,从而弥补其他结构技术的精密性误差。另一方面,混凝土结构属于一次浇灌成型,操作简单快捷,极大降低了水利工程的施工难度。
(三)便于保养维护
延长水利工程的使用寿命必须依赖于健全的保养维护举措。传统的水利工程结构普遍难以进行保养维护,而混凝土结构则不然。例如,通过对混凝土结构进行定期清洁,可清晰发现结构表面的磨损、裂缝,即可进行及时修补,从而有效防止缺陷继续延展。便于保养维护的优势,使混凝土结构设计有力保障着水利工程使用安全。
三、水利工程中混凝土结构的优化设计方案
自古至今,我国的水利工程建设方法和技术一直处于不断地改进更新过程中,持续推动着水利工程事业的发展。随着时代进步和科技水平的提升,水利工程建设对混凝土结构设计的质量、安全、性能等提出了更高标准要求,因而混凝土结构应当加大优化设计力度,努力形成优质高效的混凝土结构设计方案。
(一)科学合理配比混凝土原料
在混凝土结构优化设计过程中,保证混凝土原料的科学合理配比是首要策略,不仅可以减少混凝土结构的麻面、孔洞等缺陷,还对控制裂缝、衬砌防渗等有明显的帮助作用。具体而言,细度模数在2.0-3.0之间的砂应当是水利工程中混凝土结构设计的首选材料,继而将单层混凝土铺设厚度控制在30-50厘米范围内,分层摊铺、捣振均匀,同时钢筋架构要校准位置、精确焊接,才可为混凝土结构设计的安全性和稳定性保驾护航。
(二)优化设计混凝土裂缝控制
水利工程的裂缝控制是混凝土结构优化设计的重要方面。要实现对结构裂缝控制的优化设计,设计人员一方面要结合工程运行环境、水文压力、地势压力等要素,综合考量混凝土结构的极限承载力,从而选用与之相匹配标号的钢筋和混凝土;另一方面,现代水利工程在弯拉构件方面的裂缝控制,要选择恰当的杆件,严格控制混凝土的裂缝宽度。
(三)优化设计混凝土围岩稳定
水利工程中混凝土结构的优化设计,要着力研究围岩的水压承载能力。因为只有围岩的水压承载能力强,才能够选用不衬砌或非限裂混凝土衬砌的方案,对降低工程成本、提高工程质量意义重大。因此,设计人员要根据平缓或陡坡地表面的相关准则,优先衡量围岩结构的最小覆盖厚度,并通过精测的测量和计算确定混凝土围岩稳定系数。
(四)优化设计混凝土衬砌防渗
混凝土结构设计中的衬砌类型非常多,主要可分为裂衬砌与非裂衬砌两大类。技术人员首先要根据围岩稳定程度选择科学合理的衬砌方案,而后对衬砌与围岩的承载力进行联合模拟。同时对钢筋混凝土进行支护、对岔管进行布局,预估渗透、裂缝等问题的出现概率,从而做出相当的技术设计调整,以致力于降低混凝土衬砌渗漏的出现几率。
四、总结
总而言之,混凝土结构在水利工程建设领域发挥着愈来愈重要的作用,其设计应当得到不断优化。水利工程建设中混凝土结构的优化设计,须以当前所暴露出的问题为着力点,以混凝土合理配比为前提,从裂缝控制、围岩稳定以及衬砌防渗等方面进行全面优化,从而致力于实现水利工程建设的高质量、高效益,为推动水利工程发展奠定坚实的技术根基。
参考文献:
[1]张志刚,邓钦.水利工程中混凝土结构的优化设计[J].珠江水运,2015,(01).
[2]刘荣钊.水利工程中优化加强混凝土结构的相关策略设计[J].黑龙江水利科技,2014,(07).
[3]张国新,朱伯芳,杨波,朱银邦.水工混凝土结构研究的回顾与展望[J].中国水利水电科学研究院学报,2008,(04).
工艺是指企业或者个人利用某些生产工具对各种原材料、半成品等进行加工处理,使之成为最终的产成品的方法和过程。结构可以是指植物的结构、原子的结构、语言结构、产品结构以及建筑结构等,而本文所指的结构是工业产品结构,产品结构是指产品的“骨骼系统”、“皮肤与肌肉系统”,即产品外部及连接结构、产品内部股价及安装结构、产品运动机构等,产品结构对于产品主要起到包装、支撑、安装、连接等作用,而产品的机构主要起到完成运动、空间运动以及产生功能等作用。成本控制是企业长久以来探讨的主要问题,在市场竞争日益激烈的今天,企业都在努力的进行成本控制,将成本发展成企业的竞争优势。本文将对工艺、结构的优化设计与企业的成本控制相结合,从全新的角度对企业成本控制进行剖析。
一、工艺、结构的优化设计在企业成本控制中的作用
工艺、结构的优化设计对企业的成本控制有着重要的作用,工艺、结构的设计关系着企业经营的所有方面,不同的工艺工程或者结构会使得企业收入成本发生很大的变化。目前应用比较广泛的成本控制方法主要有作业成本法、VE价值工程成本管理、标准成本法、目标成本法、本—量—利分析方法以及战略成本管理方法等。工艺结构的优化设计与企业成本控制相结合的方法,强调的是企业在保证生产的产品和服务的前提下,对工艺和结构进行相应的优化设计,使企业在成本上获得优势。将工艺结构的优化设计与适合企业的成本管理方法联系起来,是企业进行成本控制的重要途径和方法。
企业进行成本控制的目的是降低产品或者服务的成本,在行业中建立起成本领先的优势,获得更高的利润,也就是说利用更低的成本来获取更大的收益。这是一种双赢的状态,消费者用更少的钱购买了相同价值的产品,而企业则利用更少的钱获得了更多的收益。对工艺、结构的优化设计可以有效的降低企业成本,使企业在激烈的市场竞争中获得优势,所以对企业的发展有重要的作用。
二、工艺、结构的优化设计在企业成本控制中的应用
工艺、结构的优化设计其实在企业中的运用十分广泛,对每一道工序的选择、机器的选择以及结构的选择等都是对工艺、结构的优化设计,也许其目的不仅仅是为了控制成本,但是成本也是其改良的重要方面。
(一)工艺的设计及优化
工艺设计是对某个工业建设项目生产工艺的设计,其主要内容包括产品方案的设计,原料、燃料、动力的来源和用量设计,选用设备的型号和配置,主要经济指标,对建筑物的要求等。工艺设计的种类有基础工艺、改性工艺和后期处理工艺。工艺的范围很广泛,涉及到了各行各业,例如说玉雕工艺、剪纸工艺、机械工艺、化工工艺等。据调查显示,企业将近80%的成本涉及到工艺成本,所以对工艺进行优化设计具有很大的潜力可以为企业节约更多的成本。工艺加工过程既是生产过程同时也是消耗的过程,工艺方法很多,所以具有很强的灵活性。对不同要求、不同批量的零件或者产品,其设计方案的可行与否,不仅取决于技术上的优劣还取决于其经济性。
产品的工艺设计体现在所制定的设计总方案中,设计方案主要包括产品原材料和零件的采购、工艺设备、工艺特点以及工艺流程等的安排,但是对工艺设计必须进行评审,分析其技术性和经济性。产品工艺的设计优化需要对工艺进行技术革新和工艺创新,也需要依据企业自身的实际情况,制定合理工艺设计方案,保证产品质量的同时,达到成本控制的目的。工艺的设计优化应该考虑以下几个方面:合理选择产品设计结构,保证零件或者产品的技术性和经济性的要求;依据产品的设计阶段和批量不同,合理改善毛坯技术状态;采用新工艺和新技术;合理选择机器设备,优化工艺参数,减少辅助时间。
在优化工艺方案方面,为了使得产品成本得到最好的控制,企业必须要找到影响工艺优化的瓶颈之处。与优秀企业相比较,找出自身存在的不足之处,例如设备方面的不足,应该引进行业内先进的设备,来满足行业内的市场需求,提高生产效率。并且应该加强对新工艺的开发利用,改善落后工艺而造成的低效、高耗现象,在不断促进工艺创新的同时,达到降低成本的目的。对工艺的设计及优化既可以降低消耗,又可以完善工艺上的不足之处,对企业有非常重要的意义。
(二)结构的设计及优化
本文所描述的结构的设计及优化主要针对工业企业的产品结构,以下是对产品结构的优化设计以降低成本的描述。
1、工业产品结构的设计流程
工业产品设计流程是先根据客户的要求和提供的资料如产品开发计划书、产品性能介绍以及基本材料结构等进行分析,考核是否需要追加其他资料,制定多种设计方案、选择材料、制定安全标准以及拆分合理的结构装配等。之后进入实践设计阶段,对产品进行外形设计、结构设计和功能介绍,企业还需要进行平面设计和立体设计,然后选择材料、零件拆分、制定安全标准,最后是产品颜色设计、整体的装配说明以及最后的包装设计,到此为止,产品设计完成,但是后面的阶段还要进行审核和改进。
2、工业产品结构设计及优化与成本控制
材料的选择是产品结构设计的开始阶段,材料的选择关系到以后的很多阶段,例如生产、包装、配送等阶段,都会因为选择材料的不同而使得这些阶段也会有相应的变化。影响材料选择的因素有很多,例如说价格、销售情况、品质、装配问题以及完成时间等因素。但是在考虑选择何种材料时不能兼顾如此多的因素,需要依据客户提供的资料以及市场需求等实际情况选择材料的类型。常用的工业材料类型主要有硬胶(GRPS)、不碎胶(HIPS)、超不碎胶(ABS)、透明大力胶(AS)、软胶(LDPE)、硬性软胶(HDPE)、橡皮胶(EVA)、百折胶(PP)、软质(PVC)、硬质(PVC)、尼龙单6(PA-6)、防弹胶(PC)以及酸性胶(CA)等材料。材料的选择直接影响了产品的成本和利润,选择合适的材料保证成本在一定的范围之内,例如PC材料强度较高、价格贵,流动性不好,比较适合强度要求较高的外壳,按键、镜片等。有些产品需要进行厚度的选择,厚度的多少对产品设计也有着举足轻重作用,选择合适的厚度对成本也会影响较大,在不影响产品质量的前提下,减少产品的厚度,若产品是批量生产会节约很大一部分的成本。适度的减少产品的厚度,会节约材料,降低成本,给产品的工艺也带来一定困难。塑件制品的强度和刚度要得到保障,而又不想加厚塑件制品的厚度,就需要放置加强筋,若要求强度较大,可以多放置一些加强筋,企业一般都宁可多放置加强制也不会选择增加产品的厚度,这不仅是为了节约成本,更多的是为了保证产品的强度。外形设计是在进行产品结构设计时需要考虑的重要方面,如果外形错误的话,会导致各种零部件的报废。在现在社会中,外形设计已经越来越重要,对其要求也越来越高,既要求美观大方又要求自然、合理。目前市场竞争愈演愈烈,很多企业都借助外形来增加竞争优势,所以对外形的要求也越来越苛刻,而且在考虑这些的同时还要考虑成本问题,根据市场需求来设计产品的外形,制造出物美价廉的商品。
结构的设计及优化并不只是单纯的对设计找出不足之处,而是选择更加适合的结构以及在保证各方面要求的基础上对设计的改进,进行更有深度的控制成本。对结构的优化设计并不是降低要求,而是减少一些不必要的浪费,以此来控制成本。结构的设计及优化需要对设计人员的水平不断提出更高的要求,只有这样才能设计出更好的结构以及优化。例如,根据产品的具体情况,分析存在的优势与不足,针对不足进行更加严密的思考,亦可以效仿国内外成功的案例进行改良,改良的主要目的并不只是为了削减成本而是在完善产品结构过程中进行成本控制。
通过以上描述可以看出在结构设计及优化过程中需要考虑很多方面,首先要根据信息制定计划书等,详细分析产品资料和市场行情之后,在进行结构设计工作,只有事半功倍才能最大程度的节约成本。
三、结束语
工艺、结构的设计优化的目的之一是进行成本控制,将成本管理方法与工艺、结构的设计优化相结合可以发挥更加明显的效果。但是值得强调的是工艺、结构的设计优化需要在保证产品质量的前提下,优化设计、减少不必要的浪费,使企业具有成本竞争优势。
参考文献:
中图分类号:TU318文献标识码: A 文章编号:
引言
随着我国各个领域的快速发展,建筑业发展迅速。采用先进技术,依托先进设计理念,同时加强对建筑材料研究,促使建筑结构向更加安全、合理、可靠的方向发展。
1、建筑工程结构设计原则
1.1合理选择计算简图
建筑工程结构设计的合理性由结构计算来保证,而计算简图是结构计算的基础。在工程建设过程中常会遇到不能合理地选择计算简图,这直接造成了建筑工程结构的安全隐患问题,因此,合理选择计算简图对建筑工程结构设计有着极其重要的作用。在建筑工程结构设计过程中难免会存在因钢节点而造成些许的计算误差,但是只要将其误差控制在建筑施工允许范围内,还是能够确保建筑工程结构设计的安全性以及稳定性。
1.2合理选择基础设计方案
合理选择结构设计方案在建筑工程结构设计中显得尤为重要。结构设计人员在基础设计时要对建筑工程环境实施全面勘察,包括自然环境、施工条件、水文、地质、相邻建筑物分布情况以及各方面的社会环境等,另外,也包括建筑结构类型和荷载分布情况,只有全方位综合各种因素,才能选择合理的基础设计方案,才能在工程施工中最大程度地发挥建筑地基的内在潜力作用。
1.3正确进行分析计算
建筑工程结构设计过程中,计算机是最为重要的分析工具,然而各种各样的计算机软件计算出来的结构不尽相同,这就要求建筑工程结构设计人员对计算机分析结果抱有严谨的态度,正确合理地判断出最接近实际情况的计算结果,这样一方面能保证计算结果的正确性,另一方面还能保证建筑工程结构设计的准确性。
2、建筑结构设计
2.1设计方案
根据工程地质报告、建筑场地类别、建筑物高度和层数、建筑物的重要性、建筑所在地的抗震设防烈度等情况对建筑的结构形式进行确定。在确定了建筑结构的形式之后,要依据不同结构形式的特点及要求来对建筑结构的受力构件和承重体系进行布置。
2.2结构计算
建筑工程的计算荷载有:外部荷载和内部荷载,它们的计算要依照荷载规范的规定及要求使用不同的组合值系数及永久值系数等进行不同工况下的组合计算;对于构件的试算,要依照计算出的荷载值、构造措施的要求、使用要求和各种计算手册上的试算方法来对构件的截面进行初步的确定。
2.3施工图设计
对于建筑工程内力的计算要依照已经确定的构件截面及荷载值来进行计算,它包括:拉力、弯矩、轴心压力、扭矩、剪力等。根据最后计算出的结构内力和规范对构件的要求及限制,对结构试算的构件是否满足规范的要求进行复核。若不满足,则要调整构件的截面或者布置,直到满足要求为止。
3、建筑结构设计中常见的问题
3.1现浇砼楼板的干缩开裂和支座负钢筋倒伏的问题
3.1.1干缩开裂问题
在进行混凝土楼板浇筑时,浇筑完混凝土后,会在短时间内出现楼面出现龟裂的现象,尤其在温差较大的季节或地区这种现象非常明显,而且这种现象多发于住宅楼,公用建筑和商用楼较为少见。这种龟裂多是由于混凝土的水灰比过大造成的,它降低了建筑结构的刚度,增大了结构的挠度,使整个结构的安全性和耐久性都明显的降低。出现这种情况的原因是:由于现在的工程大多使用商品砼,混凝土是由预拌厂直接负责提供的,泵送混凝土要求混凝土的和易性要好,流动性要高具有较大的坍落度,商品砼为了达到这种效果就会加大水的配比,使混凝土的水灰比过大,严重的影响了混凝土的质量。
3.1.2支座负钢筋倒伏的问题
当进行完楼板上的钢筋绑扎后,隐蔽验收后才可以进行混凝土的浇捣工作,但是在实际施工中,由于没有注意保护好一家好的支座负钢筋,使得钢筋的倒伏随处可见。刚进的倒伏会造成支座负弯矩没有足够的钢筋来支撑,引起支座板面出现裂缝,加大了挠度,降低了刚度,是般的受力状态逐渐趋向间支,造成板配筋偏于不安全。
3.2柱体、墙体连接混乱
在对比较复杂的结构平面进行布置时,往往会出现多方向柱网相连的地方。有的把每根柱和周围各柱都用框架梁连接起来,形成多梁交汇于一柱,这给接点区的钢筋锚固和混凝土的施工带来了很大的不便严重的影响了施工的进度。
3.3结构电算或设计方法存在问题
3.3.1实际施工图纸和电算的计算简图不符
问题主要表现在剪力墙开洞的大小、剪力墙的长度、厚度、门窗洞口的位置、框架计算高度等和施工图纸不相符。这大多是由于结构专业的计算进行的过早,建筑平面经过多次的调整,又没有来得及发馈给结构专业,使专业间相互脱节,等到了施工图纸进入校审的阶段,大多都只注意在图面上,没有核对建筑图,进而造成了这类错误,这回事某些构件的配筋失真,造成配筋不足的危险。
3.3.2抗震概念设计不足
建筑抗震设防的三个目标可以用小震不坏、中震可修、大震不倒来进行总结,第一目标可以利用承载力的计算来保证;第二目标可以利用结构可靠度标准分项系数来达到损坏可修的目标;但第三目标就要通过概念设计和各种抗震构造措施来实现。这就要求结构要具有良好的吸能、耗能能力,具有较高的静不定次数、避免竖向承载力和刚度突变、结构的构件尽可能为延性构件。
3.4钢筋混凝土结构概念设计淡薄
概念设计通常是指不经过数值的计算,根据整体结构体系和分体系间的力学关系、震害、试验现象、工程经验等,来获得基本设计的原则和思想。在现行的抗震规范中规定,一般结构设计的弹性计算是以多余地震方面为出发点的,其超越概率为63.2%,比一般设防烈度低,规范要求设计不但要负荷概念设计的规定,还要加强抗震措施,这样才能达到设防标准,但一些工程只注重计算结果,忽略了概念设计和对抗震的要求
4、解决建筑结构设计中常见问题的有效途径
4.1确定整体结构的科学性以及合理性
4.1.1结构刚度与重力荷载之间的比被称为刚重比
它影响着结构整体的稳定性,也是影响重力二阶效应的重要参数。一般都会使用增大刚重比的方法来考虑重力的二阶效应。结构的刚重比增大则二阶效应就会减小,二阶效应要控制在20%以内如果改制不能达到要求,则可能引起结构的失稳导致坍塌。
4.1.2剪重比是抗震设计中非常重要的参数
由于长时间的作用下,地震影响系数下降的会较快,根据这种情况计算出来的水平地震作用下的结构效应可能偏小。对于长周期的结构,地震动态作用下的地面加速和位移会对结构具有更大的破坏作用,如果剪重比<0.02,结构的刚度岁可以满足水平位移限制的要求,但却不能达到结构整体稳定的条件,设计人员要在设计过程中综合的考虑刚重比和剪重比的合理取值。
4.2结构构件的设计方法和优化
4.2.1剪力墙下布桩
当建筑的结构为剪力墙或框剪结构时,剪力墙主要承受地震水平力,它也是承受竖向荷载的重要构件,所以要沿着剪力墙全厂布桩,桩的中心线要和剪力墙的中心线重合,布置双排桩时,桩的承台要具有足够的刚度,并应作承台的抗弯和冲剪验算。
4.2.2桩基础设计
当布桩仅按照竖向荷载作用进行时,要对弯矩作用下的承台底部边桩的反力进行验算。尤其是框剪结构的剪力墙和剪力墙结构核心筒底部弯矩及剪力对基础承载力的影响较大,不能遗漏。对于水位较高的地下室和短肢剪力墙、大跨度结构等弯矩较大的承台底部桩基要验算其是否存在向上的抗拔力。
结束语
在进行设计时,既要考虑用户对房屋使用效果的要求,还要兼顾建筑的质量、安全性、稳定性等多方面的内容。通过对建筑工程的结构进行优化设计处理,可以更好的实现建筑结构设计的整体优化,从而达到经济、科学及合理的设计要求。
参考文献
Abstract: based on the basic pull beam design, the design of the base load determination, stirrup and frame beams of the spacing, reinforced concrete frame structure design, structure of the calculation of the cycle, in the wind load and seismic load of the structure of the building design and construction of the basement design aspects of the architectural engineering structure design of the optimization problems are analyzed.
Keywords: building engineering; Structure design; optimization
中图分类号:TU318文献标识码:A 文章编号:
随着时代的发展,我国城市出现了大批高层建筑结构。目前高层建筑结构中的结构布置越来越多样化;层数变化也较大,由十几层到三、四十层不等;结构类型亦趋于复杂化,导致工程造价很难得到有效控制。对于我国经济尚不发达的国情来说,如何对结构设计进行优化,把结构设计得尽可能理想,既经济又安全实用,是当前面临的一个重要问题。
一、建筑工程结构设计的优化方法
1.结构设计的优化分解法。
该方法是将建筑工程结构设计的优化问题分解成比较小的子问题,如基础、屋架、梁、柱等。优化过程分为两级。第一级是对各个子问题单独进行优化处理。这时可以根据各种不同类型的结构如框架、梁、柱等即各子问题的特点,分别采用各不相同的优化方法。第二级是对第一级子问题的优化方法进行综合调整。循环几次后,即可得到各自适应的优化方法[1]。这种方法的优化过程具有良好的收敛性,且计算工作量较小。
2结构设计的变换分析优化求解法
该方法是把优化目标当作优化依据,对影响结构设计的各个因素进行分析,从而得出一个规律或者方向,以指导结构设计的优化。继而再用优化方法达到结构整体最优化的目的。
二、建筑工程结构设计的优化问题分析
1.基础拉梁设计的优化
基础拉梁的设计应按框架梁相关参数进行设计,并按规定对箍筋加密区进行设置。从抗震的角度来说,基础应选择短柱,基础拉梁应顺着两个主轴的方向进行设置。基础拉梁的截面宽度一般取短柱中心距的1/20~1/30,高度一般取短柱中心距的1/10~1/15。 纵向钢筋受力值可取其连接柱子最大轴力设计值的1/10。基础拉梁的配筋必须满足最小配筋率的要求。一般要求基础拉梁顶标高与基础顶的标高相同。当钢筋混凝土框架的层高不足或者建筑的基础埋置过浅时,通常需要设计较大的基础拉梁。较大的基础拉梁需进行通长设计 。建筑基础拉梁的正负弯矩钢筋及抗震相关结构应与上部钢筋混凝土框架保持一致[2]。
2.基础设计荷载取值的优化
对于框架结构,建筑物的柱下基础一般设计为相互独立的。对于层数低于8层且高度低于25米的普通建筑,若地基的关键受力部位不在软性粘质土层,则可以省去基础抗震能力的校验步骤。钢筋混凝土框架的优化设计必须考虑风载荷。此外,独立基础外荷脚内力的设计值,应取轴力设计值。若取为剪应力设计值或弯矩设计值则会使设计的独立基础尺寸偏小,可能会对建筑物上部结构的安全造成威胁。
3.箍筋与框架梁间距的优化
对于抗震等级不同的框架,箍筋与框架梁的间距不同。一般情况下,加密区箍筋与框架梁的间距不超过10cm,非加密区钢筋与框架梁的间距不超过20cm。合理地设计箍筋直径及其箍筋与框架梁的间距对建筑工程结构设计的优化具有重要意义。需要注意的是,在设计非加密区柱、梁的配筋时,不需考虑高剪应力弱弯矩的规定,即可以不计算剪应力的增大系数及弯矩的减少量[3]。
4.钢筋混凝土框架结构设计的优化
现在广泛采用准则法对钢筋混凝土框架结构的设计进行优化。该方法的基本思想是:首先根据经验给出建筑结构的初始截面,并采用有限单元法在各种情况下对建筑结构的整体进行内力分析。然后把结构分解为单一的梁、柱等构件,根据已求出的各构件的受力情况,进行分部优化。最后通过递推公式及多次循环,达到满意的优化结果。需要注意的是:采用准则法对钢筋混凝土框架结构设计进行优化时,需根据实际情况,区分有效约束和无效约束。
5.建筑结构计算周期的优化
框-剪结构墙、框架结构墙、剪力结构墙等都存在填充墙,则使设计周期比建筑结构的实际周期短。这会导致设计承受的剪应力偏小,会对建筑物的抗震结构造成安全隐患。因此,一定要对建筑结构的计算周期进行折减。对于框架结构,使用重质砌体作填充墙时,折减系数取在0.6~0.7之间,使用轻质砌体作填充墙时,折减系数取在0.7~0.8之间,使用超轻质墙板时,折减系数取0.9[3].
6.框-剪结构在地震载荷作用下剪力墙数量的优化
高层建筑结构在地震时是否安全,除建筑强度外,建筑适应变形的能力更为重要。确定建筑结构的合适刚度,控制侧向位移,是建筑结构抗震设计及优化的主要研究课题。在框-剪结构中,起抗震作用的主要是剪力墙。因此,需优化剪力墙的数量及相应厚度,以构成合适的刚度,这对优化建筑抗震结构具有重要意义。在地震区,若剪力墙刚度选择过小,则不能达到地震载荷的目的;若剪力墙刚度过大,会使房屋的自振周期减小,地震载荷相应的增大。因此,必须合理选择剪力墙的强度,使它具有最小的抗侧移刚度。一般来说,地震载荷与剪应力墙刚度是正比关系。通过建立数学模型,求得最小惯性矩,而后根据建筑结构的平面布置确定剪应力墙的数量和相应的厚度。
7.框-筒结构在风载荷作用下尺寸的优化
在非地震区及沿海地区,高层建筑所承受的侧向载荷主要是风载荷。框-筒结构是目前高层建筑经常采用的一种结构形式。其优点是:平面布置规则,建筑空间大,抗侧向力强度高。在框-筒结构中,筒体设置的目的就是承载水平侧向力。许多实验及资料都表明,框-筒结构中,筒体承载了约70%左右的风载荷,并且还承受了部分纵向载荷[4]。严格意义上讲,风载荷是沿建筑物的高度而变化的。但是实际计算中为了方便,可沿建筑物的高度分为若干点来计算风载荷。根据所建立的数据模型及约束条件,选择最经济安全的筒体的高度和厚度,实现框-筒结构在风载荷作用下尺寸的最优化。
8.建筑地下室层数的优化
多层框架结构建筑的地下室通常采用筏板式基础。在设计计算中,需将地下室层数和上层结构同时输入,且必须按实际地下室层数填写相关信息。这样可以使地基和基础底板的纵向载荷同时计算,同时,也可减少抗震设计的计算量。若信息中填写的地下室层数小于实际的地下室层数,则会导致弯矩设计值的增大系数乘错位置,直接影响建筑基础的抗震能力。
四、结束语
随着时代的进步,高层建筑将不断发展,建筑的材料、形式及力学分析模型也将更加复杂与完善。通过对建筑工程结构设计的优化问题进行分析,以使建筑设计更加科学、经济、合理。
参考文献:
[1] 徐银夫. 关于高层建筑结构设计的研究[J] .科技经济市场, 2009,(2)
[2] 陈雷. 建筑工程结构设计总说明中的问题[J]. 工程建设与档案,2008,(4)
中图分类号: TH 703文献标识码: Adoi: 10.3969/j.issn.10055630.2012.06.010
引言
反射镜作为空间相机的关键部件,其支撑技术是空间相机工程应用的关键。为保证成像质量,必须对反射镜面型精度及其动态特性特别是一阶频率都有较高要求[1]。支撑结构设计问题一般具有不可重复的高度非线性特点,变量很多而且关系复杂,很难用确切的数学、力学模型来描述。一般工程中都需要依靠有限元分析来进行结构优化设计,但是结构选型和设计的重复性工作,需要大量结构分析的计算量,仅靠输入参数进行有限元计算来得到最优结构的方法显然是不现实的。
人工神经网络在处理这个问题方面有着传统方法无法比拟的优越性,神经网络对输入节点没有限制,它适合解决结构工程中诸多影响因素的问题,神经元中的激活函数本身可以选用非线性函数,它能处理非常复杂的非线性问题,因此神经网络在结构工程中的应用是可行的。现利用人工神经网络的高度非线性逼近能力来对空间反射镜支撑结构进行优化设计,构造一个网络虚拟函数对结构参数与结构响应之间的非线性关系进行模拟,通过有导师的学习方法不断优化虚拟函数,最终找到一个从结构参数到结构响应之间的非线性映射,再从此非线性映射结果中找出使输出结果最优的输入解。
1反射镜支撑结构设计
优化的反射镜尺寸为210 mm,厚度20 mm。反射镜轻量化后的结构见图1(文中沿用此坐标系)。
控制工程造价指的是在批准的工程造价限额以内,对工程建设全过程所涉及的建设费用的确定、控制、监督和管理,随时纠正发生的偏差,保证项目投资目标的实现,以取得较好的投资效益,最终实现竣工决算控制在审定的概算额内。目前,如何有效工程造价已经成为了相关部门所面临的一项重大课题,从我国目前建筑工程的投资现状来看,其关键就在于设计,建筑结构设计是处理技术与经济的关键性环节,是确定与控制工程造价的重要阶段。因此,企业如果想要有效控制工程造价,那么必须要先从优化设计结构开始。
一、结构设计对工程造价的影响
在工程建设中,建筑结构设计对工程的造价有很大的影响。科学合理的结构设计可以大大降低建筑工程的造价,提高工程的经济性。从目前我国建筑结构设计对工程造价的影响来看,主要可以体现在以下几个方面:
1.1 建筑设计的具体方案直接影响工程的投资
目前,在建筑工程建设中,工程设计费用仅仅占全部费用的1%不到,但是工程设计对整个工程投资的影响却高达60%以上。在工程单项环节的设计中,所采取的结构方案以及建筑工程中材料的选择都在很大程度上影响了工程的投资。比如说,建筑结构设计中基础类型的选用,结构形式的选择以及对于结构做法的理解应用等,都存在着一定的技术经济分析问题。
1.2 设计方案经常性费用也存在一定影响
建筑工程中所涉及到的费用除了一次性投资之外,还包括施工过程中的一些经常费用,比如说暖通、照明的能源消耗、保养以及维修费等。这些费用贯穿在工程施工施工的全过程当中,是不可避免的一项费用。设计方案是否合理不仅会对工程一次性投资产生影响,而且对以上所提到的经常性费用也存在一定程度的影响。科学合理的结构设计能够在确保工程质量的前提下,使工程中所涉及的一次性费用和经常性费用降到最低。
1.3 设计质量间接影响投资
由于工程施工中所涉及的环节较多,个别环节中包含了许多不安全因素,如果在对工程结构进行设计的时候,设计不能对这些不安全因素进行充分考虑,那么势必会造成事故的发生。据统计,在工程质量事故的诸多原因中,设计责任占了近一半的比例。许多建筑产品由于设计不合理,从而影响了正常使用;还有些工程的设计图纸差,专业设计之间相互矛盾,从而造成施工返工、停工的现象严重,有的造成质量缺陷和安全隐患,给建筑企业带来了巨大的损失,造成投资浪费,从而提高了工程造价。
二、通过优化结构设计实现对工程造价的有效控制
所谓优化结构设计,主要是指工程结构在满足约束条件下按照预定的目标求出最优方案的设计方法。优化结构设计不仅能够使施工技术更加可行,更加满足工程的要求,而且还能够最大程度节约施工材料,使工程造价明显降低。在工程建设中,往往同一个建设项目,同一单项、单位工程,可以有不同的设计方案,由于设计方案的不同,导致工程造价也不尽相同。因此,设计人员必须要结合工程多方面的实际情况,在诸多方案中选择最优的设计、最经济的投资,从而实现在确保工程质量的前提下,有效控制工程的造价。
在工程建设中,优化结构设计是有效控制工程造价的重要手段,是具体实现技术与经济平衡的复杂过程。为了能够更好的实现对工程造价的有效控制,设计人员在对结构设计进行优化的时候,可以从以下几个方面对工程设计进行考虑。
2.1 确保设计最大程度满足工程建设要求
由于建筑工程建设过程中所涉及到的环节较为繁琐,因此,设计人员在对结构进行设计的时候,一定要从多方面、多角度进行全面考虑,确保设计能够最大程度满足工程建设每一个环节的要求,其中主要包括建筑内部平面、空间高度、建筑立面等使用功能和外形感观,同时还应该满足结构体系的选择、传力的途径、构建的布置以及构建的选用等,只有将每一个环节的造价有效控制,才能够实现降低工程整体造价,提高工程的经济效益。
2.2 确保设计规则化、简单化
目前,我国越来越多的建筑体型呈现出复杂化和不规则化,这样不仅无法充分保证工程的质量,而且还会在很大程度上提高工程造价。为了将此类问题避免,设计人员在对建筑结构进行设计的时候,应该尽可能做到使建筑体型产生规则的结构效应。设计中,应该尽量使传力中心和刚度中心接近或重合,这样就可以使结构基本具备了规则的条件。结构传力途径应力求简单、直接,否则空间关系复杂部位就会出现多次转换的结构构件,这样必然会导致工程造价提高,同时也很容易产生安全问题。结构传力多种多样,支撑构件也可以根据传力途径是否合理进行变换,没有一成不变的结构布置,也没有一成不变的传力途径。设计人员应该根据工程的实际情况,采用最简单、直接的传力途径,从而省去中间传力的结构构件,减少结构的安全风险,使结构受力更加明确,造价也相对经济。
2.3 充分理解和灵活运用规范条文
目前,在我国建筑工程中,地下结构对整个建筑物的使用起到了重要的作用,因此,其设计的重要性越来越突出,更要讲究合理与经济,设计人员必须要充分理解和灵活运用规范条文,对于处于不同抗震等级区域的建筑方案,设计人员应采用更合适的抗震等级,根据实际情况适当调整建筑方案。此外,地面以上的结构形式对建筑物的造价也有很大的影响。根据建筑的类型,功能用途,提出不同的结构解决方案,通过比较选择较优的结构类型,既要保证结构安全,同时以工程造价为准则进行设计。
2.4 加大行政监督力度,加快推行设计监理工作
为了确保优化结构设计工作能够更好开展,政府主管部门必须要加大对其重视程度,通过行政手段来保证优化工作的实施,加大行政监督力度,并在此基础上建立相应的法律法规,以此来规范设计市场。此外,还应该在加大监督力度的基础上,加快推行设计监理工作。就我国目前建筑工程的现状来看,建立设计监理制度已是形势所迫,业主所需。由于我国目前还没有没有客观公正的“第三方”来监理结构设计的进行,所以,通过设计监理的方式可以打破设计单位自己“控制”自己的单一局面。
三、结语:
综上所述,随着我国建筑行业发展脚步的不断加快,有效控制工程造价必然会受到相关部门的高度重视。为了能够实现竣工决算控制在审定的概算额内,有效实现降低工程造价,工程设计人员在对建筑结构进行设计的时候,必须要综合建筑多方面的实际情况,从诸多方案中选出技术上先进、经济上合理的最优方案,以此来有效控制工程造价,从而促进我国建筑行业的可持续发展。
参考文献:
[1]余永锋,吴蔚位.关于优化结构设计与降低工程造价的思考[J].《城市建设理论研究》.2012(07)
高层建筑高度不断增加的同时,增大了高层建筑侧向的位移,所以,在对高层建筑进行设计时,不但具有一定的强度,而且结构刚度适宜,使其在结构上的自振频率等一些动力特性更加合理,从而控制水平作用力下的层位移在一定空间。此外,为了防止高层建筑在大型地震下出现倒塌的情况,一定要以必要强度为前提,在清晰的概念设计以及科学的构造措施基础上,将全部结构、尤其是薄弱层面的变形能力提高上来,确保结构的延性。所以,在结构设计中,这些因素是不容忽视的,设计合理,具有相当强度的结构、刚度适宜、延性良好。
1、 有关建筑结构的分析
1.1结构材料的分析
在假定线弹性对建筑结构的位移、内力时,通常假设成构件与结构处在弹性工作情况跟下,以弹性理论为根据进行研究,但连梁及框架梁等一些构件则要求由局部塑性变形产生的内力重分布做出研究。将计算地震环境下建筑结构易变形的薄弱层选择弹塑性方面分析其方法。
1.2刚性楼板的分析
在对高层建筑的位移与内力进行计算的过程中,一般假定楼板在本身的平面内是无限的刚性,由于平面外刚度极小所以将其排除在计算之外,在假定为刚性楼板情况下,在进行结构设计时就要使用一些措施以保楼板平面内整体刚度。
1.3计算图形的分析
在高层建筑结构的体系中,进行全面分析所使用的计算图形分为:一维以及二维协同分析和三维空间分析。
1.4小变形分析
在所有方法中是经常运用的基本假定。但专家们在研究非线性问题(P―Δ效应)后得出了新的结论,通常在顶点水平位移Δ与建筑物高度H的比值Δ/H>1/500时,就应该将P―Δ效应考虑在计算内。
2、优化建筑工程结构设计的方法
2.1优化基础拉梁设计
在多层框架房屋的基础埋深值较大的情况下,为了将计算小底层柱的长度以及底层的位移减小,在±0.000之内合理位置进行基础拉梁的设置,但在设计时按构造要求进行设置是不合理的,应该按框架梁设计,根据相关规定对箍筋加密区进行设置。从抗震方面来讲,基础方案应采用短柱。通常情况下,在独立基础埋置较浅时,因为不良的地基或因柱子荷载落差较大时,根据抗震的需要,可顺着两个主轴的方向进行构造基础拉梁的设置。基础拉梁的截面宽度可取柱中心距1/20~1/30,高度取柱中心距1/10~1/15。对于构造基础拉梁截面应在上述限值范围以下,纵向受力钢筋要取在所连接柱子最大的轴力设计值的10%为压力或拉力来计算,作为构造配筋时,应符合最小配筋率的要求。基础拉梁顶标高通常与基础顶标高一致,在框架底层的层高出现不足或者基础埋置较浅的情况时,有时要设计较大的基础拉梁,便于通过拉梁来平衡柱底的弯矩。此时,拉梁钢筋要进行通长设计。拉梁的正负弯矩钢筋包括于在框架柱之内的拉梁箍筋、锚固的加密以及有关于抗震构造的需要应与上部框架梁全部一致。
2.2优化独立基础设计的荷载取值
采用钢筋混凝土进行多层框架设计时,房屋一般使用柱下独立基础的方法,当地基的关键受力层的范围之内没有软弱的粘性土层时,小于8层且高度不超过25m的普通民用框架房屋或者荷载一定的多层的框架厂房,可以不进行验算地基以及基础的抗震承载能力。但这些房屋在进行基础设计时要将风荷载对其造成的的影响考虑在内。所以,在进行整体计算分析钢筋混凝土多层框架房屋时,务必将风荷载输入,不能由于地震区的高层建筑之外的普通建筑风荷载没有起控制作用就将其忽视;另一方面,在独立基础设计的时候,在基础上面的外荷载柱的脚内力设计值,仅取弯矩设计值以及轴力设计值,不取剪力设计值,甚至也不取弯矩设计值。以上两方面会最终会使基础设计的配筋偏少,尺寸偏小,对于基础及上部结构的安全造成了威胁。
2.3优化柱箍筋与框架梁的间距
针对抗震等级不同的框架梁,要明确规定柱箍筋加密区箍筋直径的最小值以及最大箍筋的间距。按照这些规定,一般情况下,工程经常取柱、梁在箍筋加密区间距最大值为100mm,在非加密区箍筋间距的最大值为200mm。在电算程序全部信息中一般内定的柱、梁箍筋加密区为100mm的间距,并以此为凭证从而计算出加密区箍筋的面积,因此设计人员应按照规范明确箍筋直径以及其肢数。然而,在内定程序的情况下,在框架梁的跨中位置有次梁或者有过大的其他集中荷载作用而箍筋却仅为两肢箍时,可合理的加密箍筋间距或增加箍筋直径。在框架内定柱的加密区箍筋在100mm的间距时,在一般时候,框架柱或许由于非加密区的箍筋采用200mm的间距而导致配箍不足。所以,我们应合理的强化箍筋直径以及加密箍筋的间距。这里需要注意的是,在验算柱、梁箍筋非加密区的配箍时可以忽略强剪弱弯的规定,即以加密区终点处为剪力设计值,并且不计算剪力增大系数。
2.4优化框架计算简图
对于没有地下室采用钢筋混凝土的多层框架房屋来讲,独立基础的埋置过深,大约在-0.30m无基础拉梁的情况下,应输入基础拉梁按层Ⅰ考虑。如:某项目是3层钢筋混凝土框架结构,属丙类建筑,其建筑场地是Ⅱ类; 3.2m层高,1.0m的基础埋深,基础高度为0.7m,室内外高差为0.30m。抗震设防烈度为7度,该工程的框架结构抗震等级为三级。设计者在计算时应以3层框架房屋计算,首层层高为3.5m,即假定框架房屋嵌固于-0.30m基础拉梁的顶面;配筋与截面按构造设计;以中心受压计算其基础。明显看出,用此种计算简图并不恰当。在设拉梁层的时候,通常来说,要比较底层柱的配筋是由基础顶面处的截面控制还是由基础拉梁处的截面控制。由于地基土具有约束性的计算简图,在进行电算时,基础拉梁要按层1输入,输入基础拉梁墙荷,设计配筋时按电算结果为准。
2.5优化结构周期的折减系数
框架结构,框架--剪力墙结构及剪力墙结构等,由于存在填充墙,结构实际的刚度要比计算刚度要大,计算周期要比实际周期大,所以,地震剪力的结果偏小,结构就处于不安全的状态下,因而一定要折减结构计算的周期,因此不折减高层建筑结构的计算周期或者折减系数取值过大的做法都不正确。从框架结构方面来讲,使用砌体对墙体进行填充时,自振周期的折减系数在0.6~0.7之间;在砌体填充墙过少或者使用轻质砌块的时候,取值在0.7~0.8之间;采用的完全是轻质墙体板的时候,取值在0.9。不折减计算周期的情况要以无墙的纯框架为前提。
2.6优化地下室的层数输入
多层框架结构房屋也有设置地下室的。由于隔墙少,常采用筏板式基础。在电算时,应将地下室层数和上部结构一起输入,并在总信息中按实际的地下室层数填写。这样,计算地基和基础底板的竖向荷载可以一次形成,并且在抗震计算时,程序会自动对框架底层柱底截面的弯矩设计值乘以增大系数。同时通过对层间侧移刚度比的分析比较,还可以正确判断和调整房屋的嵌固位置,并采取相应的抗震构造措施,保证楼板有必要的厚度和最小配筋率等。当结构表现为竖向不规则时,不仅要验算薄弱层,而且还要对薄弱层的地震剪力乘以1.15的增大系数。如果在结构总体计算中,总信息中填写的地下室层数少于实际输入的层数,弯矩设计值增大系数将会乘错位置,从而在发生地震时,会使极易发生震害的底层柱底部位因抗震能力降低而破坏。
3、结语
综上所述,随着高层建筑不断发展,在高层建筑的材料、形式、力学分析的模型上日益复杂化且多样化。通过优化建筑工程结构而进行设计处理,以达到整体优化建筑结构设计的最终目标,从而在设计要求上更具有科学性、经济性及合理性。
参考文献: