你好,欢迎访问云杂志! 关于我们 企业资质 权益保障 投稿策略
当前位置: 首页 精选范文 数学与基础数学

数学与基础数学范文

发布时间:2023-09-25 11:51:12

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇数学与基础数学范例,将为您的写作提供有力的支持和灵感!

数学与基础数学

篇1

对绝大部分运动员来说,学习数学这门课程对他们而言是很痛苦的。所以在数学课堂上,除了少数几个能够一直跟着老师的思路学习的,其他的人不是睡觉,就是在做自己的事情。毫无疑问,这些运动员的数学成绩在考试的时候基本上都是在挂红灯笼。作者在上海体育职业学院上数学课也将近两年了,各个年龄层次,各个基础层次的学生也接触了不少,以上的情况基本上都出现在每个年级,每个班。课后,与他们交流为什么不想学数学,他们的回答也都很实在:“学数学做什么,只要钱不会数错,不就行了!”“你给我们的那些什么推导啊、公式什么的,有什么用啊,以后又不会用到。”在听了这些话后,作为一名教育者,真是心酸又好笑,都是十六七岁快成年的人了,对于数学,对于科学的看法怎么还跟小朋友差不多呢,思考问题还是停留在表面,缺乏深度,这不免让人对他们在以后的学习和工作产生担忧。

一、运动员对数学产生厌学情绪的原因

数学本身就是一门系统性很强,连贯性很强的学科,首先对学生的出勤率就有要求。而我们的运动员,尤其是我们体育职业学院附中的优秀运动员对于这点本身就很难做到,每年在十月到十二月份,三月至六月份,外出集训或者各类大小的比赛致使他们无法正常地坐在教室里面听课,以至于回来之后,老师当堂讲的内容他们消化不了,再加上训练过后的疲劳,自然而然教室里面趴倒一大片,这是其一。

其二,就如上文提到的,很多学生对于数学的认识就有误解,认为学习数学是可有可无的,以后也用不到。其实,这个原因也与他们从小到大文化学习的不完整、不连贯有关。如果是普通全日制的学生,他们应该有了解,学习数学不仅仅是教我们学会算数,这只是学数学的表面层次,更重要的是,学习数学知识是培养我们理性思维的载体。在我们国家,运动员都有一个很普遍的性格特征,在对待问题方面,他们不是缺乏解决问题的胆量,而是缺乏思考,做事情比较冲动,考虑问题不是很周全,我认为这与他们数学学科学习的薄弱性是有很大关系的。

二、学习基础数学的重要性与必要性

其实,我们的小学数学,初中数学,高中数学都是有很强的系统性的,只不过,这个知识系统的复杂程度不一样。前面,我们也说到,学习数学,不只是单纯的学习数学知识(概念、定理、公式等等),更重要的是以数学知识为载体培养理性思维。这种素质的培养对运动员而言,无疑是非常必要的。例如,在解数学证明题时,我们由已知能得到什么,条件预示可知并启发解题手段,导出结论需要什么,它预告需知并诱导解题方向。如果由已知条件能直接得到结论,则解题成功;如果由条件不能直接得到结论,就要转化,转化必须等价,因此前一步到后一步往往会有附加条件约束,它是正确解题的前提,也是检验的依据,可以是数形结合,可以是变形(恒等变形或非恒等变形),可以构造模型,也可以用辩证思想作指导,等等。各种思想方法在此大有用武之地。

三、如何做到有效地学习数学

由于客观原因的存在(学习时间有限,无可避免地缺课),在目前我们无法改变客观存在的时候,我们只能在现有的基础上实现最有效的教学。

第一,教材的处理。

目前,就数学教材而言,我们所用的还是全日制普通中学的教材,如果按照教材上既定的课时进行教学的话,一是难度较大,二是课时任务紧张。这就要求我们老师在备课的时候,结合运动员的学习特点,将难度降低(降低到最简单),对课时进行压缩(压缩到一学期课时任务的三分之二)。这样,不仅减轻了学生学习的任务,而且使课堂的有效性学习得到提高。

而对于长时间不能上课的运动员,在他们也要考试的时候,我们也可以将这些内容以“常识”的形式介绍给他们。之前,我在给一个海事大学大三的运动员补数学的时候,发现他连对数是什么形式的都不知道,这种情况在当今这个时代应该算是荒唐的,对此,让他再重新学习数学没有必要也没有时间,那么,就给他辩证地介绍对数的起源,既学到了知识,又减轻了负担,而且还具体地了解了辩证思维的一个实例。

第二,课堂教学。

目前全日制学校普遍倡导的是以学生为主体的教学组织形式,然而,我认为这方式还是不能完全适用于我们的运动员。

根据我们上海体职院附中运动员的学习特点与他们目前的知识结构来看,让学生去主动地探究学习,不符合实际,而且会降低课堂学习效率,何况,他们的学习时间已经非常少了,最终的结果只是浪费时间。但是,我们可以结合教师为主导以及学生为主体的这两种教学组织形式运用到我们的运动员学习的课堂上来。

其实,思维与语言也类似。在语言的学习初期,我们只是纯粹地模仿,在熟练之后,我们才会自然而然地运用语言去演讲,去写文章,古今中外的文人骚客们创造出了多少流芳百世的奇闻佳话啊。同样的,在思维的初期,我们也可以先进行模仿,也就是说把思维模板化,让运动员去熟练各种各样的思维模式。再结合前面的教学组织形式,我把这种教学方式成为“思维模板教学法”。

在课堂一开始的时候,这个时间段学生的思维比较活跃,老师可以对本节课的问题给出一个思维模板,并对这个思维模板进行较详细地解释(教师为主导);在课堂中间的这个时间段,学生对于这个思维模板已经有了一定的了解,这个时候,可以适当地把课堂交给学生,教师可以给出一到两个类似的问题,让学生模仿这个思维模板进行解决问题,并给出一些奖惩制度,激发学生的学习兴趣(学生为主体);课堂尾声,教师再重回主导地位,根据学生对这个思维模板的掌握情况的反馈,及时给出有效性的解决方案,完善课堂教学情况。这是我在教学两年来,相对狭义地认为是对运动员的数学学习比较有效的一种方法。

第三,课后交流。

在客观上,运动员的主要任务还是在于训练。考虑到这个特殊性,为了更好地教学,我们不仅要与学生及时沟通,也要和他们的教练,领队做好沟通。前者,完全看老师;后者,虽然教务处的工作人员已经在这方面做出了很大的努力了,当然,对学生的学习情况最了解的还是老师。所以,不管是学生还是教练、领队,都需要我们老师及时地去沟通。然而,我认为这种沟通还不够深入,尤其是教练、领队这块。目前,我们的沟通都只是停留于电话和联系单,这些都存在很大的滞后性,导致解决问题不彻底。在这里,我有一个建议,文化教师与教练或领队进行交流互动。文化老师在没课的情况下可以去训练场了解运动员的训练情况,据我观察了解,绝大多数在学习上比较刻苦用功的运动员他们的运动成绩也都比较优秀,这其实也证实了方法是相通的,思维也是相通的道理;而教练或领队在运动员上课的时间可以与运动员一起听课,这对运动员的学习自然而然地就会起到一个督促作用。

篇2

中图分类号:G641 文献标识码:A

Talking about interest in Mathematics and Basic

Training of Primary School Students

YUAN Xu

(Shangshui County Education Department of He'nan Province, Zhoukou, He'nan 466100)

AbstractInterest is a positive, active mental state, once students are interested in mathematics, mathematics is a pleasure for them, interest due, basis of of scholastic ability in mathematics can be formed. In this paper, on the basis of exploring scholastic ability and interest, analysis of the affecting factors of the formation of basic skills in primary school students' interest, and for some of the problems in primary school mathematics teaching, put forward some suggestions for improvement.

Key wordsprimary mathematics; primary students; interest; basic scholastic ability

1 兴趣与基础学力

心理学研究表明,兴趣和个体活动的“目的”与“方法”是一致的。要理解兴趣的内涵,则须处理好以下两种关系:一是直接兴趣与间接兴趣。“所谓直接兴趣是指个体对接触的事物或参与的活动本身引起的兴趣,这种兴趣要求方法和结果结合在一起,主体需要的是一种及时的对活动本身的感觉和满足,不需要在活动之外再去寻找某种事物。间接兴趣是由活动成果或其它传媒所引起的兴趣。有时候,个体开始时并不对某项活动感兴趣,但在活动过程中发现结果乃是自己感兴趣的,于是,对于这项活动的过程也来了兴趣。”①二是兴趣与基础学力。基础学力指“构成一切学习之基础的‘三基’读、写、算的基础学力。”“学力结构包括知识、理解、问题解决学力、兴趣、态度之中作为基础部分的学力。”②小学生数学基础学力的形成是多种心理因素综合影响的结果,而兴趣又是小学生基础学力内在构成的重要因素。

2 兴趣对小学生数学基础学力形成的影响

兴趣不仅能推动人们去寻找知识、钻研问题、开阔视野,而且也是推动一个人走向成才的原动力。小学生一旦对数学学习产生兴趣,就会持续地专心致志钻研它,从而提高数学基础学力。学力问题的论争起源于日本,“现代在日本的学力论争所缺乏的是,如何变革课程与教学的讨论。”③那么,兴趣对小学生数学基础学力形成会产生什么影响?通过文献研究,大致可概括为以下几个方面:

(1)兴趣是小学生学习的推进器。数学教师在教学过程中善于激发小学生的学习兴趣,就能激活小学生学习的主体性,小学生对数学问题的认识和思考才能由被动变主动,抽象思维能力和数学基础学力才得以形成。

(2)兴趣是影响小学生学习态度的重要因素。心理学研究表明,在诸多非智力因素中,兴趣是影响小学生学习主动性,影响小学生学习效率的关键因素之一。在数学学习过程中,浓厚的数学兴趣会使小学生产生积极的学习态度,进而推动他们兴致勃勃地进行数学学习,自觉地克服数学学习中所遇到的各种困难和问题。而缺乏兴趣的强制性学习,只会扼杀小学生数学学习的欲望,降低他们的基础学力。

(3)兴趣影响小学生对数学学习过程的内心体验。在小学数学教学中,教师们常常叹息小学生数学基础学力低下,那是因为小学生在数学学习过程中缺乏了丰富的生活体验。唯物辩证法认为,实践是认识的来源。因此,对生活的体验既是小学生认知的源泉,也是小学生数学基础学力形成的根基。离开了真实的生活体验,小学生的数学学习就变成了“无源之水,无本之木。”教师只有把数学教学落实到小学生的生活中去,才能理论联系实际,激发小学生的数学兴趣,通过小学生的数学基础学力。

3 数学教学中小学生学习兴趣与基础学力培养的缺失

兴趣是影响小学生数学学习的重要因素。随着基础教育新课程改革的不断深化,小学数学教学与研究也越来越关注小学生学习兴趣激发和基础学力的培养。然而,受各种因素的影响,小学数学教学中小学生学习兴趣和基础学力培养还存在一定的缺失,可表现为以下几方面:

(1)教学目标脱离小学生的发展实际。兴趣和自信心是小学生不断走向成功的前提条件。然而,目前的小学数学教学存在着较多的问题,影响了小学生的数学兴趣培养和自信心形成。主要表现为教师把教学目标定位过高。《小学数学课程标准》强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”目前还有不少教师对小学数学“新课标”不理解,教学目的不明确,教学中往往以“应试教育”为导向,讲求“近期效益”,将数学教学过程变得过于复杂、过于抽象化,使小学生觉得数学 “高不可攀”,严重挫伤了小学生的数学兴趣和自信,出现消沉、厌烦等情绪。

(2)教学过程脱离了小学生的生活体验。数学知识有着显著的系统性,但对学生而言,这种系统性不应当简单地“被告之”,而应建立在学生的生活体验之上,使学生在体验中形成自主“建构”。但是,现行小学数学课堂教学的简单、线性和机械主义,小学生只知道被动接受运算训练和基本概念背诵,数学课堂变成了“纯知识”教学,脱离了社会生活和小学生的实际,变得刻板、僵化、难以理解,课堂教学缺乏兴趣、生机与活力。

(3)常规教学定势制约了小学生的学习兴趣。定势是指由于先前的活动而造成的一种心理准备状态,它使人以比较固定的方式去进行认知或做出行为反应。学习的有关理论告诉我们,不是所有的学生都是按照同一种方式加工信息,有点学生擅长加工图片信息,有的学生擅长加工文字信息,有的学生擅长加工言语信息。而教师常规的“讲”“练”教学定势会使很多小学生听不懂、学不会,长此以往,小学生的数学兴趣和热情也荡然无存。要激发和培养小学生的数学兴趣和基础学力,教师必须打破传统的教学定势,以多样化教学激发学生的兴趣。

4 小学生数学兴趣的激发与基础学力的培养

新课程理念指导下的小学数学课堂教学应该是促进学生发展、符合学生实际的、灵活开放的、动态生成的、师生互动的教学过程。因此,提高小学生基础学力,必须从激发小学生的兴趣入手,具体措施如下:

(1)基于学生发展的小学数学教学。小学数学是解决我们生活和生成问题的一门基础工具学科。因此,小学数学不仅仅是要教给学生一些数学知识和技能,更重要的是要让学生懂得数学的价值,学会用数学思想思考现实生活,解决生活中的问题。这就需要小学数学教师在课堂教学中突破传统模式,突出数学教学思想和方法,重视培养小学生学会运用数学思维方法来分析、解决实际问题的能力。做到以学生发展为主线,目标定位明确,开展多种方式的教育教学,把学生的主体地位落到实处,激发学生的数学学习兴趣,引领学生对数学学习的积极投入,提高学生数学的基础学力。

(2)提高教师的专业素养和教学技能。小学数学教材看似很简单的知识内容,其实蕴涵着很深奥的道理,没有坚实的数学根基,教师就很难把新课程的目标内容落到实处。因此,为适应小学数学新课程教学的要求与挑战,教师必须不断提高自身的专业素养和教学技能。一方面,教师要认真研究新课程标准和有关小学数学教育的理论研究成果开阔视野,更新知识储备,转变教学方式,提高教学能力,增强教学的有效性。另一方面,教师要认真研究小学生认知发展的规律,做到不以成人思维代替儿童思维,不断提升教学智慧,努力使数学课堂成为促进学生发展的平台,同时也是自我专业成长的舞台。

注释

篇3

2.国网辽宁省电力有限公司大连供电公司,辽宁大连116000)

摘要:结合fMRI数据处理方法,介绍相关的数学基础,阐述如何完成认知实验及数据处理,实现理论与实践相结合的教学方法。

关键词 :脑与认知科学;功能磁共振;数据分析方法;基础数学

基金项目:国家自然科学基金项目( 61472()58, 61173035);新世纪优秀人才计划(NCET-11-0861)。

第一作者简介:刘洪波,男,教授,研究方向为认知计算及大数据,thb@dlmu.edu.cn。

1 背景

脑与认知科学课程是智能科学与技术专业的主干课,涉及心理学、神经科学、计算机科学与技术等,学习这门课程不仅能启发智能系统设计模式,更有利于脑机接口、生物医学等方面的应用。在这门课程的教学过程中,容易忽略其中的数学基础。特别的,随着fMRI、EEG等无损影像技术的发展,如何利用其中的影像数据提取其中的丰富信息已成为人们关注的焦点,而其中的数学基础起到重要的作用。

fMRI成像是20世纪90年代初出现的研究工具,其原理是基于血氧水平依赖(blood oxygenation level dependent,BOLD)信号。由于大脑在活动期间,血流变化很小,在1.5T的磁场强度下,灰质发生的血液动力学信号变化通常为2%~5%,而且还受呼吸、心跳等生理活动的影响。因此,fMRI数据集是受到系统噪声影响的时间序列数据集。由于是观测型数据,这就需要借助合理数学的方式来进行处理,所以在脑与认知科学的课程中需要强化这方面的基础。

2 数学基础

2.1 相关分析

相关分析法是一种简单的用于分析脑功能连接的方法。它是通过计算基于感兴趣区(ROI)间的Pearson相关系数得到以ROI为节点的边的强度。当相关系数达到某一阈值时,就认为这两个脑区之间存在功能连接。

2.2 广义线性模型

Friston提出的统计学参数映射方法(statistical parametric mapping,SPM)6-8]是一种有效提取脑激活区且具有鲁棒性的方法。该方法本质上是利用广义线性模型( general linear model,GLM)克服系统误差。GLM的模型假设如式(2)所示。

式中:Y表示待分析的fMRI信号;X表示设计好的参考矩阵;β表示待估计的参数;ε表示误差。

β的估计根据度量准则的不同而不同。特别的,当度量准则为欧式距离时,β的无偏估计量可由式(3)完成对β的估计后,就可以利用t检验对得到的线性模型进行逐像素的分析,并以此给出大脑激活图像。

2.3 独立成分分析

独立成分分析( independent component anal-ysis,ICA)是一种无监督的学习方法。该方法首先由McKeown[9-10]应用于fMRI数据集中。ICA假设为观测信号是由源信号经过未知的线性规则叠加而成。考虑一个M维观测向量X= (x1,X2,…,XM)T,则ICA的模型假设可由式(4)表示。

X=AS (4)

式中:S=(s1,s2…,,SN)T表示N维源向量;A表示未知的线性混合矩阵,通常来说M≥N,且A为满秩。

独立成分的目的就是估计一个解混矩阵WN×M,使得由式(5)得到的Y接近真实源信号S。易见式(5)等价于式(4)。

Y= WX (5)

因此ICA又可以被归为优化问题,目前主要求解方法分为不动点(fix-point)算法和自适应。

ICA的自适应算法也称作基于梯度的自适应算法,可以通过优化判据对待估参数进行逐步优化,最终得到稳定的输出结果。其中一种优化判据是基于Infomax准则的优化判据,它可以写为

式中:gi(yi)表示一个合适的非线性函数;ri=gi(Yi);H(x)是输入信号的熵,它与W的选择无关与Informax等梯度算法相比,固定点算法对待独立成分的处理方式则不同。固定点算法一般分为两步:第一步先把每个观测分量Xk白化为Zk;第二步则寻求Zk的最优投影方向。

固定点算法首先由式(4)和式(5)可知,y= WAS=VS。若假定S=(S1,S2,…,SN)T的各分量同分布且为非高斯的,则根据中心极限定理可知,yj比每个si更加接近高斯分布。当且仅当yi=Sk,k={1,2,…,N}时,Yi的非高斯性最大。而衡量非高斯性的理想度量即负熵,负熵的定义如式(7)所示,由Edgeworth级数展开,得到由高阶统计量近似表示的形式(8)。其中Z的每个分量由X零均值切方差归一,即经过白化后的矩阵Z=(Z1,Z2…,ZN)T。k4为高阶统计量,

3 教学实践

上述介绍几种比较常用的基于fMRI的数据分析方法,这些方法不仅可以用于构建大脑功能网络,也可以用于考察脑激活与外界刺激的联系。其中,相关分析作为一种朴素的统计方法,由于fMRI自身信噪比不佳,若直接应用于fMRI信号分析,效果相对一般。但是一些配合小波分析等其他特征提取方法,依然可以取得相对理想的效果。目前主要用于静息态数据的分析,应用工具包包括rest、dparsf等。广义线性模型的应用则比较广泛,并且SPM自身的功能也比较完善,可以作为多种分析策略的特征提取手段。独立成分分析则是一种较新的分析方法,与前两个模型一样也有相应的软件实现,如GIFT、MICA等。其实验结果的生理学含义有待于进一步验证。

3.1 基于E-prime的脑与认知科学实验设计

E-Prime软件是由美国PST( PsychologySoftware Tools,Inc.)公司开发的一套针对心理与行为科学研究的实验设计、生成和运行软件,以其易学易用、计时精度高等特点在国内外心理学界得到了广泛应用,已经成为全球通用的标准化认知心理实验生成系统。在学生学习了脑与认知科学相关理论并具备基础的数据库相关知识之后向学生传授如何利用E-Prime软件编制脑与认知科学实验程序,具有很强的实践性。本实验以上机编程操作为主,首先练习利用E-Prime软件在GUI界面下开发一个脑与认知科学实验程序,然后练习如何利用E-Basic语言编写脚本实验程序以实现GUI环境下难以实现的部分实验功能,最后采用E-Prime软件行为数据分析模块练习行为数据的统计与分析。经过本实验的训练后,学生熟练地掌握了脑与认知科学实验设计的方法,更深入地领会脑与认知科学研究方法的底层逻辑。

实验目的在于训练学生利用E-Prime软件开发脑与科学实验程序,以提高其从事脑科学与认知科学领域研究的能力。实验教学中鼓励学生自主设计实验程序,以达到提高实验程序开发技巧、培养动手能力及科研能力的目的。此外,还要注意不断深化和扩展教学内容,注意向学生介绍近年来出现的新的实验范式及如何利用E-Prime编程实现,以加强本实验课对于学生以后从事脑科学与认知科学研究的实用性。

3.2 基于SPM的脑功能成像数据分析实验

SPM是由英国神经科学领域、统计领域、图像处理领域的科学家Friston等人在通用数学软件包Matlab上开发的软件系统,具有非常强大的统计功能。SPM指的是统计参数图像,也就是这个软件的最终输出。它对所有成像数据的每一个体素点都分别计算,得出包含有每个体素点参数值的图像,这个参数图像是许多单次扫描图像所包含信息的精简和压缩。目前SPM通用的版本为SPM8,以前的版本主要有SPM94、SPM96、PM99、SPM2和SPM5,它们在进行脑功能图像初步分析方面基本是一致的。SPM对脑功能成像数据的处理包括预处理、建模和统计推论三个步骤。

实验分为两步,首先让学生参加fMRI实验,每人完成一个简短的脑与认知实验程序并采集个人的功能成像数据,然后上机基于SPM系统分析自己的脑成像数据,最终获取个人在进行认知任务时大脑的激活示意图。经过本实验的训练后,学生掌握了脑功能成像数据分析处理的思路和方法,在成功获得了自己进行认知任务时大脑的活动模式后极大激发了他们对于脑科学与认知科学研究的兴趣。在教学过程中注意介绍基于脑功能成像技术的脑与认知科学研究的最新成果,以及脑功能成像技术的最新进展,实验中详细介绍SPM处理数据每一步的目的和原理,加强学生对于脑功能成像技术和功能数据分析处理的理解,从而提高其从事脑功能成像领域研究的能力。

3.3 基于Matlab的脑功能连通模式构建实验

Matlab是由美国Mathworks公司的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,在医学图像分析处理领域得到了广泛应用。实际上SPM系统就是基于Matlab平台的程序包,本实验不依赖SPM系统,基于预处理完成后的脑功能成像数据和Matlab编程平台,采用相关分析方法分析大脑激活区活动的关联模式。

当前的脑功能成像研究已经不像以前那样着重于脑区功能定位,即单纯确定哪些脑区参与了研究任务,现在大都从整体和动态角度研究任务过程中参与的脑区以及脑区间的反应模式和时空关系,并建立脑内信息加工的相关网络与模型。基于相关分析的功能连接分析是近期兴起的一种脑功能成像分析技术,即分析脑区间的相互作用和协同竞争的关系,在获得感兴趣区和脑激活图的基础上,进行了功能连接分析。实验首先对成像数据进行预处理,目的是尽可能地消除个体差异,并把所有被试的数据统一到一个标准下测量,预处理过程和SPM处理是一致的;其次基于SPM处理结果,确定大脑感兴趣区中t值最强点以及它所在的簇,所谓的簇是指以t值最强点为中心的27个体素;第三,根据体素点坐标位置提取信号值,即提取t值最强点所在的簇27个体素信号的平均值;第四,采用相关分析方法,感兴趣区信号值之间两两求相关系数,即得感兴趣区之间的有效性连接程度。

本实验对于Matlab编程基础要求较高,因此实验分段进行,先练习基础变量的设置和计算,然后练习几个主要函数(如fopen、fseek、fread和corrcoef等)的分析处理功能,最后整合成完整的程序。数据分析完成后,鼓励学生发挥想象力,构画脑功能连通模式图。通过本实验,学生掌握了Matlab处理脑功能成像数据的基本原理和方法,进一步加强了其在脑功能成像领域进行研究的能力。

4 结语

脑与认知科学课程中的数学基础强化与实践,在智能科学与技术专业课程体系中具有重要作用,学生需要这些知识作为专业基础,掌握其基本知识、基本理论、基本方法及基本技能,还需要注重思维能力的培养。但是对于以计算机科学为基础的智能科学与技术专业本科生来说,脑与认知科学有专业跨度,比较难掌握。发挥理工科的数学与计算优势,结合实验及数据处理、获取第一手的具体实践的教学方式方法值得我们去研究和探索。我们在数学基础、课程教学与实践及专业特色的基础上,阐述强化理论基础、实验创新教学实践相结合的观点;根据大连海事大学智能科学与技术专业2012级和2013级的教学实际,探索新的教学方法,不断提高教师自身的素质和专业能力,注重学生理论学习和实践能力的培养,为国家和社会培养出更多基础扎实的创新性人才。

参考文献:

[1] Logothetis N K. What we can do and what we cannot do with fMRI[J]. Nature, 2008, 453(7197): 869-878.

[2] Kwong K K, Belliveau J W, Chesler D A, et al. Dynamic magnet- ic resonance imaging of human brain activity during primary sensory stimulation[C]//Proceedings ofthe National Academy of sciences, 1992, 89(12): 5675-5679.

[3] Ogawa S, Tank D W, Menon R, et al. Intrinsic signal changes accom- panying sensory stimulation: functional brain mapping with magnetic resonance imaging[C]// Proceedings of the National Academy of Sciences, 1992, 89(13): 5951-5955.

[4] Frackowiak R S, Friston K J, Frith C D, et al. Human brain function[M]. Salt Lake City: Academic Press, 2004.

[5] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural computation, 1995, 7(6): 1129-1159.

[6] Friston K J, Holmes A P, Worsley K J, et al. Statistical parametric maps in functional imaging: a general linear approach[J]. Human Brain Mapping, 1994, 2(4): 189-210.

[7] Friston K J, Ashburner J T, Kiebel S J, et al. Statistical parametric mapping: The analysis of functional brain images[M]. Salt Lake City: Academic Press, 2011, 14: 178-191.

[8] Friston K J, Fletcher P, Josephs O, et al. Event-related fMRI: charac- terizing di erential responses[J]. Neuroimage, 1998, 7(1): 30-40.

[9] McKeown M J, Makeig S, Brown G G, et al. Analysis of fMRI data by blind separation into independent spatial components[J]. Human Brain Mapping, 1997, 6(3): 160-188.

[10] McKeown M J, Sejnowski T J. Independent component analysis of fMRI data: examining the assumptions[J]. Human brain mapping, 1998, 6(5-6): 368-372.

[11] Hyv " arinen A, Oja E. A fast fixed-point algorithm for independent com- ponent analysis[J]. Neural computation, 1997, 9(7):1483-1492.

篇4

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)20-0116-02

信息与计算科学专业是由信息科学、计算科学等交叉渗透而形成的一个理科专业。该专业注重培养具有良好的数学基础和数学思维能力,掌握信息与计算科学的基本理论、方法和技能,能解决信息处理和科学与工程计算中的实际问题的高级专门人才。它是教育部1998年颁布的一个新的数学类专业。由于社会与公众对于数学的态度既有敬畏的一面,即数学很难很深,却神通很大;又有恐惧的一面,即出于招生、就业、用人等现实考虑,觉得数学不能解决他的问题,中看不中用。因此,数学与应用数学的招生受到很大的限制。而信息与计算科学专业的设置不仅较好地适应了新世纪以信息技术为核心的全球经济发展格局下的数学人才培养与专业发展,也对数学类专业的招生带来了积极影响。

笔者是高等院校数学系的一名教师,我系信息与计算科学专业人才的培养思路是突出算法设计及计算机软件开发。培养目标可总结为:一个中心,两套理论,三种能力。其中一个中心指培养研究与软件开发应用一体化的应用型人才。两套理论指计算数学、信息科学基本理论和计算机软件开发应用基本理论。三种能力指培养学生运用数学知识解决实际问题的数学应用能力;培养学生具有算法分析、设计与软件开发的基本能力;培养学生终身学习与研究的发展能力。结合我系的专业培养方案,笔者认为,专业人才的培养与其开设的课程有很大的关系。

因此笔者就信息与计算科学专业中的数学基础课程给出自己的一点看法,希望能和数学专业的教育工作者共同探讨。

信息与计算科学专业为理科专业,包括信息科学与计算科学两个方面。方向一是以信息科学方面为主,计算数学方面为辅;方向二是以计算数学方面为主,信息科学方面为辅。一直以来,在该专业的课程设置中,数学分析和高等代数是信息与计算科学专业很重要的两门基础课程,在学生知识结构中占有很大的成分。然而,笔者根据近几年对信息计算数学专业学生的教学以及对毕业生就业情况的了解,认为可以将该专业的基础课程“数学分析和高等代数”改为“高等数学和线性代数”。

一、后续学习的需求

信息与计算科学专业学生主要学习信息科学和计算科学的基本理论、基本知识与基本方法,需要打好数学基础,所以设置的课程有一部分数学基础课程,一部分信息与计算科学专业课程,如常微分方程、近世代数、离散数学、概率论与数理统计、数值分析、信息论、信息安全、密码学、Java程序设计、汇编语言、数据结构、数据库原理、软件工程、操作系统等。如果以高等数学和线性代数为基础来学习这些课程,是绝对可以进行的。虽然说数学分析和高等代数是数学的基础,是培养学生分析能力、逻辑思维能力最好的工具,如果能学好这两门课程,对后续的学习一定非常有利,但是要学好这两门课程需要投入更多的时间和精力,在笔者看来有点浪费。高等数学和线性代数分别是数学分析和高等代数的简化版,只是删减了数学分析和高等代数中一些复杂定理的证明和推导。因此,学生在学习高等数学和线性代数时,也能提高其推理能力、分析能力、逻辑思维能力和创造能力,而且在后续其他课程的学习中,所学的极限和微积分思想以及线性代数中对矩阵的分析足以够用,不需要花太多的时间和精力在数学分析和高等代数的学习上面。在学习好高等数学和线性代数这两门基础课的同时,将剩余的时间和精力用在学习其他数学基础课程以及应用性较强的一些科目上,这不仅能使学生具有良好的数学基础,也能使他们具有较强的应用能力,这对他们将来的就业也有很大的帮助。根据笔者的了解,大部分学生毕业后从事与软件开发相关的工作,有部分学生考取研究生,而他们所选择的专业也是偏向于信息与计算机的应用,所以对数学分析和高等代数中内容的学习要求相对比较低,甚至有很多该专业的学生为了满足就业需求,在大三时就开始在很多专业培训机构培养实践操作能力。因此,笔者认为根据各院校培养目标的差异,可以考虑将这两门课程换作高等数学和线性代数,给学生留有更多的时间学习其他相关课程。

二、学生心态的需求

中学数学知识简单、具体,学生容易接受,也容易理解。大一新生从中学走来,满怀信心和希望要努力学习。但是当他们面对抽象、复杂的数学分析和高等代数时,会觉得和中学数学无法接轨,难以接受,难以理解。数学分析和高等代数有两个显著特性:高度的抽象性和严密的逻辑性,正是这两个特性,导致许多学生在学习的过程中不容易明白,使人望而生畏。根据笔者这几年对信息专业学生的了解,大部分学生在填报志愿的时候是抱着学习计算机的心理,他们没想到信息与计算科学专业要学习如此抽象的数学知识,因此他们在心理上不愿意接受这样的学习,觉得自己选错了专业,觉得这个专业没有希望。当然,这种对专业的理解是错误的,也是不可取的。但是实际的数学分析内容的确抽象,高等代数内容的确复杂,这也使得大学一年级的学生对数学产生了畏惧,甚至慢慢地演变为厌恶,最终导致学习信心的丢失,学习态度的散漫。笔者曾经给信息专业的大三学生讲授《数学物理方程》和《矩阵论》,在教学的过程中慢慢了解到学生的学习状态:有一部分学生在大一的时候因为数学分析和高等代数的抽象复杂,竟然放弃了这两门课程的学习,这导致在后续的学习中困难重重,随之而来的是一门一门课程的放弃,最终后悔莫及。因此,笔者认为,如果将这两门基础课程改为相对简单的高等数学和线性代数,那么学生就容易接受了。这两门课程内容简单易懂,学生容易理解,学习就有了成就感,这种学习成就感的获得会成为学习的一种内在驱动力,从而产生一种进一步学习推动其再次去获得成功的兴趣和动机。而培养学生的学习兴趣和专业兴趣是培养创新人才的重要组成部分。只要学生形成浓厚的学习兴趣和专业兴趣,他们就会有从事科学研究的意识倾向,就会产生学习的主动性、积极性和创造性。这样学生的学习信心大增,学习态度自然就变好了。学习态度端正,就能养成一个良好的学习习惯,这对他们后面的学习尤为重要。

当然,也有人曾对将数学分析、高等代数改为高等数学和线性代数的想法提出质疑,他们认为这样的更改会使该专业失去其特色,和计算机专业没有什么区别。其实,该专业与计算机专业区别是很大的。该专业虽然没有了数学分析和高等代数,但仍然保留了其他的数学基础课程,如解析几何、近世代数、常微分方程、数学物理方程、概率论与数理统计、复变函数、实变函数等课程,这些都是很重要的基础课程。对这些课程的学习能培养学生扎实的数学基础,不会失去其培养具有良好的数学基础且能解决信息与工程技术实际问题的人才的目标。另外,信息与计算科学专业是从原来的计算科学专业基础上发展起来的,所以学习信息与计算科学专业的学生不仅要具有扎实的数学基础,而且要具有较熟练的计算机应用技能,这与计算机专业培养的学生是不同的。计算机专业的学生数学功底较薄,对工程计算中的公式不理解,且不知道计算机得到的结果代表什么,甚至有错误时也不知道如何修改。所以信息与计算科学专业的学生到软件企业中大多作软件设计与分析工作,而计算机系的学生做程序员的居多。因此将数学分析和高等代数更换为高等数学和线性代数这一行为,并不会影响信息与计算科学专业的特色,也不会影响其培养目标人才。

综上所述,笔者认为,对纯粹数学内容学习要求的降低,能适应学生数学基础差、学习兴趣低的现实状况。对于信息与计算数学专业的课程数学分析和高等代数可以改为高等数学和线性代数,不仅有数学的基础,也有对数学知识的应用,这有利于提高学生学习的积极性和自信心,也有利于他们将来的就业。

参考文献:

[1]教育部数学与统计学教学指导委员会.信息与计算科学专业教学规范(试行稿)[J].大学数学,2003,19(1):6-8.

[2]王喜建,王奇生.信息与计算科学专业综合改革下高等代数课程教学改革探索[J].数学学习与研究,2014,(12):4-6.

[3]张庚尧.信息与计算科学专业数学分析教学探讨[J].湖南科技学院学报,2006,27(11):118-119.

[4]宋广华,刘慧.普通高校信息与计算科学专业课程设置探究[J].中国科教创新导刊,2008,(22):148-149.

[5]罗智明,胡桔州,陈荣平.一般院校信息与计算科学专业人才培养模式研究[J].计算机教育,2009,(8):20-22.

篇5

信息技术作为现代教育技术,不是简单的作为一种技术应用到数学课程的教学中,而是提供了一种新的数学教学手段,融合在数学课程的教学过程。信息技术是客观的,授课教师只有充分地发挥主观能动性,运用科学思维和科学方法,把信息技术和数学课程教学有机融合,才会取得好的教学效果。信息技术在课堂教学中主要表征之一为多媒体教学。多媒体教学是集图形图像、文字、声音、动画为一体的教学手段,使得抽象的数学课程变得生动直观,易于学生接受和理解,不但丰富了课堂内容,而且有效地激发了学生学习数学的兴趣,活跃了课堂气氛,取得了较好的课堂互动效果。以前虽然有一些辅助教具,但是相比多媒体技术,不如其可以更好地表现图形、动画等效果。此外,在课堂上还可以适当引入常见的数学软件和简单的计算机编程语言,实现一些复杂图形的绘制、数学符号运算和数值计算,让学生充分认识到学习数学不是只需要纸和笔,利用计算机等工具可以更有效地学好数学,而且可以实现人机交互,让学生自己动手操作、演示等,提高了学生学习的热情和积极性,进而提高学生学习数学和应用数学的能力。

二 促进教学模式由一元化向多元化转变

在这里,我们把以前的“粉笔+黑板”的教学方法称为是古典式教学法,把融入信息技术的教学法称为现代化教学法。信息技术的发展促进了数学教学和其他学科一样由古典教学法向现代化的多媒体教学和网络教学等转变,实现了由一元教学模式向多元教学模式的转变。

在信息技术高速发展的现代化社会,网络已经走进了千家万户,成为日常生活的一部分。网络容纳了丰富的内容,是一个巨大的知识宝库。合理地利用网络资源,则可以构建更加科学合理的教学体系。数学虽然具有严密的逻辑性和高度的抽象性,但是构建数学基础课程的网络教学系统仍是非常必要和重要的。网络教学系统为学生提供了更加灵活和自由的学习空间。课堂教学和网络教学相辅相成,网络教学系统可以包括更丰富的与课堂授课内容相关联的知识,借助网络教学系统,学生可以了解和学习更多相关的数学知识,有效地扩大了学生的视野和知识面。

三 构建研究性和自主性学习模式

对于教学主体,我们除了授之以鱼,还要授之以渔,既要教给学生新知识,又要教给学生学习新知识的方法。数学教学有时竟演变成空洞的解题训练。这种训练虽然可以提高形式推导的能力,但却不能导致真正的理解与深入的独立思考。因此,我们必须积极努力改变这个教学状态,真正提高学生的综合素质。运用信息技术,教师可以更好的激发学生学习抽象程度较高的线性代数课程的兴趣,充分调动学生学习的主动性和积极性,构建研究性和自主性的学习模式,遵循教育发展的规律,把科学精神、科学思维、合作精神和严谨的作风融入到教学中。在教学过程中,老师改变了传统的以传授知识为主的授课方式,而是充分发挥了导学作用,积极引导学生思考,引导学生主动参与到教学过程,培养和提高了学生的创新、动手、查阅文献能力,有效提高了学生的综合素质。

四 把信息技术融入线性代数教学过程的心得体会

1 把数学建模思想融入教学。在线性代数教学中,我们融入了数学建模的思想。传授知识不是目的,目的是要学生学会如何应用所学的知识解决实际问题,学以致用。数学建模恰好可以有效的让学生学习如何应用所学的数学知识来解决实际问题。数学建模是利用数学知识和计算机资源解决一些实际问题,旨在培养大学生应用数学的能力,培养大学生的创造性思维,提高大学生的动手能力、创新能力和应用能力。

在讲线性方程组时,有这样一个例子[4],用一幅图给出了某城市市区内一些单行道的交通流量,要求根据此图来确定交通网络的流量模式。在教学中,我们引入了动画技术,使得这幅交通图看起来更加直观和生动。我们让学生首先思考已知的条件是什么,要求的是什么,等学生对问题完全明确后,再引导学生分析各个十字路口的交通流量该如何计算,分析该交通区域的交通流入量和流出量应该满足什么条件,通过逐步的引导分析后,学生发现最终得到的数学模型是一个线性方程组。事实上,当学生最初看到这个问题时,基本都没有想到是一个线性方程组的问题。然后再引导学生对方程组进行求解,最终得到了这个问题的答案。

通过在平时教学中贯穿数学建模的思想,使学生学会了如何应用数学知识来解决实际问题,把抽象的数学理论知识和实际联系起来,让学生真正理解“理论来源于实际又应用于实际”。

2 使用多媒体技术辅助教学。组织线性代数教师队伍中有经验的教师精心设计、制作了多媒体课件。在内容上遵循教材的结构,但不局限于教材的限制。我们参考了国内外线性代数的优秀论著和教材,精选更适合学生理解的讲解方法,同时还通过引入线性代数简单应用实例来吸引学生学习的兴趣与热情。

在每一次课的开始,都给出了本次课的重点内容和难点内容,方便学生在听课过程中明确学习的侧重点,有的放矢。对重点和难点内容的讲解上,课件制作地非常精细,保证重点难点突出,而且多媒体课件比板书要生动,更容易引起学生注意,避免了因为使用电子课件讲解而将板书的优势丢掉的弊端。虽然引入信息技术后,课堂授课内容变得丰富、充实、信息量增大,但是由于教师课前充分准备,注意把握授课内容的重点和难点,层次分明,而且更好的发挥导学的作用,因此更好的提高了学生的学习积极性和学习热情。

在多媒体课件中引入了较多的例题,以此来强化对概念的理解和对方法的掌握。对于部分优秀和经典的例题,解题过程设计的和板书一样详细,保证了学生的听课质量。其他的就留给学生在课堂上随堂做练习或者做为课后练习。另外,在数学教学中,我们并不是简单拘泥于追求多媒体辅助教学,而是把古典教学法和现代教学法有机的结合,收到了较好的授课效果。原因是一方面数学课程具有严密的逻辑性和高度的抽象性,适当的使用黑板进行理论推导效果会更加理想,另一方面,信息技术加上古典教学法,可以使教学内容更加丰富。

3 精心制作线性代数网络教室。为了配合课堂教学,我们精心制作了线性代数网络教室,主要包括多媒体课件、在线测试、教学大纲、教学日历、教案、留言板等模块。我们将多媒体课件完全上网,便于学生自主学习。在线测试模块包括同步测试和单元测试,在同步测试板块,设计了一课一测的模式,这样学生每堂课后都可以利用在线同步测试进行检测自己的学习效果,查找自己哪个知识点没有理解好,从而进一步加强学习。除了同步测试,每一章结束都有单元测试,利于学生阶段性的检查自己线性代数学习的情况。在线测试模块得到了学生的充分利用,对提高学习成绩起了很大作用,获得了学生的好评。另外,教学大纲、教学日历、讲稿等资料全部上网,使学生在开学初就对教学安排有必要的了解。利用留言板,我们可以更方便地了解学生在学习中遇到的困难和疑问,师生交流更便捷。

4 在教学中引入数学软件和数学实验。在教学任务保证优质完成的前提下,我们将数学软件Mathematica和Matlab引入线性代数教学。在完成正常的授课内容后,给出了用数学软件来求解相关问题的方法,并增设了行列式、矩阵乘法、方阵求逆、初等行变换化矩阵为行最简形、方阵的特征值特征向量等方面的数学实验。这样一方面让学生掌握线性代数的思想方法,另一方面让学生接触利用数学软件解决问题的方法。虽然我们是在教学计划外给学生安排了这些数学实验,增加了学生学习和自学的内容,但是这样反而提高了学生学习数学的热情,认为这样可以学到更多实用的知识,而且也激发了学生学习其他课程的兴趣。

5 教师利用现代教育信息技术手段学习。为了保证教师队伍跟上时展的步伐,让教师队伍保持教育教学思想与技术的先进性,我们要求线性代数教师队伍中的每位教师都要经常阅读国内外线性代数专著,并利用互联网或调研等方式学习其他高校的教学方法,不断比较,从而提高自己的教学水平。对于青年教师,一方面配以导师指导,另一方面要求他们利用网络平台来学习各高校精品课的教学方法,这样他们就能站在前人的肩膀上去提高自己的教学水平。

参 考 文 献

[1]刘则渊.现代科学技术与发展导论[M].大连:大连理

工大学出版社,2003.

[2]谭家玉.高校多媒体课件教学中的教学改革[J].黑龙江

高教研究,2004(4).

[3]R.柯朗,H.罗宾著.什么是数学[M].左平,张饴慈译.

上海:复旦大学出版社,2008.

[4]David C.Lay.线性代数及其应用[M].北京:人民邮

电出版社,2007.

[5]StevenJ.Leon.线性代数[M].北京:机械工业出版社,2007.

[6]陈孝新.线性代数[M].北京:中国人民大学出版社,2006.

[7]吴赣昌.线性代数[M].北京:中国人民大学出版社,2006.

[8]施光燕.线性代数讲稿[M].大连:大连理工大学

出版社,2004.

篇6

关键词:初中;数学;学科素养;教学策略

数学学科素养是指初中生既有丰富的数学知识,又能在学习活动中掌握科学的学习方式,还能够对他们所习得的知识了解得更加深刻,学会举一反三,了解数学的意义。数学在人们的生产生活中占据着重要的地位,随着信息技术的普及与发展,数学在人们生活生产中的地位愈加重要,它对推动社会进步、科技发展等都有重要意义。除此之外,数学也是初中生学好物理、化学等学科的基础。因此,教师必须要改变“老师讲,学生听;老师问,学生答”的被动教学方法,培养初中生的数学学科素养,使其掌握在生活中运用数学知识的能力。下面,笔者从培养初中生的探究思维、指导学生掌握科学的学习方式、加深学生的情感认知三个方面,讨论教师如何培养初中生的数学学科素养。

一、培养初中生的探究思维

数学家华罗庚曾经说过:“科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于思考的人,给那些具有锲而不舍的精神的人,而不会给懒汉。”因此,在教学活动中,教师应注意培养学生的探究思维,使其学会主动思考,以数学家的思维方式来学习数学。这并不只是为了让初中生在未来进入数学研究领域工作,而是为了让初中生养成勤于思考、勤于动手、爱学好问的好习惯。在《圆的有关性质》一课中,我利用圆规在黑板上画了一个圆,并让学生观察画图过程,总结圆的定义,系统学习圆心、半径等知识。然后,我问学生:“除了圆上的点到圆心的距离是一致的,还有其他的点与圆心的距离一致吗?”有的学生想了想,说:“没有。”然后,我让他们再亲自动手,探究这个问题的结论是否正确。

二、掌握科学的学习方法

数学学科具有抽象性、思维性,要想学好数学,单纯依赖死记硬背是不行的,学生必须要掌握科学的学习方法,才能够灵活应对任何数学问题。由于很多教师的教学意识不够先进,他们还没有转变以中考为指向标的教学意识,从而过于重视初中生的数学成绩,反而忽视了培养初中生的数学思维,忽视了学习方法的重要性。这就导致很多学生只会做某道数学题,但凡这个题目往更深层次发展,或稍加变动,就会让初中生束手无策。尤其是初三学生直接面临中考,因此他们的学习时间非常紧张,学习任务很重,导致他们在学习数学的过程中感到十分压抑。因此,教师必须要把数学教学的基点放在如何培养初中生的学科素养上,使其掌握学习数学的科学方法,在提高他们数学知识与能力的同时,减轻他们的负担。在《点和圆、直线和圆的位置关系》一课中,我指导学生亲自动手,分小组探究点与圆的几种位置关系。每个学生都需要在小组内发言,将他们亲自动手测量的结论在小组内进行阐述,然后,小组内部要将所有的结论进行整合,从而总结探究出“圆内的点到圆心的距离小于半径,圆外的点到圆心的距离大于半径,圆上的点到圆心的距离等于半径”这个数学结论。每个区域的点到圆心的距离都可被认为是一个集合,这可以使学生初步掌握圆与一个集合之间的关系。然后,我让学生展开直线和圆的位置关系的自学活动,让学生如法炮制,学会学习,初步树立空间意识,掌握数形结合等相关数学思想方法。

三、加深学生的情感认知

初中生的思维活动以形象思维为主,数学学科强调的是抽象思维与逻辑思S,这就为初中生深入理解数学知识增加了难度。然而,数学知识来源于生活,是从生活中的具体事例中抽象出来的具有概括性的知识,因此,教师便可以利用生活中的数学元素,帮助他们顺利完成感性认识到理性认知的转变,加深他们对数学知识的认知程度。在学“圆”的相关知识的时候,我让学生指出圆在生活中应用的实际例子。学生指出车轮、自来水管、奥运五环等。在将这些实际例子的特点总结出来之后,展开探究,便可以帮助他们理解圆的概念、性质等抽象的数学知识。

总之,素质教育强调的是学生的主动探究、学习态度、学习品质等多方面的发展。因此,教师应该把教学重心放在培养初中生的数学学科素养方面。教师要注意培养初中生的探究意识,使其学会主动思考,提高他们质疑与解决问题的能力;教师要帮助初中生掌握科学的学习方式,使他们能够做到举一反三,减轻教师的教学负担;教师要利用生活中的数学元素,加深学生的情感认知,使其对数学在生活中的应用的感触更深,从而形成良好的数学品质。

篇7

俗话说:“读书有三到:眼到、口到、心到。”教材是教师传道授业的依据,是学生获得基础知识和培养能力的主要源泉。现在许多中学生毕业以后,倘若考不上高中和大学的,也有部分靠自学成材;即使升学,也要具备相当的学习基础和能力,包括自学能力,这样才能全面更好地完成学业。同时在中学阶段要发展知识培养学生能力也必须从培养学生阅读能力入手,养成独立思考自学探究的习惯。这样既可以为教师讲解打下基础,又可以弥补教师讲课不足。教师在教授知识时,不仅要把知识的精髓教给学生,而且还要教会学生看书,指导学生阅读方法,养成学生良好的读书习惯。

培养中学生的数学阅读能力应该从小开始,培养他们的好习惯。中学生读数材时经常存在着以下几个问题:一是不看书,教学教材仅作为抄做习题、练习之用。二是看教材,走马观花,一晃而过,像看小说、连环画,不深思,不求问。三是语文阅读基本功低,语法结构搞不清楚,读不通。四是不懂数学语言、数学词汇,逻辑推理混乱,障碍多,无法理解。五是兴趣记忆短,注意力容易转移,易受外界干扰,持久性差。我在日常教学中针对以上情况采取了如下方法:

第一,初一年级学生在熟悉和接触数学基础知识时,应把他们的认知重点放在培养好的读书习惯上来。如在课堂上由教师带领阅读,根据教学大纲要求根据轻重分析章节内容,扫清文字障碍,难以理解的数学专用术语或句子,可作应有的解释。

第二,学生在初步养成好的阅读习惯后,教师可以把读教材分成两个阶段:讲前预习,讲后阅读。讲前预习对学生不用要求太高,要求学生通过阅读对教师所要讲的内容大体了解,将难懂的地方做上重点标识,以便教师讲授细节时,促使学生集中精力听讲。讲后阅读重点放在培养学生的独立思考上,教师根据课堂讲授与书本内容两相对照,使学生弄通、搞懂各种数学概念,识记的定义、定理、公式、性质,督促检查学生下功夫记。

第三,根据教材的不同内容和各年级的特点,教师要帮助学生辨析数学术语、名词和数学符号。如:“都不”和“不都”,“或”、“且”和“当”,“仅当”,“当且仅当”、“有”,“仅有”,“有且仅有”、“至少”,“至多”等。对难懂的长句子要帮助学生找出句子的主要成份和附加成份,必要时还可引导学生把数学语言翻译成数学式子,或把数学式子用数学语言叙述让学生全面理解。

第四,指导学生通过阅读写提要,在教材上划着重点(找重点),写批注,添补内容(如补图形、补步骤、扩张概念等)。

第五,引导学生阅读时注意数学结构,分清定义、公理、性质、法则、定理,推论的内涵和外延,弄清逻辑关系。

第六,强调学生阅读时注意教材中数学语言的严谨、简练,注意例题的格式,要求学生以课本上的规范纠正自己作业中的错误。

第七,考试时适当考一些课本中的数学概念或常识,以提高学生看书的兴趣,达到督促的目的。

二 在联想中举一反三,扩大知识界面。

培养能力,必须注重培养学生的思维能力,如逻辑思维能力、空间想象力、抽象思维能力等等。简单地说,就是要培养学生的想象力。爱因斯坦说过:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界一切,推动着进步,而且是知识进化源泉”。要培养学生丰富的想象力,首先从培养学生联想能力入手,因为它比较具体、直接。培养学生联想能力,可分以下几种类型:

第一,类比联想。所谓类比是指同类的比较和类似的比较。要比较,就要联想。

通过类比提高想象力,加以分析归纳,再进行抽象思维,寻求规律性的东西。数学中类比是比较丰富的,如代数中的二次函数为最基本,二次函数的零点(y=0)、正数值“y>0”、负数值(y

第二,形数联想。数学中形数之间关系是彼此相依的,要启发学生用“数”来巩固与研究“形”,利用“形”巩固研究“数”。讲函数时,一定要强调学生记性质、想图形,画图形、想性质;对于不等式、方程一类的问题也要强调学生形数联想,利用图解。

篇8

中图分类号:O13

随着数学课程改革的发展,中学数学的教材内容、教学方法发生了很大的变化。数学教学不再是单纯的知识传授,而且还要培养学生的技能,发展学生的能力和提高学生的素质。本文围绕在中学数学教学中关于数学思想方法的教学,谈谈自己的实践与体会。

一、重视数学思想方法的教学是时代的要求

(一)数学新课程标准要求我们要重视数学思想方法的教学。《全日制义务教育数学课程标准(实验稿)》指出:通过义务教育阶段的数学学习,使学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。这个课程目标,要求我们在数学教学中,要重视数学思想方法的教学。

数学思想是指从某些具体的数学认识过程中提升的观点,它在后继认识活动中被反复运用和证实其正确性,带有普遍的意义和相对稳定的特征。它是对数学的概念、方法和理论的本质认识,是建立数学理论和解决数学问题的指导思想。中学数学思想是数学思想中最常见、最基本、较浅显的思想,经如数形结合的思想,分类思想、转化思想、方程思想、函数思想等。而数学方法是在数学思想指导下,在从事数学活动、处理数学问题过程中所采用的具体手段、途径和方式。中学数学基本的数学方法有:观察与实验法、归纳法、配方法、换元法、类比与联想、抽象与概括、分析与综合、一般化与特殊化等。数学方法是实现数学思想的手段,任何方法的实施,无不体现某种或多种数学思想;而数学思想往往是通过数学方法的实施才得以体现的。二者关系密切,难于区分,因而统称为数学思想方法。

高中数学基础知识,包括中学代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。数学基本知识和数学思想方法是中学数学教学内容的两个有机组成部分,教材的每一章、节、乃至每一道题,都是知识与思想、方法的和谐组合,它们是相互影响、相互联系,协同发展的统一体。数学思想来源于数学基本知识与基本方法,而数学思想反过来又指导数学方法。数学思想方法具体反映于数学基本知识之中,而作为中学数学教材中的基本知识,又要受到数学思想方法的支配、约束。没有脱离数学知识的数学思想方法,也没有不包含数学思想方法的数学知识。数学知识与数学思想方法的这种辩证统一关系决定了在强调数学基本知识教学的同时,也要重视数学思想方法的教学。

(二)掌握基本的数学思想方法,是形成和发展数学能力的基础。长期以来,我们的数学教学都是以知识的传授为主,忽略了数学思想方法的讲解与分析,再加上传统的考试制度也多限于测试知识,所以"高分低能"的现象屡见不鲜。新的课程标准要求我们在数学教学时,要使学生能够学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识,具有初步的创新精神和实践能力。数学教育的根本目的就是要使学生获得必要的数学能力,即运用数学解决实际问题和进行发明创造的能力,而这种能力,不仅表现在对数学知识的记忆,而且更主要地依赖于对数学思想方法的掌握。我们常说某人办事有头脑,其实是说他能灵活运用数学思想方法解决生活工作中的实际问题。数学思想方法是联系知识与能力的纽带,是数学的灵魂,它对形成和发展学生的数学能力,培养学生的创新意识,提高应用数学的能力具有十分重要的作用。综上所述,在中学数学教学中,应该重视数学思想方法的教学。在教学中,教师不能就基本知识而教学,必须教会学生掌握基本的数学思想方法,才能真正提高学生的数学能力。

二、发挥数学思想方法在中学数学教学中作用的途径

(一)注意挖掘蕴涵在数学教材中的数学思想方法。中学数学中蕴涵的数学思想方法很多,但最基本的数学思想方法有:数形结合的思想、分类思想、转化思想、方程思想、函数思想。相对于概念、性质、公式等数学基本知识,数学思想方法是教材内容的深层知识,是隐性的更本质的知识内容。因此,教师必须深入钻研教材,注意挖掘蕴涵在教材中的有关数学思想方法。

(二)结合教学内容,实施数学思想方法和数学知识的一体化教学。在数学教学中,应结合教学内容实施数学思想方法和数学知识的一体化教学,数学思想方法要在教学中结合教学内容渗透综合,而不能形式地传授,这就要求教师在钻研教材时,要认真分析教材,理清知识结构网络的思想方法的关系,尤其要把数学思想方法象数学知识一样归纳到教学目的和教材分析中去,进行合理的教学设计。从教学目标的确定、问题的提出、情境的创设,到教学方法的选择,整个教学过程都精心设计安排,做到有目的、有意识地进行数学思想方法的教学;在学生数学知识形成过程中,有计划、有步骤地渗透和介绍有关的数学思想方法。在教学别在学生知识形成阶段,可以运用观察、实验、猜想、验证、归纳、类比与联想、抽象与概括等思想方法,在知识结论推导阶段中,选用分类讨论、化归、转化,一般化与特殊化、分析与综合等思想方法,在知识总结阶段,可以采用公理化、系统化等思想方法。

(三)充分发挥数学思想方法在解题教学中的作用。解题教学是数学教学的一个重要组成部分,在解题教学时,特别在解综合题型时,经常会用到多种数学思想方法,更有利于培养学生的综合能力。因而,要充分发挥数学思想方法在解题教学中的作用。综合法,是从题目已知条件出发,根据定义、定理、公理、法则逐步推得所要证明的结论,也就是"由因导果"的思维方法。而一些较复杂的几何题,还需要把这两种方法结合起来交错使用,是几何证明中的常用方法。在解题教学中,分析与综合法对探求解题思路、寻找解答、提高逻辑思维能力、分析问题和解决问题的能力都是极为有用的方法。

参考文献:

[1]吴炯圻,林培榕;数学思想方法[M].厦门:厦门大学出版社,2001,6;

篇9

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)39-0059-03

一、基础数学教学过程中的问题分析

数学不仅是各学科基础,更是人才素质的重要组成部分。数学类专业包括:数学与应用数学、信息与计算科学,统计学(现在是单独学科),其中基础数学课程主要包括:数学分析、高等代数、空间解析几何、常微分方程、复变函数、概率论、数理统计,近世代数等等;非数学类专业的基础数学课程主要包括:高等数学、线性代数、概率统计。数学在人才培养过程中的重要性是不言而喻的,作为基础数学课程的教学,如何适应高等教育大众化,不仅是基础数学课程教师要考虑的问题,更是各高校需要认真考虑并加以解决的问题。关于这方面的问题,各高校都有各自的矛盾和解决办法。总体来说各高校存在的普遍问题是:基础数学课程的教师比较紧缺,青年教师偏多,且以大班上课为主。另外,有的老师除了承担基础数学课程的教学任务外,还承担有专业课程的教学任务,使得部分教师课头多,教学任务重等各种因素,导致教学质量有所下降。由于基础数学课程是相关学科专业的重要基础课程,具有高度的基础性、抽象性、严密性、逻辑推理性等等,又有广泛的应用性,所以在基础数学课程的授课过程中主要以板书授课的形式为主,边讲边推理。基础数学课程的教学内容具有完整性,前后章节联系都比较密切,一环扣一环,所以每一次课讲得好坏都会影响到后面的教学效果,甚至打乱后面教学计划的执行。这也是我们在教学过程中经常遇到的问题。在基础数学课程的课堂教学过程中每一次的教学效果如何,部分教师很少考虑,有时根本不去考虑,等到布置作业后,通过学生做作业的情况,才会发现教学效果的情况。如果学生作业做得比较好,说明这次教学效果比较好;如果做得差,说明这次教学效果不理想,教学效果差,即使是这种情况,少数教师还认为是学生不好好学,很少反省自己的教学过程存在哪些问题。如果教师的作业比较多,不能及时地批改出来,通过作业暴露的问题往往就不能及时地纠正,导致问题的积累越来越多,必然会影响后面的教学。教学过程中暴露的问题还有很多,而暴露的这些问题通常都是在课后才发现的,有的甚至在课程结束后才发现教学有问题,由于受课时的限制很难进行补救。如果我们在讲课前对教学内容、方法和教学手段的效果进行预测,在教学效果预测的基础上,根据教学内容认真备课,安排好每一个教学环节;对教学效果在授课课前进行预测,把事后变为事前预测,这就是我们本文要探讨的基础数学课程的动态教学模式与课堂效果评价问题。

二、基础数学课程动态教学模式与教学效果预测

由于基础数学课程分前后内容联系都非常密切,甚至几次课的内容都是整体的一部分,所以,我们在授课的过程中不能孤立地去看待每一次的教学内容,而要考虑前后内容的衔接。以高等数学或数学分析为例,教材一般为上下两册,通常为两个学期或三个学期。高等数学或数学分析课程下册的无穷级数要用到上册数列极限的有关内容;下册的重积分、曲线与曲面积分、傅立叶级数等等要用到上册的定积分等等;导数的定义实际上就是极限问题;多元函数的许多性质是一元函数的推广,但又要注意其不同于区别。所以,我们在备课、讲课的过程中,不能只考虑这次课要讲的内容,还要考虑后面教学内容的连贯性。基础数学课程的教学过程可以分为两部分:教学计划,教学实施。根据基础数学课程教学内容,教学计划又分为:教学内容的总体计划,学期计划,月计划,周计划和每次课的计划。教学计划制订好以后,就要对基础数学课程的教学目的和要求进行预测。基础数学课程教学预测大致可以分为:教学内容的总体预测、学期预测、月预测、周预测。在预测的基础上,制订相应的教学目标,做到有的放矢。有了教学预测和教学目标,才能进行教学实施,教学实施主要包括备课、讲课、批改作业等等各环节。显然,对于基础数学课程的教学能否达到预期的教学目标,关键的是教学实施。根据基础数学课程的教学内容和教学特点,我们把教学实施分为以下几个阶段:教学效果预测(包括教学方法,教学手段,甚至例题的选择等等),备课(包括布置作业),授课,批改作业,课堂教学效果评价。教学效果预测是教学实施过程的前提,没有预测,教学过程就没有目标,也就谈不上教学质量;要达到一个什么样的教学目标、教学效果,必须要做到心中有数。有了教学效果预测,在备课时,就会考虑到各种教学方法和手段的可行性,避免失误。这样,一次课下来后,与预期的目标进行比较,如果达到或超过预期的目标,说明这次的教学是成功的,使用的教学方法、手段是可行的,否则,教学有问题,要及时反省,查找原因,下次课及时调整。教学效果评价不仅是自己教学水平的评价,也是提高教学水平的重要手段,更是对自己教学态度评价,同时它也是下次教学效果预测的依据。在教学效果评价的基础上,对下次的教学内容进行预测,并重复上述过程,这样我们就有下面教学实施的循环:

在备课之前,首先要对下次教学内容的教学效果进行预测。我们不仅要考虑下次课要讲哪些内容,还要考虑学生理解和掌握这些内容的情况进行分析、预测,以及教学过程中可能会出现的各种情况都要有充分的估计。对不同的教学内容或同一教学内容中的不同知识点,采用不同的教学方法其教学效果往往是不同的,哪一种教学效果比较好,都要进行分析和预测;如何讲好每一个知识点,如何讲解学生更容易理解、掌握等等,都是备课时需要认真考虑的,真正做到学生是授课过程的主体。教学效果预测要充分考虑学生对老师的愿望,因为老师授课的对象是学生,是教学过程的主导者。在讲课之前学生对老师也有一个期望,最低的要求就是希望老师所讲的内容清楚、能听懂,除此之外还有理解等等方面的要求。如果老师的授课能达到学生的要求,学生认为这位老师的授课水平高,否则就是这位老师授课水平低。但教师授课水平的高低目前没有一个明确的界限,以期末考试的试卷难易程度和学生考试的成绩来反映教师的教学水平也是不科学的,因为试卷的难易程度很难定论,是一个模糊的概念,凭感觉。如何鉴定教师授课水平,一直是困扰教学质量、教学效果评价的难题,为此,我们做了一些的探讨与实践,不一定科学。设x是任课教师对教学效果给出一个预测值,y是学生给任课教师期望值,如果x≥y,说明这位老师可以胜任这门课的教学。否则,这位教师不胜任这门课的教学任务,学生对该教师的评价不会太好的。这就是说老师对自己要高标准,在这种情况下才能发挥教学水平,提高教学效果。一般来说,在授课之前,学生不知道老师的教学效果预测值是多少,学生也不会给老师期望值。如果我们把教学效果的评价定量化,那么,教学效果的评价值可以看成x的函数f(x),当f(x)≥x时,说明这次的教学方法和教学手段应用得当,达到了预期的教学效果和目的;当f(x)

1.老师在上课前根据这次课的教学内容进行备课,并写出本次课的教案,下次上课前再根据要讲的教学内容进行备课,再写出该次课程的教案,也就是讲一次课备一次课的教学内容。这种备课省事,大部分老师都是采取这种方式,有利于上课时对本次课教学内容比较清楚。但不足的是:基础数学课程教学内容的部分完整性差;如果有次课上得不好,失误较大,或者讲得过快,或者讲得过慢,这样就不利于调整教学内容、教学方法、教学手段,灵活性差,会影响后面的教学内容、教学效果等等。

2.老师根据基础数学课程教学内容的部分完整性,备一次课,写几次课的教案,虽然这种备课方法对课堂教学内容的调整有一定的灵活性,一定程度上弥补了上一次课写一次教案的不足,但因时间较长,有时会对教学内容记得不太清楚、生疏,影响教学效果。

为了避免上述备课存在的问题,我们提出了动态的三次备课法:就是每次备课时,备三次课的教学内容,并写三次课的教案:第一次课的教案详写,第二次课的教案可以写得粗一些,第三次课的教案写得更粗一些。如果备课时,备两次课的教学内容,写两次课的教案,若第一次上课时有失误,就要修改第二次课的教学内容,第二次上课时就要弥补第一次造成的失误,这样第二次课的教学内容不一定能完成,也就会影响后面的教学进度,导致后面为了赶进度而影响教学效果。如果备课时,写四次以上课的教案,花在写教案的时间较多,也没有必要。教学实践证明,备课时写三次课的教案是科学的,因为第一次课有失误,在下面的两次课完全可以调整教学内容,不影响后面的教学进度。第一次课上完后,进行教学效果评价,在评价的基础上,调整第二次教案的教学内容,并写出详细的教案,同时修改下次教案,增加一次较粗的教案。如此滚动下去,每次备课都保证有三次详、粗适当的教案。

动态备课法模式:

第一次备课

3.基础数学课程课堂教学效果评价。在前面,我们提到了课堂教学效果评价,它是下一次课堂教学效果预测的前提和基础,是评价课堂教学好坏的主要论据,也是备课时必须考虑的重要因素。虽然影响课堂教学效果的因素很多,有些是不可预测的,但最重要的因素应该是教师。我们知道,基础数学课程的课堂教学以讲课为主,概念、推理、举例等等都是边写边讲,在讲解的过程中速度不能过快,也不能太慢,如果老师讲得好,那么学生喜欢听,注意力集中,效果肯定好;如果老师讲得不好,那么,有的学生会产生厌学等情绪,思想不集中,学生出于课堂纪律的约束,会表现出心不在焉的听课样子。从学生的课堂表现,可以感觉不出来自己讲得是好还是不好,是判断课堂教学效果的依据,但不能就此给自己的教学效果做出正确的评价。如何对自己的教学效果做出正确的评价,评价的依据是什么,目前还没有合理的说法和理论依据。目前大多数的做法是通过学生的考试成绩,学生对老师的打分,以及督导组的老师听课等等来说明老师的教学水平。这种评价看似有道理,但是不全面的。基础数学课程是大面积公共基础课,考试时统一试卷;影响学生考试成绩的因素很多,考题的题量、难易度,生源,专业的要求和培养目标,学风等等,都是影响考试成绩的因素。学生给老师打分也存在许多缺陷和不公正,课堂教学管理严的老师得分不一定高,要求不严的老师可能得分较高;有的学生对老师的评价无所谓,尽量打高一点。督导老师打分往往是表面印象,如果不是同行专家更是如此。所以,最具有说服力的评价是自己给自己评价。如何给出一个合理的自我评价,一直是教师都想搞明白的事,特别是一次课下来后,这次课上得如何等等,都是值得研究的问题。经过多年的教学研究和教学实践说明,学生上课时的情绪、提问以及学生的作业,是反映教师课堂教学效果的主要依据。学生上课时的情绪可以反映教师讲课的激情、语言的表达、内容的安排、概念的讲解、教学手段的使用、教学方法是否恰当等等,所以在上课时一定要注意学生的情绪。课堂提问可以及时了解学生对知识掌握的情况,更能反映老师的教学水平。课堂提问一般分为直接提问和间接提问,直接提问就是请同学站起来回答问题,适应于小班上课;间接提问就是老师在上课过程中提出问题,然后看学生对老师提的问题反映表情来判断学生掌握的情况,这种提问适应于大班上课,最好是直接提问与间接提问并用。作业不仅可以反映学生平时成绩,更能反映教师课堂教学效果的好坏,它是定量反映老师这次课教学效果情况的具体表现。所以布置作业一定要认真,要求学生都是独立完成作业,不要给出参考答案,且作业布置要注意难易程度、题量适度,一个教师教学水平如何从作业上基本上可以反映出来。为了更好地分析课堂教学效果,根据上面的分析可以定量地进行评价自己这次教学效果,即教学效果评价成绩=上课时学生的课堂情绪20%+课堂提问10%+作业70%。上课时学生的课堂情绪成绩和提问成绩根据上课时的表现来给出,作业成绩为批改作业的平均成绩,也可以随机地抽取一定比例的作业平均成绩作为作业成绩。由于我们在上课前对教学效果进行了预测,并给出一个预测值。当预测值≤教学效果评价成绩,说明这次教学是成功的,达到了预期效果;当预测值>教学效果评价成绩,说明这次教学有问题,必须认真查找原因,在下面的教学过程中纠正。这样我们就给出了课堂教学效果的计算公式:课堂教学效果值=课堂教学效果评价―课堂教学效果预测。当课堂教学效果值≥0,说明这次教学是成功的,达到了预期效果;当课堂教学效果值

总之,要保证教学质量,提高教学水平,关键是提高课堂教学效果。作为一名教师首先要加强课堂教学管理,对自己的教学情况要有一个合理的评价,才能不断提高教学水平和能力。如何加强课堂教学管理,并对教学效果进行预测和评价,我们进行了研究并在教学过程中进行探讨,得到了上述的成果,特别是对数学课程的教学有一定的推广价值。

参考文献:

[1]严振祥.高等数学大班课教学的对策[J].大学数学,2007,23(2):25-26.

[2]王庆.对高等数学分层教学的探讨[J].科技创新导报,2008(9):240.

篇10

近年来,湖南农业大学以推进教育部“高等学校本科教学质量与教学改革工程”为契机,通过构建一个体系、创新两个模式、搭建三个平台,不断丰富数学基础课程教学改革新内涵,取得了良好成效。

1.构建培养素质、传授知识、强化能力的数学课程体系,促进人才在知识、能力、素质三方面协调发展

数学基础课教学肩负服务性和发展性两大基本功能,既要满足学生学习专业知识的需要,为专业服务;又要使少数文科学生的科学素质得到培养,促进文理融合;还应能促进极少数数学爱好者的个性发展,增强其可持续发展的能力。随着科学的发展,数学与农学、林学和生物学的直接关系越来越紧密。例如,图论、本文由收集整理运筹学、统计学、数学建模越来越多地直接应用在农林学科上,通过应用数学思想方法实现农林经济的效益最优,寻求水稻、油菜等的理想株型,建立低成本、高效率、保护土壤生态、减少环境污染的数学模型,这些都要求数学教学不能局限于传授知识,更要注重培养学生的应用意识、探索精神和创新能力。以前,我校数学基础课课程体系过于刚性,固守数学课程的传统课程体系而缺乏创新,着眼于学科知识的拓展应用、满足学生兴趣爱好的选修课设置不够合理,远远不能适应高素质人才的培养要求。同时又缺少着眼于培养文科学生的科学素质的数学类选修课,致使文科学生自然科学知识贫乏。实验环节也相对薄弱,学生数学应用能力不强,感觉“学了不会用,有用的没有学”。为此,我们构建了“培养素质、传授知识、强化能力的数学课程体系”(图1),有数学基础课设置必修课与选修课两个模块。必修课模块有“高等数学”、“线性代数与线性规划”、“概率论与数理统计”3门课程。选修课分培养素质和强化能力两个层次,培养素质的课程开设有数学文化,面向没开数学必修课的文科类专业学生,培养其科学素质,促进文理融合;强化能力层次设置数学专题[微积分(提高)、线性代数(提高)、概率论(提高)]、数学建模、数学实验等课程,面向数学兴趣浓厚的同学,促进个性发展,培养学生运用数学方法解决实际问题的能力和创新思维能力。

2.构建两个模式,助推课堂教学与教学研讨创新

(1)构建分类分层教学模式,有利于因需施教和因材施教。一方面,随着高等教育的发展,地方农林院校逐步向多学科的综合性大学发展,专业涵盖了农学、林学、工学、文学、理学、经济学、管理学、医学等学科的绝大部分专业,但又不同于综合性大学,农林专业仍占主导地位,数学类课程虽然是农林院校绝大多数专业的一门重要的基础课,但不同的专业对数学知识的要求不一样,对学生数学素质的要求呈多元化多层次的趋势。另一方面,对各行业来讲,既需要能较快接受新知识、新技术,并应用于本专业的工程技术型人才;也需要进行深入理论研究、高新技术开发的科学研究型人才,因此社会对人才的数学基础的要求各不相同。再者,由于学生基础知识情况、兴趣爱好、智力水平和潜在能力等存在差异,所以我们必须从实际出发,因材施教,引导学生朝着最能发挥自己优势的方向发展,循序渐进,使不同层次的学生都能在原有程度上学有所得,逐步提高。

基于上面的分析,我们构建了分类分层组织教学的教学模式。根据不同学科专业对数学课程的不同要求, 必修课按学科专业分类组织教学,把必修课分为a、b、c三类,各专业在教务处指导下选择某一类。根据学生不同,选修课分层组织教学,分为培养素质和强化能力两个层次。实践表明,这种教学模式有利于发挥基础课为专业服务的功能,有利于因材施教,使学生的学习潜力得到发挥。

(2)以活动促教研的教学研讨模式,提升教师教学能力。“教师教学能力提升”是“本科教学工程”建设内容之一,有效的教研活动是提升教师教学能力的重要途径。有的教学基层组织教研意识淡薄,在一些教师的眼中,教研活动就是为了完成学校布置的一项“任务”,甚至视教研活动为“负担”,缺乏开展活动的兴趣与热情。事实上,教研活动能有效地激活教学研究,引起教师个体之间的反思与共鸣,帮助教师实现理念的更新、观念的变革、行为的转变。在实践中,我们举办有农学、生物学与数学教师共同参与的“农学、生物学中的数学”研讨活动,开阔数学教师的视野,丰富数学教学内容。我们组织开展“让青春燃烧在课堂上”为主题的内容丰富、形式多样的名师报告会、座谈会、集体备课、教研课、公开课、教学“大比武”和教学能手评选等系列活动,深入了解并及时解决教学中的困难和问题,总结推广教学经验,探索教学规律,推进教学方法手段的改革,逐步形成了教师乐于教研、团队勤于教研的良好氛围。教学研讨的开展,既为教师展示教学风采和相互学习搭建了一个沟通平台,也为教师成长和发展搭建了一个成长平台,使广大教师的教学能力进一步提高。

转贴于

3. 搭建三个平台,促进学生自主学习能力、数学应用能力和创新能力的培养

(1)搭建网络课程平台,实现优质教学资源共享和教育教学方式创新。湖南农业大学为了有效推进本科课程建设与改革,进一步提高课程教学质量,促进本科教育教学与人才培养质量的全面提高,学校出台了《关于进一步加强本科课程建设的通知》和《湖南农业大学全面实施全日制本科课程建设工程,进一步提高教育教学质量的决定》两个文件。按照文件要求,我们对高等数学、概率论与数理统计、线性代数、数学建模、数学实验等课程认真遴选了课程负责人,所有这些课程均建成了网络课程,每门课程均包含课程描述、课程规划、教学大纲、教学队伍、教材教参、教案讲义。多媒体课件等模块。概率论与数理统计、高等数学为校级精品课程,建设内容更为丰富,高等数学的精品视频录像,更是展示了我校数学教师先进的教学理念,两门精品课程对其他课程的建设发挥了示范引领作用。通过网络课程的建设,延伸了课堂教学,实现了优质教学资源共享和教育教学方式创新,提高了学生自主学习能力。

(2)搭建实验教学平台,培养学生数学应用能力。由于数学学科发展的日益形式化,传统数学教学越来越偏重形式,强调逻辑思维能力的培养,而离 “观察”和“实验”越来越远,其结果是学生对数学的学习兴趣不浓,普遍觉得“学了不会用,有用的没有学”。现代计算机科学取得了举世瞩目的成就,大量功能强大的数学软件的出现使得过去很多繁琐的数学计算变得轻而易举,很多抽象难懂的数学概念可以直观显示。因此高等农林院校数学教学的目的不应该仅仅是传授数学知识,更重要的是要提高学生的数学素养,培养学生具有综合运用数学知识,借助计算机解决实际问题的意识和能力,于是数学实验课程便应运而生。

湖南农业大学数学实验单独成课,设置为选修课。我们组建了科学计算实验室,自行设计面向全校的公共选修实验课预约系统,调整了数学教学内容,实现教学内容现代与经典相结合,基本理论与现代农业科学及工程相结合,加强数学建模思想的融入与渗透,精选联系实际的例题,如作物生长模型、农场规划等问题,注重增强学生“用”数学的意识,使学生感受到数学有用,数学就在自己身边,极大地激发了学习兴趣,培养学生“用”数学的能力。

(3)搭建学科竞赛平台,提升大学生创新能力。大学是人才培养的基地,而创新人才培养的核心就是创新思想、创新意识和创新能力的培养,组织学生参加国家级、省级、校级大学生数学建模竞赛和大学生数学竞赛,是提升大学生创新能力的重要途径。

篇11

一、引言

 

在我国数学已经是全民教育了,数学作为基础学科,一个人从小学到大学要经历近十几年的数学学习,但是近年来,在对工科、经管类硕士研究生的数学基础课教学中发现,其中仍然存在着许多问题亟待解决,本文将通过对教学过程中所出现的关键问题进行分析、归纳总结,探究其产生的原因并试图给出解决这些问题的方法和途径。

 

二、教学现状分析

 

我校面向工科、经管类硕士研究生开设了《数值分析》、《统计计算》、《偏微分方程数值解》和《多元统计分析》四门数学公共基础课,由学生在导师指导下从中任选一门作为学位课,在教学过程中存在以下一些几方面的问题:

 

(1)部分学生的数学基础薄弱、适应能力差。由于硕士研究生招生规模的增加,学生的数学基础参差不齐,客观上造成了一些学生对数学课程学习的畏难心理,加之由于学时的限制以及研究生阶段学习的特点,使得教师在讲授过程中不能面面俱到,所以对基础知识差的学生造成了学习困难、跟不上教师的节奏,学习效果不佳的状况。

 

(2)教学思想和观念滞后于时代的发展。研究生数学基础课的教学观和部分学生的学习观存在着与创新人才培养目标不相适应的现象:以科研和论文为主的价值取向淡化了数学基础课程教学和学习的重要性,误认为课程学习的目的只是为了修满学分,从而忽视了数学基础课程学习对科学研究和论文的基础性作用。

 

(3)缺乏实践性教学环节。尽管数值分析、统计计算、偏微分方程数值解和多元统计分析作为数学公共基础课开设,但它们本身具有极强的应用性,涉及到大量的计算,而这些计算往往要借助于专业的软件通过计算机来实现,而教学中缺少相应的上机实践环节。

 

(4)缺乏课堂教学评价与激励机制。目前研究生期末考试分数是作为评价教学效果的唯一依据,缺乏对学生学习过程的评价。

 

针对以上存在的问题,在教学过程中需要结合数学课程的特点和学生的实际情况,从教学内容和教学方法方面进行改革,提高数学课程的教学质量。下面结合具体的教学实践,介绍在数学公共基础课教学中实施的做法和认识。

 

三、教学改革的具体措施

 

1.优化教学内容,改革教学方法

 

在以往在研究生数学教学中存在着重理论、轻实践,重推理、轻应用的倾向,由于工科、经管类学生的数学基础相对薄弱,这样的教学方法在一定程度制约了学生的学习热情,所以我们在教学过程中根据工科、经管类研究生学生的数学基础及今后的发展方向,提出了加强基本概念、原理和方法的教学,淡化繁杂的公式推导及定理证明的教学原则,同时强调在教师在教学过程中用自己在教学与科研中的体会去启发学生思维,激发学生的学习与创新的动力,培养学生的数学思维能力。例如在多元统计分析中,讲授维沙特分布、霍特林分布和威尔科斯Λ分布三个重要的分布时,就采用与一元统计分析中x2分布、t分布、F分布三个分布对应比较,简化推理过程,着重强调应用原理,达到事半功倍的效果。

 

2.加强数学课程的实践性教学

 

实践性课程在研究生能力培养过程中起着非常重要的作用,实践性教学环节不仅能检验学生的数学理论知识、动手能力与研究水平,还可以提高学生分析问题、解决问题的能力,为学生今后从事科学研究奠定基础。我们的做法是在教学过程中遵循学生对数学知识需求和学习能力提高的要求,密切联系实际,一方面开展案例式教学,以提高学生应用数学知识解决实际问题的能力。例如在多元统计分析中介讲解聚类分析方法时,引入利用汽车的参数指标对不同品牌的汽车进行分类的案例教学,就取得了好的教学效果。另一方面引进常用数学软件的学习,使学生既掌握理论知识,又能合理利用数学软件进行实践操作。在教学过程中将MATLAB软件引入到数值分析、统计计算、偏微分方程数值解的课程中,将SPSS统计软件引入到多元统计分析课程中,结合不同课程的特点和教学目的,融合现代计算方法,通过讨论和上机操作,帮助学生掌握和巩固知识,增强学生对实际问题的处理能力。

 

3.改革教学评价方法

 

首先改革研究生数学课的考试内容,要求试题既要检测研究生对数学基本理论与基本方法掌握的情况,又要测试研究生能力和素质高低;其次改革评分方式,将学生的平时学习情况、课外上机实践、创新型小论文等纳入学业总分,实行多种考核评分方式相结合的综合评分方案,改变用单一的期末考试成绩来评价学生。

 

4.开展研究生数学建模活动

 

近年来开展的了全国研究生数学建模竞赛活动,为研究生的数学学习提供了一个很好的平台,也吸引了越来越多高校的研究生参加此项活动。我们积极组织、鼓励研究生参加全国研究生数学建模竞赛,并对学生进行专门的培训,对表现优秀的研究生给予奖励。通过参加数学建模竞赛,对于研究生提高分析问题和解决实际问题的能力、培养团队合作精神是一种历练,使学生完成从学习知识到运用知识的转变,从中找出差距与不足,提高了研究生对数学的学习的兴趣,意识到数学在实际应用中的重要性,增强了研究生应用数学方法解决实际问题的能力。

 

四、结束语

 

随着我国教育事业的发展,人才的培养从知识性教育转向创新能力培养,加强工科、经管类研究生公共数学基础课程的教学改革工作,是一项重要的任务,我们本着“淡化数学理论, 强化应用教学, 注重软件学习”的原则, 在教学中强化数学基础理论和方法的基础上,深化现代数学理念的培养,全面提升研究生教学质量,培养出社会所需要的创新型人才。

 

篇12

一、创设生活情境小学生的思维以形象为主

数学教育是要学生获得作为一个公民所必须的基本数学知识和技能,为学生终身可持续发展打好基础,必须开放小教室,把生活中的鲜活题材引入学习数学的大课堂。例如在教学了圆柱体和圆锥体的体积后,我出示了一个不规则的物体,要求学生想办法求出它的体积。学生通过认真的讨论交流,设计出了一个计算这不规则物体体积的方案:先将一个容器里放一些水,然后测量并计算出现在容器中水的体积,再将不规则的物体放入容器中,再测量并计算出放入不规则物体后现在容器中水的体积,容器内水的前后体积的差即为这不规则物体的体积。这样通过交流、讨论、合作等学习方式,既可培养了学生良好的与别人沟通的能力,也可培养学生的探索思维能力。这样既提高了学生学数学的兴趣,也培养了学生的创新能力和创新意识。

二、创设联系生活实际的作业

学生经过教学和课堂练习掌握了一些知识,虽然也能解决一些简单的实际问题,但因为这些实际问题都经过加工处理过,学生往往很快会忘记,如果能联系生活实际设计一些作业,学生形象深刻,会容易记住。如在教学了长方体和正方体的体积后,因为学生对于占地面积和表面积极容易混淆,我拿出六块同样大小的木板,并请学生量出三块木板的长、宽和高,做两次安放:第一次将三块木板并列平放在地上,我请学生计算出这时三块木板的总占地面积是多少平方厘米?然后我再将另外三块木板重叠平放在一起,放在地上,再请学生计算出这时三块木板的占地面积是多少平方厘米,通过计算,学生很快知道,三块木板重叠平放在一起放时的占地面积小,占地面积的大小同木板的表面积并无关系。这样使学生对占地面积和表面积这两个概念加深了理解。

我再请学生思考将三块木板并列放在地上,这时三块木板的表面积和是多少平方厘米?将三块木板重叠平放在一起时,三块木板的表面积和又是多少平方厘米?我再将三块木板竖着重叠放和横着重叠放,并请学生根据已知的数据分别求出三块木板平着重叠放、竖着重叠放和横着重叠放时三块木板的表面积和各是多少平方厘米?这样使得学生既较好地掌握了表面积的概念,并使学生懂得了不同的放法表面积是不同的。为了加深学生对表面积和体积概念的掌握,我还要求每个学生从家中拿来一只火柴盒,让学生量出它的长、宽和高,并提问学生,火柴盒的内盒如果不拿出来,这时求它的表面积要求几个面?如果将内盒拿出来,不计火柴盒的厚度,求做一只内盒要多少材料?要求几个面?这时相当于求什么?如果求火柴盒的外壳要用多少材料,又要求几个面?这时又相当于求什么?在火柴盒上做商标,只要求出什么?这只火柴盒占空间的大小是多少?如果火柴盒的厚度忽略不计,这只火柴盒的容积又是多少?火柴盒的体积和它的容积相等吗?火柴盒的容积和体积在什么时候相等?什么情况之下不相等?学生联系实际并经过讨论、交流和合作,很快能将这些问题一一解决,并会认识到,火柴盒里面有很多的学问。这样使得学生不仅再次加深了对侧面积、表面积、体积和容积的理解,并联系火柴盒还知道了在实际生活中运用数学要考虑很多因素。同时,也使学生的创新能力和创新意识有了提高。

三、联系实际、创设生活化的数学情境在数学教学中

如何让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,学生会对生活中常见的各种优惠措施理解得更深刻,真正体会到学习数学的乐趣。因此在数学教学中,我努力尝试在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。例如,在教学了“用字母表示数”后,我设计了这样一题“开放性”的实践题:“学校在暑期组织教师前往北京进行七日游活动,无锡到北京的火车票为X元,教师在火车上和在北京每天的伙食费为B元,要在北京住宿5夜,每夜的住宿费为A元,在北京的旅游点的门票价和交通费共计为Y元,问每个教师去北京旅游共需要多少元钱?”我先请学生用字母表示数,写出每个教师去北京旅游共需要多少元钱。学生很快能写出每个教师去北京旅游需要钱的算式:2X+7B+5A+Y.在学生写出了算式后,我还要求学生能联系实际查找资料,估算一下每个教师前去北京共要用多少元钱?这样学生就会前去查找无锡到北京的火车票价,去了解每天的伙食费和住宿费是多少元。

篇13

中图分类号:G633.6 文献标识码:A 文章编号:1002-7661(2014)10-0010-03

第一轮复习是在学生学完了中学数学的全部内容之后,进行的一次系统的、全面的回顾、整理和提升,帮助学生将各部分知识进行有机地整合,进一步完善和巩固学生的数学知识结构,构建学生的基本数学方法体系。在这一轮,夯实基础,可为后一阶段的综合提高打下坚实的基础。面对基础薄弱的高三学生该如何做好第一轮复习呢?我从事多年的高三教学,针对我校学生数学基础薄弱的特点,从以下几方面进行尝试、探索,引导薄弱生落实“三基”,夯实基础,并取得一定效果,现抛砖引玉,请大家批评指正。

一、构建知识网络,落实主干知识中的基础题

在高一、高二教学时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的往往是零碎的知识点。而第一轮复习,是站在更高的角度,对知识进行“重组”,产生全新认识的过程,将那些零碎的知识点串联起来,构建知识网络,主线索是知识的纵向联系与横向联系,侧重点在于各个知识点之间的融会贯通。

面对数学基础薄弱的学生,如果面面俱到,学生“吸收”不了,复习效果不好。针对重点知识重点考查的命题原则,在教材处理上要大胆取舍,重点抓好三角与向量、立体几何、函数与导数、圆锥曲线、概率、选考部分等六大大题题型,并对相对简单的选考,三角与向量、立体几何中的常规题、基础题进行落实.方向把握准确,复习效率自然提高。

例如,复习《三角函数;解三角形》部分,对与三角函数、奇偶性、周期性有关的问题;与三角函数有关问题;应用同角变换和诱导公式,求三角函数值及化简;应用正余弦定理解三角形等几类基础题要落实,还要注意多个知识点的综合考查。如:2010安徽理科第16题。

例1 ABC是锐角三角形,角A,B,C所对的边分别是a、b、c,且sin2A=sin(+B)sin(-B)+sin2B。

(I)求角A的值;

(Ⅱ)AB/AC=12,a=2,求b、c(其中b

本题考查两角和的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等基础知识点,考查学生的综合运算能力,属中档题,对基础薄弱生来说只要加强训练,注意落实,是完全可以掌握的。

二、注意知识的内在联系,关注知识交汇处的命题

2010年福建省数学理科高考试题让我们再次感受到:高考题在考查数学基础知识的同时,对知识的内在联系和综合性也十分关注,常在知识网络的交汇点处命题。由于基础薄弱生的分析、归纳能力相对较弱,因此,在复习时注意引导学生认识各知识板块的横向、纵向的联系,提高学生分析、解决问题的能力,对提高学生的应试心理,非常有益。

如2010福建理科第18题

例2 如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。

(Ⅰ)证明:平面A1ACC1平面B1BCC1;

(Ⅱ)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P。

(i)当点C在圆周上运动时,求P的最大值;

(ii)记平面A1ACC1与平面B1OC所成的角为a(0%a≤90取最大值时,求cosa的值。

问题(Ⅰ)以圆柱为载体考查空间中直线与平面、平面与平面垂直的判定与性质,属于常规题,学生可以轻松解决,体现入口宽、切入点不难的命题原则。问题(Ⅱ)是以立体几何为背景考查空间向量在立体几何中应用、几何概型、均值不等式或三角等基础知识的应用,是全新交汇题,令人耳目一新,难度不大,但面对这种全新的交汇,基础薄弱生会感到不适应。

在教学中发现:以不同形式呈现的同一问题,学生的解答情况相差甚远。例如:

例3 ABC中,∠A=,求y=cosB/cos2A+sinC/sin(B+C)的值域。

例4 (2010年莆田市高三综合检查试卷第16题

在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,已知随机变量g的分布列为:

(Ⅰ)求角A的大小;

(Ⅱ)求Eg的取值范围。

例3考查三角函数的有关知识,没有与其它知识点交汇,学生完成得很好。例4是以概率为背景考查三角函数的相关知识,主要考查学生的转化能力,属于简单的交汇题,属于中档题,可是学生完成的比例3差。可见知识交汇处的命题对薄弱生来说是一难点。纵观2009、2010两年福建省高考试题发现:在知识交汇处的命题不一定是难题,甚至是命题专家眼中的“容易题”,但如果不进行针对性的训练,那么这种“容易题”就会变为“拦路虎”。因此在教学中要关注知识交汇处的命题,常做,多练,不断巩固所学知识,提升学生的思想方法,提高解题能力,让学生“见多识广”,在考试中遇到知识交汇的题目不再“惊慌失措”,提高教学的有效性。

三、“亲近”圆锥曲线,培养计算能力及做题的“胆识”

对于基础薄弱生来说,计算成为解题的又一难关,特别是有关圆锥曲线的题,在有思路的情况下由于计算造成失分的情况是常有的事,对学生的学习“士气”打击很大,是学生比较“怕”的题。但近两年的高考,对圆锥曲线的考查难度下降,这对大多数学生来说是有能力解决,但是很多学生还停留在第一问的解答上,对第二问不“敢”做,因此在第一轮时,可通过对简单圆锥曲线问题的“看――尝试――解决”,在培养薄弱生计算能力的同时,让学生体会成功的喜悦,从而增强自信心。

如,复习《椭圆的基本性质》一节,以2010福建理科第17题为例

例5 已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由。

在教学中,学生动手可以解决问题(Ⅰ),但多数学生对问题(Ⅱ)持观望态度,动手学生少,针对这种情况,老师引导学生一起在黑板上演算:

解:(Ⅰ)略

(Ⅱ)假设存在符合题意的直线l,其方程为y=x+t,

由得3x2+3tx+t2-12=0

因为直线l与椭圆C有公共点,所以U=(3t2)-4浚2-12)≥0,解得-4≤t≤2。

又由直线OA与l的距离d=4可得=4,从而t=俊

由于HX[-4,4],所以符合题意的直线l不存在。

带领学生一起做题,让学生“亲近”圆锥曲线题,感受圆锥曲线题并没有想象中那么难,特别是处在试卷解答题的前几题的位置,属于中档题,让学生相信:我行,我可以。利用简单的圆锥曲线题让基础薄弱生学生体会到成功的喜悦,在培养计算能力的同时,帮助克服“恐锥”心理,培养学生做题的“胆识”。

四、适时运用对比教学,提高复习效率.

一位教育家曾说过:学习任何知识的最佳途径都是由学生自己去发现。在复习中,由于基础薄弱生对知识的理解不够深刻,在运用知识解决问题时会感到模棱两可,无法做出正确判断。在教学中可以将容易混淆的知识进行对比教学,帮组学生正确的区分、判断,提高学生分析、解决问题的能力。

如:在复习《概率》时,二项分布、超几何分布是考查的重点,可是学生对二项分布、超几何分布的应用分不清楚,设置如下例题:

例6 (2010年厦门市1月质检)二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病。经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染,人们长期食用含高浓度甲基汞的鱼类引起汞中毒,引起世人对食品安全的关注。《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm。

罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高。现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:

(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;

(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据。若从这批数量很大的鱼中任选3条鱼,记g表示抽到的鱼汞含量超标的条数,求g的分布列及Eg。

友情链接