发布时间:2023-09-25 11:52:36
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇量化投资与分析范例,将为您的写作提供有力的支持和灵感!
中图分类号:F832 文献标识码:A 文章编号:1672-3791(2012)09(c)-0252-02
2012年以来,以量化分析技术投资著称的量化基金表现得一枝独秀,逐渐从振荡市中脱颖而出。一季度,上证综指上涨2.88%,同期标准股票型基金平均业绩为0.31%,而按照Wind分类的13只量化基金,其平均业绩为2.92%,五行基金更是取得7.65%的正收益,在亚洲量化基金中排名第一,超越同期上证指数4.77个百分点。
美国私募基金复兴科技公司的第一支纯粹的量化投资基金—— 大奖章基金,从1988年3月成立至2008年的21年里,平均年度净收益高达36%,远远跑赢同期道指年均8.81%的涨幅,比索罗斯、巴菲特同期的业绩高出10%,原因:一是数学家基金经理;二是量化分析技术。
1 基本面分析量化分析是投资机构先后采用的2种投资技术
基本面分析,是分析员和基金经理通常采用研究财务报表,与公司高层会谈,与相关人员荷香业专家讨论等方式,对少数几家公司股票(约10到100只股票)进行非常深入的研究分析,来决定要投资哪些股票以及如何投资。在基本面分析分类中,会根据行业不同,有专员长期跟踪和深入研究其中一个行业,而这几名专员最后则会成投资这个行业的专家。在股票市场成立以来长期采用的较为传统的分析和投资方式就是基本面分析。基本面投资,通过企业内部财务报表的形式,来发现企业的潜在价值,以求企业得到稳定持续的高额收益,一旦买入,长期持有。
量化分析,借助数学、物理学、几何学、心理学甚至仿生学的知识,通过建立模型,进行估值、择时选股。量化分析员和量化基金经理,通常会同时研究全盘数千支股票,分析的方式也可以是基于公司基本面的,但是会强调量化财务指标。量化的指标(又称因子)也可以是其他更有特色的数据。从事量化分析投资的基金经理通常不去上市公司实地调研,而是将精力放在不断完善模型上,量化分析投资的模型是决定投资业绩的关键,投资模型始终处于绝密状态,不同市场设计不同的量化分析投资管理模型,在全球各种市场上进行短线交易。
2 量化分析技术获取超额投资收益之道
在变幻莫测的市场经济中,能否理性思考投资、不受情绪影响,将是成功的关键。而利用计算机的筛选得出的量化分析基金,不受投资中非理性因素影响,使投资更有计划行、纪律性、规律性,基金管理人要做到不贪婪、不恐惧、不放弃,不受情绪影响,以一颗平常心追求利益瘦小。
量化分析,有一套完整、科学的投资体系。严格的纪律性是量化投资明显区别于主动投资的重要特征。在量化分析基金的运作中,主观判断也会出现和量化分析模型相左的情兄,但会坚持量化分析投资的纪律,相信模型判断的长期稳定性,不会盲目去调整改变。与传统偏股型基金不同,量化分析基金采用独特的投资组合管理方式,渐进动态调整基金组合。这样不仅可以顺应瞬息万变的市场,还可以降低个股集中度,平稳投资业绩。因此,这种方式并不会产生传统意义的重仓股,也就大大降低了重仓个股的风险。
量化分析业绩,来自于量化分析模型批量选股的成功率大于失败率。量化分析的模型敏锐的“发觉”了开场环境的转变,自动调高了评估因子、预期因子及市场反转因子的权重,量化分析模型依此逻辑选择的股票大部分取得较好收益,提升了整体业绩。
3 量化分析技术创始人并非经济学家。
量化分析技术并非发端于华尔街,不少人最初并非经济学家,如巴契里耶和布莱克原先是数学家,夏普则从事医学,奥斯伯恩为天文学家,沃金与坎德尔是统计学家,而特雷诺则是数学家兼物理学家。1970年代美国债券市场和股票市场全面崩盘,当时提出用量化分析方法管理投资组合的人是作家彼得·伯恩斯坦。1952年3月发表“投资组合选择”论文、提出现代财务和投资理论最著名远见的马克维茨,以该理论勉强通过博士答辩,到1990年10月,这些人中才有三位获得诺贝尔经济学奖。
2012年,美国伦斯理工学院金融工程硕士李炬澎,依据5000年中国古老的《易经八卦数理》研发立体数量模型分析微观经济,用超高频率政治外交词汇、交易数据、股票期权数据、公司债务数据来做个股分析,用《五行相克相生原理》来分析自然、社会、政治、人文如何影响宏观经济。比如用计算机分析新闻报道中天地雷风水火山泽8中自然天文现象与宏观经济关联程度,使五行基金取得亚洲量化分析投资行业第一名的业绩。
4 量化分析技术应用的载体是计算机软硬件技术的发展
马克维茨的投资组合现代金融理论,提出了风险报酬和效率边界概念,并据此建立了模型,成为奠基之作。托宾随后提出了分离理论,但仍需要利用马克维茨的系统执行高难度的运算,1961年,与马克维茨共同获得1990年诺贝尔奖的夏普用IBM最好的商用电脑,解出含有100只证券的问题也需要33mim。夏普1963年1月提出了“投资组合的简化模型”(单一指数模型),简化模型只用30s。1964年夏普又开发出资本资产定价模型(CAPM),不仅可以作为预测风险和预期回报的工具,还可以衡量投资组合的绩效,以及衍生出在指数型基金、企业财务和企业投资、市场行为和资产评价等多领域的应用和理论创新。1976年,罗斯在CAPM的基础上,提出“套利定价理论”(APT),提供一个方法评估影响股价变化的多种经济因素。布莱克和斯克尔斯提出了“期权定价理论”。莫顿则发明了“跨期的资本资产定价模型”。
5 量化分析应用的关键是基本面分析无法快速精确处理丰富的金融产品和巨大交易量
1970年代以前,华尔街认为投资管理需要天赋、直觉以及独特的驾驭市场的能力,基本面分析师、基金经理可以独力打败市场,而无需依靠那些缺乏灵魂、怪异的数学符号和缥缈虚幻的模型。华尔街对学术界把投资管理的艺术,转化成通篇晦涩难懂的数学方程式一直持有敌意,1970年代初期,美国表现最佳的基金经理人从未听过贝塔值,并认为那些拥有数学和电脑背景的学者只是一群骗子。
量化分析投资不会出现在个人投资者为主的时代。个人投资者既缺乏闲暇的时间,也普遍无此能力。仅有现资理论的建立,及各类模型的完善与推陈出新,并不会直接催生出量化分析投资,它还需要其他几个重要前提条件,比如:机构投资者在市场中占据主导,随着社保基金和共同基金资产的大幅增加,成为市场上的主要机构投资者,专业机构管理大规模资产,需要新的运作方式和金融创新技术,专业的投资管理人有能力和精力专注地研究、运用这些量化分析技术。
1970年代后期的Wells Fargo银行,率先用量化分析技术管理投资组合,投资高股息股票,用较少的风险获得了较大的收益,不用这些模型,不用电脑运算这些公式,会陷于困境。1980年代以来,面对数不胜数的各类证券产品和期权类产品,以及庞大的成交量,许多复杂的证券定价,必须靠大容量高速运算的电脑来完成。到2007年美国股市近一半的机构基金都是由量化模型来管理的。从2000年初到2007年全球量化分析基金市场连续8年表现远远超过其他投资方式。
6 量化分析在应对经济危机和突发经济事件中开拓前进
1987年10月大股灾,当天股市和期货成交量高达令人吃惊的410亿美元,价值瞬间缩水6000亿美元。很多股票直接通过电脑而不是经由交易所交易。一些采用投资组合保险策略的公司,在电脑模式的驱使下,不问价格机械卖出股票。很多交易员清楚这些投资组合会有大单卖出,宁愿走在前面争相出逃,加剧了恐慌。针对整个投资组合而非单个证券,机械式的交易,电脑的自动操作,大量的空单在瞬间涌出,将市场彻底砸垮。
1997年至1998年亚洲金融危机股市暴跌,量化分析投资的算法交易也起到了同样的坏作用。著名的长期资本管理公司,遭遇俄罗斯国债违约这一小概率事件,也陷入破产之境,迫使美联储集华尔街诸多投资银行之力,加以救助。
2007年8月金融危机中,许多量化基金出现巨额损失。其原因主要是几家大型对冲基金大量卖出它们的量化分析基金股票,去弥补其在其他投资方式上的损失。由于很大相同仓位的股票在很短的时间内被廉价卖出,从而加剧了很多投资指标的损失,尤其是价值和动量指标的损失。
2011年即使欧债金融危机发生,量化分析基金也再次表现优异,超过其他投资方式,虽然能否就此再度复兴仍属未知,此一趋势已不可逆转。
7 量化分析技术今后几年全球应用的热点在中国的A股市场
中国金融、资本、股市投资者结构很不合理,A股市场的专业投资机构持有市值的15.6%,而发达市场这一比例大致为70%。更为不合理的是交易结构,A股市场个人投资者持有市值占比26%,但却完成了85%的交易。根据Wind分类,目前我国市场上共有13只量化基金,包含11只普通股票型基金,1只指数基金和1只偏股混合基金。
中国现有的人才和技术都难以支持完全的量化分析投资,在缺乏国际化人才和成熟模型的情况下,经营业绩自然也差强人意。
量化分析今后几年全球热点在中国的A股市场。现在主要发达国家的股市很大程度上由量化基金所控制。为了寻找更高收益的市场,很多大型量化基金也开始大量投资于发展中国家市场,中国的A股市场是今后几年全球量化分析投资热点,所以近年来很多北美和欧洲的高层量化分析基金经理和分析员纷纷到中国大陆、香港和新加坡推广量化投资技术。这是国际国内的金融市场和投资者,都要面对的机会和挑战。
二、量化投资“黑箱”中的构造与证券投资学的差异
在传统的证券投资学中,投资组合理论、资本资产定价模型、套利定价理论和期权定价理论是现代金融理论的四块基石。前两者主要依靠均值-方差组合优化的思想,后两者则主要依靠市场的无套利条件。传统的投资方法主要是基本面分析和技术分析两大类,而量化投资则是“利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程”。从概念看,量化投资既不是基本面分析,也不是技术分析,但它可以采用基本面分析,也可以采用技术分析,关键在于依靠模型来实现投资理念与投资策略。为了分析量化投资对证券投资学的启示,本文从量化投资“黑箱”的各个构成来探讨量化投资与证券投资学中思路和观点的差异。
(一)资产定价与收益的预测
根据组合优化理论,投资者将持有无风险组合与市场风险资产组合,获得无风险利率与市场风险溢价。资本资产定价模型则将此应用到单一证券或组合,认为证券的风险溢价等于无风险利率加上与风险贡献比率一致的风险溢价,超过的部分就是超额收益,即投资组合管理所追求的阿尔法值。追求显着正的阿尔法是资产定价理论给实务投资的一大贡献。基于因素模型的套利定价理论则从共同风险因素的角度提供了追求阿尔法的新思路。其中,法玛和佛伦齐的三因素定价模型为这一类量化投资提供了统一的参考。可以说,在因素定价方面,量化投资继承了资产定价理论的基本思想。对于因素定价中因素的选择,证券投资学认为,对资产价格的影响,长期应主要关注基本面因素,而短期应主要关注市场的交易行为,即采用技术分析。在量化投资中,主要强调按照事先设定的规则进行投资,这在一定程度上与技术分析类似。但是,在技术分析中,不同的人会有不同的结论,而量化投资则强调投资的规则化和固定化,不会因人的差异而有较大的不同。另外,量化交易更强调从统计和数学模型方面寻找资产的错误定价或者进行收益的预测。
(二)无套利条件与交易成本
在证券投资学里,流动性是证券的生命力。组合投资理论、资本资产定价模型以及套利定价理论等都认为市场中存在大量可交易的证券,投资者可以自由买卖证券。这主要是为了保证各种交易都能实现,如套利交易。根据套利定价理论,一旦市场出现无风险的套利机会,理性投资者会立即进行套利交易,当市场均衡时就不存在套利机会。现实市场中往往存在套利限制。一是因为凯恩斯说的“市场的非理性维持的时间可能会长到你失去偿付能力”。二是因为市场总是存在交易费用等成本。但证券投资学中,对市场中套利限制与非流动性的关注较少,这是因为传统金融理论中简化了市场结构。市场微观结构理论研究在既定的交易规则下,金融资产交易的过程及其结果,旨在揭示金融资产交易价格形成的过程及其原因。在市场微观结构理论中,不同的市场微观结构对市场流动性的冲击是不同的。因而,从量化投资的角度看,为了降低交易带来的价格冲击,能实施量化投资策略的证券往往都应有较好的流动性,因为交易时非流动性直接影响投资策略的实施。从这个意义上讲,量化投资时的交易成本不仅包括交易费用,更主要的是要考虑市场交易冲击的流动性成本。
(三)风险控制与市场情绪
在证券市场中,高收益与高风险相匹配。量化投资在追求高收益的同时,不可避免地承担了一定的风险。在证券投资学中,系统性风险主要源于宏观经济因素,非系统性因素则主要源于行业、公司因素,并且不考虑市场交易行为的影响。在量化投资中,较多地使用因素定价模型,不仅会考虑市场经济因素,而且会考虑交易行为等因素,只是不同的模型有不同的侧重点,在多模型的量化投资系统中自然包括了这两方面的因素。除了各种基本面和市场交易的因素风险外,量化投资还有自身不可忽视的风险源。一方面,量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,隐藏着巨大的风险。另一方面,市场冲击的流动性成本也是量化投资的风险控制因素,理所当然地在图1的风险控制模型中体现出来。另外,在一般的投资过程中,市场情绪或多或少会成为风险控制的一个对象。然而,在量化投资中,更多的交易都是通过计算机来实现的,如程序交易等,这样以来,投资者情绪等因素对投资决策的影响相对较小。所以,在量化投资的风险控制模型中较少地考虑市场情绪以及投资者自身的情绪,主要是通过承担适度的风险来获得超额回报,因为毕竟减少风险也减少了超额回报。
(四)执行高频交易与算法交易
在对未来收益、风险和成本的综合权衡下,实现投资策略成为量化投资的重要执行步骤。为了达到投资目标,量化投资不断追求更快的速度来执行投资策略,这就推动了采用高速计算机系统的程序化交易的诞生。在证券投资学里,技术分析认为股价趋势有长期、中期和短期趋势,其中,长期和中期趋势有参考作用,短期趋势的意义不大。然而,随着计算机信息科技的创新,量化投资策略之间的竞争越来越大,谁能运作更快的量化模型,谁就能最先找到并利用市场错误定价的瞬间,从而赚取高额利润。于是,就诞生了高频交易:利用计算机系统处理数据和进行量化分析,快速做出交易决策,并且隔夜持仓。高频交易的基本特点有:处理分笔交易数据、高资金周转率、日内开平仓和算法交易。高频交易有4类流行的策略:自动提供流动性、市场微观结构交易、事件交易和偏差套利。成功实施高频交易同时需要两种算法:产生高频交易信号的算法和优化交易执行过程的算法。为了优化交易执行,目前“算法交易”比较流行。算法交易
优化买卖指令的执行方式,决定在给定市场环境下如何处理交易指令:是主动的执行还是被动的执行,是一次易还是分割成小的交易单。算法交易一般不涉及投资组合的资产配置和证券选择问题。 三、对量化投资在证券投资教学中应用的思考
从上述分析可以知道,量化投资的“黑箱”构造与证券投资学之间存在一定的差异,因此,在证券投资的教学中应当考虑量化投资发展的要求。
(一)市场微观结构与流动性冲击
在理性预期和市场有效假说下,市场价格会在相关信息披露后立即调整,在信息披露前后市场有着截然不同的表现。在证券投资学里,一般认为价格的调整是及时准确的,然而,现实的世界里,价格调整需要一个过程。在不同的频率下,这种价格形成过程的作用是不同的。在长期的投资中,短期的价格调整是瞬间的,影响不大。然而,在高频交易中,这种价格调整过程影响很大。市场微观结构就是研究这种价格形成过程。市场微观结构理论中有两种基本的模型:存货模型和信息模型。存货模型关注商委托单簿不平衡对订单流的影响,解释没有消息公布时价格短暂波动的原因。信息模型关注信息公布后信息反映到价格中的这一过程,认为含有信息的订单流是导致价格波动的原因。无论是关注委托订单的存货模型还是关注市场参与者信息类型的信息模型,这些市场微观结构的研究加强了流动性与资产价格之间的联系,强调流动性在量化投资决策中的重要作用。一般的证券投资学中基本没有市场微观结构的内容,因而,为了加强证券投资学的实用性,应关注市场微观结构的内容与发展。
(二)业绩评价与高杠杆
对于证券组合而言,不仅要分析其超额收益和成本,还要考虑其风险与业绩。在组合业绩评价中,一方面要考虑风险的衡量,另一方面则要分析业绩的来源。在证券投资学中,组合业绩来自于市场表现以及管理者的配置与选股能力。对于量化投资而言,市场时机和管理者的能力依然重要,然而,量化投资的业绩评价还应考虑另一个因素:高杠杆。量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,在市场好的时候扩大收益,但在市场不好的时候会加速亏损,这些与传统的业绩评价就不太一样。在一般的证券投资学里,业绩评价主要考虑经风险调整的收益,很少考虑其杠杆的作用,这不仅忽略了杠杆的贡献,而且有可能夸大了投资者的技能水平。
(三)人为因素与模型风险
一、量化投资的涵义
从实践的角度上看。量化投资即是利用模型来投资。任何一个完整的关于投资的想法,我们都可以开发成投资模型,然后通过一定的测试过程来检验这个模型是否有效。如果最终有效,它就是一个可以用作量化投资的投资模型。量化投资为我们提供了检验和选股的数学工具。也可以帮助我们规避人为的情绪化和低效率。
其次,量化投资的各种工具包括系统的投资决策手段和数学模型。从中国量化策略基金的实践来看。金融数量化的程度还处于初步阶段,量化投资的流程还比较简单。中国量化策略基金的量化投资途径多采用从一级股票库初选、并从二级股票库精选。最后对行业进行动态的配置的三步法。以中海量化策略基金的量化投资风格为例,第一步是根据公司盈利能力。选择代表性较强的公司盈利能力指标。如过去三年平均每股收益、资产回报率以及毛利率,以所有A股上市公司为样本。筛选得到一级股票库。第二步是通过相关指标体系,如估值指标和一致预期指标体系。并借助熵值法确定指标权重后。对一级股票库中的股票进行打分和排名,进一步筛选得到二级股票库。其中,一致预期指标值选取各大券商的估值结论,得出市场对上市公司的平均预期值,以此作为市场对公司未来现金流的权威预期。第三步。采用B-L行业量化模型对股票组合进行动态行业配置,对每一个行业形成最佳的权重股组合,提高投资的夏普比率。
最后,量化投资与现在已经很普遍的指数型基金不同。是一种主动投资。这是因为量化投资和指数化投资的理论基础完全不同。指数化等被动投资的理论基础认为市场是完全有效的,这一理论的依据是基金的历史业绩除去基金的管理费用。要弱于大市。因此。对投资者来说,更合理的手段是试图复制市场,以获得和市场相同的长期收益。同时规避所有的非系统性风险。而量化投资的理论基础认为市场是无效的,或者是弱有效的,这一理论的依据在于总有优秀的基金经理可以发现市场的阿尔法收益。支持量化投资的基金经理认为可以通过对经济环境、行业基本面以及公司的分析,主动构建能够超过市场平均收益率的超额收益组合。因此。量化投资属于主动投资的一种策略。综上所述,量化投资并不是一种被动投资,数量化模型的选择、指标的运用就是量化投资中的主动部分。好的量化投资是主动的人为判断和被动的模型筛选的结合。
二、量化投资的优点
量化投资作为一种有效的主动投资工具,是对定性投资方式的继承和发展。实践中的定性投资是指,以深入的宏观经济和市场基本面分析为核心,辅以对上市公司的实地调研、与上市公司管理层经营理念的交流,发表各类研究报告作为交流手段和决策依据。因此。定性投资基金的组合决策过程是由基金经理在综合各方面的市场信息后,依赖个人主观判断、直觉以及市场经验来优选个股,构建投资组合。以获取市场的超额收益。与定性投资相同,量化投资的基础也是对市场基本面的深度研究和详尽分析,其本质是一种定性投资思想的弼!性应用。但是,与定性投资中投资人仅依靠几个指标做出结论相比,量化投资中投资人更关注大量数据所体现出来的特征,特别是挖掘数据中的统计特征,以寻找经济和个股的运行路径,进而找出阿尔法盈利空间。与定性投资相比。量化投资具有以下优势:
一是量化投资可以让理性得到充分发挥。量化投资以数学统计和建模技术代替个人主观判断和直觉,能够保持客观、理性以及一致性。克服市场心理的影响。将投资决策过程数量化能够极大地减少投资者情绪对投资决策的影响。避免在市场悲观或非理性繁荣的情况下做出不理智的投资决策。因而避免了不当的市场择时倾向。
二是量化投资可以实现全市场范围内的择股和高效率处理。量化投资可以利用一定数量化模型对全市场范围内的投资对象进行筛选。把握市场中每个可能的投资机会。而定性投资受人力、精力和专业水平的限制,其选股的覆盖面和正确性远远无法和量化投资相比。
三是量化投资更注重组合风险管理。量化投资的三步选择过程,本身就是在严格的风险控制约束条件下选择投资组合的过程,能够保证在实现期望收益的同时有效地控制风险水平。另外。由于量化投资方式比定性投资方式更少的依赖投资者的个人主观判断,就避免了由于人为误判和偏见产生的交易风险。
当然。无论是定性投资还是量化投资,只要得当的应用都可以获取阿尔法超额收益,二者之间并不矛盾,相反可以互相补充。量化投资的理性投资风格恰可作为传统投资方式的补充。
三、量化投资的局限性
量化投资是一种非常高效的工具,其本身的有效性依赖于投资思想是否合理有效。因此换言之,只要投资思想是正确的,量化投资本身并不存在缺陷。但是在对量化投资的应用中,确实存在过度依赖的风险。量化投资本身是一种对基本面的分析,与定性分析相比,量化分析是一种高效、无偏的方式,但是应用的范围较为狭窄。例如,某项技术在特定行业、特定市场中的发展前景就难以用量化的方式加以表达。通常量化投资的选股范围涵盖整个市场,因此获得的行业和个股配置中很可能包含投资者不熟悉的上市公司。这时盲目的依赖量化投资的结论,依赖历史的回归结论以及一定指标的筛选,就有可能忽略不能量化的基本面。产生巨大的投资失误。因此,基金经理在投资的时候一定要注意不能单纯依赖量化投资,一定要结合对国内市场基本面的了解。
量化基金发行提速
今年上半年,嘉实量化阿尔法、中海量化策略两只量化基金的推出,打破了国内量化基金多年的沉寂。而近期,更是有3只量化基金同时登台亮相,且各具特色。截至目前,国内基金市场上已经发行7只量化基金,包括光大保德信量化核心、上投摩根阿尔法、嘉实量化阿尔法、中海量化策略、长盛量化红利策略股票型基金、富国沪深300增强基金及华商动态阿尔法基金。前两只分别成立于2004年8月和2005年10月,而后5只均是今年才成立。量化基金时隔四年后的再次大量推出,引起了市场的密切关注。种种迹象表明,以定性投资为主的国内基金业正在掀起一场量化投资浪潮。
光大保德信量化核心,一方面通过光大保德信的多因素数量模型对股票的预期收益率进行估算,个股预期收益率的高低决定投资组合是否持有股票;另一方面,投资团队从风险控制角度,重点关注数据以来的信息,通过行业分析和个股分析形成对量化的补充;最后由投资组合优化器根据预先设计的风险构建组合。
上投摩根阿尔法基金,同步以“成长”与“价值”双重量化指标进行股票选择,然后研究团队对个股进行基本面审核,结合跟踪误差的紧密监控,以求不论指数高低,市场多空,皆创造主动管理回报。投研团队最终决定进入组合的股票,量化分析是辅助和基础。
嘉实量化基金,以“定量投资”为主,辅以“定性投资”。通过行业选择模型,捕捉具有投资吸引力的行业,然后再在所选行业中运用阿尔法多因素模型筛选个股。定性的辅助作用表现在利用基本面研究成果,对模型自动选股的结果进行复核,剔除掉满足某些特殊条件的股票。
中海量化策略,以量化模型作为资产配置与构建投资组合的基础。根据量化指标实行从一级股票库初选,从二级股票库精选,再根据相关模型计算行业配置权重。结合行业配置权重,组合每只股票的配置比例。
长盛量化红利策略股票型基金,是作为国内首只运用“量化投资”策略投资于红利股票的基金,该产品将给投资者带来不同于传统基金的新体验。该只基金的另一个显著特点是“瞄准红利”。所谓红利,强调的是具有较高安全边际、较低下行风险的价值型投资,在目前市场总体估值处于历史平均水平时,价值型风格更能获得投资者的青睐。
富国沪深300增强基金,以沪深300指数为追踪标的,并对指数基金进行增强,并且是国内第一只采用量化方法进行主动增强的沪深300指数基金。量化增强的方法主要包括:利用多因子阿尔法模型选择股票;通过风险估测模型有效控制风险预算,并通过交易成本模型控制成本、保护业绩。相比定性的方法,定量投资手段在对成份股较多的指数进行增强方面以及控制跟踪误差方面具有很强的优越性。
当前适逢宏观经济、证券市场复苏向上之际,汇集A股市场300只规模大、流动性好、最具代表性股票的沪深300指数,有望迎来较好表现。而以沪深300为跟踪标的,并利用定量投资模型进行主动增强的富国沪深300增强基金,亦面临良好的投资环境与投资时点。
华商动态阿尔法基金,将以高阿尔法值的股票为主要投资目标,采用量化投资的方法,努力在有效控制风险的同时提高基金组合收益。华商动态阿尔法基金的投资将主要采用阿尔法策略和量化策略。阿尔法策略是依靠精选行业和个股,来获取超过大盘表现的超额收益。量化策略是指采用数量化分析方法来对股票进行分析和筛选,基于数量模型来配置行业权重。它具有投资范围更广、纪律性更强、投资思想可验证等优势,更能够限制投资过程中主观随意性可能带来的损失,帮助基金经理进行客观决策。
定量投资适合A股市场
正因为A股市场不是特别有效的市场,数量化投资策略正好可以发挥其纪律性、系统性、及时性、准确性、分散化的各种优点,从而捕获国内市场的各种投资机会。相比定性投资,现阶段A股市场的特点更适合采用客观、公正而理性的定量投资风格。
股票市场复杂度和有效性的增加已对传统定性投资基金经理的单兵作战能力提出了挑战。相对于海外成熟市场,A股市场的发展历史较短,有效性偏弱,市场上被错误定价的股票相对较多,那么,留给定量投资策略去发掘市场的无效性、寻找超额收益的潜力和空间也就更大。事实上,尽管量化基金在国内的发展历程较短,但是从国内已有的两只采用了定量投资方法并且已经运作了一段时间的基金来看,量化基金被证明是适应中国市场的。
量化基金产品包括但不限于数量化共同基金产品、指数基金产品、指数增强型基金产品、行业指数基金产品、风格类指数基金产品、策略指数基金产品、ETF产品、收益分级型产品等等。从数量化投资提供的工具和方法来看,能够给投资者提供的基金产品可以说是百花齐放,还应该做到有的放矢,满足投资者不同风险收益偏好的投资需求。
量化投资需过三道坎
我国A股市场的量化基金仍然才开始起步,各方面都有待进一步的完善。不仅机构需要有完善数量化投资策略各方面的耐心,也需要投资者给数量化基金以耐心。采用数量化策略的共同基金要在中国市场获得成功,仍有很长的路要走,需要不断的修正数量模型以适应中国市场的特征。
对于量化基金的产品设计,虽然量化基金一般都是采用多因素模型对股票进行分析和筛选,但不同的量化基金产品的侧重点是不一样的,也就是说,包括投资思路、观察角度、分析方法等在内都是不同的。在个股筛选和分析的角度、行业分析的角度、大类资产配置的角度等方面,均有不同的思路,因此,不同的量化基金产品可以体现出各自不同的投资理念和各自的投资特色。
具体来说,基金要想真正推行量化投资,主要应该跨越如下“三道门槛”。
首先,目前国内对做空的限制以及投资产品的稀缺,导致很多成熟的数量化投资手段不能在国内得以应用。一些对冲策略可能需要期货类的投资产品,而有些统计套利策略可能需要市场上要有做空的手段,目前这些条件在A股市场上尚不具备,因此,在一定程度上制约了量化投资的施展空间。
其二,中国目前对于基金的考核体系比较短期化,部分量化基金经理有可能迫于短期排名的压力,也去追涨杀跌,不去执行相当于投资纪律的量化策略,这就恰恰偏离了量化基金设计的初衷。量化投资策略成功与否需要从长期来看,不能因为短期内跑不过市场就认为量化基金管理得不好,对于量化基金的评价时间不能太短。
此外,量化投资对人的要求很高。量化投资需要考虑的一个重要因素是预测相对于市场的超额收益,即阿尔法收益,找到阿尔法预测模型。在阿尔法预测上,要保证不断有新的阿尔法策略产生。一个新的阿尔法策略出来后,过一段时间就被市场充分理解,可能阿尔法收益就会逐渐消失,这就需要不断产生新的阿尔法收益模型。
量化基金本土化前景
A股市场的发展历史较短,有效性偏弱,市场上被错误定价的股票相对较多,那么,留给定量投资策略去发掘市场的无效性、寻找超额收益的潜力和空间也就更大。相比定性投资,现阶段A股市场的特点更适合定量投资客观、公正而理性的投资风格。股票市场复杂度和有效性的增加已对传统定性投资基金经理的单兵作战能力提出了挑战。正因为市场的弱有效性,数量化投资才更有发挥的价值。这也是量化基金可以在中国本土化获得成功的有利条件。
数量化投资可以为投资者带来更多、更丰富、更有特色的基金产品,丰富机构的产品线。只有建立完善的产品线,才能满足不同投资者的需求,才能在不同的市场状况下获得发展,才能有强大的基金公司。机构可以从数量化投资所带来的无限量基金产品线上获得丰厚的利益。
中图分类号:F832.51 文献标识码:A doi:10.3969/j.issn.1672-3309(x).2011.11.38 文章编号:1672-3309(2011)11-84-02
近年来,随着我国资本市场的不断发展,数量化投资在国内越来越受到关注。国内机构投资者逐渐增加量化分析在投资中的应用。在基本面投资的基础上应用数量化策略,成为投资领域发展的新趋势。国内的基金公司在这股潮流下也纷纷推出自己的量化基金产品。
依据资讯商wind的显示,截至2011年9月底市场上一共有14只不同类型的量化基金。
一、国内量化基金的发展
据统计,国外定量投资在全部投资产品中的份额中占30%以上,主动投资产品中大约有20-30%使用量化技术。与国外市场相比,国内基金无论数量还是规模都要小很多。国内大部分量化基金都是在2008年金融危机之后才陆续推出。目前市场上有65家基金公司,正式推出量化基金的也只有13家。
自开始两只量化基金成立后,2006-2008年期间市场上没有任何新的量化基金成立,之后又呈现出一个快速增长的态势。为什么国内量化基金的发展会有如此特点?分析一下其中原因,笔者认为有如下几点:
(一)国内资本市场的发展为量化投资准备了必要条件。2005年以来,证券市场发生了一系列变化:股权分置改革完成、IPO扩容,卖方量化研究能力提高、股指期货及融资融券的推出等。如何在众多的上市公司中迅速、有效地选择投资目标,降低调研和投资成本,成为机构投资者面对的新问题。而通过用量化手段,分析、归纳出相对客观的选股模式,发掘内在的驱动因素,正是量化选股的优势所在。正是在这样的环境下,机构投资者开始重视起量化投资来。作为证券市场上的卖方,券商纷纷在自己的金工团队基础上成立数量化研究团队,推出了大量量化策略报告和量化投资方面的服务(如程序化交易服务)。一些阳光私募基金也开始成立。公募基金作为市场的领头羊,自然在量化投资方面不甘落后,招兵买马为发行量化基金做准备。
(二)国外量化基金的优异表现吸引了众人的目光,特别是2008年金融危机期间,量化基金的优异表现吸引了更多的人关注。当时大部分基金都亏损严重,但部分采用量化策略的基金却获得了非常好的收益。詹姆斯・西蒙斯管理的大奖章基金的年均净回报率高达35%,成为量化基金中令人眼红的明星。国内基金公司正是抓住投资者对量化基金的兴趣,适时推出各自的量化基金产品。
(三)人才队伍的积累,为国内量化基金的推出提供了可能。量化基金是一个舶来品,熟悉量化基金管理的人才在国内相当缺乏。光大保德信和上投摩根之所以能较早推出其量化基金,关键在于其外方股东的支持,其产品采用的是其外方股东提供的量化投资方法。而当时国内的本土基金则缺乏这方面的人才,自然没有实力推出量化基金产品。但金融危机给了国内基金行业机会,危机之后很多国外的投资人才回到国内,他们也带来的国外的一些先进的量化投资知识和经验。目前市场上量化基金经理绝大多数均是有海外背景的。
二、国内量化基金的量化技术
通过基金的招募说明书,我们可以将市场上目前量化基金采用的数量化模型和模型主要使用的选股指标罗列出来。
我们无法了解各基金量化模型的详细内容,但从表2可以看出,目前国内基金采用的模型多是侧重于选股的。其中多因子模型应用最多,通过多因子模型筛选出被低估的股票,进行价值投资是大部分基金所采用的量化方法。这一情况也与海外情况类似。
三、国内量化基金收益及绩效
本文选取了成立以来、最近1年(20100930-20110930)、今年以来这3个时间段来从收益和绩效两个方面对市场上量化基金进行对比。通过比较,我们可以看到富国沪深300、光大保德信核心和中海量化策略这三支基金表现相对较好。但从总体上来说,国内量化基金表现还不是很突出,各只业绩差距也很大。
四、影响国内量化基金发展的因素
国内量化基金的发展毕竟要取决于证券市场的大环境,随着股改的结束、股指期货的推出,市场环境相比之前更有利于量化投资的发展,但仍然有很多的约束,如衍生产品的缺乏,对基金公司、保险公司投资的约束,这些都制约了机构投资者在量化投资方面施展拳脚的空间。当然,我相信随着中国资本市场的发展,这些情况在未来会逐步改善。
数量化模型的应用需要结合实际的市场环境,国内量化投资水平的提高,不能依靠引进模型,最关键的还是要结合本土的实际情况,开发适合国内市场的模型。量化技术的本土化发展是未来量化基金发展的关键,只有设计出符合国内市场环境并能取得不错业绩的量化模型,投资者才能真正认同量化基金。
另外,基金的考核机制也是影响量化基金发展的一个重要因素。量化基金因其特殊性,其绩效考核与普通基金会有不同。设定一个合理的基金考核制度,给其一个宽松的投资环境,只有这样量化基金才能更加健康的发展。
参考文献:
[1] 数量化投资的解读及其本土化―量化基金专题研究之一[R].联合证券,2009-11-17.