发布时间:2023-09-26 08:32:24
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇医学影像后处理范例,将为您的写作提供有力的支持和灵感!
中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdkz.2016.09.024
Research on the Application of the Laboratory of Medical Imaging
Technology in the Experimental Teaching of Image Technology
LIU Nian[1], HUANG Xiaohua[2], LEI Lixing[2]
([1] Medical Imaging Department, North Sichuan Medical College, Nanchong, Sichuan 637007;
[2] Medical Imaging Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007)
Abstract Objective: To explore the teaching value of the laboratory of Medical imaging technology in the experimental course of Medical imaging technology. Methods: Under the premise of the reform of teaching idea, we research and develop the experiment software of Medical imaging technology and use computer simulation technology to execute resource optimization on the existing experimental teaching. Creating a distinctive, digital and multi-functional laboratory, on the basis of the experimental teaching of Medical imaging technology ,we will reform the experimental model .Results: The professional teaching quality of Medical imaging technology was improved, and the experimental teaching method was reformed to promote the training of students' practical ability. Conclusion: We should reform the experimental teaching mode and build innovation laboratory, improve experimental curriculum system, in order to arouse the students' subjective initiative and strengthen students' practical ability. This is not only the need of medical imaging technology curriculum construction and talent training, but also medical image diagnosis and postgraduate education need.
Key words laboratory of medical imaging technology; experimental teaching; medical imaging technology
随着循证医学的发展和精准医学的提出,医学影像学在临床医学的作用越来越重要,它为临床提供了更加精准的诊断信息,指导临床医生的诊断和治疗。而医学影像技术学在其中发挥着非常重要的作用,它不仅决定着不同疾病的不同影像学检查方法,更是临床诊疗获取优质图像的保障。①医学影像检查技术学是一门将多个影像设备综合应用,且具有扎实的专业理论和丰富的实践经验的交叉应用学科。随着医学影像技术日新月异的发展,为了适应影像技术新理论和新方法的不断更新,避免与临床脱节,学校应该注重学生理论知识和实践技能的培养和更新。因此,加强学生医学影像技术实验课程的实践技能尤为重要。改革医学影像技术实验教学理念和教学模式,创建提升学生自主学习能力和实践能力的实验平台,是全面提高医学影像技术学课程教学质量的主要趋势。②本研究通过建设医学影像技术后处理实验室,改革既往的影像技术实验教学思维和手段,以计算机网络为实验环境,将普通X线、CT、磁共振、核医学、超声等检查的图像及后处理信息导入计算机网络系统,从而实现医学影像信息资源共享。本平台是构建“以临床能力为导向的多学科、阶段性、模块化、综合式的临床实践教学课程体系”的医学影像专业教学平台。学生或师生可以通过实验室网络平台进行互动交流,激发学生自主学习的兴趣,提高医学影像技术设备操作实验的效率、质量,节约教学资源,创造个性化学习的环境。
1 医学影像后处理实验室平台建设
医学影像技术后处理实验室是以计算机为硬件基础,Windows 操作系统为平台,联合开发的仿真实验操作系统为应用软件的实验室。本实验室的主要功能有:(1)该软件操作完全模拟医院普通X线、CT、MRI操作流程,让学生身临其境地实践医学影像图像后处理技术,有助于激发学生学习的兴趣和积极性;(2)该实验室共配置24台学生电脑和1台教师电脑,可让每个学生单独上机完成操作,有利于对学生的学习情况进行有效的评价;(3)仿真软件的数据均来源于我院附属医院,有真实可靠的图像,与临床病例无缝连接;(4)该后处理软件不仅包含基本教材上的常规后处理技术,还包含最新、最近的科研软件,根据医学影像检查技术的进展,即时对软件进行升级,为教师和学生开展科研提供有效的应用工具,有利于提高师生的科研创新能力;(5)该实验室对学生全天开放,学生可自行安排时间随时进行实验操作、复习、做科研;(6)避免了大量学生同时到医院见习出现的安全隐患,提高了学习效率和工作效率。
2 应用结果
(1)实验教学方式的改变。通过医学影像技术实验课程在医学影像技术后处理实验室中的应用,原来的教学手段有了明显改变,已由人工教学变成网络化计算机教学,简化并优化了教学流程;过去用胶片展示教学,其图像较小、图像质量参差不齐,数量有限,管理困难,无法满足大量的学生教学和个性化学习。此外,实验教学方式由原来的临床医、技人员现场教学转变成网络化仿真模拟教学,避免了学生只能看不能动手的情况;学生在带教老师的指导下可以对医学影像技术学的相关知识进行网络化搜索、阅读、自学及复习,数字化仿真模拟教学几乎改变了以往了学习模式。第三,原来以教师讲解为主的实验教学方法转变成了以学生自学为主的模式,每个学生可以通过计算机模拟操作,完成实验要求,同时提高学生的自学能力。通过医学影像技术后处理实验室的使用大大增加了课堂与课外的教学信息量。
(2)实验教学内容的完善和丰富。目前医学影像技术后处理实验室的完整资料数据库中已有10 000余份,本实验室根据临床信息的发展会不断更新资料,其中包含普通X线、CT、MRI、超声、核医学、DSA等方向的图像资料,完全能满足实验教学的需要,其丰富的图像信息资料不仅能紧密地结合教科书上的知识框架,还能在实验中丰富学生的课余知识。
(3)学习效率的提高。医学影像技术后处理实验室的开放,不仅提高了学生的学习效率,学生的自主学习空间得到充分利用,明显增强了学生学习的兴趣和积极性;而且还能更好地利用该实验软件进行科研分析,取得科研成果。学生可以随时到实验室学习,有利于学生的复习和个性化培养,极大地提高了学生的实践动手能力,使学生有充分的自由学习空间和内容。
(4)教学管理的优化。在校内实验室进行实验教学,不仅提高了教学效率和教学管理水平,还为学校节省了大量的人力、物力及财力。仿真模拟实验教学明显改变了过去复杂繁琐的管理模式,避免了学生在临床实验教学中损坏精密昂贵的设备,减小了学生到医院见习的安全隐患。
(5)教学效果的反馈。学生在实验课堂教学中,能及时将问题和难点提出,教师可及时解答;通过学生在实验教学中的网络留言和讨论发现教学问题,并能及时反馈信息及解答学生的问题,检验实验教学效果。
3 讨论
医学影像技术专业的快速发展,适应了医疗设备迅速更新的发展,满足社会和广大医疗机构的人才需求。医学影像检查技术学是培养医学影像技术专业人才的主干课程之一,是连接理论与实践的重要桥梁,是一门不可或缺的且实践性非常强的课程。③④学生不仅要扎实掌握专业理论知识,更注重实践动手能力的培养。针对医学影像技术学的实验教学模式,通过对医学影像技术后处理实验室的建设和使用,系统地将丰富的教学内容、创新的教学方法和学生的实践培养相结合,让学生通过对实验情景、实验界面和实验程序的模拟操作,加强了学生对实验原理、方法和完整操作流程的理解。⑤⑥
医学影像技术后处理实验室的使用,优化了实验教学资源配置,转变了实验教学模式,提高了实验教学效率,实现了将理论教学内容与实验教学相适应的结合。实验项目覆盖了基础性、创新性和综合性实验,丰富了实验教学内容,实验教学手段的多样化,不仅使实验教学内涵更加深厚,而且使学生在学校能熟练掌握医学影像常规检查技术,具备图像后处理能力,以便在医院实习阶段能更快适应岗位要求。同时学生还可在教师的指导下开展实验室科研项目,进行个性化实验操作,这对启迪学生科学思维和培养创新的科研意识有重要的意义,在培养学生实践能力和创新思维的同时,充分发挥了学生以学习主体的功能,也促进了学生对理论知识的掌握和应用。
综上所述,通过医学影像技术实验课程在医学影像技术后处理实验室的教学,改革了实验教学模式,建设了创新性实验室,完善了实验课程体系,调动了学生的主观能动性,加强了学生的实际动手能力,适应了现代医学的影像技术学的发展,满足了医学教育事业和临床医技岗位的发展要求。这不仅是医学影像技术专业课程建设和人才培养的需要,也是医学影像学专业和研究生培养的需要,对培养高素质医学影像技术专业人才具有非常重要的意义。
*通讯作者:黄小华
基金项目:本文为川北医学院校级科研项目“基于虚拟现实技术开发医学影像技术模拟仿真教学平台”的研究成果之一,项目编号2015-12-13
注释
① 黄小华,游金辉,马雪华.医学影像技术专业发展的几点思考[J].川北医学院学报,2008.23(1):103-105.
② 汪百真,俞曼华,张俊祥,等.CT、MRI仿真操作系统的研发及在实验教学中的应用[J].蚌埠医学院学报,2012.38(2):219-220.
③ 梁明辉,王晓东,夏力丁.数字化仿真实验系统在医学影像学教学中的应用研究[J].中国医药导报,2011.8(11):122-124.
脑出血是指非外伤性脑实质内的出血,绝大多数是高血压病伴发的脑小动脉病变在血压骤升时破裂所致,称为高血压性脑出血。其发病原因是长期高血压、动脉硬化。大多患者发病时血压明显升高,导致血管破裂,引起脑出血。它起病急骤、病情凶险、死亡率非常高,是急性脑血管病中最严重的一种,为目前中老年人致死的原因之一。为有效地改善脑出血患者术后的遵医行为,我院2009年10月至2011年4月期间收治的高血压性脑出血手术患者进行了护理干预,效果满意,现总结报告如下。
1 临床资料
选择我院2009年10月至2011年4月期间收治的高血压性脑出血手术患者60例,其中男45例,女15例,年龄41~75岁。全部患者均符合脑出血临床诊断标准,治疗前均经详细个人病史调查和常规体检以及实验室相关项目检查,严格排除肿瘤以及其他全身系统性疾病患者。本组60例患者经治疗及精心护理,全部康复出院。
2 方法
2.1 术前护理干预 医护人员在手术前应对患者进行心理护理,对于神志较清的患者应稳定其情绪并做好相关解释工作以消除其恐惧心理而积极配合。而对于昏迷患者则应向其家属详细叙述病情的严重性和手术的必要性,最大限度的消除家属心理负担以取得其良好的合作。医护人员还应常规备皮并准备相关医疗器械和药品。
2.2 术中护理干预 医护人员在整个手术进行过程中应密切观察患者的神志、瞳孔、呼吸以及血压和脉搏等各项生命体征的变化情况,在需要时应及时给予患者吸氧和心电监护等相关措施,如发现异常情况应积极配合手术医生仔细处理。
2.3 术后护理干预
2.3.1 病情观察 医护人员在术后也应严密观察患者生命体征变化及肢体活动情况,定时测量血压和脉搏及呼吸以防止血压过低而加重脑缺血和脑水肿;将穿刺针与电冰帽保持一定距离以避免碰撞使穿刺针移位;将引流袋固定于床旁较血肿位置低的地方,同时在患者翻身和进行具体护理操作时应严格避免牵拉引流管。在患者进行医学影像检查或搬动时应将引流回路临时夹住并使引流袋始终保持低于血肿的位置以有效防止引流液的逆流而引起颅内感染。
2.3.2 呼吸道护理 医护人员在手术结束后应指导患者取
作者单位:472200河南省卢氏县人民医院
平卧位,使头部抬高约20°并偏向一侧以防止误吸。同时给予患者持续中流量吸氧以改善其脑缺氧状态,清除呼吸道分泌物以保持呼吸道通畅。对于痰液粘稠患者则应每日给予两次超声雾化吸入治疗。
2.3.3 基础护理 医护人员应加强对患者的皮肤护理以有效预防压疮的发生和发展。同时做好口腔护理,尤其是对于禁食患者应给予静脉营养支持,昏迷或吞咽困难患者则给予鼻饲流质饮食的营养支持。
2.3.4 康复护理 医护人员应及早对患者进行康复指导以有效降低致残率并减轻家庭和社会的 压力和负担。对于生命体征平稳且神经系统症状不再恶化的患者在2 d后即可进行康复锻炼。
2.3.5 出院指导 医护人员应指导患者在出院后每周进行一次血压复查,在条件允许的情况下每天测量血压两次,并严格遵医嘱坚持及时正确用药。严格控制脂肪和钠盐的摄入量,忌食辛辣食物并戒烟酒。在日常生活中应避免精神和身体的过度紧张和劳累,坚持积极有效的功能锻炼并定期复查。
4 讨论
高血压性脑出血是高血压病最严重的并发症之一,且多见于老年人。遵医行为是患者就医行为的重要组成部分,医生对患者疾病治疗的效果与患者的遵医行为有着密不可分的关系。患者的遵医行为有助于医护人员在信息收集的全面性和正确性,只有患者主观上遵医并提供客观详实的信息,才可使医护人员所得到的结论达到预期的客观性及有效性,只有遵照医嘱才能达到理想的治疗目的。
参 考 文 献
[1] 暴海燕.高血压性脑出血微创清除术的护理.护理研究, 2007, 21(2):517-518.
[2] 王玉琼.高血压脑出血微创清除术的护理体会.安徽卫生职业技术学院学报,2009, 8(5):87-88.
[3] 温育红.护理干预对高血压患者遵医行为的影响.现代医药卫生, 2010, 26(11):1634-1636.
高血压在我国老年人群中为常见的心血管疾病,能够诱发严重的心脑血管疾病,是造成脑卒中、冠心病以及心肌梗死的最主要原因[1]。近年来,随着人们生活水平的不断提高,我国老年人群中高血压发病率也呈逐年增长的趋势。目前,临床上主要通过长期口服降压药进行高血压疾病的控制。本文选取我院2012年5月――2013年5月收治的120例高血压老年患者为研究对象,探讨分析护理干预对老年高血压患者出院后治疗依从性的影响,报告如下。
1资料与方法
1.1一般资料选取我院2012年5月――2013年5月收治的120例高血压老年患者为研究对象,其中男85例,女35例;年龄58-85岁,平均(66.5±3.4)岁;所有患者均符合世界卫生组织制定的高血压诊断标准,即收缩压≥160mmHg,舒张压≥95mmHg。其中Ⅰ期高血压患者50例,Ⅱ期45例,Ⅲ期25例。将120例患者随机分成A组与B组,A组患者50例,B组患者70例,两组患者在年龄、性别、病情分期等方面比较,差异无统计学意义(p>0.05),具有可比性。
1.2方法A组50例患者给予常规护理;B组70例患者在常规护理基础上给予治疗护理干预,具体护理措施见下。
1.2.1心理护理护理人员要积极了解患者心理特点,关注高血压老年患者的心态变化,耐心倾听患者的倾诉,采取针对性的措施对患者进行及时心理疏导,使患者正确认识服药期间的药物毒副作用,减轻患者心理负担,消除患者及其家属的疑虑,帮其建立战胜疾病的信心。
1.2.2临床用药护理针对老年患者的具体情况合理用药,老年人由于机体的逐渐退化,其记忆力也相应的减退,在服药时容易造成漏服或者错服情况,故护理人员在确保高血压药物药效的前提下,尽量减少医源性对患者用药信心的损害,根据患者的血压水平等综合考虑后适当减少药物种类、服用剂量以及服用次数,减少患者服用不良反应发生率;护理人员要建立和患者及其家属的良好关系,在患者用药前要向患者及其家属宣讲使用降压药进行治疗的必要性以及长期治疗的重要性,提高患者对高血压相关知识的认知,改善患者治疗心态,从而提高其治疗的依从性。
1.2.3临床护理对策在如何提高患者服药的依从性方法上,护理人员可以综合考虑,可以自制一些较醒目的标签,如较大的红色字体标签等贴在药瓶上和患者明显能看到的地方,以提醒患者按时服药;可以采用闹钟或者饭前便签等形式提示患者按时服药,逐渐帮助患者养成规律服药的习惯;对于发生面部肌肉麻痹症状的患者,其口腔内容易残留药物,在患者服药后要及时对其口腔进行检查,避免漏服的情况发生;对于部分容易发生误咽的患者,可以先帮其将药物碾碎后放在水中溶解后给予其口服。
1.2.4日常生活护理根据高血压患者的疾病特点,帮助患者建立良好的生活习惯。高血压患者的日常饮食尽量要保持清淡、低盐低脂肪,少食用动物脂肪以及含有高胆固醇食物,多食用含维生素较高的水果、蔬菜,叮嘱患者戒烟戒酒,平时进行适当的锻炼,规律作息。
1.3评价标准根据患者住院期间以及出院后6个月的用药情况评价依从性:按医嘱定时、定量服药;遵医嘱合理进食、作息及合理锻炼身体;定期进行随访调查、按时复查。以上3项均符合的为依从性良好,少于3项的判定为依从性差[2]。
1.4统计学方法采用SPSS17.0统计软件进行数据分析,计数资料采用t检验,X2检验,P
2结果
A组50例患者在住院期间依从性良好的有49例,占98.0%,出院后半年依从性良好的有40例,占80.0%;B组70例患者在住院期间依从性良好的有70例,达100%,出院后半年依从性良好的有69例,占98.6%。A组患者与B组患者在住院期间依从性相比,差异无统计学意义(p>0.05),但是在出院后半年内,B组患者依从性明显较A组高,差异具有统计学意义(p
3讨论
老年高血压患者的用药依从性较差,其原因主要是由于老年患者的记忆力逐渐减退,其认知分辨能力逐渐减退,故常常导致患者出现对降压治疗药物的名称、使用剂量、服药时间、使用方法等记不准确;患者家属对患者的督促工作做不到位,不能及时督促患者按时按量进行服药而造成误服、漏服和多服的情况;临床用药剂量、用药次数的增加,容易造成患者过量服用或者服用量过少等情况,血药的控制效果不理想等都能对患者坚持用药情况产生影响。另外,服用的一些药物会产生一定的毒副作用,会引起患者发生头晕、恶心呕吐、嗜睡以及低血压等不良反应[3],给患者的生活质量产生较大的影响,这会导致患者对药物服用的畏惧心理,故也会表现出较差的依从性。
本研究中,护理干预组患者在住院期间均表现出较良好的治疗依从性,出院后半年依从性良好的占98.6%。这充分说明了对高血压患者实施积极有效的护理干预和日常生活指导,能够逐步提高患者的自主用药意识,显著改善患者的治疗依从性,对患者的预后改善具有较为重要的临床意义,值得推广应用。
参考文献
追本溯源,要想弄清楚这个问题,首先来看看PACS的定义是什么。2012年的PACS专题叫《从区域走向区域的医疗影像》,在该专题的开篇综述中,本刊曾对PACS尝试做如下定义:可以实现对符合DICOM标准的医学影像的分析、处理和诊断,并可以进行图像三维后处理的医学影像系统。没错,我们给出的定义里有“三维后处理”,这正是我们今年的主题。
且不说今年主题,先来说说定义中的“医学影像系统”这几个字。PACS说到底是一个医学影像系统,不管是分析、处理、诊断还是三维后处理,PACS所做的一切都是围绕着医学影像进行的。而医学影像呢?很显然,是为医学尤其是临床医学服务的。一番条分缕析之后,不难看出,PACS终究是为医学尤其是临床医学服务的。
这也是我们一直关注并将持续关注PACS的原因所在。
现在开始说今年的主题――三维重建。如你所见,在我们给出的PACS的定义中就有与它类似的一个词――“三维后处理”,也因此,讲PACS尤其是未来的PACS,三维重建一定会是无法绕开的话题。
两极分化
在操作本次专题时,我们采访了近二十位医学影像学从业者,其中包括十多家三甲医院的医学影像相关科室的主任和副主任,他们对三维重建的评价可谓两级分化。
北京大学第一医院在三维后处理方面多有应用,该院有国内最大的前列腺癌数据库,泌尿外科甚至可以做到把某个地方发生前列腺癌的概率标志在腺体的三维图像上,这个工作当然是在医学影像科的大力支持下实现的。
在十多年前就提出“整合影像学”概念的西安交通大学第一附属医院PET-CT室主任郭佑民也是三维后处理的“拥趸”,他认为包括三维影像在内的整合影像学将有可能颠覆时下的诊疗路径,创立新的医疗模式。
当然也有一些不同的声音,部分接受我们采访的专家表示,三维影像后处理对放射科的工作影响不大。他们的观点大概是,放射科的主要工作是做诊断,而诊断最主要的对象是横断面图像,三维影像对诊断工作并无太大作用。甚至有接受采访的专家表示“三维重建在我们医院基本都是研究生在做,我不是太清楚。”
革新诊疗模式
专家们对三维影像后处理的看法以及重视程度差别何以如此之大?个人理解或许是与其医院的业务方向有关,如果该院的临床科室没有太多三维影像后处理的需求,为临床科室提供服务的放射科自然不会在这方面深入钻研。
医学影像教学多媒体脚本220个,586电脑加外置光驱及其光盘,带透扫的爱克发扫描仪一台,录像机、VCD机、刻录仪各一台。电脑安装 PowerPoin、PhotshoP和 Record电脑软件。制作方法:(1)打开PowerPoin软件,选好应用模版,按照脚本内容在软件的大纲形式下输人文字部分内容;(2)使用扫描仪通过Photoshop软件把脚本的插图扫描存盘,或外置的650MB的OM光盘,扫描条件选用真彩色32位、200~600dPi。(3)在播放状态下通过Record软件剪接录象带或VCD影像内容,(4)在Powerpoin软件幻灯片形式下进行多媒体编排、加工、加符、加色的修饰及背景的制作。(5)通过插入功能把图像及影像文件调进PowerPoin文件并进行放大编排等处理;为了增加图文并茂效果,尽可能在插图的同一张演示电子幻灯片上编写必要的文字;(6)幻灯片的动画设计和编排;(7)放映形式下多媒观摩,观察放映效果。
二、结果
1、本文完成了各个系统医学影像多媒体教学课件220个,共11000多张文字和4000多张插图的和2小时的影像文件的多媒体演示图像。2、每个多媒体课件全面地包括了脚本的内容,遵循规定的格式:“教学目的与要求一基本原理一病理一病理与影像学联系一影像学检查方法一影像学表现一诊断和鉴别诊断要点一小结”。3、图像或影像文件插入快捷,恰当、生动、并能顺利播放;4、演示稿播放简单、方便;5、制作的多媒体课件成为包含图、文、声、色并茂,动、静态结合的演示稿。
三、体会
Abstract:Objective Use the data transmission technology and a series of post processing technology to meet the need of the clinical practice in teaching,diagnosis、scientific research and so on .Methods Based on C-MOVE's tripartite communication mechanism,and all image data obey the form of DICOM3.0,use the PACS that is research and development by ourselves,take the image data in the facility,workstation and PACS sever group to transmission and back.According to our need,the data also can have a series of post processing then back to the facility、workstation and PACS sever group.Results The back image data that after post processing can meet the need of the medical imaging diagnosis,research and teaching to the image data and image pictures.Conclusion The data transmission technology have a great help in improving the accuracy of medical imaging diagnosis 、realizing the networking,digitizing of teaching and ensuring the scientificalness、conscientiousness of research .
Key words:PACS;Data transmission;Technology of post processing
医学影像归档与通信系统(Pictures Achieving and Communication System,PACS)是应用网络技术,计算机技术和通讯技术,遵循DICOM唯一标准,实现医学图像的数字化显示,存储和传输的综合性系统[1]。图像回传后处理技术是PACS系统在编辑患者影像图像是常用的技术,由于图像后工作站的存储容量有限,随着时间推移,早期患者的影像资料就会从工作站上被自动删除,因此,想要重新后处理这个患者的图像就变得不可能了。数据回传技术是PACS系统的一项新技术,通过网络连接将保存在影像服务器中的数据回传给设备后处理工作站,从而实现无时间限制的后处理能力。本研究基于数据传输与回传技术,通过PACS系统平台,利用计算机软、硬件技术,构建数据回传技术,以研究数据回传技术在临床中的应用。
1 资料与方法
1.1一般资料 研究材料为我院影像中心荷兰飞利浦、德国西门子,美国GE、日本东芝等多家公司多种型号检查设备,以PHILIPS Brilliance 64排CT做典型代表分析。PC应用环境采用Microsoft Windows 7中文版或Windows XPx Professional操作系统。图像采集与传输采用医学数字影像通讯标准DIC0M 3.0,影像数据库采用SQL Server Rv5数据库。
医院局域以太网网络,操作系统是微软WINDOWS7专业版,服务器操作系统是Windows Enterprise Server 2008,数据库操作系统是Sql Enterprise server2008,程序设计开发工具是Microsoft visual studio 2010专业版。
1.2方法 PACS系统的核心是PACS服务器组,它接收影像检查设备传来的DICOM3.0格式的影像数据并存储,将影像数据文件头中包含的患者信息与HIS系统中的患者信息进行匹配,完成图像信息与患者信息的关联,借助数据库对图像进行管理,同时为多个用户和图像使用设备提供影像数据的查询和发送[2]。
2 结果
PACS系统有七个连续不断的运行过程组成(图1所示)。图像回传技术的运作也是基于这七个过程完成的。DICOM(Digital Imaging and Communications in Medicine)医学数字成像与通讯标准[3]:DICOM应用实体的运行与交互是基于客-服务器模型的。SCP(service class provider)服务提供者,相当于客户-服务器模型中的服务器,SCU(service class user)服务使用者,相当于客户-服务器模型中的客户[4]。在DICOM标准中,DIMSE-Service(DICOM message service elements),即DICOM消息服务单元与相关信息对象IOD结合成一个SOP类。
DIMSE服务组包括C-ECHO、C-FIND、C-MOVE、C-STORE。其中C-MOVE是基于两个TCP连接的三方服务,关于C-MOVE的三方通讯机制如图2所示。C-MOVE可以实现从一个AE将DICOM文件发送给另一个AE。关于C-MOVE SCP需要同时实现C-STORE SCP的问题,特此说明一下。并非一定要求C-MOVE SCP来实现C-STORE SCP服务,C-MOVE服务本身并未要求是双方交互,有可能是多方交互。比如A作为C-MOVE SCU向B发出C-MOVE-RQ请求,此时作为C-MOVE SCP的B在查询到结果后可以向C发出C-STORE-RQ请求,只要C提供了C-STORE SCP服务,就可以接收由B发送过来的图像。因此C-MOVE服务可以使三方之间的交互。
数据回传技术使用的是可以实现三方之间交互传输的DIMSE服务组中的C-MOVE服务。数据回传技术是设备(Facility),工作站(work station)和PACS服务器三者之间相互的影像数据之间的传输和回传,三者之间的影像数据均遵从DICOM3.0格式,设备、工作站及PACS服务器三者中任何一方可以为SCU,也可以是SCP。我院采用自主研发的PACS系统,进行数据回传时,首先启动云PACS服务,在远程服务器中首先新建一个新的服务器(例如服务器名称为MRI,既将指定患者的MRI图像进行回传),找到需要处理的患者的信息,提取影像资料到本地服务器,提取之后打开编辑,对影像进行一系列处理以达到想要实现的效果,例如进行匿名化处理发送至学校的教学PACS系统内进行教学,从而保护患者隐私;进行特殊标记处理把想要突出说明的地方标记出来用于科研、临床病例讨论等;对图像进行三维重建、多平面分析、局部放大、调整窗宽窗位等后处理,以协助影像科医生更好的阅片和做出更准确的诊断。最后把编辑好的图像在发送至远程服务器里一开始新建的服务器中去,这样就完成了一次数据的回传。见图3。
PACS数据回传系统的应用,为医学影像科医生的分析及诊断提供了更加清晰的思路,提供了多平面图像重建的可能,而且同意患者图像可多次打印,提高了影像诊断的准确率。
2.1提高医学影像学的诊断水平 准确性是所有诊断手段和工具的立身之本,影像科医生或者临床医生诊断时常常需要结合患者的多种影像资料做出综合诊断,需要看到患者的多种影像资料和报告结果,甚至需要看到患者以往的影像资料。 数据回传技术的应用改变了原有的诊断方式,提高了诊断准确性。以往诊断科室和临床科室医生所接触到的都是由技师调整好窗宽和窗位后的胶片,如果医生认为不能满足需要,还要请医技科医生重新出片,这势必会造成不必要的麻烦和浪费。
而应用数据回传给技术之后,传送的图像经后处理工作站的一系列处理,如对比、标注、测量、缩放、调整窗宽窗位、三维重建、多平面成像等,得到的图像较原始图像更加具体,更能突出问题,为医生的诊断及教学提供更为准确的证据和详尽的资料,帮助医生更准确的定位病灶,减少误诊率。由于存储容量的限制,先前的影像后处理工作站对这种时间过去很久的患者是不能做任何后处理的,甚至是找不到相应的影像资料的,利用图像回传技术,可以不受时间的限制,处理任何时间的患者的图像。加之PACS系统可以将不同类型的设备所产生的影像,通过计算机以太网络,按国际标准的DICOM协议,联为一体,实现全医院的影像资料的集中管理和资源共享[5]。结合PACS系统的这种资源共享性的特点,影像医生和临床医生可以查看患者以往多种的影像检查结果,并可以在同一界面分析比较。与HIS系统集成后,医生还可以通过PACCS系统查看患者的医嘱、电子病历以及检查申请单等临床信息,这就大大丰富了诊断依据[6]。
2.2使影像教学更加生动具体 医学影像学是一门形态学科,其特点是通过对影像资料的观察、对比和分析进行疾病的诊断,从而完成由感性到理性的认识,那种被动而传统的教学模式已不能满足当今高科技时代师生的需求。近年来,随着计算机多媒体技术、可视化技术和网络通讯技术的飞速发展,医学影像归档与通讯系统(pictures achieving and communication system,PACS)的普及与应用为基于PACS的医学影像学远程教学的发展提供了广阔的空间,数据回传技术的应用使这一教学方法更加人性化和形象化。传统医学影像学教学模式基本上采用书本联合影像胶片的方式进行,但由于通过书本和胶片所获得的影像图像数据较为陈旧并难以及时更新。因此,这一传统教学模式已经明显落后于现代化教学的需求。随着计算机技术的发展,使用多媒体幻灯片形式来获取所需的影像图像的现代化教学模式日益成为当前时代的主流选择。虽然后者相较前者与较大的进步,但由于工作量大而繁琐及储存空间不足等问题,因此一种新的快捷而高效的教学模式成为各大医学院校教学追逐的焦点。
远程教学就是在医院PACS服务器、医院远程教学服务器与学校远程教学服务器之间铺设光缆,构建一条专用的h程教学数据通道,利用数据回传技术,将医院PACS服务器上经过一些列处理的影像图像,如比较人性化的保护患者隐私的匿名化处理,突出重点的标注等等,传输到学校远程教学服务器上, 学生通过客户端即可访问远程实训系统点播视频、浏览影像图片、在线与老师互动交流学习。这一动态的教学模式有助于增强教学的直观性与生动性,增强了学生学习的积极性与主动性,并且有利于学生思维能力的训练与培养,明显提高了教学质量。
2.3使科研更加严谨规范 正如著名超声学家应崇福先生所说的:"做科研不一定需要多高的智商,但一定需要有科学严谨的态度,踏踏实实的干劲,一步一个脚印的朴实,戒绝浮躁之风,科学容不得一点掺假"。严谨是科研的必要条件,做医学科研更是应该如此。随着网络技术、存储技术以及计算机技术的发展,医疗领域的PACS/RIS的应用进入了高速发展的时代,并最终实现了医学影像资源的共享,这就为影像科室及临床科室的读片工作以及针对某一领域的科研工作的影像资料的获取提供了非常便捷的方式,数据回传技术则是保证了这些工作更加准确严谨,科学规范。不论是平时科室内部进行的病例讨论,对实习同学进行的读片教育工作还是科学严谨的科研工作,都需要保证影像资料有代表性,图像清晰,突出重点,这些在原始图像上面很难全部反应出来,而应用数据回传技术则可以对图像进行一系列后处理,如调整图像的密度和对比度,对病灶进行标注(大小、CT值等),局部放大,三维重建等等,这些是的病例图像更加形象具体,突出重点,初学同学容易理解,标注清晰,有理有据,科研更加具有说服力。
3 讨论
PACS系统(图像存档和传输系统)是顺应着计算机技术,医学影像技术和网络技术的进步应运而生的,目的是解决医学图像的获取,显示,存储,传送和管理。它以高速计算机设备为基础,以网络连接各种影像设备和相关科室,利用高容量存储技术,以数字化的方式存储,管理,传送和显示医学影像及其相关信息,具有影像质量高,存储,传输和复制无失真、传送迅速、影像资料可共享等突出的特点,是现代医学影像信息管理的重要条件。在我国,经过近几年的应用及不断创新,目前PACS系统已经比较成熟,它为实现医学资源共享提供了极大的帮助。
数据回传技术是近几年新型的一门图像后处理及分析的新兴交叉学科。通过网络连接将保存在影像服务器中的数据回传给设备后处理工作站,从而实现无时间限制的后处理能力。借助图形、图像技术等有利手段,医学影像的质量和显示方法得到了极大的改善,从而借助于图像处理和分析手段使得诊疗水平大大提高[7]。这不仅可以基于现有的医学影像设备来极大地提高医学临床诊断水平,而且能为医学培训,医学研究与教学,计算机辅助临床外科手术提供数字实现手段,为医学的研究与发展提供坚实的基础,具有不可估量的价值[8]。
作为一门新兴的交叉学科,数据回传技术为影像的质量及医生的诊断都带来了很大的帮助,同时也带来了很多新的技术让我们探索和学习。但作为一个新兴的技术,其必定有其局限性,例如回传工作站的指定性,回传操作的相对复杂性等等,这些技术都有待于以后不断的解决和创新,以建立一个更加科学、有效,实用的影像辅助技术。
4 结论
通过我们回传回去的数据和图像,能够完全满足影像科医生更好的做出临床诊断,为提高临床诊断水平,提高图像质量等方面做出了极大的贡献。
参考文献:
[1]许元甫,黄延磊.基于WEB服务的DICOM应用实现[J].医院数字化,2010,25(04).
[2]刘仲明,郑小林.医学影像归档与存储系统中影像数据长期存储问题的研究[J].第三军医大学报,2005,11:1123-1126.
[3]Ramsdell B,Digital Imaging and Communications in Medicine[S].RFC 3240,1999.
[4]吕晓琪,王磊,赵建峰,基于DICOM俗嫉TLS网络安全传输技术研究与实现[J].生物医学工程杂志,2012,29(1):23.
[5]原卫民,冯卫华,徐文坚.PACS/RIS系统在放射科工作流程优化中的作用[J].医学影像学杂志,2010,20(11).
概述
PACS是近年来随着数字成像技术、计算机技术和网络技术的进步而迅速发展起来的、旨在全面解决医学图像的获取、显示、存贮、传送和管理的综合系统[1-4]。PACS分为医学图像获取、大容量数据存贮、图像显示和处理、数据库管理及用于传输影像的局域或广域网络等5个单元[2,4]。
PACS是一个传输医学图像的计算机网络,协议是信息传送的先决条件。医学数字影像传输(DICOM)标准是第一个广为接受的全球性医学数字成像和通信标准,它利用标准的TCP/IP(transfercontrolprotocol/internetprotocol)网络环境来实现医学影像设备之间直接联网[3]。因此,PACS是数字化医学影像系统的核心构架,DICOM3.0标准则是保证PACS成为全开放式系统的重要的网络标准和协议。
1998年我院放射科与航卫通用电气医疗系统有限公司(GEHangweiMedicalSystems,简称GEHW)合作建成医学影像诊断设备网络系统,它以DICOM服务器为中心服务器,按照DICOM3.0标准将数字化影像设备联网,进行医学数字化影像采集、传输、处理、中心存储和管理。
材料与方法
一、系统环境
(一)硬件配置
1.DICOM服务器:戴尔(Dell)PowerEdge2300服务器(奔腾Ⅱ400MHzCPU,128MB动态内存,9.0GB热插拔SICI硬盘×2,NEC24×SCSICD-ROM,Yamaha6×4×2CD-RW×2,EtherExpressPRO/100+网卡;500W不间断电源(UPS)。
2.数字化医学图像采集设备:螺旋CT:GEHiSpeedCT/i,DICOM3.0接口;磁共振:GESignaHorizonLXMRI,DICOM3.0接口。
3.医学图像显示处理工作站:SunAdvantageWindows(简称AW)2.0,128MB静态内存,20in(1in=2.54cm)彩显,1280×1024显示分辨率,DICOM3.0接口。
4.激光胶片打印机:3M怡敏信(Imation)969HQDualPrinter。
5.医学图像浏览终端:7台,奔腾Ⅱ350~400MHz/奔腾Ⅲ450MHzCPU,64~128MB内存,8MB显存,6GB~8.4GB硬盘,15in~17in显示器,10Mbps以太网(Ethernet)网卡,Ethernet接口。
6.医学影像诊断报告打印服务器:2台图像浏览终端兼作打印服务器。
7.激光打印机:惠普(HP)LASERJET6LGOLD×2。kr~e6w=,N!''''#X_Ow+bafe~nNw法律论文b&mWw;\+?=u(tAvzA€\J?~^v=
8.集线器(HUB):D-LINKDE809TC,10MBPS。
9.传输介质:细缆(THINNET);5类无屏蔽双绞线(UTP);光纤电缆。
10.网络结构:星形总线拓扑(STARBUSTOPOLOGY)结构。
(二)软件
1.操作系统:螺旋CT、MRI、AW工作站:UNIX;DICOM服务器:WINDOWSNT4.0SERVER(英文版);图像浏览及诊断报告书写终端:WINDOWSNT4.0WORKSTATION(中文版)。
2.网络传输协议:标准TCP/IP。
3.网络浏览器:NETSCAPECOMMUNICATOR4.6。
4.数据库管理系统:INTERBASESERVER/CLIENT5.1.1。
5.医学图像浏览及影像诊断报告系统开发软件:BORLANDC++BUILDER4.2。
论文医学影像存档与通讯系统的开发与初步应用来自免费
6.医学图像浏览终端:GEHWADVANTAGEVIEWERSERVER/CLIENT1.01。
7.医学影像诊断报告系统:GEHW医疗诊断报告1.0。
8.刻录机驱动软件:GEAR4.2。
(三)系统结构
螺旋CT、MRI和AW工作站按照DICOM3.0标准通过细缆连接到主干电缆(细缆)上形成总线拓扑结构的DICOM网络;DICOM服务器与各图像浏览及诊断报告书写终端通过双绞线以集线器(HUB)为中心连接成星形拓扑结构的ETHERNET网络;二者再通过集线器连接成星形总线拓扑结构的PACS。螺旋CT、MRI、AW工作站各自通过光纤电缆与激光胶片打印机相连,进行共享打印。本PACS由如下各子系统构成:
CT/I:GEHISPEEDCT/I;AW2.0:SUNADVANTAGEWINDOWS2.0;MRI:GESIGNAHORIZONLXMRI;DICOM:DIGITALIMAGINGANDCOMMUNICATIONSINMEDICINE;ETHERNET网络:以太网络;T-BNC:同轴电缆接插件T型连接器;TERMINATOR:终结器;TRANSCEIVER:收发器;UTP:无屏蔽双绞线;THINNETCOAXIALCABLE:细同轴电缆
1.数字化图像采集子系统:从螺旋CT、MRI等数字化影像设备直接产生和输出高分辨率数字化原始图像至DICOM服务器,供中心存储、打印、浏览及后处理。
2.数字化图像回传子系统:将中心存储的图像数据回传给螺旋CT、MRI等数字影像设备,供打印、对比参考及后处理(三维重建等)。
3.医学图像处理子系统:在AW工作站及各图像浏览及诊断报告书写终端上进行调节窗宽/窗位、单幅/多幅显示、局域/全图放大、定量测量(CT值、距离、角度、面积)、连续播放和各种图像标注等。
4.医学影像诊断报告书写子系统:书写规范、标准的医学影像诊断报告。
5.图像中心存储子系统:图像短期内(5~7天)保存在DICOM服务器的硬盘中,当图像数据累积到一定数量(650MB)时,将其刻录到CD-R(COMPACTDISK-RECORDABLE,刻录盘)盘片上作为长期存储。
二、医学图像浏览及影像诊断报告系统
医学图像浏览及影像诊断报告系统使用的软件包是由航卫通用电气医疗系统有限公司(简称GEHW)提供的ADVANTAGEVIEWERSERVER/CLIENT1.01。该软件以WINDOWSNTSERVER/WORKSTATION4.0为操作平台,分为服务器端和客户端两部分:服务器端软件负责完成医学图像的传输、中心存储、数据库管理等任务;客户端软件具有医学图像浏览和影像诊断报告书写功能。
服务器端软件包括图像浏览、图像管理、光盘数据库和系统设置4个模块。(1)图像浏览模块具有简单的图像浏览功能;(2)图像管理模块包括存储、删除、图像输出等子模块,在这些子模块中通过以患者姓名、年龄、性别、CT号、检查序号、检查类型、检查日期等为关键词在DICOM服务器硬盘、光盘上查询所需图像并进行相关处理;(3)光盘数据库模块储存有每张光盘图像检索信息以备查询;(4)系统设置模块管理各输入输出设备的IP地址等。
医学图像浏览软件具有强大的图像处理功能,可以通过网络从DICOM服务器硬盘、光盘上调阅所需图像,并进行图像浏览和后处理。它包括窗宽窗位、图像、几何、网络、显示格式、连续播放等功能模块:(1)窗宽窗位模块通过预定义、用户自定义及精确设定窗宽窗位,使图像得到最佳显示,另外还可以通过鼠标左键进行调节;(2)图像功能模块可以对图像进行放缩(1~300倍)、滤波、对比度(-100~100)、旋转(0~360°)、三原色(RGB)色彩处理;(3)几何功能模块可以将图像垂直或水平翻转、加网格、负片处理、定量测量(CT值、距离、面积、角度)及标注等。经过后处理的图像可以直接输出至诊断报告系统或以不同文件格式存盘以供制作幻灯片
医学影像诊断报告系统软件镶嵌于医学图像浏览软件内,可以在浏览图像后直接书写诊断报告。医疗诊断报告主窗体上的输入项如姓名、性别、年龄、CT号、检查序号及检查日期可直接从数据库获取,报告日期由系统自动生成,科别、报告模板等项通过下拉菜单选择。检查所见、印象两项可直接从诊断支持库提取正常或常见病、多发病的检查所见、印象,直接或经局部修改后形成诊断报告主体。程序提供了撤消、剪切、复制、粘贴、清除、全选、字体等编辑功能。该软件可输出4种格式的诊断报告,其中可包含1~2幅典型图例。用户可通过1个或多个关键字段检索和调阅诊断报告。
结果
在上述PACS的硬件设备安装、组网完成后,在基础网络连接(TCP/IP)和DICOM水平传输这2个层次上,对PACS进行整体调试,成功地实现了数字化图像在PACS内的传送、中心存储、易机图像处理、不同操作系统(UNIX和WindowsNT)不同格式图像(Adv和Dic)在DICOM3.0标准水平的相互兼容和影像交流,以及PACS内影像诊断报告的书写、共享、打印等功能。1999年初PACS正式用于我科的CT及MRI室,显著提高了科室的工作效率及管理水平。
讨论
数字技术、计算机技术和网络技术的飞速发展带动了医学影像技术的突飞猛进的发展,同时也推动了医生工作模式的变革:要求医生逐渐习惯于在显示器的荧光屏上观看医学图像;通过计算机检索和调阅医学图像,并且调节窗宽窗位;通过计算机网络随时获取所需的医学图像及诊断报告等相关信息。
一、传统的医学图像处理方式存在的问题
(1)保存胶片需要很大的存放空间。(2)在显影、定影、冲洗、烘干、归档等环节上要耗费大量的人力和财力。(3)胶片库手工管理效率低,查询慢且容易把胶片归错档。(4)数年后由于胶片的老化使其上的图像变得模糊不清,给再次查阅和科研工作带来极大的不便。(5)把CT、MRI等图像硬拷贝到胶片上,固定的窗宽、窗位已经丢失了大部分原始信息,保留的只是操作医师认为有用的信息,图像无法后处理,丢失了对病人复诊和其他医师认为是有用的诊断信息。
二、PACS在影像学科中的应用价值
(1)利用PACS网络技术,在CT、MRI等影像科室之间能快速传送图像及相关资料,做到资源共享,方便医师调用、会诊以及进行影像学对比研究,更有利于患者得到最高的诊断治疗效益。(2)PACS采用了大容量可记录光盘(CD-R)存储技术,实现了部分无胶片化,减少了胶片使用量和管理,减少了激光相机和洗片机的磨损,降低了显定影液的消耗,节省了胶片存放所需的空间,降低了经营成本。(3)避免了照片的借调手续和照片的丢失与错放,完善了医学图像资料的管理,提高了工作效率。(4)可在不同地方同时调阅不同时期和不同成像手段的多幅图像,并可进行图像的再处理,以便于对照和比较,为从事医学影像学工作的医务人员和科研人员提供方便的工作、科研和学习的条件。(5)有利于计算机辅助教学,进一步提高教学质量。运用PACS可无损失地储存图像资料,待日后调阅发现有价值且符合教学内容要求的图像,标上中英文注释,利用PowerPoint软件制作成教学幻灯片,采用大屏幕多媒体投影仪示教。
规范的医学影像诊断报告书写功能,可打印出图文并茂的影像诊断报告。
三、诊断报告规范化、计算机化
来自全国医疗卫生机构的专家和用户500余人次参会,锐珂、富士胶片、爱普生、华海盈泰、西门子、飞利浦和爱克发医疗等公司分享并展示了各自的新产品或技术方案。
赵自林在开幕致辞中首先对嘉宾的到来表示欢迎,他说:“‘第六届中国PACS大会’的召开,一是为卫生行政部门、医疗卫生机构和企业搭建技术交流的平台;二是让各位嘉宾了解我国医疗装备影像系统的现状和发展趋势;三是通过IHE给医疗机构提供各类数字医学装备、医学信息系统技术的思考方向,并协助相关厂商的产品与国际最先进最规范的产品接轨。”
学术报告精彩纷呈
雷海潮的发言题目是“医药卫生体制改革的基本问题与信息化支撑”,他认为,医疗卫生信息化工作应该做思路上的调整和转变:一、从以前以科室和机构为单位推进信息化建设转到区域水平上;二、从大中城市向农村和基层机构转移;三、从之前主要服务医护人员,逐步转变为服务社会、决策者、居民家庭和患者;四、从单一的封闭系统向综合开放的平台转变;五、从信息化科室、医院或疾控中心单独建设向政府、企业、社会多方共同参与转变。
天坛医院信息中心主任王韬的发言题目叫“影像数据与临床信息集成”,他对临床信息化建设的背景和影像数据临床的共享模式进行了分享。在对未来的展望中,王韬认为:影像共享的手段和渠道将会千变万化,更人性化、更直观的3D打印技术将逐步应用到临床中去;以服务于患者为导向的掌上应用和微信平台的扩展应用会层出不穷;借助大数据应用的强大力量更迅速地确诊与制定治疗计划。
作为此次大会的协办单位,锐珂亚太投资管理(上海)有限公司在2014年推出了Vue VNA临床档案中心,可以帮助医疗机构实现全面的临床数据共享,以患者为中心实现临床数据整合,支持医院的临床及管理决策。该产品具有的优势有:更快捷、更全面的数据访问,更低的总体拥有成本以及更安全、更可信的数据。
爱普生(中国)有限公司营业开发部新业务方案策划科经理周健介绍了“OPS打印合约服务”,OPS是根据用户的预算、打印量、具体打印需求等情况量身定制的打印方案,既能满足个性化需求,又能减轻医院资产压力。
西京医院数字信息中心主任蒋昆的发言题目是“PACS的应用与发展”,对PACS发展现状、挑战及前景进行了梳理,他认为,院间异构系统的数据共享可用便携式患者光盘实现。该院采用华海盈泰的PACS系统,实现了无胶片化、无库存管理,全院影像资源共享,工作流程优化,影像诊断水平得到了提高。
西门子(中国)有限公司产品经理张俊华介绍了“面向大数据时代的影像产品和集成平台”,西门子syngo.plaza调阅图像速度可达 200 图像/秒,可实现DICOM 图像接收、存储和管理,遵从HL7标准,可实现统一的报告和图像以及非DICOM图像的接收和存储。
三维影像热度持续
三维影像中心是本次大会的重要内容之一,在这方面国内领跑者上海医院和华西医院的专家分享了各自的经验。
上海医院医学影像科副主任萧毅对医院三维后处理中心的情况进行了介绍。飞利浦星云3D影像数据中心上线后,临床科室和影像科的互动明显增多,对于项目带来的好处,萧毅总结:搭建了多学科交流的平台、锻炼了团队人员的教学科研能力、提高了人员后处理能力及诊断水平……下一步,他们计划构建一个手术设计实验室,可以为临床提供麻醉、手术方式、预后判断等相关的数据。
华西医院三维影像中心副主任吴文韬的发言题目是“多模态高级影像后处理临床应用价值”。他介绍,在美国,临床医生和影像医生的联系非常紧密,后者甚至会在手术室里为前者提供支持。他认为,开展高级影像后处理项目需要包括以下要素:高效智能化的云计算平台、全面深入的多模态高级影像后处理技术、跨专业的医技护一体化团队、标准化的影像引导诊疗流程和临床应用、跨学科的医疗和产学研合作。
湘雅医院神经外科副教授李学军对医院合作研发的“E-3D数字化医疗三维设计系统”进行了介绍,该系统拥有方便的医学影像处理功能,能对多模态影像数据进行融合,构建精细的三维数字化模型,清晰显示复杂解剖结构、病变和畸形特征、毗邻结构的空间关系,直接进行个化性三维解剖测量和手术方案设计,模拟术后效果。结合先进的3D打印技术,系统能导出和制作高精度的医学组织三维实体模型,为临床手术规划、手术演练、医学培训和教育等提供强有力的技术支持。
富士胶片的产品应用专家王成的报告题目是“富士Synapse 3D影像后处理解决方案在临床诊断及治疗中的应用”,对Synapse 3D产品进行了介绍,它包括基础分析工具、影像诊断高级分析工具、心脏分析工具和手术模拟模块等四大分析工具。
离临床更近一点
近两年,“中国PACS大会”一直在尝试转型,希望能与临床离得更近一些。以本届大会为例,除了来自医疗IT界的专家,上海医院、华西医院和云南二院的医学影像专家,主办方还请来了湘雅医院、北京积水潭医院的临床专家做分享。据统计,参会人员中影像科医生和临床医生的占比达41.46%。
1.1 影像的融合是技术更新的需要 随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。
1.2 影像的融合弥补了单项检查成像的不足 目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。
1.3 影像的融合是临床的需要 影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。
2 医学影像融合的可行性
2.1 影像学各项检查存在着共性和互补性为影像的融合奠定了基础 尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。
2.2 医学影像的数字化技术的应用为影像的融合提供了方法和手段 现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。
3 医学影像融合的关键技术
信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。
图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的一些参数,它被广泛应用于放射治疗和立体外科学[3];(2)表面相合(SFIT)法:SFIT法又称头和帽法。其原理:所有融合影像上可识别的同一解剖结构表面之间的均数平方根(RMS)距离最小,其中,可用手工或半自动的边缘探测规则从每种影像的一系列图片得到的器官外部轮廓就是表面;头代表从较高分辨率影像中获得的表面模型;帽子代表从较低分辨率影像中获得表面的一系列独立的点[4];(3)空间力矩配对:协调中心点和主轴(PAX),使PAX惯性力距最小,融合时包括计算偏心和旋转以协调PAX和比例[5];(4)交叉相关法:此法基点是两种影像的相关系数值最大(接近)。主要用于同一种显像方式影像的融合[6]。以上4种融合方法可分为两大类:(1)前瞻性融合法:在显像采集时使用特别措施(如协调器具,外部标志等);(2)回溯性融合法:在显像采集时不采取特别措施。
近年来,有学者从另外的角度将融合技术归纳为单模融合、多模融合和模板融合[2]。(1)单模融合:是指将同一种影像学的图像融合,多用于治疗前后的对比、疾病的随访观察、疾病不同状态的对比、运动伪影和设备固有伪影的校准等方面;(2)多模融合:是指将不同影像技术的图像进行融合,包括形态和功能成像两大类,多模图像融合主要是将这两类成像方法获得的图像进行融合,其意义在于克服功能成像空间分辨率和组织对比分辨率低的缺点,发扬形态学成像方法各种分辨率高、定位准确的优势,最大限度地挖掘影像学信息,直接进行不同成像方法之间的比较,多用于神经外科定位手术、制定治疗计划等方面;(3)模板融合:是指将患者的图像与模板(解剖或生理图谱等)图像融合,这种方式也适用于不同患者的图像融合,主要用于正常结构的统计测量、不同患者同一类病变的比较、监测生长发育和衰老进程等方面。
4 医学影像融合的临床价值
利用计算机技术对获取的影像信息进行处理,并将其成果应用于临床已成为现代医学影像学发展的主要方向。通过影像的融合,将多项检查成像进行综合分析、处理,再现出全新的、高质量的影像,对于临床的价值主要体现在3个方面:(1) 对影像诊断的帮助:融合后的影像能够清晰地显示检查部位的解剖结构及毗邻关系,有助于影像诊断医生全面了解和熟悉正常组织、器官的形态学特征;通过采用区域放大、勾画病变轮廓、增添病变区伪彩色等手段,能够增加病变与正常组织的差异,突出显示病灶,有助于诊断医生及时发现病变,尤其是早期不明显的病变和微小病变,避免漏诊;在影像中集中体现出病灶在各项检查中的典型特征,有助于诊断医生做出更加明确的定性诊断,特别在疑难疾病的鉴别诊断中,作用更为显著[7]。(2) 对手术治疗的帮助:在影像的融合中,采用了图像重建和三维立体定向技术,充分显示出复杂结构的完整形态和病灶的空间位置,同时清楚地显示出病变与周围正常组织的关系;对于临床制定手术方案、实施手术以及术后观察起了重要作用[8]。(3) 对科研的帮助:影像的融合集中了多项检查的特征,同时体现了解剖结构,病理特征,以及形态和功能的改变,并对影像信息做出定性、定量分析,为临床进一步研究疾病提供了较为完整的影像学资料。
5 医学影像融合的应用前景
目前,图像融合主要应用于体层成像。随融合技术的不断发展,其在非体层成像方法中的应用逐渐增多。已有研究将血管内超声与二维X线血管造影图像进行融合,认为融合图像能克服超声显示冠状动脉形态的局限性、准确重建出血管的解剖结构、反映血管的真实弯曲[9]。
以医学成像技术为基础,结合影像诊断、影像导航、介入治疗和外科等学科所形成的计算机辅助科学是计算机在医学应用新的发展方向。图像融合技术有助于计算机辅助科学的成熟,特别是三维图像融合的研究与开发。
随着PACS在医院逐渐推广应用,为多种影像学技术的综合应用提供了广阔空间,加速了图像融合的发展。有人利用图像融合建立自动识别警告系统,校正PACS进行图像存储及归档的错误[10]。
远程医学是网络时代产物,是实现医学资源全球共享的方式。图像融合在远程医学中有广阔的应用前景。如进行远程手术,将多模图像融合成多参数、仿真人体模型,配准到术中真实器官上,可有效指导制定远程手术计划,有助于顺利实施手术[11]。
综上所述,医学影像的融合是利用计算机技术将多项检查成像的特征融合在一起,重新成像;影像融合既保留了原有的后处理技术,又增添了新的内容;它是信息融合技术、数字化技术、计算机技术等多项技术的综合和在医学影像学应用的深入和扩展。医学影像的融合将会带动医学影像技术的又一次更新,并将是影像医学新的发展方向。
【参考文献】
1 康晓东.计算机在医疗方面的最新应用.北京:电子工业出版社,1999,46-70.
2 Hill DL.Medical image registration.Phys Med Biol,2001,46:R1-R45.
3 Liehn JC,Loboguerrero A,Perault C,et al.Superimposition of computed tomography and single photon emission tomography immunoscintigraphic images in the pelvis:validation in patients with colorectal or ovarian carcinoma recurrence.Eur J Nucl Med,1992,19:186-194.
4 Turkington TG,Jaszczak RJ,Pelizzari CA,et al.Accuracy of registration of PET,SPECT,and MR images of a brain phantom.J Nucl Med,1993,34:1587-1594.
5 Alpert NM,Bradshaw JF,Kennedy D,et al.The principal axis transformation:a method for image registration.J Nucl Med,1990,31:1717-1722.
6 Bacharach SL,Douglas MA,Carson RE,et al.Three-dimensional registration of cardiac positrom emission tomography attenuation scans.J Nucl Med,1993,34:311-321.
7 丁里,朱之庄,武绍远,等.标准化神经影像融合技术及临床应用研究.中国医学影像技术,2000,16(2):88.
8 汪家旺,罗立民,舒华忠,等.CT、MRI图像融合技术临床应用研究.中华放射学杂志,2001,35:604.
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)12-0209-02
随着影像学设备和技术的迅猛发展,影像医学在临床诊断和治疗中的作用越来越重要,医疗机构对影像医学人才的需求亦进一步增加。如何提高医学影像学教学质量,培养出更多优秀的应用型医学影像学人才,成为高校教育者亟待解决的课题。医学影像学内容抽象,涉及学科广泛,检查方法多,疾病表现多种多样,学生理解和记忆困难。因此,探索出适应现代医学快速发展的教学方法和手段就尤为重要了。潍坊医学院医学影像学系于2004年筹建了专用于医学影像学教学的PACS实验室,2011年改造升级成PACS-RIS实验室,并以此为基础进行了教学改革与实践,以强化学生在校期间临床工作环境模拟与技能水平的训练,形成了PACS数字化影像教学模式。
一、构建PACS-RIS教学系统的意义
影像存储及传输系统(Picture Archiving and Communication Systems,PACS)和放射科信息管理系统(Radiology information system,RIS)主要应用在医院的影像科,它以计算机设备存储式硬盘为基础,保存医院影像资料,通过DICOM、网络等多种接口将影像设备连接起来,以高速网络传输并显示影像设备产生的数字化图像[1]。传统的影像教学手段主要是通过多媒体教学系统讲解基本病变的原理、概念,通过附加图片、图像、文字说明等加深学生对基本知识的理解,促使学生有效的学习。但多媒体教学系统中的图像存在分辨率低、窗宽/窗位不可调、单个病例图像数量少、图像畸变和无图像后处理功能等缺点,这在不同程度上影响了教学效果及学生的学习效果。我院医学影像专业的人才培养目标是培养能在医疗卫生单位从事医学影像诊断等方面工作,具备临床实践能力、终身学习能力和创新意识的应用型专门人才。为达到上述人才培养目标,使本科毕业生在毕业时具备良好的医学影像学理论与实践能力,在就业以后很快能适应临床工作,潍坊医学院医学影像学系构建了PACS-RIS教学系统,并在医学影像学专业本科生实践教学中应用,取得了良好的教学效果。
二、利用PACS-RIS进行影像学教学的优势
1.缩小学生在学校学习和临床工作之间的差距。在传统教学方法中,学生都是学习教科书和教师制作的多媒体课件,病例缺少系统的影像资料,学生很难具备系统知识,很多的知识依靠死记硬背来掌握,而现在的二级以上医院一般都具有局域网或各种类型的PACS系统,影像学诊断都是通过PACS系统阅读分析图像、书写报告,这就造成学生在学校的学习和临床工作之间具有很大的差距。很多学生开始实习或毕业工作之后,很长时间不能适应临床工作方式,影响了他们的工作和学习[2,3]。PACS-RIS系统恰恰就是模拟临床工作模式,学生在实验课学习中就学习在系统中调取图像,可以进行图像的窗宽窗位的调节,可以进行病灶的测量和图像的后处理;学生能在电脑上模拟书写诊断报告,其程序和模式与临床工作一致,这样就可以体现学生“早接触临床,多接触临床”的目的,使学生在学校学习期间就通过模拟临床工作,做到理论联系实际,在他们开始实习或者毕业工作之后,很快就可以熟悉临床工作程序,尽快融入临床实际工作中,实现从学生到医生的角色的顺利转变。
2.改变传统教学模式。传统的医学影像学教学包括理论课和实验课两部分。理论课一般是教师提前准备多媒体课件,从某种疾病的临床与病理、影像学表现、影像诊断与鉴别诊断等方面去讲述,再附上疾病的几幅典型影像表现,内容都是这种疾病最典型、最普遍的东西,内容较为枯燥,学生很难对疾病的影像学表现有共性的认识。实验课一般是教师提前准备典型病例的胶片,学生分组轮换使用观片灯读片。这样的实验课,一是教师要反复讲解费时;二是学生在有限的时间内读片量少;三是环境差,学生容易相互干扰,影响实验课的质量。医学影像专业的学生,其在校期间阅读分析病例的数量和能力直接影响到今后的临床工作能力,要培养具有较高临床能力的应用型医学影像学人才,就需要学生在校期间阅读大量、系统的医学影像学图像,这样他们才能积累一定的临床工作经验,工作后很快适应临床工作。传统的教学模式由于受课时的限制,课堂上学生只能看到为数不多的图像,课后为了避免胶片污损或丢失,一般都要求胶片入库,这样学生实际接触胶片的时间很少,很难把疾病的图像读懂读透。PACS-RIS系统的建立,所有的影像资料都储存于服务器中。学生可以根据自己的能力,尽可能的多阅读图像,遇有问题可以随时咨询带教教师,课后利用课余时间访问服务器,调阅图像反复阅读,更好的消化教师所授的知识,还可以在学习专业知识的同时学习到有关的解剖、病理、实验室检查等方面的知识,使学生对某种疾病从临床表现到影像诊断有一个比较完整系统的概念,同时还培养了学生的自学能力[4,5]。
3.提高学生的学习质量和效率。由于某些疾病表现复杂,且存在“同病异影,异病同影”的现象,单纯使用一种影像检查方法很难做出较为明确的诊断,这就需要两种或两种以上影像学检查互相验证,提高影像诊断的正确率。而一种疾病在不同的检查图像上表现各异,学生理解和掌握比较困难。传统的医学影像学教学采用多媒体授课,幻片灯教学,先由教师逐一讲解,学生再轮换读片,分组讨论,由于课时和胶片数量的限制,学生实际读片数少,且由于读片环境影响,使很多人不能看清图像,不能认识和完全理解图片,造成学生一知半解或糊涂,从而丧失学习的积极性和热情,学习质量不高,效率低下[6]。应用PACS-RIS系统之后,教师把提前准备好的病例发给学生,教师只需对典型病例稍加讲解,学生就可以在各自的终端电脑前进行阅片,还可以利用PACS系统的图像后处理功能进行图像的处理,如调节窗宽/窗位、分辨率与对比度、缩放、旋转、测量、二维及三维重建等,学生可将图像调整至最佳状态,还可以分屏显示,亲自感受并书写诊断报告[7],并且输入一次检查号,该患者所做的所有影像学检查图像都可以显示出来。学生一方面可以比较同一种疾病在不同检查方法图像上的特点,通过比较加深印象;另一方面可以比较不同检查方法的优劣,从而有助于学生了解比较影像学。如果对图像理解不充分,可以查阅高年资医师审核后的诊断报告,包括图像描述和诊断结果,与自己书写的报告相对比,不仅能够学到相应的专业知识,而且能够熟悉诊断报告的书写规律,提高自己的临床工作能力[8]。利用PACS-RIS系统,教师可以引导学生比较不同疾病的异同点,也可以观察某种疾病的影像学动态变化,还可以了解患者在治疗前后的影像学变化,这样就可以明显提高学生的临床实践能力,为今后的临床实习和工作打下坚实的基础。
4.为教师制作多媒体课件提供良好资源。在PACS-RIS系统建立之前,教师在讲课中所需要的图像资源都是在工作中通过不断及时的积累所获得的,所以记录、收集、整理资料的过程漫长而烦琐。而在应用PACS-RIS系统之后,教师只要输入关键词,就可以轻松检索到相关的病例资料,而且包括相关的病史、病理、各种影像检查的结果等。PACS-RIS系统图片存储量大、种类全且及时更新,为医学影像学教学提供了丰富的资源。教师不但可以在PACS-RIS系统中直接对学生进行讲解和分析、演示影像图像,还可以把典型的图像进行编辑,输出到移动硬盘等存储设备中,根据自己的临床经验制作成优美的多媒体课件,供学生拷贝,让他们随时随地学习。
总之,医学影像学是一门实践性很强的课程,影像专业的学生需要反复大量的阅读相关的病例图像,才能熟练掌握理论知识并能够融会贯通。PACS-RIS系统的建设和应用,有助于构建教师指导下的“以学生为中心”的教学模式,较好地调动学生的主观能动性和学习积极性,提高其临床实践能力,从而为学生培养目标的实现奠定坚实的基础。
参考文献:
[1]刘玉梅.PACS系统及构建医院PACS中的意义[J].中国实用医药,2012,7(20):271.
[2]田芳,祝乐群,鲍虹,等.基于RIS/PACS的医学影像学临床教学[J].中国高等医学教育,2012,(3):85-86.
[3]张松,张镭,丁毅,等.PACS/RIS系统在医学影像学教学中的优势[J].中国病案,2011,12(6):65-66.
[4]中宝忠,王可铮,赵东亮,等.PACS辅助教学在医学影像学实习教学中的应用探讨[J].现代生物医学进展,2015,15(3):523-525.
[5]李浩,李睿,袁远.PACS系统在现代医学影像学教学中的应用优势[J].实用放射学杂志,2014,30(4):697-698.
伴随现代医院业务量的持续增长与高端影像设备的运用,影像数据呈现爆炸性的增长。面对超大数据量高尖端需求的挑战,PACS的存储与传输功能在负载均衡、流媒体等IT技术的深度应用中走向了极致。这些技术的应用,为医疗影像综合信息突破了网络带宽限制,扫除了原有的性能瓶颈障碍。PACS的应用层次也从医学影像的存储调阅,向更高层次的区域PACS 、移动PACS和智能临床辅助诊断方向发展。
PACS让影像设备发挥更大作用
影像设备的每一次突破性进展都与PACS携手共进。据统计,我国每12秒就有一人因中风或心梗而倒下,每年有300多万人死于心脑血管疾病,占全部死亡原因的50%以上。面对现代疾病的袭击,各种影像设备的研发更新也加快了步伐,几年前影像设备研发厂商还引以为傲的64层CT如今已然被256层CT的光芒所掩盖,一次扫描10秒左右,可以完全采集整个躯干全部组织结构信息。此时,飞利浦IntelliSpace PACS的ISPM(IntelliSpacse Portal Module)提供的智能全息心脏分析CCA、高级血管智能分析AVA、CT全脑灌注和颅脑血管智能分析等工具能够协同影像设备快速做出精确诊断。同时,飞利浦IntelliSpace PACS提供了业内最前沿的高级临床应用功能,覆盖了包括心脏、神经、肝脏、血管、骨骼以及肿瘤等在内的200多种高级后处理功能,全方位实现了影像网络化的高级后处理诊断。
PACS协同设备的高级辅助诊断潜力可以将过去一系列复杂的检查变得简便易行,并在临床中为抢救患者生命节约宝贵的时间。由此,PACS已迈入了以影响CDS(临床决策支持)为主的高端临床应用阶段。
PACS提升区域的医疗水平
高级辅助诊断的深度运用,使得现代PACS的发展必然要回归到提高诊断的最初目的。智能诊断鉴别、多维影像后处理、多影像融合等高级辅助诊断工具的发展,将会使PACS真正实现电“脑”辅助诊断,避免人为经验带来的失误。
边远地区的危重疑难病人由于当地医疗条件落后,往往要到上级医院进行会诊,PACS的高级辅助诊断功能将为这些边远地区的医师带来福音。通过远程会诊寻求专家教授的帮助,让PACS发挥“脑”的作用,可以使医务人员不再为医疗水平不足所困,使医疗活动从经验主导模式向更加科学、精确的数字化模式转变。为了更好地实现PACS的医学影像诊断临床决策支持,实现高质量、高水平、高效率的诊疗,加强医疗资源管理,扩大医疗服务范围,提高整体的医疗水平,高级临床辅助诊断影像数据中心和区域PACS的建设是必经之路。
医学影像是一个庞大而繁杂的知识体系和系统流程。在过去的15年中,我国医学影像设备如CT、核磁发展非常快,但与之不相匹配的是,整个医院的医学影像工作管理流程却没有发展起来,仍然处于一种无序、低效的状态。而且现在多数医院都面临着患者就诊量大的问题,那么如何在已有的条件下接纳并服务好更多的患者是医院面临的一个最大难题。
西门子医疗影像和知识管理总经理王峻认为,对于现代医院来讲,诊断流程上的优化以及管理上的更新,是其突破发展瓶颈、提升医疗质量的关键。其实购买一个PACS软件为诊疗效率带来的提升是有限的,这个空间仅仅在50%以下,而且设备本身的效率提升已经到达极限,单纯靠设备提升诊疗效率越来越难。西门子很早以前就发现了这个问题,并开始研究一个新的、突破性的模式,在别的公司还在纠结于如何将PACS系统与后处理功能结合在一起时,西门子医疗已经先一步考虑如何改善影像流程了。
“现在放射科有很多诊断流程,但绝大部分医院在影像的高级处理、二维影像的浏览和报告流程是分开的,一般的做法是先将影像做后处理,然后在PACS、LIS中写诊断报告。”王峻说,“流程不清晰、过程不优化、效益不高,是多数医院影像科面临的一个问题。”
西门子应医院需求,将研发重点放在如何将PACS功能和高级影像处理整合在一起,如何将流程进行最大限度的优化上,从而提高医院诊断的流程。这也是西门子最新推出的“新沟通-飞云平台”的产品理念――将整个影像流程中涉及到人的干预降到最低,达到高端智能化,实现对放射科、影像科流程的全面革新与颠覆。
“‘新沟通-飞云平台’不是一个简单的集成,而是一个高度整合的平台,相当于一整套多个系统同时运行,在信息的交互方面非常直观。以往的PACS浏览都是两个屏幕同时工作,而在西门子医疗的‘新沟通-飞云平台’中可以实现一次点击,二维影像、三维后处理结果、报告同时呈现,三位一体。”王峻说,“这种概念和效果是目前影像领域没有人做过的。”
有竞争是件好事
未来,国内将会有很多企业参与到医学影像领域中来,而针对影像的显示、诊断、流程等等各个方面的产品竞争将会进入白热化阶段。王峻坦言这是好事情,因为多年之前的国外PACS公司很难在中国发展,根本原因在于客户的认知不同。但现在或者不远的将来,各种各样的国内公司参与到市场中来,会将医疗影像这块“蛋糕”越做越大,进而催生医院的需求区分――基层医院可能只需要一个PACS软件;大型三级医院则更需要一个完善的流程。
“随着客户需求的不断变化,市场也会重新洗牌。老的供应商不能满足客户新的需求,逐步就会被淘汰;新的供应商带来新的科技,逐步代替老的产品,这是一个市场必然经历的更新过程。这种局面对政府、企业、医院都有益处,而不是大的企业垄断市场,抱着仅有的几个客户,那样将断送国内医疗影像的发展。”王峻指出,“所以西门子医疗在中国市场中的定位不是‘最大’或者‘第一’这样的概念,我们希望得到真正对影像类产品有高端要求、对于医院流程改进有需求的客户认可,这就已经足够了。”
对于目前医疗影像市场的发展,王峻认为存在三个层面的产品可以供医院选择,但这三个层面的产品分别面临着不同的问题。第一,就是星罗棋布的国内中小PACS公司,这些公司的产品仅仅能满足医院的基本需求,诸如生成图像、简单处理、组合报告等,其最大的缺点就是缺乏创新,同质化现象严重。
第二类产品是传统的国外PACS软件,这些产品提供一部分影像处理的功能,但跟严格意义上的高级影像处理并不一样。
那么第三类产品就是把传统的医学影像管理系统、PACS、LIS和高级影像处理完整地整合在一起,使流程得到显著的改善。“目前来看,医院还是需要第三个层面的产品。这也是我们投入巨资研发‘新沟通-飞云平台’的初衷。它不是PACS软件,也不是后处理工作站,而是一个完整的医学影像流程。”王峻说。“我们大概在两三个月之前刚刚将这个产品推入市场,目前就获得了非常好的销售量,得到了很多大型医院用户的认可。”
将区域医疗做到实处
区域医疗也是西门子一直关注的领域,但王峻却一针见血地指出了区域医疗面临的困惑与不足。
“目前区域医疗的发展还有很多问题,大家更注重覆盖面,而不够关注质量。”王峻说,“如果留意你将会发现,基本上每个项目都在宣传其覆盖了多少个地区、多少家医院,但真正能给这些医院带来多少价值却仍是未知因素。所以在区域医疗这个领域,西门子医疗更希望能踏踏实实地做一些对这个区域、区域的医院真正有意义的工作。比如从个体医院入手,通过我们个性化的软件,通过自动化的影像流程来帮助其优化诊疗手段、提升诊断水平,并做到上下级医院的互动,这才是西门子医疗考虑去做的项目。”
未来将专注医学影像领域
对于西门子医疗在未来的规划与发展,王峻认为西门子医疗将继续在医学影像领域深耕细作。“单个企业把一个行业做得既宽泛、同时也很精深是非常困难的,但是我想,我们可以把PACS、高级影像平台这个领域做得比较精深,这样能够不断地满足客户的需求,从而对自己不断地进行改进和调整,以适应变化莫测的医疗信息化大潮。”
看似一句简单的“做精做深”,这其中包含了巨大的投资和工程量。据王峻介绍,整个医学影像是一个非常大的概念,单是影像处理范畴就涉及很多的技术,一个涉及到影像处理的平台包含着数以百计的软件,涉及到数十种以上的设备、数十种以上的检查,甚至是数百种以上的疾病。可以说,医疗影像产品的投入不亚于西门子高端CT的投入,如此高投入的软件产品,注定将为医院带来难以估量的价值。
对于西门子医疗在中国市场的定位,王峻更倾向于将更先进、更好的产品带到中国来,对于一些医疗信息化建设项目,西门子医疗将始终在把事情做好、为医院真正带来价值的前提下进行参与。毕竟,西门子作为一个国际公司,将国际先进技术、高端产品带到中国来,既是满足大型医院的高端需求,帮助小型医院提升自身水平,也是其责任所在。
放射影像随着数字化信息技术的高速发展,医学影像已进入了数字化时代,为放射科普通X线摄影开辟了新纪元。X线摄影技术数字化是传统X线摄影的重大突破,放射影像随着信息技术的发展,在临床医疗工作中,解决了临床诊断,提高了X线技术在临床诊断和治疗方面更高的要求,如CR,DR,CT,MR,介入等技术系统,信息发展,X线技术人员随着数字化的到来,特别是在一些大中型医院, CR, DR, CT,MR介入等技术已经普及,所以迫切需要技术人员必须掌握更新的技术,并提高工作量和摄影拍片质量,使X线照片质量稳步提高。
数字化影像包括:间接数字化X射线摄影系统(CR)、直接数字化X射线摄影系统(DR)、数字化胃肠机,为90年代应用于临床的新技术。它以数字化的方式采集、储存、传输和处理图像。本文就我院2010年5月至11月间的数字化影像及医学影像存储的应用情况,总结报告如下。
1 资料与方法
1.1 临床资料 16 937例次门诊及住院经数字化检查CR7 508例次;DR 8 158例次;数字化胃肠机摄片1 271例次。
1.2 影像质量的评判 按投照部位的显示情况,满足诊断要求程度和有无人工伪影等综合判断,分为优(影像清晰,位置合适,无人工伪影,完全满足诊断要求),良(影像欠清晰,位置欠佳,可见人工伪影,可以满足诊断要求),差(影像不清晰,位置不合适,有人工伪影,勉强或不能诊断)三类。
2 结果
16 937例次数字化摄影中,CR检查7 508例次;DR检查8 158例次;数字X线胃肠机摄片1 271例次。影像质量为优16 891例次,占99・72%,其中8 158例次DR片全部为优等片,良46例次,占0・27%。均为CR照片中有人为的伪影;其中33例次如同穿着毛线衣样,13例次影像如同磨玻璃一样。差9例次,占0・05%。7例为在数字X线胃肠机作静脉肾盂造影的造影平片,肠道准备不充分,肠内容物多,影响照片质量,2例为床边(CR)照片部位无包全,要重照。
3 讨论
3.1 数字化X线摄影技术的应用
3.1.1 传统的X线照片受多种因素影响,废片率远远超过了2%的允许范围。我科近两年统计,优等片平均只有40%~45%。因为,DR与CR及数字X线胃肠机的共同点都是将X线影像信息转化为数字影像信息,对X线的反应在全部范围内都是线性的。因此,所得影像对比与曝光水平无关,易于处理成最佳对比、亮度和影像细节。自实行全数字化影像以来,大大地解决了放射科照片质量差的老大难问题,优等片达到了99・72%以上。
3.1.2 鉴于数字化X线成像技术所具备的许多优点,数字化X线机必然取代非数字化X线机,近几年来,国家有部分院校开设影像技术大专班,教育层有了较大提高,但与X线成像技术数字化的要求,还有一定的差距,要想适应这一变化,增强自身努力,提高教育层次也是必由之路,要普及影像专业本科教育,发展研究生教育,这是今后发展的方向。随着基础X线技术的发展, CR成像系统进入医院,在CR系统中可直接将影像检查数据,病人资料及暗盒上的编号结合在一起,每当一幅影像在处理时,放射技术人员可继续进行下一幅影像的拍摄,这样就大大节省了时间,使得工作更加有效,这样减少了病人在检查中等候时间,而且可选配一个或多个远端操作面板,系统标准配置在线存储多幅影像功能,可十分方便地将影像信息传送至网络中任何需要的终端,可选择在CR系统中监视影像或直接传送数据至激光打印机,诊断后处理工作站或存档数据库。
3.1.3 X线数字化摄影采用了强大的现代化计算机后处理功能,摄影一次成功率大大提高,避免了重复摄影,X线数字化摄影实现了数据库管理,患者的影像信息被存储,可随时查询和影像比较,同时患者可自带照片和诊断报告,X线数字化摄影技术为医院进行数字化、信息化、和网络化、管理奠定了基础。X线数字化摄影技术系统较于传统的X线摄影技术有以下优点:具有多种后处理功能,如测量(大小、面积、密度)局部、对比度转换,具有高灵敏度,空间频率处理。协调处理、时间减影、能量减影、体层伪影抑制,动态范围控制等。
3.2 PALS系统的临床应用
3.2.1 数字化医学影像诊断数字化医学影像是PALS应用的基础。PALS是以计算机为中心,将所有患者的信息数字化处理,便于对同一患者在不同时间所作的检查作前后纵向对照、或对同一患者用不同检查设备(包括CT ,B超、胃镜等)所取得的图像作横向比较[’],更有利于患者得到最高的诊断治疗效益 .满足了诊断报告的快速存储、检索及日常工作量和综合信息的统计工作。
3.2.2 无胶片化管理放射科最急需解决的问题 就是普通胶片的储存和管理。利用PALS可以加强对这些影像资料的存储、管理和查询等功能,可远程会诊,提高了工作效率与诊断水平。
参考文献
[1] 唐东生. 中国现代医用X线设备产业发展回顾[J]. 中国医疗器械信息, 2010, (01) .