发布时间:2023-09-25 11:52:13
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇人工智能基础教育范例,将为您的写作提供有力的支持和灵感!
一、前言
人工智能(ArtificialIntelligence,简称AI)快速发展,在一定程度上促进了人们的思维方式、人际互动模式以及学习和教学方式的改变,我国教育部门不断重视AI技术在基础教育领域中的融合,以更好地促进中小学生的个性化发展。AI视域下,教师的工作环境将会越来越智慧化,智能阅卷、智能授课和智能评估逐渐成为可能,教师可以根据学生的学习进度和学习特征,有针对性地对学生开展个性化指导。同时,学生在课堂上也可以更熟练的使用平板电脑而不是手抄本进行交流。目前,AI技术已经成为教育系统性变革的内生变量,不断推动着教育模式的变革、教育理念的更新以及教育体系的重构,基础教育信息化进入了创新发展的2.0时代[1]。虽然我国AI教育发展水平落后于国际先进水平,尚未在在中小学教育中普及应用,但是我国教育部门已经制定和出台了相关政策,以推动基础教育和AI的不断融合和发展,可以预见,AI技术必将为基础教育发展赋予越来越强大的智慧支撑,推动基础教育现代化。
二、AI教育时代中小学教师面临的挑战
面对以AI为核心的信息技术,如何更好的促进学生发展,从适应到引领转变,实现自身的突破性发展,是教育工作者必须深思的问题。AI技术在一定程度上提高了教学水平和教学质量,但是在教师层面还是存在一些问题,使AI技术与基础教育在融合过程中面临一系列的挑战。1.与AI教育相配套的教学方法创新性不足AI教育作为一个高度依赖技术的跨学科领域,AI应用程序可以在一定程度上扮演教师的角色,观察学生的学习过程,分析他们的学习表现,并根据他们的需求为他们提供即时帮助。此外,了解AI技术的能力和特点,教师可以在课堂上采用合适的AI应用程序来提高学生的学习成绩、动机或参与度。新技术影响了教育体制和教学手段,在这样的背景下,教师在使用新技术时要关注教育主体、尊重教育主体,而不能秉持以往旧的认识。但是在现实教学中仍存在盲目学习的典型问题,教师未能针对学生的个性特征而进行因材施教,学生在学习的过程中存在“一刀切”的现象,而不是被个性化对待。2.AI师资力量薄弱AI教育属于多学科交叉领域,教师一方面要具备心理学、教育学和信息技术等各学科相关知识,另一方面要将这些知识进行整合和运用。目前虽然学生的学习意愿强烈,但是从当前AI的师资来看,具有AI学识的师资力量十分薄弱,教师普遍缺乏完整而系统讲授AI课程的能力和知识,部分教师简单地将AI教育视作机器人教育﹑编程教育、计算机辅助教学等,个别中小学的AI教师是由其他学科教师来兼任,此外,AI教师编制不足、师资质量不均衡也是突出的问题。教师师资队伍建设是改善AI教学质量的关键。3.教师培训缺乏针对性目前教师已了解到AI在教学方面发挥的积极作用,并认可AI对教学的促进作用,但大部分教师都是停留在简单的意识层面,在教学实践中并未真正去落实。虽然存在以上问题,但是大部分AI教育教师没有接受专业培训,在讲授AI知识时,缺乏深入性,只能浮于表面,有违学科初衷。4.实施路径单一AI教育作为新兴学科,是基于时代最新技术的教育,要求教师在专业发展过程中,一方面要注重掌握各学科知识,另一方面更要注重教师专业发展的实践性和情境性,强调学生在学习过程中的参与和体验。但是目前中小学AI教育实施路径比较单一,在课程设计上,教师主要停留在传统的信息技术与教学设计层面,学生在课堂学习和实践中难以系统而深入掌握AI的技术、方法和基本理念。在教授形式上,主要采用课堂教学的方式对AI知识进行讲解,而学生实践和体验的机会相对较少。
三、AI视域下中小学教师发展路径
中小学教师如何更好适应AI时代,更好的构建AI教育生态体系,以促进AI与基础教育的深度融合,主要有以下路径:1.培养信息素养信息素养的本质是全球信息化,人们需要具备的一种能力。面对AI技术的迅速发展,中小学教师应注重信息素养的培养,信息素养主要包括两方面内容,即信息技术素养和信息意识素养。在信息技术素养方面,中小学教师应呈现趣味性强的教学课件、流畅的运用多媒体、及时反馈学生的问题等调动学生的积极性,以激发学生各科的学习兴趣,培养良好的学习习惯。此外,中小学教师要保持对新技术的敏感性。信息意识素养是信息素养中的观念性成分,是教师对信息的态度、认识层面的关键要素,是信息素养的重要组成部分。中小学教师在信息意识层面,要积极接受新兴技术带来的学习和教学方式的改变,决定性意义转变的前提是更新观念。2.提升职业道德素养恪守职业道德:传道、授业、解惑是中小学教师的主要职责。随着AI与教育的融合,智能平板等设备可以在一定程度上代替教师讲授知识、解疑答难和阅卷评分,AI在得到科学利用的前提下,可以成为师生的强大助手,从而大幅提升教与学的效率。教师应积极面对AI技术给教育带来的便利,提高自身的自主学习能力和创造力,同时注重培养学生思维的创新性,呵护学生的好奇心和求知欲,鼓励学生发现和解决问题。引导学生树立正确价值观、道德观和法治观:如今AI技术迅速进入中小学生的课堂教学,深刻改变着学生的学习模式和师生互动模式,一方面教师要充分将AI技术有效整合到课堂,另一方面也要正视AI的使用边界,AI技术快速发展有可能带来伦理风险。在中小学阶段不乏这样的例子,有些学生利用课堂上学到的编程知识去充当黑客,或者产生网络成瘾行为,以上学生的偏差行为已经触及价值观的层面,对自身的身心健康产生不利影响。因此,面对AI技术的迅猛发展,教师要有效的应对信息技术带来的伦理挑战,深入研究思考并引导学生树立正确的价值观、道德观和法治观,提升学生的诚信意识和社会信用水平。3.更新教育教学观念改变传统单一教学模式:随着AI技术的发展,互联网、大数据分析、智能化推送等教育产品层出不穷,如果不能科学利用这些技术产品营造适合学生成长的教学生态环境,技术将无法真正促进学生学习效果和教师教学水平的提升。AI视域下,教师要接受并适应智能技术给教育带来的变化,转变传统教育观念和教师角色,同时,教师在教学中应考虑学生的认知发展的阶段性特征,适时了解学生的学习风格和学习策略及学习中遇到的学习障碍,利用多样的教学活动和教学过程将知识获取和能力培养结合起来,促进学生认知和非认知能力的发展,最终实现学生的全面和个性化发展。课堂教学中,教师应改变“灌输式”“注入式”等单一的教学模式,充分利用AI技术实现教学方法多样化,活跃课堂氛围,提高课堂效率,树立教学、体验和实践相结合的教学观,提升学生的动手能力,中小学AI教育在实施路径方面应该多元化,实现认知、实践和体验的有机结合。此外,教师要看到学生的不同进度和情感需求,借助于AI技术,根据学生的发展节奏制定不同的学习计划,做到因材施教,为每一位学生成长提供学伴式帮助。注重培养线上和线下相结合的自主学习能力:AI视域下信息技术与基础教育的融合,网络在线平台为教师提供了丰富的学习资源,教师要更新自身旧的知识框架,进而不断提高自身的知识体系。针对目前存在的教师培训缺乏针对性的现状,教师可以加强线上自主学习,学习教学中常用的AI技术和程序。首先,线上学习过程中,面对网络和AI应用提供的多种类别的学习内容,教师要根据所教学科和所任学段的学生发展特点,选择恰当的教学内容,以便信息技术可以更充分地服务于教学,从而提高教学水平。其次,教师在注重线上学习的同时,也要注重线下学习,教师在教学中可以组织课前、课后的学习讨论小组,就教学中遇到的问题进行面对面的沟通与交流。
四、结语
AI技术的迅速发展,给基础教育带来便利的同时也必然会带来较大的冲击与挑战,AI视域下,中小学教师应该以积极的心态去面对机遇和挑战,抢抓机遇、迎难而上,努力培养自身信息素养,提升职业道德素养,更新教育教学观念,在人与机器日益激烈的竞争中获得主导地位,在基础教育改革发展浪潮中实现跨越式自我发展。
【中图分类号】G633.67 【文献标识码】A 【文章编号】1005-6009(2015)22-0068-01
【作者简介】赵春声,江苏省镇江市教育局教研室(江苏镇江,212000)教研员。
随着科学技术日新月异的发展,人类社会正进入以机器人为代表的智能化时代,机器人教育越来越受到人们的关注。在一些发达国家,机器人教育已经在中小学得到了普及,在我国基础教育阶段,机器人教育才刚刚起步。因此,在信息技术课程中开展机器人教育成为信息技术课程改革发展的一个趋势。江苏省句容高级中学的机器人创新教育课程基地在这个方面做出了积极的可贵的探索。
首先,机器人教育可以成为学习程序设计的基石。基础教育用到的机器人的编程软件功能简单,大都具有图形化、模块化的特点,它能够通过靠鼠标的拖拽实现编程,不像一般程序设计语言那样要记很多语句。同时,所有编写出来的程序都能执行,程序中出现错误能够在编写中指出,不会出现运行中出错的情况。虚拟机器人通过软件平台对所编写的程序进行仿真,实体机器人通过硬件的实际行动来执行人们编写的程序,使初学编程的人不再觉得编写程序是抽象的、没有具体运用价值的一件事,而是实实在在地看到自己所编写的程序的功能与作用。
其次,机器人教育可以作为人工智能的学习平台。机器人是人工智能研究与应用的一个具体领域。随着微电子和人工智能技术的发展,目前的机器人大都配有相关的智能部件。在高中阶段开展对机器人的探索和研究,通过对看得见、摸得着的人工智能实际应用的问题展开教学,能够使学生受到有关人工智能科学的启蒙教育,既能促进学生的个性发展,又能促使学生未来产生对信息技术的追求。
互联网教育尤其是线上K12培优项目一直是投资热门,直播1对1模式风口过后,教育圈内最火的应该是AI项目了。据亿欧智库的报告显示,2017年人工智能教育融资额度达42.17亿元,其中超80%属于早期投资项目,这个赛道有望诞生多个独角兽公司。
笔者发现,当前布局人工智能的在线教育大体分为三派:
教学或题库测评类工具产品,比如作业盒子等;
培训机构应用AI技术,比如好未来等;
人工智能教育引擎及平台提供商,比如高木学习等。
现在摆在AI教育创投从业者面前的问题是:到底以技术实力论英雄的AI教育的泡沫有多大?真金不怕火炼的AI教育项目的核心能力在哪里?如何才能落地? 本文试做解读。
一、为什么“自适应”其实并非真正的AI?一位投资人朋友曾向我这样说道:“既懂互联网行业又完全懂本行业的业务的管理型人才不超过十个,这是在‘互联网+’双创浪潮中每个垂直行业头部项目就几家能玩转的原因。”而认知和技术门槛更高的“AI+”情况恐怕会更加不妙,甚至很多人把“自适应”与“AI教育”划等号。
自适应学习(Adaptive Learning)的鼻祖是美国的Knewton公司,它通过评估不同学生对知识材料掌握度进行个性化推荐,有点类似于今日头条的兴趣引擎。 Knewton在国内的门徒众多,目前大概有40多家项目宣布发力做“自适应”,比如“乂学教育”(学练测自适应)、“学吧课堂”(题库自适应)、“英语 流利说”(英语口语纠正)、“一起作业”(家长、老师在线监控)等等。
嘉御基金创始人卫哲说过,“90%的人工智能项目都是伪AI”,鉴别的依据是看项目“算法速度”,如果是代数级而不是几何级计算那就不是“真AI”,以此来考验自适应项目,得到的结论未免让人失望。
初级的自适应项目是人工预设指令或编程规则推荐,高级的自适应是基于知识图谱推荐,即使是高级的自适应项目由于没有按照既定的教学大纲和教学目标有 逻辑地展开,在具体知识学习之中并不系统。关键是很多自适应项目采集的是各科最优秀特级教师的能力,导致其算法本身是线性的、模拟人学习而已。
自适应的技术原理就好比AlphaGo是应用了人类最优秀围棋大师的能力而非是完全迥异机器深度学习和自演化模型;自动驾驶AI应用了某个人类零误 差老司机的感知能力而非是基于全网海量交通大数据做运算和决策;人工智能医生是应用了看X片最快最准的医生的经验而非是海量数据库训练;显然按这样的路径 训练出的机器并非是真正的AI。
“真正拥有充分教学大数据及算法速度的‘AI教师’是能轻松超越拥有30年教龄特级教师的,并且可以突破人类的知识局限,对算法模型进行自动演化,找到人类从未尝试过的策略。”高木学习创始人刘瞻这样描述AI教师。
刘瞻是帝国理工学院科班出身,早在2015年开启AI教育创业,他认为判断真伪AI教育项目具体有三个考察维度:
(1)自适应是基于模拟优秀老师的知识图谱推荐知识,而真正的AI教育机器人则是泡在“教学实践大数据”中做深度学习。
(2)自适应主要用作知识盲点的统计,但无法分析出知识体系之间的本质联系,用AI更重要的任务是找到行为背后的原因,比如某学生表面上二次函数是 薄弱环节,既有可能是其对二次函数的各细分知识点掌握不牢,也有可能是前置知识点一次函数、函数的思想理解不透彻,还有可能是方程求解的问题;甚至有可能 是抽象思维或计算能力的问题,AI会根据该学生数据和“知识路径矩阵”,找到问题背后的原因从而匹配出最优学习路径。
(3)人类教师的情感因素能左右学生的学习效果,AI教师也应综合考虑学生的自信心与成就感的培育与激发,从而确保学生学习过程“知”、“情”、“意”的一体化。
二、AI教育的核心:帮助每个学生找到“元认知能力”AI教育并不会改变“老师-学生”的二元结构,甚至人工智能教育还要在师生两端彻底解决互联网教育未完成的两大难题:
如何帮助学生找到学习方法、提升学习效率?在中国一个普通中学生80%的学习时间是低效的。
如何帮助老师对学生更高效的“因材施教”?目前在我国师资资源依然整体短缺并且分布不均,1对1培优成本高、小班普及率低等问题依然突出。
AI教育的优势在于通过数据化形式分析学生自己都不清楚的“症结”,即所谓的“懂我更懂教好我”,同时AI还能帮助老师实现教学效果的稳定化和可控化。AI在充分收集和处理教与学两端的大数据后,还得在具体教学场景之中个性化建模,最终实现“让学生更会学,让老师更会教”,这是人工智能教育的目的。
陶行知先生说过,“教是为了不教”,教育本质不是灌输知识,而是要启发学生思考并让学生掌握自主学习的能力。目前很多伪AI学习神器只能“授人以 鱼”但并不能“授人以渔”,我国基础教育历来缺乏方法论课程,只有极少数有天赋的学生能自主制定适合自己的学习方案,而绝大多数天资处于平均线的学生在混 沌中摸索。如果从AI的视角来看,所谓“天赋”不过是少数幸运儿自觉不自觉的分享了“元认知能力”。
当人主动设定学习计划、自我反馈、动态调整学习策略时,就接近了“元认知”,在大数据时代,这种元认知能力是能被定量化分析的,AI 教育可以为学习者提供关于反复激活元认知能力的“训练法”。根据刘瞻的解读,AI教育的“训练法”就好比给蹒跚学步的婴儿安上矫正走姿的“学步车”,具体 应用什么样“训练模型”则是由AI根据大数据进行场景化定制的,有可能是通向学习目标所需要的“云梯”,有可能是“舟楫”,或者是“拐杖”等等,这些模型 能不断调取和强化人的“元认知能力”。
尽管市面上90%项目都是着眼于知识点和解题训练的自适应,真正AI教育项目比如高木学习的AI不仅包含自适应的知识图谱大数据,而且还能不断从学 生的行为数据中演化“知识路径矩阵”即AI可根据学生对知识和能力体系的理解定制出个性化学习路径。与此同时,AI让学生在对知识的理解与记忆过程中不仅 训练知识掌握度,还不自觉地训练了元认知能力,这套“个性化学习引擎”其实是在培养学生“忘掉所有知识后”剩下的元认知能力,具有普适化的特点。
实际上,AI教育并不需要局限在某一学习阶段、某一学科的知识体系,完全可以打造一个跨学科、跨门类、跨阶段使用的“通用知识学习引擎”,也就是说,除了应用在K12领域外,AI教育还可以应用在高等教育阶段,甚至在辅导大学生时比中小学生会更为轻松,无须综合考虑学生的学习动力因素等。
反过来讲,如果市面上的人工智能教育项目只能用于某一单科或只能教K12,就不是基于大数据获取和智能化引擎的“全才”和“通才”,基本可视为基于特定领域专家总结的经验规则的“伪AI”。
三、为什么AI教育项目落地,to B模式比to C模式更容易跑通?当前AI教育项目的商业化进程走向大体分为两大派:
一派是自建场景的颠覆派,试图开发新的测试软件以抓取学生的数据,甚至引入一些把AR(增强现实)、MR(混合现实)等黑科技,其目标是以“AI教师”完全取代真人老师教学,属于“人机对抗”模式,较为典型的是乂学教育的松鼠AI。
另一派是升级现行教育体系、不另创场景的改良派,属于“人机共教”模式,较为典型的是高木学习的AI Tutor。
一般走人机对抗模式最终走的是to C模式;而“人机共教”走的是to B模式。鉴于我国当前AI教育的应用场景主要为教学机构包括全日制学校与培训机构,而非一个个分散的学生;只有让AI去辅助老师备课、上课,嵌入到学生作 业和训练,帮助学生提分和学校提升升学率,才能帮助AI更快落地并且找到盈利模式。
从“全日制学校”应用AI的实践上看, AI能让老师“心中有数(据)”,提升教学的针对性,AI教师实际上相当于真人老师的“智能助教”,可以减轻老师50%的工作负荷量,比如AI帮老师批改 作业,把数据分析的可视化呈现出来帮助老师定制教研方案。因此,在市场推广过程中,AI教育项目不需要担心基层老师的接受阻力,能让老师摆脱“汗水老师” 的局面也是基础教育机构所希望看到的。
由于全日制学校获取的大数据比培训机构更加海量、持续、高频,因此高木学习更看重AI在全国全日制学校场景中的数据价值,积极在全国推行城市合伙人制度,并计划与地方教育主管部门合作推出全国教师AI应用能力培训公益活动。
To B模式中另一大企业客户就是体制外的培训机构,他们所面对的学生付费意愿强、购买力相对旺盛,是AI教育项目获得稳健现金流的必争之地,那么当前培训机构应用AI教育项目开展“人工智能双师班”的效果如何呢?
首先,AI教练能保持教学效果稳定化输出,解决原本老师教学效果不确定的弊端。
其次,AI 提升了老师的工作效率,突破了培训机构因为名师稀缺且流动性大限制培训机构的规模化发展的瓶颈。
未来五年乃至更长时间,推动基础教育采用技术的关键要素。
(1)推进创新文化
目前,学校已经被视为推动创新和创业的场所。这一趋势的焦点已经从理解培养创新思想的价值转变为寻找方法以便复制到不同的、独特的学习机构中去。过去一年的研究让我们能更好地了解学校是如何培育不同类型文化来促进改革的。其中推进这一改革进程的关键点是要求基础教育改变其现状,接受把失败作为学习过程中的重要组成部分。而将创业精神融入基础教育的行动也进一步承认,每一个伟大的想法都有开始的地方,学生和教育工作者们都可以配备需要的工具来激发真正的进步。为了跟上改革的步伐,学校必须严格评估课程,并改革评估方法来消除阻碍新思想发展的障碍。
(2)深度学习策略
在基础教育中,越来越多的人重视深度学习策略,威廉和弗洛拉・休利特基金会(William and Flora Hewlett Foundation)把它定义为在学生掌握学习内容的同时,培养其批判性思维、解决问题的能力以及协作学习和自主学习的能力。为了保持学习的积极性,学生们需要了解现实世界,以及新的知识和技能带给他们的影响。教学法将从被动学习转向主动学习,允许学生从新资讯中拓展思路,并学会怎样管控他们建立的主题活动。具体方法包括基于问题的学习、项目式学习、挑战式学习以及探究性W习等,这些方法都在鼓励学生创造性地解决问题和主动实施解决方案。
2.中期趋势
在未来三到五年内,推动基础教育采用技术的关键要素。
(1)对量化学习的日趋关注
人们越来越多地对量化学习这种新的评价方式感兴趣。这种方式需要教育工作者使用多种方法和工具来对学生在学业准备、学习过程、技能获取以及其他教育需求阶段,进行评估、量化和记录。由于社会和经济因素重新定义了当今职业所需人才的能力,学校必须重新思考如何去界定、测量和证明学生掌握的学科知识和软技能(如创造力和协作能力)。数据挖掘软件逐步融入到在线教育、移动学习和学习管理系统中,形成了新的学习环境。这类环境利用数据分析和可视化软件能多维度、便利地描绘学习的相关数据。在线上和混合课程中,数据可以展示出学生的行为是如何促进他们的进步以及影响学习效果的。
(2)重构学习空间
传统教育依赖于以教师为中心的教学方式,讲座是知识传递的主要来源。如今,人们正在拥抱以学生为中心的教学,这让学习者能更好地为未来职场做准备。同时,教室设计的新方法正在支持这种转变。此外,在建筑和空间规划方面的创新思维正在影响新学校基础设施的设计和建设,进而有可能对课堂实践和学生学习产生重大影响。
3.短期趋势
在未来一到两年内,推动基础教育采用技术的关键要素。
(1)编程素养
编程是指计算机能理解的一组规则,可以采用多种语言的形式,如HTML语言、JavaScript语言和PHP语言。许多教育工作者认为,编程是一种激发计算思维的方式,这项技能需要将计算机科学知识与创造力、问题解决能力深度结合起来。知名编程教学网站最近预测,到2020年,美国将有140万个计算机工作岗位,而只有40万计算机专业的学生来填补这一职位。为了更好地让学生从较小的年纪开始学习,越来越多的学校领导和专家正将编程嵌入到基础教育课程中来。世界各地的学校正在开设编程课,如让学生共同设计网站,开发教育游戏和APP,并通过建模和设计新产品来设计应对挑战的方案。
(2)增强STEAM学习
近年来,人们越来越重视加强科学、技术、工程和数学(STEM)课程的学习,因为这些学科被广泛视为促进创新和促进国家经济增长的动力。一些教育领导者认为,作为机构聚焦STEM学习的一种回应,有必要建立一个更加均衡的课程,如将艺术、设计和人文学科等整合到科学领域。这一概念促进了STEAM教育的产生,在这里,A代表“艺术+”。STEAM教育将这一定义扩展为一种基本理念,即所有学科都能且应该紧密地揉和在一起,以给学生提供一个如何把广泛的知识和技能在现实生活中相互联系的大图景。换句话说,技术的使用不仅是与推进科学和工程技术的进步有关。
阻碍基础教育采用技术的重要挑战
1.可解决的挑战
(1)实景学习体验
目前,带着学生接触现实问题和工作场景的实景学习体验在学校还没有普及。实景学习被看作一些重要教学策略的支撑,它有着巨大的潜能让学习者沉浸在获得终身学习技能的环境中学习。实景学习体验的方法包括职业培训、学徒制和某些科学调查。实景学习强调以元认知反映和自我意识作为基础的重要性。因而,越来越多的学校通过与更多的社区建立关系,与当地组织积极合作,让学习者可以体验到学校之外的未来生活和工作情境,并以此种方式来缩小学科知识与具体应用之间的差距。
(2)提高数字素养
技术使用的生产性和创新性是21世纪实践的重要特征,这对在工作场所和其他领域取得成功是至关重要的。数字素养超越了学习者所获得的孤立的技术技能,可使人产生对数字环境的更深理解,更能够直观地适应新环境,并与他人协作创建内容。因此,学校应致力于发展学生的数字公民权,确保其能够负起掌握和使用技术的责任,包括混合式、在线学习环境和其他场合中的在线交流的礼仪、数字权利和责任等。这类能力正在影响着课程设计、专业发展和面向学生的服务和资源。由于数字素养牵涉众多因素,学校领导面临的挑战是获得更多公共机构的认可,并支持所有的利益相关者发展这些能力。
2.有难度的挑战
(1)反思教师的角色
教师越来越多地被期望能熟练掌握多种基于技术的方法,并用其来传递内容、支持学习者以及进行评价。在有技术支持的课堂上,教师的主要责任从传递专业知识转变为构建学习环境,以帮助学生获得创造性探究能力和数字素养。教育者现在扮演着指导者和教练的角色,为学生提供机会,引导他们自主规划学习路径,进而将其培养成为有责任的全球化公民,并激励他们树立终身学习的习惯。这些不断变化的期望正在改变着教师们参与专业发展的方式方法,如更多地利用社交媒体和校内外的同行进行互动合作,并使用在线工具进行资源共享等。
(2)传授复杂思维
对于学习者来说,他们能够理解成长过程中的网络化世界和利用复杂思维学习都很重要。复杂思维学习就是学会如何使用抽象法和分解法处理复杂任务,以及如何将启发式推理运用到复杂问题上。独立掌握复杂思维方式往往难以在应用中奏效,只有掌握了沟通技巧,复杂思维的应用才有意义。事实上,高效率的领导者都是杰出的具有高水平社会智商的沟通者,他们有能力把不同的人连接起来,并利用技术进行协作和采用数据来支持他们的想法。这些都需要宏观的理解能力,以及相关的逻辑、数据和直觉意识。虽然复杂思维这一话题的某些方面,与设计思维类似或者完全相同。但本报告的目的是要把两者作为不同的概念来处理。“复杂思维”指的是理解事物复杂性的能力,这是一种利用系统化的工作思维来解决问题的能力,可以与“计算思维”互换概念。
3.严峻的挑战
(1)成就差距
成就差距指的是学生群体之间在学业表现上的差异,特指社会经济地位、种族、民族或性别所造成的各种差异性,而同行竞争压力、学生比较、消极印象以及考试偏见等因素加剧了这一挑战。学校使用多元化成功标准来定义学习期望,其中包括分数、标准化考试成绩和完成率等,这导致学生的表现在个人和团体层面产生比较。适应性学习和个性化学习技术在识别表现较差的学生和学生群体时所发挥的作用越发重要。它能帮助教育者和领导者了解影响因素,进而启用和扩展有针对性的干预方法和参与策略,以缩小成绩差距。
(2)领导变化后的创新的维持
维持长期成功是开发新项目时需要重点考虑的一个因素,尤其是资金和领导层等外部因素容易发生变化的情况下。然而,未雨绸缪并不总是能得到明确的实施,也不是目前学校的常态。为促使学生在学校的成功,所制定和实施的创新方法,需要来自领导及全体教职工的全身心投入。不幸的是,领导职位的空缺或过渡会导致项目延迟或阻碍项目的发展,从而不能有效地满足学生的需要。人员调整后的关键挑战是,学区或学校在没有舵手的情况下,也能提出有前途的方案,但各地区和学校必须要确定成功的战略,以便在转型的过程中能继续推进创新方法的实施。
基础教育中教育技术的重大发展
1.近期采用的技术
采用的时间:1年或1年以内。
(1)创客空间
21世纪的变化正在揭示:在一个快速发展的世界里,什么样的技能具有真正的适用价值。如何更新或改造教室才能满足未来的需要?这个问题的答案是通过创客空间,或者是提供工具和学习体验来帮助学生实现他们的想法。创客空间旨在吸引各个年龄段的学生,并基于开放的实验进行迭代和创造。在这种情况下,3D打印、机器人技术和基于网络应用的3D建模等工具可以让更多的学生接触到最前沿技术。支持者们认为教育创客空间最突出的优点是通过动手设计、构建和迭代提高学习者的创造力和高阶问题解决能力。
(2)机器人技术
机器人技术指的是机器人(是完成一系列任务的自动化的机器)的设计和应用。最初的机器人被安置到工厂的装配线中,以实现流水线生产和提高生产效率,如汽车的生产。如今,机器人进入采矿、军队和运输等领域,通过完成对人类来说不安全或单调的任务,改善了行业的运营。预计到2020年,全球机器人数量将翻一番,达到400万,这一转变预计将形成全球化的商业模式和经济模式。全球经济的增长越来越依赖机器人,尤其是在机器人更自动化、更安全、更廉价的情况下,工人们将受到怎样的影响,这是一场激烈的争论。现在,机器人项目关注的一项推广工作是将机器人技术和编程整合为跨学科的STEM学习活动,进而让学生成为21世纪更好的问题者。
2.中期采用的技术
采用的时间:2到3年。
(1)分析技术
今天,几乎所有通过互联网或商品消费服务进行的交互,都被有针对性地追踪、存储和使用,从而导致了大数据概念的产生,大数据指的是用大量的稻莘从炒蠹倚形以及各种人群的活动。现在,数据科学家和数据收集平台能够组织计算PB和EB量级的数据,从而分析和识别那些可能没有被发现的活动模式。如此庞大、多样化的复杂性的数据集所呈现的信息对于某项活动能否取得成功是至关重要的。在教育方面,数据挖掘已经开始针对性地用于处于危险中的学生、个性化学习和灵活创建成功路径等方面。如今,学校变得更加善于处理和解释大数据,从而可以做出更明确地反映学习者真正需要的决策。然而,同时也需要更好的工具来发掘更深入收集和分析数据的潜力。对于教师和学生来说,理解如何使用新的数据工具和培养分析技能(包括数据素养、计算思维和编程)是至关重要的。
(2)虚拟现实
虚拟现实指的是在计算机生成的环境中,模拟实际存在的人或物体并获得身临其境的感官体验。在基础阶段,此技术采用3D图像的形式,让用户通过鼠标和键盘进行人机交互操作。如今,此应用程序允许用户通过手势和触觉设备更真实地“感知”显示出来的物体,这些设备通过力的反馈提供触觉信息。到目前为止,尽管虚拟现实对学习有很重要的影响,但它还主要被用于军事训练。随着硬件的加速、CAD软件和3D显示技能的发展,虚拟现实技术正变得越来越主流,尤其是在电子游戏领域。今天,头戴式显示器的使用,使玩家进入更加逼真的游戏环境。相信,虚拟现实技术一定能使学习中的仿真场景更为真实。
3.远期采用的技术
采用的时间:4到5年。
(1)人工智能
人工智能无疑是当下最火的科技概念。从BAT到创业公司,从传统行业到资本市场,无不对这一概念趋之若鹜。若是再结合医疗、教育等同样热门的领域,几乎毫无疑问会备受关注。深耕基于人工智能技术的智适应学习的V学教育,就是这样一家从成立伊始就带着“教育”与“人工智能”双重基因的公司。
V学教育董事长栗浩洋浸教育行业十几年,是业内知名的资深专家。而作为一个标准的“学霸”,他很早就对人工智能产生了浓厚的兴趣。当IBM的“深蓝”赢了国际象棋大师,栗浩洋受到了很大的冲击,他开始相信人工智能未来会颠覆世界。身为创业者,这样的机遇不容错过。
学霸的烦恼
有句网络上很流行的话说:“最可怕的是比你优秀的人还比你努力。”放在现实生活中,栗浩洋就是个很形象的例子。
读书时代的他像是开了挂:从小学习成绩拔尖,9岁就成为计算机实验生写游戏程序,初中就读完了高中全课程,荣获奥数一等奖,进入上海交大天才试点班。升大学时,北大、清华、上海交大、复旦等8所高校同时保送。分数对他而言从来就不是问题。
但这并不代表他没有缺点――中学时代,他有社交恐惧症。大学选择专业时,为了向陌生的学长学姐请教,他端着盘子在食堂游走了5天,最终也没敢开口。他是个不轻易认输的人,清楚地知道自己的弱项,然后加以训练。如今的栗浩洋思路清晰,语速极快,说起自己的项目来滔滔不绝。在各种论坛、演讲、路演的场合,他甚至有不间断发言6小时的纪录。
栗浩洋曾做过名为“人是自己性格的雕刻家”的主题演讲,详细描述了自己克服性格缺陷的过程。他说:“我要像一个雕刻家一样,把自己塑造成最完美的艺术品。”
这与V学教育的理念不谋而合。在栗浩洋看来,传统的教育培训十分简单粗暴,把教科书上的知识点全部线性推进,学完这个知识点才能学下一个。但每个学生知识点的掌握情况都不尽相同,如果好学生把大量时间用于重复学习已经掌握的知识点,而成绩较差的学生总在学习对他来说难度太大的知识点,最终的结果只能是所有学生的学习效率都很低下。要迅速提高学生的成绩,应该针对每个学生制订独一无二的学习方案,让他们有针对性地补好短板。
过去,有针对性的一对一辅导只能依赖经验丰富的老师,但这种辅导十分奢侈。“上海有300多个特级教师,最低的一小时的成本是1500块钱,最好的前10名大概要8000块钱一小时,而且只能上几百人的大课,根本不可能去一对一,哪怕你是土豪也支付不起这样的费用。”栗浩洋分析道。
而人工智能技术带来了梦想照进现实的希望。将人工智能技术应用于教育,自美国的Knewton公司始。为应付GMAT、SAT等全球性考试,Knewton做了一个智适应学习工具。该平台将各类课程数字化,建立在线教学资源库,为用户“个性化”选题,从而提高应试能力。
受此启发,栗浩洋看到了国内基础教育领域的机会,促使他创办了V学教育。就好比GPS和自动导航未来会代替老司机,V学教育也希望通过智适应系统代替老教师,一对一地用智能系统给学生授课,让每个孩子接受到最高级别和最高质量的教育。
现有的教育培训机构,不管模式怎么变,本质上还是传统教学,非常依赖于老师。V学教育则是依赖于科技。栗浩洋打了个比方:“一个教育机构聘请老师,就像聘请会武术的员工一样,那么最高的水平就是练成武术高手。但我们不是通过武术解决问题,我们是通过武器,通过飞机、大炮、导弹和航空母舰来解决问题。”
量体裁衣式的教学
用人工智能技术帮助学生学习,简单地解释,就像阿尔法狗用智能体系模拟围棋大师一样。V学教育智适应系统是用智能化的系统去模拟特级教师。对于特级教师来说,见到每一个学生,首先会快速摸底学生的学习状态。然后根据这个学生的学习状态、能力,以及学习习惯,采用不同的教学策略、教学方法和表达的语言,帮助这个学生进行学习。在学生学会或者没学会的不同情况下,会调整自己的方法。
特级教师教学的这种能力,是基于其过去几十年的教学经验和几千个学生,几万几十万的题目,以及这些学生在学习过程中会和不会的反应等大数据,以及自己大脑的判断。V学的解决方案其实就相当于把近百位特级教师的经验、智慧、大数据解决方案,放在智能大脑里面,然后用这个智能大脑去模拟教学过程。
V学的智适应系统,能够将每个知识点拆分成“纳米级”。所谓“纳米级”,是指把一个知识点拆成最基础的内容,变成最简单的颗粒,然后针对每一个知识颗粒进行专门的视频讲解、专项练习和专题测试。通过对学生进行精准的摸底测试,了解学生掌握了哪些知识点,哪些没有掌握,哪些掌握得非常牢固,哪些是略知一二。同时,智适应系统还能通过学生的反馈数据,不断地深度学习,提升测试的准确度。
栗浩洋举例说:“在错题本这种粗浅智适应的模式中,我们可能经常会判断一个学生说他是一个冠词掌握得不太好,但这其实是一个非常笼统的判断。冠词又分定冠词、不定冠词和不用冠词,那么这个学生可能是定冠词13种当中的第9种和第12种不会,以及不定冠词11种用法中的第7种和第10种不会。”
“一开始我觉得系统不靠谱,它给出的所有知识点我都掌握得很好,后来我一看里面的讲解,没想到被动语态可以讲得这么深,其实好多题并不是因为粗心做错了,而是还没有真正地理解。”这是一位通过智适应系统学习后的学生的真实反馈。一位风险投资人也曾亲测V学智适应系统,他是美国哈佛商学院毕业的学霸,系统竟然检测发现他有一个初二的数学知识点没有掌握,他一开始不相信,后来一翻书,发现自己真的没有掌握那个知识点。
根据学生的知识掌握情况和目标,智适应学习系统会自动规划最适合该学生的学习难度和顺序,不会让学生因为目标过高而丧失信心,也不会因为目标过低而失去挑战的欲望。通过这样的方式,让40分水平的同学可以逐渐提高到60分、70分,让70分水平的同学逐渐提高到80分、90分,最终使得所有不同水平的学生都能够循序渐进地提高到较高的水平。
栗浩洋坚信,找到合适的学习方法,每个孩子都可以成为学霸。“中国在几千年前提出的教育三大理念,就是教无定法,有教无类,因材施教,这三个词其实是对智适应教育的一个完美的诠释。”他表示。
让学习轻松快乐
“V”,一个有些生僻的汉字。栗浩洋与合伙人用这个字作为公司名大有深意。公司最早立项时,代号是“X PLUS”。他们认为,教育技术的深度对大多数人来说是未知,而且有着非常高的潜力待发掘,每个孩子都可以比过去提升10倍甚至百倍的学习效率,其中有无限的可能性,这是起名X PLUS的原因。
“与X最接近的中文字,就是V。V字在中文中作为动词时,有治理的意思,V天下就是治理天下。我们希望通过教育,可以改变整个中国社会。V字作为名词,又有才德出众的意思,我们希望把每个孩子都教育成才德出众的人,也就是说我们不仅希望他们提升学习效率,获得更高的分数,而且希望他们在素质教育上也有更好的提升,真正帮助孩子成为有能力,有礼仪,有智慧,有价值观的人。”栗浩洋介绍说。
这是栗浩洋在教育领域的第三次创业,显而易见,他有很深的“教育情结”。在他看来,对于世界上的每个人来说,教育是能够改变其一生命运的最重要因素。每个人出生的地域、家庭、国家等注定无法公平,但是如果是每个人都可以享受到这个世界上最优质的教育,就可以通过自己的努力,通过教育去彻头彻尾改变自己的人生轨迹。所以他觉得教育不仅仅是一个事业,也是一件非常有社会意义的事情。
与此同时,中国的整体教育水平相对较差,国家在教育上的投入占GDP的比例不足,教育理念也比较落后。因此,栗浩洋心中还有一份对国家和民族的使命感。“中国的学生数理化学得是全球最深的,孩子学得是最苦最累的。但是全球最好的科技却不是中国人发明的,都是美国那些学得很轻松,很自由,很自主的孩子创造的。这就说明我们中国的教育其实特别失败,所以我非常希望能够通过自己的力量,彻底改变中国教育这样一个现状。”
学生通过高效的方式学完了知识点,节约的时间就可以自由支配,花在兴趣爱好素质教育甚至是娱乐上。栗浩洋认为,这就是为什么国外的学生学得又轻松又好,而国内的学生学得又累又苦还是学不好。V学教育其实是要彻底解放孩子们的时间,让他们热爱学习又享受生活。
在对自家双胞胎儿子的教育上,栗浩洋践行着自己的理念。他每天都要抽出时间教儿子认字,孩子们进步的速度比他想象的快。1岁半的时候,他们就认识了500多个汉字和100多个英文单词;3岁不到读了300本书;3岁的时候可以和外教进行简单的日常英文对话;在好奇心、想象力、逻辑的组织能力上更是超过同龄人许多,并且非常快乐。
栗浩洋对他们有很多期望,比如希望老大成为第一个不是在美国出生的美国总统,希望老二成为金融家,做出超过高盛的金融集团。“但是我并不会勉强他们,也做好了所有的准备。哪怕他们想做地下摇滚歌手、和尚、义工等等,都可以。”
方向对了路还长
作为连续创业者的栗浩洋,成功过也失败过。但现在他信心十足。
在教育研发方面,栗浩洋拥有超过十年的经验,对教材、配套动画片、网络产品都有很多心得。栗浩洋认为,过去的经验和教训,可以让V学的研发过程至少少走三四年的弯路,能够达到比其他同行更高的效率。教育行业的研发有着非常高的壁垒,如果没有在行业中摸爬滚打过五年八年,直接做研发,会跌入很多坑。
其次,传统教育模式中最重要的因素师资力量,对V学教育已经完全不是问题了。大型教育机构在全国发展的时候,遇到的最大问题就是师资力量。培训老师的成本非常高,老师的流失率也居高不下。留下来的老师,若干年后水平也参差不齐。而V学教育采用的是“中央菜谱”的方式,就像肯德基麦当劳一样,所以全国所有的学生得到的都是最好的资源。
事实上,V学教育的野心不止在线上。其在线下的实体学校,今年会开到100家,明年还要新增300家。他希望通过5年的时间,开设2000多家学校,做到100万学生的规模,以及超过30亿元的销售额。未来,V学会在全国设几千个,甚至一两万个学习中心,所有的学生都可以在线下培训中心进行学习,但是老师是通过智能化系统在线上完成教学,所以V学教育是要做一家真正把线上线下结合到极致的公司。
在中国五千亿规模的培训教育市场中,新东方、好未来、学大等知名教育机构加在一起,基本只占1%左右的市场份额。根据日本、韩国的教育市场调研可以推断出,中国第一大的教育企业可以占到10%的市场份额,中国有40多万家培训机构,也就意味着行业第一应该可以开到4万家培训机构。摆脱了师资力量的约束,V学教育能够实现这样的目标吗?栗浩洋不清楚,但会以此作为努力的方向。
但栗浩洋也清楚,现有的智适应技术还谈不上尽善尽美。最大的问题,是系统和知识点的匹配度的问题。真正要发挥这个系统的作用,那么所有的教学内容和知识点,都必须尽可能为这个智适应系统所研发,才能达到最好的效果。这就要求之前做线下教育的教学专家,必须了解智适应的系统和算法能力,了解引擎,了解这一套系统的运转原理,以及其所要达到的目的,才能够生产与这个系统相适应的内容,而这需要时间。
为了进一步探索智适应教育最深层的可能性,以及未来的发展,和科学与最前沿的一些技术,V学教育与国际顶级高校及教育专家共同开设了“智适应学习研究联合实验室”。这些探索不是马上就可以商业化和实践的,而是一些前沿性实验技术,代表了最高的科技水平。在实践层面,V学秉持开放的态度,愿意与优秀的传统教育机构深度合作,提供智适应学习引擎。这一切,都是为了帮助更多孩子享受到最好的前沿科技和教育方法,给他们带来快乐和效率。
BM:人工智能可以细分出很多种技术,你认为其中还有哪些能和教育相结合?
L:人工智能中的很多技术其实都可以和教育相结合,只不过是深度和浅度的问题。比如说语音识别技术在未来就会非常重要,通过视频连接学生的语音,人机交互的感受会更好。
机器人未来也可以作为助教的形式,提供一些服务。我们在年底之前,就会在每个学校都配置人工智能机器人,来完成一些简单的互动和辅助的工作。
人工智能的语义分析相对来说会更加深入一些,因为很多题目是主观题,如何进行比较智能化的语义分析、分类和评判,就变得非常重要。
除了人工智能技术之外,现在非常火的VR和AR技术,在教育领域的应用也是非常广泛的,我们也正在研究如何用最高效的手段,通过这些技术来去提升教学效果。
BM:V学产品研发中融入了多少你的个人经验?
L:因为我自己从小学到大学,获得过数学奥林匹克和全国竞赛一等奖,再加上计算机专业的学习背景,所以我对技术方面的理解度,其实是超过绝大多数人的。我提出过很多算法方面的理念,都是同事非常认可的。我个人会在研发中和大家有很多思想的碰撞,智慧的交流,和研发团队一起商量如何去解决各种各样的问题和困难。
BM:你与合伙人是怎样分工协作的?
L:目前在V学教育我担任的是董事长的职位。CEO周伟,CTO樊星,以及首席科学家崔炜博士,他们承担了大部分的工作。我主要的核心工作就是战略思考,研发,还有团队组建这三个方面。
BM:智适应学习系统能否惠及成人?
L:可以的,海外的智适应教育在18岁以上的教育和职业教育中非常普及,智适应教育其实是有普适性的。在美国,不但是物理、数学这样知识点结构非常清晰的学科可以使用,像经济学、生物学和心理学等所有学科,都可以使用。
BM:公司目前融资情况如何?资金会用在哪里?