当前位置: 首页 精选范文 影像学与影像技术

影像学与影像技术范文

发布时间:2023-09-26 08:30:50

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇影像学与影像技术范例,将为您的写作提供有力的支持和灵感!

影像学与影像技术

篇1

【关键词】 点、线、面、体、摄影

1 点 一般用来表示位置,是物质的浓缩,也是人类的微号点,具有空间位置的视角单位。点在人体三维立体结构的不同部位,具可代表不同组织器官的表面位置,同时可以通过点与点之间不同角度的投影、折射、或者立体交叉连接,推断出不同组织器官彼此间的相互关系,从而确定相应组织器官的三维立体空间位置。例如:头颅骨的“翼点”投影到体表相当于太阳穴,本身又是蝶骨、颧骨和颞骨的交汇点,不仅结构薄弱,同时下方还有脑膜中动脉经过,向深部垂直矢状面投影可以经过蝶鞍与对侧“翼点”相连。其次:肚脐位于腹前壁中线体表,其上方3cm处平第3腰椎,下方3cm经过第4腰椎。再次,胸骨剑突末端点,平第11胸椎。很明显,点在人体三维立体结构中代表着无数组织器官的位置或参照物。

2 线 有关线的解释和意义繁多,这里主要针对立体几何里点与点之间的连接线段,即直线或弧形,在人体三维立体结构中,无论从体表或深部组织器官,从解剖学的角度看,无处不体现出线的存在和相应的意义,如:人体正中线,与正中矢状面重合,将人体分为左右两半。其次:水平线,与水平面重合,至上而下有无数条。最后,在头颅还有瞳间线、听鼻线、听口线、听眦线等等。

3 面可以是点的密集,也可以由直线的移动而构成。从解剖学的角度看,人体三维立体结构,就是由无数个大小不等,形态不一,方向不同的面与面相互架构而成。如:矢状面,将人体分为左右两部分的所有平面。其次:冠状面,将人体分为前后两部分的所有平面。再次:水平面,将人体分为上下两部分所有的平面。最后,在矢状面与冠状面之间,根据其夹角大小不同存在着无数个平面等等。更为重要的是,我们必须认清,不同的部位和不同厚度的断面,其间包含着各种不同的组织器官。

4 体 有关体的含义解释繁多,这里我们主要指三维立体空间,即点、线、面相互间的演变和转化最终而来。如点:指物象特定空间中所处的位置,它没有长宽厚度,常常也指线段的起点和末端. 其点的移动形成线,线的移动变为面,面的转变成为体。很显然,体就是点、线、面立体交叉的融合,只有正确理解和掌握点、线、面、体相互间的关系,同时与人体三维立体结构紧密结合,用立体的三维思维来分析和5 理解人体不同组织器官,这样才能从不同的方位、角度、平面全方位判断把握不同组织器官的准确位置。

摄影 即X线束经过人体被检部位,由于不同结构的组织器官,对X线的吸收存在差异,当这些带有被检组织信息的剩余射线作用于胶片或探测器,经过暗室处理或计算机转换,即可获得相应部位的X光照片,其照片显示的组织器官影像形态,由不同的摄影所决定。现就不同摄影与点、线、面、体的关系作如下的探究。

5.1 针对三维立体的人体组织结构,怎样把握摄影与“点”的关系,首先确定不同摄影的“点”在人体体表或深部的位置,明确“点”与暗合(IP板或FPD)的关系(将相应的“点”投影在暗合相应的位置),确定“点”与球管焦点的中心线的入射方位,根据不同的要求,可以垂直或倾斜一定的角度经该“点”进行入射。例如:头颅正位,中心线经眉间垂直射入暗盒。汤氏位,中心线向足端倾斜30°夹角与两外耳孔连续中点入射。这方面的例子举无盛举。

篇2

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

1.1 计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后, 分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer Radiography.CR)]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled Derices.CCD)为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

1.2 X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

1.3 磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

1.4 数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术----分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、及其他部位的成像提供新的信息。

7.1 磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

7.2 PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

7.3 阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

7.4 光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

篇3

1 前言

随着信息技术的迅猛发展,数字化技术已被广泛地应用于各个领域,同时也推动了视听技术与计算机技术的融合,产生了数字影像技术,为现代教育技术提供了更加丰富多彩的手段。教育的概念发生了新的变化,把现代教育推向崭新的阶段。

在现代教育中,计算机辅助教学成为现代教育技术兴起的重要标志,代表了教育信息的发展方向,充分发挥数字影像技术在排球技术教学中的作用,将加快技术动作的正确掌握,促进课堂教学的效率与效益,提高练习效果。

为了深化体育教学与校本课程的改革,我校体育组依靠自身力量,运用计算机集成文字、图形、图像、动画、音频和视频的数字影像资料,完成了一系列课件的创作与实践,并对此进行了研究。

2 研究对象与方法

2.1研究对象

学校04、05、06级各两个班,共245人(实验组)。

2.2研究方法

文献资料法:在实践之前,查阅了近几年来大量的有关资料。

实验法:先制作排球垫球、传球、扣球三个项目的数字影像资料,对实验班级进行辅助教学,在同样的时间内与传统教学班级进行比较。比较的方法有测试法、调查问卷法。

3 实验过程

3.1查阅有关资料,掌握数字影像技术制作方法。

为达到创作高质量数字影像技术的需要,我们的运行环境以Windows2000操作系统为本体多媒体软件环境,在此基础上选择了Broad-WAY动态视频图像采集与编辑软件,编辑软件Premiere、图镶编辑软件Photoshop、三维动画制作软件3DsMax和多媒体创作集中软件Authorware。

3.2确定排球的主要技术动作,制作相应的数字影像资料。

根据教学大纲内容,以及排球项目动作的难易程度,先制作排球垫球、传球、扣球三个项目的数字影像资料,然后对各项运用文字、动画、图片或实例录相显示说明。实例录像需通过Broad-way软件制作动态视频,动画制作用三维动画制作软件3DsMax。

导入:播放比赛录像片段和优秀运动员精彩动作画面,激发学生对排球运动的兴趣和练习的欲望。

基本技术:这一项是重点。第一步通过动画,完整示范。第二步慢放各个分解动作技术,并配音简要说明。第三步对单个技术动作或通过实例录像,或运用图片,或三维动画,或者几个手段综合起来再予以配音和文字显示,具体说明。如垫球位置,传球手型,运用图片和文字,扣球连贯动作用动画和录像。

练习方法:每个技术动作都配有练习方法,练习方法一般都用图片说明,特殊方法也可配以动画。

纠正方法:采用平时教学时拍摄下来的错误动作镜头显示。

竞赛规则:以文字显示说明为主。

3.3教学过程。

所要传授的技术内容,按教学计划分几次完成,如垫球,计划用4次完成,每次为45分钟,每次设定具体的目标,采用数字影像技术,在教学不同阶段分别与常规教学相结合进行辅助教学。

3.4测试。

在完成完整技术动作的教学后,分别进行技评和成绩测试,与同等素质、用同样时间进行传统教学的班级(常规组)相比较,得出结论。

4 结果与分析

4.1实验组和常规组身体基本素质的分析

实验组是各年级中模具和财会1班的学生,常规组是各年级中模具和财会2班的学生,身体基本素质、年龄、男女比例相差不大,进行分析比较,可比性合理。

4.2实验组与常规组教学效果的比较

实验组与常规组教学效果的比较

实验组运用常规组相同的教学时间,完成教学任务后,进行技评和测试次数。结果表明,实验组技评成绩明显好于常规组,同时实验组测试次数的均值也明显高于常规组。说明实验组对动作技术的掌握明显优于采用常规教学方法的常规组。

4.3数字影像技术对学生学习积极性的影响

调查结果表明,实验学生绝大多数对数字影像资料在排球教学中的应用持肯定积极的态度。

在教学过程中,将数字影像技术运用于体育教育具有生动、形象、直观的特点,采用动态视频图像进行完整演示、分解慢放、重新回放的教学手段,向学生提供大量直观的、规范化的技术动作示范,有助于学生建立完整、正确的动作概念,帮助学生更好地掌握动作,调动学生学习的积极性,从而提高学习效果。

5 结论

5.1在排球教学中使用数字影像技术,解决了在学习中感性认识和理性认识相统一的问题。

5.2数字影像技术既可以激发学生的学习兴趣,增强学生对具体动作的直观认识,形成动作完整概念,又有效地培了学生的学习自主性,充分发展学生的能力,使学生在较短的时间内掌握运动技术要领,接收更多有关的知识。

5.3数字影像技术需要体育教师花费时间和精力收集大量的知识和教学信息资料,同时还要及时更新充实进一步完善。

5.4数字影像技术必将成为今后体育教学中必不可少的辅助训练手段并得到广泛的应用,对教师的知识技术水平也将提出更高的要求。

参考文献:

篇4

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)30-0238-03

随着科学技g的快速发展和生活质量的提高,健康问题已成为大家关注的焦点。然而生活环境的污染、饮食结构的不健康和长期处于现代职场高压环境之下,很多人的身体出现亚健康状态:头痛、胸闷、失眠等健康问题困扰着现代职场白领,长期以往,身体不堪重负,疾病随之而来。面对这种情况,早期发现、早期治疗既可以减轻患者病痛,提高预后水平,又可以减少患者的经济支出。因此,对疾病问题的早期诊断就成为国内外医学界关注的焦点。

然而由于医患交流以及过去医学影像不清晰、保管难等问题,始终制约了精准医疗的发展。目前随着科学技术的进步和互联网技术的突飞猛进,影像学被越来越多的应用到各种疾病的检查中去,医生读片诊病,影像成了医生重要的诊断辅助工具,难以被低估,不能被替代。随之影像学科也成了当今迅速发展起来的一门综合学科,多门课程如通讯、计算机、医疗交叉,为医务工作者提供尽可能准确的辅助诊疗方法,这将是今后影像学科持续发展的重要方面。

日常生活中我们在对体内和体外的血液细胞、器官组织进行无损害性检查时,通常会选择诸如:数字线摄影、核磁共振、超声波三维诊断等治疗方法,这些拍片式的诊断方法可见即可得,不仅生动补充了书本上的人体正常组织以及病灶组织的解剖学知识,同时对影像引导下的教学、检查、穿刺、手术等有着不可低估的作用。但是医疗图像A生成往往会因自然界信号的干扰、信号传输过程中的衰减、医疗设备的成像原理、光线和显示屏等原因的影响,所显示出来的影像像质往往不够清晰、感兴趣内容不突出,或者不适合人眼观察或者机器理解分析,同时医学影像本身也有图像分辨率不高导致图像模糊不清或者无明显边缘、噪声偏大、结构信息缺乏的问题, 最终生成的影像不能准确定位病变部位以及病变性质,临床诊断面临各种困难。如果有一种方法能对生成的医学影像进行数据处理提高影像的清晰度,增强医学影像的可读性可分辨性,临床医生可以结合解剖学和生理学对病变组织有针对性的观察并诊断,这将大大提高临床诊断的准确率。因此,医学影像的数字化处理对医疗卫生、信息技术、生物科学等学科来说无论在理论研究还是临床应用方面都起着关键作用,这是人类认识疾病并对之精确诊断的重要环节,这将是一门具有较强应用性和长远发展性的课题。

1医学影像的发展及意义

1.1国内外医学影像的背景及对其图像处理的意义

1895年德国物理学家W.K.伦琴在实验室拍摄出其夫人手指和的影像,自此 “X射线”被发现,并被影像学逐步引进到医学领域。经过30多年的研究与应用,医学影像起着翻天覆地的变化,随着计算机技术的引进和广泛应用,影像学科更是呈现出跨度大、知识交叉密集的特点,如今基于计算机算法的图像处理技术也已经成为医学影像学中发展迅速的领域之一。

1971年,英国科学家汉斯・基于计算机技术原理设计出第一台X-CT诊病机,这一发明在医学界引起巨大的轰动。从此,对医学影像的数字成像技术的研究开始发展壮大,各种医疗设备也被开发出来,它包括计算机 X线摄影( Computed Radiography, CR)、数字 X线摄影( Digital Radiography, DR)、 X射线计算机断层成像( X- Computed Tomography,X- CT)、磁共振成像超声( Magnetic Resonance, MR),超声( Ultrasound)成像、光纤内窥镜图像、磁共振血管造影术( Magnetic Resonance Angiography,MRA)、数字减影血管造影术( Digital Subtraction Angiography, DSA)、单光子发射断层成像( Single Photon Emission Computed Tomography,SPECT)、正电子发射断层成像( Positron Emission Tomography, PET), EEG脑电图、 MEG脑磁图、光学内源成像等。

本文着重论述的 X- CT( Computed Tomogaphy)意为 X线计算机断层扫描技术,是用 X线束对器官组织进行断层扫描,应用物理原理来测量X射线在人体组织中的衰减系数或吸收系数,再经计算机进行数学计算来对图像进行三维重建。按照测量的衰减系数的数值排列成一个二维分布矩阵,计算出人体被扫描组织断面上的图像灰度分布,从而生成断面图像。X-CT以它高速、高分辨率、高灵敏度的探测器螺旋式旋转来获取器官组织的多方位、多层次的断面或立体影像,经临床实际应用,它能发挥有别于传统X线检查的巨大作用。它能综合反映人体组织在解剖学方面的功能、性质,还能提供人体被拍摄部位的完整三维信息,器官和组织结构清楚显影,提示病变,已与核磁共振、超声波等诊断方法一样成了医生获取信息的重要来源。并且具有其他医学设备不可比拟的优点,X- CT成像简单方便、对人体损伤小、组织结构密度分辨率高,这在病理学和解剖学研究中尤为重要。特别是临床在对肿瘤的诊断中X-CT的分辨率要远远高于其他医学设备成像,研究显示在对于1~2厘米的小肿块的检测上,X-CT显示率高达88%,而B超、MRI等仅为48%。在针对肝脏疾病实验的拍片中, X-CT可以较清晰的显示出多种器官病变和功能性状,如肝癌、肝血管瘤、脂肪肝等,其对肝癌的诊断准确率高达93%,最小分辨率可显示为1.5厘米,

可以直接观察到肝静脉、门静脉与肿瘤大小、位置之间的关系,并能诊断出肝静脉、门静脉有无癌栓,为医生的精确诊疗提供了重要依据。

由于器官病变的位置、病灶大小、病程长短等自身因素,加上设备电子元器件、嘈杂的环境以及人为操作等因素的影响, X- CT在对病灶做定位影像、定性精确诊断时常常会有所限制,即它能反映出器官的异样变化,但却不能反应目前器官的生理功能。现实工作中采集到的数字化影像或多或少的存在一些问题:伪影、雪花、边缘不清、病灶不清、对比度不强……凭借肉眼无法从整张影像中清晰分辨出病灶部位或者确性病理改变的程度,要想精确诊断,还需做进一步的检查。

目前,对 X- CT图像处理进行处理大部分的研究还集中在预处理阶段,即研究通过调试设备、提高影像像素、提高出图效率、减少外界干扰等方式增强医学影像的可读性和敏感性。而对于医学影像成像后的处理则相对冷门,其中对部分内容的研究也比较单一,如仅仅单独研究医学影像的降噪或增强。同时应用降噪、增强、分割技术来处理影像的研究较少,理论研究也停留在可行性阶段,针对单一疾病的医学影像处理研究还不常见。

1.2医学影像常用的诊断方法

目前我们常用超声波、核磁共振、X-CT等设备生成的医学影像作为辅助诊断方法。其中:超声波是使用声波来探测病理并生成平面图像的一种诊断方法,由于其具有方向性好,穿透力强,声能集中,操作简便,能反映出人体组织的灰度形态和结构等优点,被影像科广泛采用。其中 B型超声波采用超声平面成像,在超声屏上显示出病变部位周围有明显的强弱不等的回声区,表现为亮度不等的光点、结合解剖学和生理学知识,可判断这些高光区和暗区的病变性质。且价格低廉,诊断快速,但缺点是对于1~2厘米的小肿块诊断准确率不到达48%。

核磁共振是诊断组织病理变化的一种新的方法,通过层片选择,频率编码,相位编码,实现对接收到的电磁信号在人体内部的准确定位,根据接收到的电磁信号的频率、相位的差别成像,完成对器官组织的检测。例如:核磁共振检查原发性肝癌时通常表现为信号改变,T1W1驰豫时间加权图呈低信号,T2W2加权图呈高信号。其特征性影像为病灶内出现粗大引流或供血血管的流空信号,该信号提示肝癌结节内有动静脉短路形成。但缺点在于检查价格昂贵,且核磁共振设备在我国普及率较低,对于1~2厘米的小肿块诊断准确率较低。

X- CT是用 X线束对器官组织进行断层扫描,再经计算机由于分辨率高图像清晰,能够扫描到早期刚发展起来的较小的肿瘤,这对病人早诊断早治疗不至延误病情具有重要意义。比如:X- CT肝癌表现与大体病理形态一致,平扫多为低密度,少数为等密度或混杂密度,外形不规则呈球形或结节形,边界模糊。增强扫描表现为低密度区略缩小,境界变得较为清楚。肿块中心部位常因肿瘤组织坏死囊变形成极低密度区。研究显示在对于1~2厘米的小肿块的检测上,X-CT显示率高达88%。目前X-CT已成为各种疑难杂症中最重要的诊断方法。

1.3对医学影像进行数字图像处理的可行性及意义

在实际图像信号的生成和传输过程中,由于受到医疗器械自身、人为操作控制和自然界噪声等干扰的影响,多多少少会出现细节模糊、对比度差、噪声较大或存在伪影等问题,影响到影像质量。且成像是用亮度不等的灰度表示,加上病灶发展早期其空间形态变化通常比较小,拍出的片子肉眼很难观察,误诊和漏诊的情况也时有发生,致使病情诊断准确率下降,医务工作者的效率也难以体现。因此,有必要运用适当的技术和方法来处理和分析医学影像,提高影像质量,这将有助于减少误诊和漏诊率,提高诊断准确率。因此,研究医学影像的计算机辅助诊断技术和数字图像处理技术具有重要的意义和实用价值。

在医学影像领域的数字成像技术有个共性:基于计算机将图像采集、显示、存储和传递分解成各个独立的部分,将每一部分图像信息分别数字化,这种共性为我们以后对各功能模块进行单独优化提供了便利,对其实施图像数字信息的后续处理提供了可行性。

以X-CT成像为例,对影像进行预处理可以过滤掉影像上的不利影响,处理掉无用的信息,保留或恢复有价值的信息。通过过滤掉不利因素,加强病灶信息的可读性,突出感兴趣部位,清除各种干扰的同时能保留所摄影像的形态和边缘,有效的改善图像视觉效果,为医生诊病提供了依据和便利,这就达到了图像处理的目的。

2数字图像处理在医学影像中的具体应用

图像处理(image processing),在医学上也被称作影像处理,是指将图像信号转换成数字信号后使用计算机对医学影像处理和分析,提高并改善影像的质量供医生有效诊断的专业技术。将将人设为对象,图像设为目标,输入低质量的图像,输入改善后高质量的图像,当图像达到满足人的视觉效果为最终目标。图像处理方法通常有图像增强、复原、编码、压缩等等。本文将重点讨论图像去噪、增强、分割在医学影像中的应用技术。

2.1图像去噪

影像的生成和传输常常受到自然界各种声音的干扰导致影像质量下降,就像我们在日常生活中交谈时被其他声音打扰一样,在语言中表现为听不清对方说话, 表现到影像上,则是原本很清楚的图像,因为机械本身、电子元件、外界杂音等干扰原因产生各种各样的斑点或条纹,图像变得模糊不清,此即为图像噪声。噪声的存在势必影响后续对影像的分割和理解分析,所以图像去噪是预处理的重要步骤之一。去噪的方法有很多,结合影像特点、噪声的统计特征及频谱分布规律,目前常用均值滤波、中值滤波、低通滤波等算法来对图像进行平滑处理。

2.2 图像增强

图像增强(image enhancement)是数字图像处理领域中的一个重要分支。影像学上的图像增强和复原的目的是为了提高医学影像的质量,清除干扰、降低噪声,通过增强清晰度、对比度、边缘锐化、伪彩色等来提高影像的质量,或者转换为更适合人观察或机器识别的模式。不同于图像噪声,在图像增强中通常不考虑影像降质的原因,它不需要反应真实的原始图像,只需突出图像中感兴趣的内容。但要对降质的原因有所了解,依据降质的原因建立“降质模型”,然后各种滤波方法和变换手段增强图像中的背景与感兴趣部位的对比度,比如:增加图像高频分量,被照人体组织轮廓变得清晰,细节特征明显;增加低频分量,能有效降低噪声干扰,最终达到增强图像清晰度的目的。

图像增强根据空间不同可划分为基于空间域的增强方法和基于频率域的增强方法。基于空间域的增强方法是对图像中的各个像素的灰度值直接处理,算法有直方图均衡化、直方图规定化等;基于频率域的增强方法不直接处理,而是用傅里叶变换将空间域转换成频率域,在频率域对频谱进行处理,再使用反傅里叶变回到空间域,算法有低通滤波、高通滤波、同态滤波等。

2.3图像分割

图像分割是数字图像处理领域的关键技术之一,目的是将图像中有意义、感兴趣的内容从背景里剥离,划分为各个互不交叉的区域。有意义、感兴趣的内容通常是指图像区域、图像边缘等。分割是后续图像理解分析和识别工作的前提和依据。目前已经开发出很多边缘检测和区域分割的算法,但是还没有一个算法对各种图像处理都有效。因此对图像分割的研究还将继续深入,在以后很长一段时间将始终是热门话题。

图像分割方法基于灰度值主要划分为基于区域内部灰度相似性的分割和基于区域之间灰度不连续的分割。

(1) 基于区域内部灰度相似性的分割

基于区域内部灰度相似性的分割是确定每个像素的归属区域(同一区域内部像素是相似的),从而形成一个区域图集,来对图像进行分割,常用算法有阈值分割法、形态学分割、区域生长法、分裂合并法等。

(2) 基于区域之间灰度不连续的分割

篇5

近年来,随着教育改革的更新与发展,教育思想观念和教学模式的转变 全国医学院校都经受教材快速更新、课时不断缩减的考验。依据教育部《关于全面提高高等职业教育教学质量的若干意见}(教高[2006J16号)文件,我校全面推进教学改革。根据医学影像技术专业人才培养目标,教师多年的教学经验,对本专业人体解剖学教学内容、教学大纲和教学方法等方面进行了改革,并收到了较好的教学效果。

1 精;咸内容,建立"理论引导,实践为主"的教学格局

大专生在校学习时间短,社会对医学人才综合素质要求不断提高,而课时不断缩减,教师制定的教学计划精减了教学内容和调整了理论和实践学时。医学影像技术专业人体解剖学共108学时,理论缩减为66学时,实践增加至42学时。教学内容不同,理论和实践学时安排不同,如运动系统,理论20学时,实验12学时;神经系统,理论12学时,实践8学时。精减教学内容其目的在于提高学生动手能力、观察能力和实践能力,建立"理论引导,实践为主"的教学方针。

2 根据专业培养目标,修订教学大纲

随着教育思想观念、教学模式的转变,教师进

一步优化教学内容体系,整合序化教学内容,突出

"基础理论、基本知识、基本技能",强调"必需和够用",重视"技能型"人才的培养。在教学内容设置上,结合我校医学影像技术专业人才培养目标,人体解剖学与临床课程的联系,进一步修订、补充和完善理论和实践教学大纲突出教学内容的"应用性、实用性"。在教学大纲中,各章补充X线影像。如:脉管系统理论教学大纲补充心的位置、外形的的X线影像;实验教学大纲补充胸部X线正侧位片,观察不同的心影。

3 教学方法与教学手段改革

教师结合实际,进一步从教学设计、教学方法和教学手段方面改革提高教学质量和效果。

3.1 教学设计在教学内容的设计上强调"必须、够用",加强

学生实践能力的培养。以教学大纲为依据,以问题为中心的教学方法(PBL),引导学生独立思考,启发学生的创新意识和能力。采用启发式教育思想,帮助学生掌握重点、突破难点。借助多媒体、挂图和举例等手段使学生了解重、难点内容,为临床实践奠定基础。

3.2 教学方法理论教学采用多媒体与传统教学方法相结

合,理论联系实际、联系临床、以问题为中心教学、案例教学、归纳等方法调动学生的积极性和主动性,通过分析病例,培养学生分析问题的能力和理论联系实际的能力。如:一小孩误吞一梅核,经哪些器官排泄至体外?心脏的外形结构归纳为"右上心底左下尖、前胸下脯两个面、左右下3个缘、表面4沟分界线"。

3.3教学手段

充分利用现代教育技术,制作图文并茂、清晰、直观、形象生动的多媒体课件,并应用于教学,丰富了理论教学形式,提高了教学质量。学校建立了电子阅览室,护理专业人体解剖学被评为校级精品课,教学资料已在校园网资源共享,教师和学生可以在业余时间上网学习和查阅有关资料。

4 改革实验教学,培养学生观察能力人体解剖学是一门实践性非常强的学科,在

教学过程中,加强实践教学环节,注重学生的观察

能力的培养。

4.1 加强实验教学环节,促进理论与临床的联系在实验教学中,按实践教学大纲要求,观察各系统标本和模型,同时引导学生观察X线片、造影片、CT扫描片、MRI图像等影像学素材,使解剖学知识与影像学知识联系在一起,通过多层次的观察,攻克学习难点,逐渐完成由解剖学形态观察向

影像学应用过渡,提高学生观察能力和分析能力,为临床应用奠定基础。

4.2 改革实验教学环节,分组实验改变原有的实验过程实验教学环节改为:组

织教学教师讲解示教实验内容并提出问题学

生分组观察并讨论教师指导学生观察并答疑教师检测实验效果总结。

4.3 采用综合课直接在实验室上课某些章节内容教师利用挂图、标本或模型直

接在实验室教授,边讲边观察,直观形象,使理论和实践相结合。这种直观教学使学生容易理解和

记忆,收到良好的教学效果。如骨学和感觉器。

5加强实验室建设,改善实验教学环境和条件学校高度重视实验室的建设和发展,成立人体解剖学实验室、标本陈列室和模型室等共22间,现有尸体65具,陈列标本1000余件。实验室安装了通风设备和抽风式尸体解剖台,并配备标本柜。教师利用课余时间制作各类标本,改善实验条件,优化育人环境。教师课前实验准备良好,保证实验课时间及质量,实验开出率达

100%。

6 充分利用资源优势,积极开展第二课堂活动

利用课余时间开放实验室、标本陈列室,并安排教师辅导,指导学生观察和解决学生提出的问题,培养学生观察能力、动手操作能力、发现问题、分析问题和解决问题的能力。

在教学过程中,教师不断更新教育思想观念,转变教学模式,改进教学方法和手段,并取得一定效果,使教学质量得到明显提高,教师的综合素质和教学能力得到很大提高,但仍存在以下不足。主要体现在以下几个方面:教学改革的力度不够,尚需更好的深入发展,努力开展科研及教研活动,以教科研促进教学质量的不断提高;部分实验室局部标本、游离标本或模型不配套,不能满足多个班级同时开展实验;X线片、造影片、CT扫描片等影像素材较少,不能满足教学需要[1-6]。在学校发展和教学改革的过程中建设全方位的多媒体化的教学模式和计算机辅助多媒体教学实验室,不断创新,提高教学质量。

参考文献

1 吴仲敏.临床医学专业人体解剖学实验教学改革的探索与实践.四川解剖学杂志,2009,17(2):43-44.

2王长月.医学影像专业人体解剖学实验教学改革的研

究.中华现代影像学杂志,2007,4(5):23-24

3 付升旗,陶晶,刘恒兴,等.人体解剖学教学改革的探索与实践.四川解剖学杂志,2007,15(4):67-69

4 马腾,刘学政,王小飞人体解剖学教学改革的探索与设想.解剖学杂志,2007,30(3):383-385.

友情链接