发布时间:2023-09-26 14:44:20
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇统计学与概率论范例,将为您的写作提供有力的支持和灵感!
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)09-125-01
概率论与数理统计是一门研究随机现象统计规律性的学科,教学内容较多,难度较大,而教学时数少,因此,如何提高概率论与数理统计课程的教学质量是探讨的热点,笔者从以下四个方面作出了探索。
一、重视高中内容与大学内容的衔接
高中数学中随机事件,频率与概率,古典概型与几何概型,条件概率与事件的独立性,数学期望和方差等内容【1】与大学概率的内容有所重复。因此在讲解这些内容时,可以由学生来讲解高中部分的知识,在这个基础上,教师再作出适当的拓展。这样教学的重点就得以体现,概念的讲解也不显得突兀。
二、重视实例的引入
在概率论与数理统计教学中,有许多抽象枯燥的知识点,在讲解的过程中学生易出现不愿思考和焦虑的现象。教师要注重实例的选择,选择的实例既要与时俱进,又要充分与专业相联系。笔者所在的是军事院校,所以在选择实例时具有军事特色。例如,在讲解数学期望的时就引入航母得平均维修费用;在讲解贝叶斯公式时,引入武器装备损伤性的分析和大家都熟悉的“孩子和狼”的故事中,村民对这个孩子的可信度时如何下降的;这些实例来源于学生熟悉的军事生活,从而大大激发了学生学数学用数学的兴趣。
三、重视绪论课
好的开始是成功的一半。绪论课的成功与否关系到能否调动学生学习这门课的兴趣。绪论课一般包含以下几方面的内容:第一介绍概率论的起源与发展;第二介绍本课程的内容体系以及解决的问题,给学生一个全局的印象,知道概率将学习哪些内容;第三从生活实例出发,给学生一个直观的认识,了解到概率来源于生活。
四、弱化计算技巧,重视应用
概率论与数理统计的传统教学,重视计算技巧,推理和证明,教材中有大量的例题和习题,教师因为课时的限制想做到面面俱到实属难事,常常说:要授之予渔。因此,教师必须对教材上的知识进行探索归纳总结,以点带面,重视思想方法的教学,淡化计算过程。特别是连续性随机变量的知识点要用到高等数学中的定积分,变上限积分,二重积分以及级数的知识,学生这些知识难免会遗忘,笔者在教学中的处理方法是适当的复习补充,再辅助matalab的应用。
概率论与数理统计的应用部分在数理统计,但是目前因为课时,大多数院校的教学中心在概率论的知识,部分院校在削减了学时后,只学概率而不涉及统计。 而且统计这部分内容公式繁多,计算量大,很多学生学完之后不知道如何应用。笔者结合这两年的数学建模题讲解统计学的原理,例如结合葡萄酒的分析,讲解了数据的处理,总体的估计,置信区间等内容,
[关键词]
概率论与数理统计课程;教学改革;应用心理学专业
概率论与数理统计是研究随机现象客观规律性的数学学科,是高校应用心理学专业的一门重要基础课程。各种处理数据的原理和方法已渗透到心理学专业的各个领域。学好该门课程,对于培养学生的数学思维、数学方法具有十分重要的意义。然而,随着地方性本科院校的转型发展和应用技术型人才培养的驱动,公共数学课堂教学学时在逐渐压缩,如何在有限的课时条件下提高应用心理学专业概率论与数理统计的课堂质量和效率、如何激发学生的学习潜能、如何培养学生运用概率统计原理和方法解决专业实际问题的能力是我们面临的重要课题。
一、应用心理学专业概率统计课程教学现状分析
(一)概率论与数理统计课程分析概率论与数理统计是非数学专业的一门基础课,是许多后续应用课程的基础,包含概率论与数理统计两大部分。概率论理论性较强,旨在训练学生的逻辑推理能力;数理统计部分强调应用性,旨在培养学生的实际应用能力和动手操作能力。传统教学中,大部分时间用于系统讲授理论知识和公式推导,旨在培养学生的解题能力,并以期末卷面成绩来判定该课程的教学效果和学习效果,而在实际应用方面很少“着墨”。同时,普遍认为其内容是“前难”加“后繁”。“前难”是指概率部分涉及到古典概率和随机变量分布函数等方面的题目难度大,容易出错;“后繁”是指统计部分各种统计方法的原理与思想既抽象又繁琐,不易理解[1]。因此,如何改进传统教学模式以适应转型期学生的需求成为当前概率论与数理统计课程教学改革的一个热点。
(二)应用心理学专业对概率论与数理统计课程的需求随着经济的发展和社会文明的进步,心理学的应用范围日益扩大,显得愈来愈重要,高素质的应用心理学人才也就成为当今时代的迫切需求。概率论与数理统计作为应用心理学研究方法的基础课程显得尤其重要,因为该课程是应用心理学专业后续方法类课程如心理统计学、心理学测量学、实验心理学等课程的先修基础课程,对后续方法类课程中学生能否熟练合理应用心理学专业知识开展实际调查、测评等工作有影响。作为应用心理学专业的必修课,概率论与数理统计课程是培养高素质的应用心理学人才扎实的心理学理论与研究方法的基础课程。而作为文理兼容的应用心理学专业,学生的数学基础差异性比较大,目前存在部分学生难以跟上教学进度、理解知识原理不透彻、应用知识的意识与能力不强等问题,对有高要求的概率统计课程如何教学值得探讨。
(三)应用心理学专业概率论与数理统计课程教学存在的问题传统教学模式无法激发学生的学习兴趣。在应用心理学专业的概率统计教学过程中,学生普遍认为:概念抽象难以理解,思维不易展开,方法很难灵活掌握,实践脱节联系不强,从而缺乏对该课程的学习兴趣;特别对文理兼招的应用心理学专业,学生数学基础不扎实,如果课程的教学仍采用“一支粉笔”加“一块黑板”的形式,必将造成教学过程的枯燥乏味,无法达到预期教学效果,更不能谈及培养学生的学习兴趣和积极性[2]。“灌输式”教学方法严重约束了学生的思维。抽象的课程内容、有限的教学课时、数学基础相对较差的心理学专业学生,使得概率论与数理统计课程的教学变得异常沉闷,教师想把思维展开,但往往因担心内容过多让学生无法接受而放弃;教师想把某些知识点讲解透切,又因担心完不成教学计划而只得匆忙地将知识点直接输灌给学生,结果造成学生一定的思维定势,使思维得不到应有的锻炼,学习能力得不到应有的提高,学生的创新思维也得不到提高。学生缺乏课程实践,达不到学以致用。在应用心理学专业的日常教学中,概率论与数理统计课程在学生对知识内容的应用方面考虑较少,更多时间放在其理论知识的讲授;在人才培养方案的制定中,实践环节的学时安排过少,造成理论与实际脱节。学生为了期末及格而学习,很难解决实践之需,更难谈及为地方区域经济的发展提供应用型人才。
(四)心理学专业概率论与数理统计课程考试存在的问题湖南人文科技学院的心理学专业概率论与数理统计考试成绩一直以来分两大部分:期末考试成绩占80%,平时成绩占20%。平时成绩主要考查作业和考勤,考勤操作容易,但作业的评价不易:学习态度认真的学生作业比较“差”,相反成绩差的学生为了提高平时成绩,作业抄得非常“好”。加上单一的期末闭卷考试偶然性比较大,用一次考试成绩来反映学生的水平难以服众,即使是成绩好的学生,对用统计思想和工具解决实际问题,也常束手无策。
(五)应用心理学专业学生学习概率论与数理统计存在的问题其一,学生的数学基础较薄弱,学习兴趣普遍较低。为了更好地了解学生的学习情况,我们对心理学专业2013级和2014级学生做了调查,结果表明,对数学感兴趣的学生占的比例很低,不到30%。这与平时上课学生“低头率”高,玩手机比较普遍的情况相吻合。其二,学生的学习目标不明确。我们在对2013级和2014级应用心理学专业100多名学生的调查中发现,超过50%的学生认为,概率论与数理统计是必修课,不得已而学之。平时学习,主要是为了应付考试,顺利拿到学分,期末考试不挂科。其三,教材内容单一。尽管现在概率论与数理统计所用的教材版本很多,但是教材内容差别不大。书中的例题和习题大致差不多,没有考虑学生层次和专业情况而设置相关的内容,就是本校开发的教材,也大多为了应试而达不到应有的效果。
二、应用心理学专业概率论与数理统计课程教学改革实践
随着地方性本科院校的转型发展和应用技术型人才培养的驱动,结合近几年来我们对心理学专业概率论与数理统计课程的教学与思考,在如何提高应用心理学专业概率论与数理统计的课堂质量和效率、如何激发学生学习潜能、培养学生运用概率统计原理和方法解决实际问题的能力方面,我们进行了如下探索。
(一)吃透概念,淡化推导多年前,在概率论与数理统计的教学中,基本都是采用讲授法。其教学内容也大同小异,偏重于例题和公式的讲解,强调学生的概率统计运算能力和技巧的训练,却忽视了基本概念思想、统计模型原理、各种统计方法的讲解和介绍,是为学生考试而学习,学生并没有真正做到理解概念,吃透概念。把概率论与数理统计课程的思想讲解清楚,才是课程教学的关键,而最能体现出数学思想的,无非就是概念的讲授[3]。概念看似简单,但富有抽象性,最不好讲。如何把它的本质通过通俗易懂的形式展现给学生,这需要老师扎实的功底;数学思想也能在公式的讲解上体现,教师不是一味地强调它多么重要,而必须讲清楚公式的用途,在实际工作中能够解决什么问题,引导学生认知概念,洞悉概念内涵,体味其中的方法论和实际运用价值。只有这样,学生才能真正懂得这个公式怎么去用,至于公式的推导,宜简则简,甚至可以一笔带过,可以以作业的形式让学生消化。
(二)贴近生活,实例为辅在数学类课程中,概率统计与实际生活联系最为密切,从实际生活中来,应用到实际生活中去。教师要善于创设情境,诱发学生的学习兴趣。比如古典概率教学中的“生日问题”全概率公式和贝叶斯公式教学中的“产品次品数问题”、数学期望教学中的“奖金额确定问题”、正态分布教学中的“招聘考试问题”等,这些例子来自于生活,也服务于生活,既充满兴趣又有益于专业的发展,更能使学生感受到生活中数学的无处不在,从而感悟数学的魅力,享受探究的乐趣,激发学生的求知欲和活跃课堂气氛[4]。
(三)“收”“放”有度,调教心身应结合应用心理学专业学生数学基础知识薄弱、学习兴趣低、个体差异显著的特点,大学数学等基础课程的课堂教学学时压缩的客观现实和学校的办学定位,以及网络信息的完善,在教学中用通俗易懂的语言帮助学生理解抽象定理,用学生感兴趣和紧靠专业的实例予以探讨,让学生充分体会到概率统计知识和思想对将来学习与工作的重要影响,提高学生学习的内动力,淡化概率统计复杂的数学推导过程。此外,对某些重要的概念可以适当地展开,刺激学生的创新能力。对进一步深造的学生,可以引导其通过网络学习达到既定要求。当前,独生子女在大学生群体中占多数,自尊心强、好胜逞能、承受能力弱、自私摆酷,成了他们复杂的心理构成;加上就业压力大,以及自身所收集的学习和就业信息不全面,由此产生负面影响,导致“期末考试不通过,补考一定过”的心理,学习不主动、课堂旷缺比较多、“低头族”现象普遍。因此,教师在课堂教学中要合理渗透情感教育和育人思想,帮助学生树立正确的人生观和价值观,就必须把握教学中的“收”与“放”[4]。
(四)重构教学关系,“授人以渔”网络模式的教育和学习以其不受时空限制、交互性好、优质资源多、使用便捷等优势,不仅成为学校教育的一种创新模式,而且成为全民教育与终身教育体系的重要组成部分。传统教学方式上,课堂讲授成为学生知识获取的主要途径。随着信息化、数字化的发展,传统的教育理念和学习观念、学习方式表现出多方面的不适应性,学生上课玩手机现象普遍、到课率低已经成为大班授课的通病,上课打瞌睡现象严重,晚上通宵上网比较常见,致使教学效果大打折扣,教学评价也出现尴尬局面。在教育教学改革的大背景下,“教”与“学”关系重构,由“以教学为中心的教育”转变为“以学习者为中心的教育”[5]。因此,需要重新改造传统的教育管理模式,改变传统的组织教学模式,课堂教学更加侧重互动和问题的解决,而不是知识的传授,这就对教师的要求从侧重传授知识,转变为侧重传授学习和思维方法,也就是我们所说的“授之以鱼不如授之以渔”。
三、教改前后概率论与数理统计课程教学效果调查与考试成绩比较
(一)教学效果的调查与分析学习兴趣是一种心理状态,较高的兴趣能使学生更好地明白本课程的重要性和学习该课程的意义。通过与应用心理学专业的部分学生交流发现:课程内容是否有趣、生动,学生是否意识到该课程对后续专业课学习、今后工作与发展有重要的帮助,这些都直接影响到学习效果;同时,从学生平时缺交作业的情况和到课率也能说明教学的效果,调查结果见表1。在2014级应用心理学专业的教学中,我们根据具体的教学内容选用合适的教学方法,选择与专业和生活密切联系的案例,通过对案例的讨论达到掌握概率统计思想与方法的目的,教学中明显感到课堂更加活跃,这从学生的交流中也得到了肯定。
(二)概率论与数理统计课程考试成绩的比较通过教学改革,2014级应用心理学概率统计成绩相比于2013级总体提高:90分以上成绩人数从5.48%增加至9.21%,及格人数从78.08%上升至82.89%。可见,教改激发了学生的学习潜能,课堂一改往日沉闷气氛,课程成绩、学生应用能力提高较快。
参考文献:
[1]曾善玉,张录达,刘文芝,等.《应用概率统计》课程教学改革的研究与实践[J].高等农业教育,2000(7):53-54.
[2]陆静,翟娟.应用型人才培养观下概率统计课教学改革探讨[J].广西民族师范学院学报,2013(6):90-92.
[3]张翠杰,刘广瑄.CDIO教育理念下概率论与数理统计课程教学改革的几点思考[J].数学学习与研究,2014(12):65-66.
概率论与数理统计是高等院校理工类、经管类的基础课程, 很多同学认为该课程难理解、没有用,不重视这门课的学习,这严重影响了对后续专业课程的理解。作为老师,应激发学生求知欲,调动其学习积极性。而“良好的开端是成功的一半”,因而设计一堂富有启发性的绪论课尤为重要。本文从三个方面探讨如何上绪论课。
一、起源介绍
概率论产生于17世纪,传说有一个江湖骑士在赌博中遇到“点的问题”,即:“假设两个赌徒相约赌若干局,谁先胜3局就算赢,全部赌本就归谁。但是当甲胜了2局,乙胜了1局的时候,由于某种原因,赌博终止了,问:赌本应该如何分才合理?乙认为:甲再胜一局就赢了,而自己再胜两局也赢了,所以赌本应该按2∶1分。甲认为:即使乙下一局胜了,两人也是平分秋色,各自收回赌注,然而自己还有一半的可能获赢,故认为赌注应该按3∶1分。这两种分法似乎都有道理。这位骑士将这问题请教帕斯卡,帕斯卡则将这个问题连同解法写信给费马,两人经过讨论取得一致的看法:甲的分法是对的。分赌本问题促使何兰数学家惠根斯完成了《论赌博中的计算》,这是关于概率论的第一本书。
统计学起源于中世纪,那时欧洲流行黑死病,死亡的人不少,英国学者葛朗特几十年来对死亡与出生情况资料加以整理。而1662年葛朗特发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。同时,数理统计学起源于天文和测地学中的误差分析问题,由于测量工具精确度不高,于是通过多次量测获取更精确的估计值。
通过这样介绍,让学生明白这门课来源于经济、生活问题,所以这门功课和经济与生活密切相关,从而激发学生学习这门课的兴趣和积极性。
二、研究内容
在讲解这部分内容时,先下定义:概率论与数理统计是研究随机现象及其统计规律性。进一步解释什么是随机现象:事前不能预知结果。
为了进一步理解随机现象,举例说明。
例.下列现象中哪些是随机现象?
A.在一个标准大气压下,水在100℃时沸腾;
B.掷一颗骰子,其出现向上的点数;
C.新生婴儿体重。
总结随机现象的特点:出现的结果是多个可能结果中的一个,“每次结果都是不可预知的”;但“所有可能的结果是已知的”。
举一大家熟悉的话,体会概率论与数理统计的应用。
例:“天有不测风云”和“天气可以预报”有无矛盾?
最后介绍一下本课程各章节的内容,参考书目。
三、学习意义
概率论与数理统计与生活实践密切相关,它可以应用到很多科学技术领域中。例如,电子产品寿命分析、生产产品质量检验、设置公交车路线、公用自行车站点、各种保险、种群增长问题、生物统计学。
举几个和日常生活相关的例子激发学生的好奇心与学习兴趣:
例1.考虑有两个小孩的家庭:(1)若已知某一家有男孩,(2)若已知某家第一个是男孩,问两种情况下这家有两个男孩的可能性是不是一样?
例2.某工厂有机器300台,设每天每台机器出现故障的概率为0.02,求一天内没有机器出现故障的概率。
学习这门课可以锻炼人的思维方式,培养发现、分析和解决问题的能力,为以后的专业课学习打下基础。
概率论与数理统计的绪论课是整个教学的第一课,绪论教学对学生有“先入为主”的影响,使学生对这门课的学习内容、整本教材的结构有快速的认识,绪论可以激发学生的学习兴趣,绪论课的好坏直接影响到学生对这门功课的学习。
参考文献:
中图分类号:G642 文献标识码:A
《概率论与数理统计》不仅具备严密的理论性又具有广泛的实践性,其主要理论是通过对随机现象的大量观测和试验去把握不同现象内在的规律即统计规律。在观察、描述、分析和解决问题的思想、方法上与其它数学学科不同,其中众多概念和题目通常具有很强的实际背景。因此,教学中采用案例研究的教学方法――在教学过程中将真实的事件或专业课程中的具体问题提供给学生进行讨论、分析,对加强直观理解和激励学生主动参与学习活动有极大的促进作用,同时能培养学生构造和分析概率模型的能力。特别是典型案例的选取,对新课题的引入、知识的应用、学生学习情趣的激发和课堂参与力的提高等方面都有非常重要的作用。
1历史背景的介绍,点燃学生的学习热情
抽象性是数学的显著特点之一,在教学中引入概率统计的相关历史和发展背景,使学生在学习知识和方法的同时,了解概率统计发生、发展的历史脉络,得知概率统计还是一门年轻的科学,还需要不断地发展与完善,从而激发出他们学习的兴趣与热情。例如,在讲解古典概型时,介绍法国数学家帕斯卡和费尔马从对掷骰子游戏中赌资分配的讨论,开始了概率论和组合论早期的研究。又如,在泊松分布之后介绍泊松,作为著名数学家、物理学家和力学家他在各个领域都有卓越贡献,在概率统计领域中,他改进了概率论的运用方法,特别是用于统计方面的方法,建立了描述随机现象的一种概率分布──泊松分布。推广了“大数定律”,并导出了在概率论与数理方程中有重要应用的泊松积分。他从法庭审判问题出发研究概率论,于1837年出版专著《关于刑事案件和民事案件审判概率的研究》。
在教学过程中概括地描述概率统计发生、发展的过程,以及相关科学家的资料,不仅能活跃课堂气氛,吸引学生的注意力,也能扩展学生视野,了解相关概率知识、概率思想方法产生的历史背景,体会科学家在科学研究道路上的艰辛,培养学生勇于发现问题、克服困难的信念。
2典型案例的选取,激发学生的学习热情
概率统计是一门应用十分广泛的学科,与日常生活、科学研究、工农业生产都有着紧密的联系。在教学中选择典型、趣味性较强的例子,不仅能让学生理解抽象的概率公式,更能极大激发学生的学习热情。
例如,校园中顺丰快递车每日运载100件包裹,每件包裹的重量是独立的随机变量,且是在0.2kg至5kg之间的均匀分布。那么这100件包裹总重量超过300kg的概率是多少?
如果直接计算总重量的分布,从而计算该概率是不容易的,但是在介绍了中心极限定理后,可以很容易计算出来。中心极限定理不仅在理论上,而且在实践中也非常重要。从应用的角度,利用该定理可以不必考虑随机变量的具体分布,避免分布列和概率密度函数的繁琐计算,而只需要均值、方差的信息和标准正态分布表即可。该例题与学生的生活经历密切相关,而且其解题思想方法正是中心极限定理的应用,让学生感受生活中处处都蕴含了概率的思想。
又如,正态随机变量在概率论中起着十分重要的作用,在物理、工程、统计学中都有广泛运用,因此,结合专业特点,可以介绍信号处理和通信工程中的典型例子:信号处理。假设某个传输信号为X,记X=1或X=-1。 由于通信技术误差,在接收端得到的是加有噪声的信号,设噪声N是一个正态随机变量,均值为 =0,方差为 2。如果收到的混有噪声的信号大于0,则判断信号X=1,如果收到的混有噪声的信号小于0,则判断信号X=-1。问这种判断方法的误差有多大通过这种具有较强专业特点的案例,能充分调动学生的积极性,促进他们的课堂参与力,培养学生的数学建模能力。
3案例教学中存在的问题
案例教学对促进学生感受知识的产生、发展和应用有较大的作用,但在实际教学中存在一定的问题。首先,案例的选取,这也是案例教学中最重要的环节。一般情况下,案例必须具有典型性,但往往又缺乏了新意和吸引力。因此,在案例的选择和编排上如何进行取舍和改编是一个难点,对任课教师也是一个巨大挑战。其次,由于《概率论与数理统计》作为基础课面对的都是大二学生,多数学生还没真正接触专业课的学习,教学中面对专业性较强的案例,学生多数情况下不能理解甚至完全不懂实例的基本原理,答非所问,最终导致浪费大量时间解释例子,而忽略了案例的本质作用,有舍本求末之状。最后,由于数学课教师基本都是学习数学理论,在实际应用方面有很大的不足,在案例分析方面有所欠缺,分析不够深入全面。对于某些专业性较强的案例也无法驾驭,因此在教学中无法真正展现案例教学的精彩。因此,教师应不断提高自身综合能力,加强专业知识的学习,增强实际能力。
案例教学作为一种以应用为目的的动态教学模式,对学生感受知识的产生、发展和应用都有积极的促进作用,在培养学生分析问题、解决问题、创新问题上有重要的指导作用。因此,案例教学在培养应用型人才教育中有其重要意义。但案例教学在数学课程中的应用还处于初级阶段,还需要更多教师在教学实践中不断完善、丰富。
教学内容应该改变以往“重概率、轻统计”和“重运算技巧、轻数学思想”的传统教学思想,删减其中一些复杂的计算,加强统计中基本理论和基本数学方法的教学。减少概率论课时,加大统计内容,增加统计课时。
1.概率方面,古典概型概率、期望与方差等
内容在中学接触过,学生接受较快故可以弱化;减少概率论课时,将重点放在条件概率、乘积公式、全概率公式与贝叶斯公式上,加强随机变量的内容。
2.统计方面,突出“厚基础”“重应用”的特色,增加统计课时,强调假设检验和回归分析等原理的分析与实际应用,着重培养学生应用统计中的基本原理去解决实际问题的能力。
二、改进教学方法
概率论与数理统计是一门在解决实际问题的过程中发展起来的学科,概率论与数理统计的思想方法、原理、公式的引入,最能激发学生的兴趣,并印象深刻的是从贴近生活的问题及案例引入。教师在授课过程中可从每个概念的直观背景入手,精心选择一些跟我们的生活密切相关而又有趣的实例,从而激发学生的兴趣.调动他们学习的积极性和主动性。
1.概率论部分的教学。(1)概率论内容的学习中,学生一般不能很好地理解全概率公式与贝叶斯公式的原理。举例:某大学学生对概率论与数理统计课程的兴趣程度可分为四个层次:很感兴趣,较感兴趣,一般,没有兴趣。最近的一项调研统计表明此四个层次的学生数之比为:1∶3∶4∶2。而这在四类同学中该课程一次性能通过的可能性分别为:0.98,0.88,0.50,0.20。1)考试在即,在即将参加此门课程考试的学生中任抓一学生考察,试问该生此次考试该门课程一次性通过的可能性为多大?2)考试结束,阅卷老师发现某名学生顺利通过此次考试,试问该生对此课程兴趣层次是属于一般的可能性有多大?身边的例子激起了学生的兴趣,通过1)的解答很快让学生理解全概率公式,通过2)的分析让学生理解贝叶斯公式的原理。(2)大数定理的教学。大数定理是概率论中非常重要的定理,在教学中如果仅仅将定理的内容告诉学生,很多学生不能理解。讲课时举例子:在装有7白球与3黑球的盒子里任意抽取一个记下结果再放回去,当抽取白球时计1,抽到黑球时计0,不停地重复下去,就得到一组由1、0构成的数字,如一人抽取得到:10010111010111000101111111100000001010010111011000从数据中你看不出任何特征与规律,换一个人来重复这一试验,他也会得到这样一串由1、0构成的数据,同样杂乱无章,但结果与第一人的结果不同。虽然如此,当做的试验次数越来越多时,这一串串杂乱的数中1所占的比例随做的试验次数的增加愈来愈稳定到一个值上,这个值就是盒子内白球的比率7/10。比率的稳定性只有在数串长度足够大(实验的次数足够多)时才能表现出来,这就是大数定理这个名称的由来。历史上概率论方面重要的学者雅各布?伯努利证明了在一定条件下“当试验次数愈来愈大时,频率愈来愈接近于概率”,这个结论称为伯努利大数定理。此定理的意义在于对经验规律的合理性给出了一个理论上的解释。在现实生活中,很难甚至于不可能达到伯努利大数定理中的理想化条件,但大部分的情况下与之非常接近,因此伯努利证明的结论“基本上”能适应。
2.统计部分的教学。学生经常觉得统计部分的参数估计、假设检验、回归分析等内容杂、头绪乱。在教学过程中,可以引入案例,对每一个案例进行分析:(1)要解决什么问题?(2)有些什么方法,而这些方法的基本思想是什么?合理性?(3)运用这些方法解决问题的基本步骤是什么?(4)如何将这些方法运用于实际问题中?这样能使学生理清思路,从整体上把握统计的基本思想,如假设检验可以用食品生产线上的产品质量检验的案例分析;回归分析可以用资源评估的案例来分析等。
在培养目标上,两类硕士差距就更加明显了。学术型硕士要求可以进行基本的专业理论研究,有继续进行高等理论研究的素质和潜力,其中的一部分人可以继续攻读本专业及相关金融、管理、经济等相关专业的博士学位,学术性的硕士生更强调理论学习和理论基础的训练。专业学位硕士则要求较好的专业知识实用能力,了解掌握常用统计方法的思想和软件应用,实践能力强,具有分析解决带复杂数据分析背景的实际问题的潜力,强调的是学生对实际问题的处理能力,各种统计方法的综合运用及实战能力。在国外发达国家,目前均有应用统计专业学位博士,就是说将来在我们国家,优秀的应用统计专业学位硕士可以进一步攻读专业学位博士,这类博士应该对实际问题有敏锐的眼光,对各种实用的统计方法有全面的了解,知晓其长处与不足,可以解决复杂的实际数据分析问题,因此应用统计专业学位硕士的概率理论基础训练应更加倾向于实际,倾向于在统计学中大量用到的概率论知识。这就决定了对两类硕士在概率论基础知识要求方面有很大不同。在概率论基础方面,由于两类生源的本科知识体系中都是以《概率论与数理统计》课程为起点,概率论部分基本相同,内容是:概率基础及公式,随机变量及分布,随机向量及分布,数字特征及计算。在硕士生阶段应在此基础上考虑两类硕士的培养目标的差异,分别在概率基础课程中安排不一样的教学内容和重点。
一、概率论与数理统计教学中的“数学焦虑”现象
(一)知识需求和教学之间的矛盾
概率论与数理统计是数学基础课中应用性较强,与现代经济、金融、统计、管理密切相关的一门课程。随着信息技术的不断深入发展,概率论与数理统计越来越重要,然而概率论与数理统计的教学质量却是一个值得探讨的问题。在概率论与数理统计的教学中广泛面临学生积极性较低、理解程度偏低、考试通过率较低的问题。从心理学的研究成果看,这些现象都是“数学焦虑”现象的反映。
(二)数学焦虑是概率论与数理统计教学的重要挑战
数学焦虑是指个体在处理数字、使用数学概念、学习数学知识或参加数学考试时所产生的不安、紧张、畏惧等焦虑现象。因为数学学习的抽象度在所有学科之中较高,在学习过程中充满探索和挑战,也会不断遇到挫折。不管你是谁,当你解决问题或者思考问题时都会面临大量挑战。数学焦虑是影响数学教学质量的主要原因之一,在全世界的数学教学中,普遍存在数学焦虑现象。由于概率论与数理统计是数学基础课中应用性较强一门课程,因此数学焦虑是概率论与数理统计教学的重要挑战。
二、进化心理学视角下的数学焦虑现象
(一)焦虑机制的形成原因
从进化心理学的角度看,焦虑情绪和风险厌恶倾向,事实上是进化过程中人类形成的一种自我保护机制。焦虑是一种帮助人类侦测并应对环境中威胁因素的心理机制,从而提高人类在危险环境中的生存概率。出现焦虑情绪的概率是和人们感到的危险程度和危险频率成正比的。由于人类在相当长的时间内都处于极低生产力的部落社会,因此形成了对未知事物的强烈恐惧。在所有的未知事物中,只有极小部分是对自身有利的,人类需要保持对大多数陌生事物的戒备。焦虑情绪及伴随焦虑而来的心跳加速、不安、紧张、恐惧等,都是为了帮助人们应对环境中的威胁。
(二)概率论与数理统计知识和焦虑情绪的关系
心理学家指出人类社会在最近五百年内实现了科技和社会的跨越式发展,而人类在生理上仍然保持着四万年前的结构。对于四万年来未产生生理进化的大脑来说,数学知识和概率论与数理统计知识是陌生而复杂的事物,因此大脑对其的本能反应是焦虑和逃避。这一心理结构在几乎没有理性知识的原始社会中,能够帮助人类避免大量的潜在危险,但是在知识决定生产力的今天,这种深藏于本能之中的心理结构就成为阻碍复杂知识学习的一堵墙。
三、从认知心理学角度分析概率论与数理统计教学中风险的来源
数学焦虑是学习过程中存在的威胁因素造成的情绪反应。概率论与数理统计学习过程中的威胁因素来源于三个方面:一是学习过程中的有限的工作记忆,二是焦虑情绪对于工作记忆的显著干扰,三是概率论与数理统计的学习容易遇到挫折。这几个威胁因素的共同作用,导致学习概率论与数理统计是一个充满困难和挑战的过程,很容易使学生产生焦虑情绪。
(一)概率论与数理统计学科特性导致的认知困难
学习过程中威胁的第一个来源,是概率论与数理统计学科的抽象性对工作记忆容量和注意力强度提出很高的要求。概率论与数理统计理论是由环环相扣的严密逻辑体系构成的,其知识点和知识点之间有着逻辑上的高度关联性。概率论与数理统计理论包含的信息量很大,不仅包含概率论和微积分的基础模型,还包含科学方法论模型。由于理论较大的信息密度和抽象程度,对于学习时的工作记忆要求很高,从而需要学生保持高度的注意力。如果注意力不集中,或者出现情绪上的干扰和波动,认知过程就可能被打断,难以再理解讲课的内容。
(二)焦虑情绪和工作记忆之间的正反馈
学习过程中威胁的第二个来源,是焦虑情绪上升和工作记忆下降的正反馈关系,所造成的心理恶性循环。解决概率论与数理统计问题需要学生调用大量的工作记忆,焦虑情绪的出现会导致工作记忆下降,学习容易出现错误和焦虑。以上因素的相互作用,就构成了一个正反馈回路,即学习上的挫折形成了焦虑情绪,焦虑降低了工作记忆的容量,工作记忆下降导致了概率论与数理统计成绩下降,不佳的学习表现使数学焦虑更严重了。一旦触发其中的任一环节,就会导致焦虑情绪不断加重。
(三)出错率高导致的较高焦虑情绪
学习过程中威胁的第三个来源,是概率论与数理统计学习过程的出错概率高,从而导致更强的焦虑情绪。当学生要进行假设检验的应用,必需的知识包括:样本与总体、随机变量、随机变量的分布与抽样分布等。缺少了任何一个知识点,都无法理解假设检验的原理和应用。这样就构成了一个串联系统可靠性分析的模型。如果这些知识中有部分掌握得不好,就比较容易出错,从而产生较高的焦虑情绪。
四、降低数学焦虑的措施
(一)以提高学习动机为主要应对措施
由于是多个因素共同导致概率论与数理统计教学中的数学焦虑,要缓解数学焦虑对于概率论与数理统计教学的影响,也就需要从多个角度入手,进行综合性的应对。一方面,要加强学生对概率论与数理统计价值的认识,消除学生对概率论与数理统计的陌生感,激发学生的学习动机。另一方面,要从认知心理学的原则出发,在教学过程中防止工作记忆不足和焦虑情绪之间形成恶性循环。但是这三个风险有一个共同的背景原因,就是因为学生对于概率论与数理统计的价值认识模糊,所以不重视概率论与数理统计,从而没有投入时间来了解概率论与数理统计应用并训练概率论与数理统计技能。这样就导致理论学习时间不充足,知识的应用训练也不充足,最终导致知识的“学不懂”和“用不上”。应对学生的数学焦虑,要抓住这个源头。因此,为了缓解在概率论与数理统计学习中的数学焦虑,很重要的一个措施就是让学生明确学习概率论与数理统计的价值,并且辅助于教学和作业考评上的手段。
(二)通过概率论与数理统计技能的高需求以激发学生学习动机
通过分析劳动力市场和科技进步的趋势,帮助学生明确学习概率论与数理统计的价值,是激发学生动机的有效手段。在劳动力市场上,统计学专业毕业的学生,薪资在不断增加。无论是金融行业、政府还是互联网行业,数据分析的需求都在快速增加,这些行业都在争取拥有统计技能的复合型人才。这些行业都需要优秀的统计学人才分析数据、解读趋势、判断机会。在这两个趋势之下,统计学专业的人才薪资水平不断增长。明确了学习概率论与数理统计的价值,学生感受到学习的不确定性也就相应降低了,学习动机也会有较大的提高。
参考文献:
[1]陈英和,耿柳娜.数学焦虑研究的认知取向[J].心理科学,2002,25(6):653-655.
当今,国际竞争实际是人才的竞争,而人才竞争实质上是教育的竞争,我国高等教育从精英向大众化过渡,民办院校承受较大的扩招压力,如何确保并不断提高教学质量成为广大教师和社会关注的热点问题,它关系到这一类学校是否能生存下去.数学是最能激发大学生的创新能力的科学,作为核心基础课程概率论与数理统计的传统教学方法和教学手段存在着诸多的弊端,在新的形势下就概率论与数理统计教学中存在的问题,探索并实践出有突破性的改革策略是民办院校高等教育的重要研究课题.
我校是地处武汉市的民办院校,学生的起点低,差距大,教师的教学能力和教学方法都有待提高.以往我们对概率论与数理统计课程的教学方法的改革不够重视,特别是民办高校面对新的形式对概率论与数理统计教学实质性改革很少,盲目模仿公立学校(一本、二本大学)甚至综合性大学的教学模式,传统教学方法制约培养新型人才.
下面结合笔者在民办院校的教学经验和心得,浅谈一下民办院校概率论与数理统计这门课的教学.
1.更新教材内容
民办高校自成立以来,概率论与数理统计教学定位不适当,基本照搬公立学校一本和二本甚至综合性大学的教学方法,没有结合民办学校的特点,内容偏多偏深,理论复杂;大多数教材内容和教师授课一般都存在重理论轻实践,针对民办高校的教材还比较少.而我校在内容偏多偏深的问题上,实施课程内容与体系结构的改革,选择合理的教学内容与结构体系,注意化解理论的难度,并适时编写出了《概率论与数理统计》教材,该书为“十二五”规划教材,系同济大学出版社出版.该书在不影响课程体系完备的情况下适当减少概率论部分的理论性和难度,从直观、趣味性和易于理解的角度介绍概率论的基础知识.对于公式用直观明了的例子引入,如用一个求概率的例子(已知袋中有5只红球,3只白球,从袋中有放回地取球两次,每次取1球,设第i次取得白球为事件Ai(i=1,2),求P(A1),P(A2), P(A2|A1),P(A2|A1))引出事件的独立性的定义,也教给了学生分析问题的方法.在讲数字特征时从已知40名学生的概率统计成绩及得分人数,通过求学生的平均成绩,推出数学期望的定义,切实结合现实例子.对于数理统计部分更注重统计方法的基本思想和原理,尽量用直观通俗的方法阐述,和实例结合起来讲解.比如极大似然法,如果说极大似然估计就是通过样本值X1,X2,…,Xn来求得总体的分布参数,使得X1,X2,…,Xn取值为x1,x2,…,xn的概率最大,这样讲会让学生觉得好难,不想接着往下听了.但换一种讲法,先举个例子(某同学与一位世界游泳冠军一起去漂流,结果发生了一次倾翻, 其中一位将另外一位给救了, 试猜测是谁救人的?)说明,学生的兴趣就提起来了,开始相互讨论.
2.运用多媒体辅助教学
多媒体教学与传统的“黑板+ 粉笔”教学有着不可比拟的优势.利用多媒体教学可以节省板书时间,又可以加大信息量,开阔知识面,提高教学效率.另外,概率论与数理统计是研究随机现象统计规律性的学科.既然是统计就需要进行大量重复的实验,这在本来课时就很紧的课堂上是很难实现的.将大量的理论知识做成幻灯片播放,把必要的图形、声音、图像结合起来传递重要的教学内容,还可以将一些案例生动地描述出来,这样就节省了大量的宝贵时间.另外,根据教学中大量计算和模型分析的需要,充分利用数学软件如Mathematics、Matlab、Excel、 Lingo 及SPSS 软件等来进行图形描绘和数据分析,这样就使比较难懂、晦涩的内容形象化、直观化,有效刺激学生的形象思维,提高学习效率.
3.引入数学史和数学文化
任何一门课程,了解它的发展史对于学习和掌握该课程的思想方法都有着深刻的意义.在上课中适当讲解数学史和数学文化,介绍中外数学简史、人物传记、重要例证及数学发展对科学技术的影响,使学生在较短时间内对中外数学发展脉络,部分数学名家的传奇人生,重大科学成就的发展历程有一定的了解,能起到开拓学生的知识视野,调节提高学生情绪和听课兴趣,吸引学生的注意力.如我在讲解概率的公理化定义时,首先引入频率,用频率解释为概率提供了经验基础,但是不能作为一个严格的数学定义,从概率论有关问题的研究算起,经过近三个世纪的漫长探索历程,人们才真正完整地解决了概率的严格数学定义.1933年,苏联著名数学家柯尔莫哥洛夫,在他的《概率论的基本概念》一书中给出了现在已被广泛接受的概率的公理化体系,第一次将概率论建立在严密的逻辑基础上.然后我就简单介绍了柯尔莫哥洛夫.柯尔莫哥洛夫建立了在测度论基础上的概率论公理系统,奠定了近代概率论的基础,他也是随机过程论的奠基人之一.1980年由于他在调和分析、概率论、遍历理论等方面的出色工作获沃尔夫奖.此外,他在信息论、测度论、拓扑学等领域都有重大贡献.他的工作为数学的一系列领域提供了新方法,开创了新方向,揭示了不同数学领域间的联系,并提供了它们在物理、工程、计算机等学科的应用前景.这样就吸引了学生学习概率定义的兴趣.在“概率统计”教学过程中,注意这些知识背景的补充介绍,可以让学生了解前后知识的联系,同时也在无形之中向他们灌输了研究问题的思想方法.对概率统计学发展史的了解,不仅丰富了学生的数学史知识,更重要的是,了解这些知识使他们能更好地理解课程内容之间的内在联系,学习的时候不再孤立地看待这些知识点,从而对概率统计知识有一个整体的认识.
4.融数学建模思想方法于教学之中
由于数学模型可以预计和分析与所研究事物相关的规律性问题,因此数学建模已经完全融入到科学研究的各个领域.概率模型是数学模型中非常重要的一种.将数学建模的思想和方法有机地融入到概率统计的教学中去,对于学生创造力、想象力、观察力、抽象思维及实践能力的培养是十分有利的.我们学校自2006起就开设了全校的数学实验和数学建模选修课程,将数学建模、各种相关数学软件和统计软件(Mathematics、Matlab、Excel、Lingo 及SPSS)的使用也恰当地融入课程教学内容当中.通过引入具体实例使学生掌握数学建模基本思想、基本方法、基本类型.通过对数学模型概念、特征的学习和数学模型应用实例的介绍,培养学生分析、解决实际问题的能力, 熟练运用计算机的能力,联想、洞察、综合分析能力.通过这些案例教学,学生亲身体验了使用概率统计知识的数学建模的过程,加深了对概率统计知识的理解,增强了应用意识和学习兴趣,同时也促进了学生主动学好概率统计课程理论知识的积极性.运用数学建模的思想,还可以把复杂的统计理论讲得具体生动和易于理解掌握.通过建立数学模型,运用SPSS参与教学则可以把这类复杂的统计计算变得轻松自如,提高了学生学习的自信心和兴趣,同时为他们今后的科研提供了一种先进的数据处理和分析方法、手段.并以每年的“全国大学生数学建模竞赛”为依托,强化利用相关数学软件来进行数学建模.目前我校自2006年参加全国大学生数学建模竞赛以来,获得过全国二等奖5次,湖北省一等奖2次,湖北省二等奖6次,湖北省三等奖5次,在同类院校中是出类拔萃的.这样既提高了学生的兴趣,又提高了教师的知名度,更加引起了学校对数学的重视程度.
【参考文献】
[1]杨叔子.文理交融打造“数学文化”特色课程[J].数学教育学报,2011,20(4):7.
[2]龚克.全国高校数学文化课程建设研讨会开幕致词[J].数学教育学报,2011,20(4):1.
中图分类号:G642 文献标识码:A
生物信息学(Bioinformatics)是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量生物数据所包含的生物学意义。它随1990年人类基因组计划(HGP)的实施和信息技术的发展而诞生,现已迅速发展成为当今生命科学最具吸引力和重大的前沿领域,为生物学、计算机科学、数学、信息科学等专业的高素质人才提供了更广阔的发展天地。
概率论与数理统计不仅是生物信息专业的基础课程,同时也是很多理工院校的基础课程。它研究随机现象及其统计规律性的一门数学学科,其理论方法独特、抽象,既有严密的数学基础,又与众多学科有着密切的联系[1]。它并不是由理论到理论简单推衍,而是从实践中获得,扎根于实际问题当中,因此有很强的生命力。随着社会的飞速发展,新的科技产品不断涌现,现已进入了信息化的时代。为了更好的理解客观物质世界,人们必须学会处理好各种信息,尤其是对数字信息收集、整理和分析,这就离不开概率论与数理统计,概率论与数理统计越来越备受关注,在现实应用中越来越广泛,现已广泛应用于生物、工程技术、经济管理、金融、国防、环境等领域[2]。随着科学技术和知识更新速度的不断加快,传统的教学思路必须进行改革,以适应新形势发展的需要。
概率论与数理统计的传统教学,大部分时间都在讲解概率论方面的基础知识,再加之学时有限,统计方法知识所用时间甚少,这样导致概率论与数理统计变成了枯燥的理论课,并没有体现出它应有的实际应用价值,这不符合国家对创新性人才培养的要求。作为高校教师,必须上好概率论与数理统计这门课,要提高概率论与数理统计的教学效果,培养学生创新性思维,增强学生应用理论解决实际问题的能力。教学中我们要注重以下环节。
1 合理分配概率论内容和数理统计内容的学时
根据专业学生的培养方案,合理分配概率论学时和数理统计学时,制定行之有效的教学大纲和教学日历。目前教学的重心偏向于概率论,涉及到的数理统计学时较少。这显然不符合高校培养高层次人次的要求。将概率论内容直观的、通俗易懂的语言讲授给学生,把概率论作为数理统计的基础知识去讲授。在讲解数理统计知识的时候,不但要介绍其原理和思想方法,还要介绍数理统计的各种软件的功能及应用[3]。同时安排学生上机实验,提高学生解决实际问题的能力。
2 提高教师自身的人格魅力,增强教师自身的知识底蕴
作为教师,我们首先得热爱这个工作,保持十足的热情去工作。让学生感觉每天都是乐观的,生活都是美好的。我永记我国大教育家陶行知先生说过的:“你若把你的生命放在学生的生命里,把你和你学生的生命放在大众的生命里,这才算是尽了教师的天职”。教师的道德是教师的领魂,师爱是教师的灵魂,爱学生则是师爱的最好体现。教师和学生是平等的,只不过是暂时的教与学之间的关系,把学生看成自己的孩子一样去关爱,多传递学生正能量,为他们树立正确的人生观、价值观和世界观,不愧“人类灵魂工程师”的赞誉。
人们常说要给学生一碗水,教师必须得有一桶水。所以要想教好概率论与数理统计这门课,必须对所有的概率论与数理统计方面的书籍内容以及课后习题的解答都熟知。同时还要熟练掌握各种统计软件的安装及其使用,尤其是各种统计软件的实际应用范围。
3 板与多媒体相结合,提高教学效率
教学中不能一味的写板书,也不能一味的应用多媒体,多媒体不要放的太快,要看学生的理解程度,要采用板书与多媒体教学有机结合。概念方面的知识、例题、动画等用多媒体演示即可,以节约时间,加大课堂教学的信息量,开拓学生的视野。通过计算机动画模拟、图形显示、数值计算等,使抽象的内容更加直观、形象、生动,激发学生的创新思维,体现学生在教学过程的主导作用,提高教学效率。
4引入案例讨论式教学方式,培养学生解决实际问题能力
案例讨论式教学法是教师根据教学目的,在课堂这一特定的教学环境中,教师提供真实的案例,将学生分成4至6人一组,让学生融入案例的场景,并在教师指导下,各组围绕这个案例主动学习、发现问题、提出问题,通过师生之间、生生之间相互交流,共同探讨、展示结果。他强调以学生为主体,为培养学生的自主学习能力、实践能力和创新能力为目的。
案例是实现案例教学的载体,是为完成一个教学目的而设置的。所以案例的选取尤为重要,必须考虑本课程的特点和学生的知识结构,难易适中,体现出概率论和数理统计的知识点[4]。通过案例的学习,使学生进一步理解概率论和数理统计的内容,掌握各种检验法及其在实际中的应用。通过讨论式方式解决问题可以增强学生的团队意识和责任意识。案例讨论式教学培养了学生解决实际问题的能力。
5 结合专业人才培养计划进行教学,真正做到学以致用
每个专业的最终目标都是为本专业培养优秀的人才,生物信息专业也是本着这个原则。概率论与数理统计这门课程也应该在教学中体现出这一点,因此这要求教师在教学中将理论内容与专业相结合,让学生明确课程的学习目的和意义。
总之,生物信息专业的《概率论与数理统计》课除了教师具有丰富的知识和人格魅力,采用合适的教学方法和手段外,教师也应该具有较强的专业科研背景,将学生深入浅出的代入概率论与数理统计的学习中,并在教学中不断进行专业内容渗透,激发学生的学习兴趣,提高教学效果。
参考文献
[1] 肖 鹏,杜燕飞.概率论与数理统计教学改革的几点思考[J]. 数学教学研究,2009,28(1):60-61
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)13-0110-02
对于概率论以及数学统计这一课程,课时安排的比较少,教学内容枯燥抽象,导致大部分学生都缺少学习这门课程的兴趣,学习成绩并不理想,因此,将模型的思想引入到概率论以及数学统计教学中,能够有效激发学生的学习兴趣,将理论知识还原于实践,丰富教学内容,提高教学效率。
一、将数学建模的基本思想融入到概率论以及数学统计教学改革的必要性
想要用基本的数学方法解决现实中的实际问题就需要建立有效的数学模型。虽然传统的数学教学拥有完善的教学体系,但是却忽略了数学的来源,只是一种封闭的系统,这种教学存在一定的缺陷。在数学教学中融入数学建模的思想,开设相应的数学实验或是数学建模的教学课程,促进学生在学习的同时体会到知识被发现以及创作的过程。如今,随着教育的不断改革,已经有多个院校将数学建模的基本思想融入到了数学的分支学科中。在教育不断改革的背景下,许多院校都开始扩招大学生,但是却要面临学生毕业后就业难的现状,在大学教学中的概率论以及统计课程的相关教学,不能仅停留在数学定义和各种公式的传授,而是在学生学到基本的数学概念以及结论的同时,学会数学的思维方法,体会到数学的内在含义,了解数学知识具体的来龙去脉,受到数学文化的熏陶。因此,应该在数学的教学中,让学生体会到数学知识的真正魅力,并不只是停留在数学枯燥乏味的公式上。目前,虽然很多的院校都开设了数学建模的相关课程,但是,如果不能将数学建模的基本思想融入到概率论以及数学统计的课程中,将无法发挥数学建模思想在数学学科中的重要作用。因此,将数学建模的基本思想融入到概率论以及数学统计的相关教学中具有重要的意义,也是教学改革的必然趋势。
二、将数学建模的基本思想融入到概率论以及数学统计的教学课堂上
1.教学课堂中注重实例的讲解。概率论以及数学统计这门课程具有较强的实践性,因此,在教学课程上,教师需要在教学的基本内容中加入更多的实例教学,帮助学生理解这门学科的基本知识点,加深学生对基本理论的记忆。例如:在讲概率学中最基本的加法公式时,加入数学建模的基本思想,利用俗语“三个臭皮匠”的相关内容作为教学实例。俗语中有三个臭皮匠的想法能够比的上一个诸葛亮,意思就是说多个人共同合作的效果比较大,可以将这种实际中的问题引入到数学概率论的教学中,从科学的概率论中证明这种想法是否正确。首先需要根据具体的问题建立相应的数学模型,想要证明三个臭皮匠能否胜过诸葛亮,这个问题主要是讨论多个人与一个人在解决问题的能力上是否存在较大的差别,在概率论中计算解决问题的概率。用c表示问题中诸葛亮解决问题的能力,a■表示其中i(i=1,2,3)个臭皮匠解决问题的能力,每一个臭皮匠单独解决问题存在的概率是P(a■)=0.45,P(a■)=0.6,P(a■)=0.45,诸葛亮解决问题存在的概率是P(c)=0.9,事件b表示顺利解决问题,那么诸葛亮顺利解决问题的概率P(b)=P(c)=0.9,三个臭皮匠能够顺利解决问题的概率是P(b)=P(a■)+P(a■)+P(a■)。按照概率论中的基本加法公式得■=■(a■+a■+a■)=P(a■)+P(a■)+P(a■)-P(a■a■)-P(a■a■)-P(a■a■)+P(a■a■a■) 解得P(b)=0.901。因此,得出结论三个臭皮匠顺利解决问题存在的准确概率大于90%,这种概率大于诸葛亮独自顺利解决问题的概率,提出的问题被证实。在解决这一问题过程中,大部分学生都能够在数学建模找到学习的乐趣,在轻松的课堂氛围中学到了基本的概率学知识。这种教学方式更贴近学生的生活,有效的提高了学生学习概率论以及数学统计这一课程的兴趣,培养学生积极主动的学习。
2.课设数学教学的实验课。一般情况下,数学的实验课程都需要结合数学建模的基本思想,将各种数学软件作为教学的平台,模拟相应的实验环境。随着科学技术的不断发展,计算机软件应用到教学中已经越来越普遍,一般概率论以及数学统计中的计算都可以利用先进的计算机软件进行计算。教学中经常使用的教学软件有SPSS以及MABTE等,对于一些数据量非常大的教学案例,比如数据模拟技术等问题,都能够利用各种软件进行准确的处理。在数学实验的教学课程中,学生能够真实的体会到数学建模的整个过程,提高学生的实际应用能力,促进学生自发的主动探索概率论以及数学统计的相关知识内容。通过专业软件的学习和应用,增强学生实际动手以及解决问题的能力。
3.利用新的教学方法。传统数学说教式的教学方法并不能取得较高的教学效果,这种传统的教学也已经无法满足现代教学的基本要求。在概率论以及数学统计的教学中融入数学建模的基本思想并采用新的教学方法,能够有效的提高课堂教学效果。将讲述教学与课堂讨论相互结合,在讲述基本概念时穿插各种讨论的环节,能够激发学生主动思考。启发式教学法,通过已经掌握的知识对新的知识内容进行启发,引导学生发现问题解决问题,自觉探索新的知识。案例教学法,实践教学证明,这也是在概率论中融入数学建模基本思想最有效的教学方法。在学习新的知识概念时,首先引入适当的教学案例,并且,案例的选择要新颖具有针对性,从浅到深,教学的内容从具体到抽象,对学生起到良好的启发作用。学生在学习的过程中改变了以往被动学习的状态,开始主动探索,案例的教学贴近学生的生活学生更容易接受。这种教学方法加深了学生对概率论相关知识的理解,发散思维,并利用概率论以及数学统计的基本内容解决现实中的实际问题,激发了学生的学习兴趣,同时提高了学生解决实际问题的综合能力。在运用各种新的教学方法时,应该更加注重学生的参与性,只有参与到教学活动中,才能够真正理解知识的内涵。
4.有效的学习方式。对于概率论以及数学统计的相关内容在教学的过程中不能只是照本宣科,而数学建模的基本思想并没有固定不变的模式,需要多种技能的相互结合,综合利用。在实际的教学中,教师不应该一味的参照课本的内容进行教学,而是引导学生学会走出课本自主解决现实中的各种问题,鼓励学生查阅相关的资料背景,提高学生自主学习的能力。在教学前,教师首先补充一些启发式的数学知识,传授教学中新的观念以及新的学习方法,拓展学生的知识面。在进行课后的习题练习时,教师需要适当的引入一部分条件并不充分的问题,改变以往课后训练的模式,注重培养学生自己动手,自己思考,在得到基本数据后,建立数学模型的能力。还可以在教学中加入专题讨论的内容,鼓励学生能够勇敢的表达自己的想法和见解,促进学生之间的讨论和交流。改变以往教师传授知识,学生被动接受的学习方式,学会自主学习,自主探究,勇于提出自己的看法并通过理论知识的学习验证自己的想法。有效的学习方式能够调动学生学习的积极性,加深对知识的理解。
5.将数学建模的基本思想融入课后习题中。课后作业的练习是巩固课堂所学知识的重要环节,也是教学内容中不可忽视的过程。概率论统计课程内容具有较强的实用性,针对这一特点,在教学中组织学生更多的参与各种社会实践活动,重在实际应用所学的知识。对于课后习题的布置,可以将数学建模的思想融入其中,并让这种思想真正的解决现实中的各种问题,在实践中学会应用,不仅能够巩固课堂学到的理论知识,还能够提高学生的实践能力。例如:课后的习题可以布置为测量男女同学的身高,并用概率统计学的相关知识分析身高存在的各种差异,或者是分析中午不同时间段食堂的拥挤程度,根据实际情况提出解决方案,或者是分析某种水果具体的销售情况与季节变化存在的内在关系等。在解决课后习题时,学生可以进行分组,利用团队的合作共同完成作业的任务,通过实践活动完成训练。在学生完成作业的过程中,不仅领会到了数学建模的基本思想,还能够将概率统计的相关知识应用到实际的问题中,并通过科学的统计和分析解决实际问题,培养了学生自主探究以及实际操作的综合能力。
综上所述,将数学建模的基本思想融入到概率统计教学中,有效的提高了学生学习数学的兴趣,有利于培养学生利用所学的课本知识解决现实问题的能力。随着信息时代的不断发展,随机想象的相关理论知识逐渐被广泛应用,概率论以及数学统计课程的学习也变得越来越实用,在概率统计中加入数学建模的基本思想,让学生充分体会到概率统计具有的实用性,并加深对基本概念的理解和记忆。随着教学内容的不断改革,这种教学方式也在实践中不断的完善,将概率统计的教学内容与实际生活相互联系,培养学生解决问题的能力。
参考文献:
[1]马冉,姬玉荣.数学建模思想在概率统计教学中的融入[J].数学学习与研究(教研版),2010,(1).
中图分类号:G642 文献标识码:A 文章编号:1673-9795(2014)02(a)-0219-01
随着中国经济的发展,人才需求的多样化,高等教育必须有以前的精英教育转向大众化教育,许多地方本来院校逐渐转变为应用型本科院校,主要服务于地方,为区域化的生产,建设培养人才!应用型本科院校与以前的一些院校不同,它的核心在于“应用”。概率论与数理统计这门课程是应用型本科院校必须学习的一门课程,在自然科学,社会领域都有广泛的应用。同样在发达国家,概率统计也是高等院校必须学习的一门课程。概率论与数理统计与传统的数学如高等数学,线性代数不一样,它是研究随机现象的一门学科,有着鲜明的实际应用背景。国内许多学者对概率论与数理统计的教学做了研究[1~4],他们的研究主要是针对传统院校的概率论与数理统计的教学。对于新兴的应用型院校的概率论与数理统计教学涉及不多。本文我们根据自己的教学经验,对概率论与数理统计教学提出几点建议。
1 改革课程教学内容
对于应用型大学的学生来说,重点是如何用。所以对于概率统计教材中的一些定理的证明,在教学中只要学生能掌握定理的来源以及思想即可,详细的证明不要求掌握。同时在教学的时候,不应过多的注重于复杂的概率的计算,而应该强调这些概率计算背后的直观意义和模型的实际背景,让学生知道模型化的思想方法以及概率思想方法是如何体现出来的。同时我们在教学的过程中注重引入一些反映社会生活的一些实际问题,比如产品质量评价,保险赔付等,使学生知道如何运用概率论与数理统计的知道去解决实际的问题。让他们知道他们学习的知识有用,这样他们就有兴趣去学习,让他们由被动学习转换为主动学习。
2 重视数理统计的教学
目前许多应用型本科为了培养学生的专业技术应用能力,增加了实践性教学环节,从而概率论与数理统计的教学学时被缩减,以我们学校为例,一般只有48学时。所以大部分课时都用于概率论教学,统计内容介绍较少,基本上统计部分只能上到矩估计和极大似然估计,而比较有用的假设检验、方差分析、回归分析就不讲了。所以事实上应用部分基本上就不讲了,这样学生拿到数据也不知道怎么用。现实生活中到处都充满着数据,可以说那里有数据,那里就有统计。它已经广泛的应用于工业,经济,军事和气象等领域。我们可以看到统计在实际生活中是如此有用,所以我们在教学中,应该适当减少概率论部分分理论和难度,一些不是很重要的章节可以少讲,比如一些复杂概率计算,复杂的数字特征的计算。把概率论作为统计的基础知识介绍,留更多的实际去介绍统计部分的知识。对于统计部分的教学,应该增加统计推断方面的内容,介绍这些方法的统计思想,注重学生提取数据,处理数据的能力,这也符合应用型院校的培养目标。
3 融入数学建模思想,提高学生的应用能力
概率论与数理统计是实践性比较强的一门学科。在教学过程中,应增加应用案例的建模教学,从而让学生掌握利用概率统计知识进行数学建模的全过程,即实际问题建立模型。通过案例的学习,学习亲自体验了数学建模和软件编程的计算过程,这样学习能更好的理解概率统计方法在实际中的应用。比如我们在数理统计矩估计和回归分析部分,传统的教学主要讲解估计的理论,花很多的时间去推导理论,而软件实现基本上不提。但是如果通过引入统计软件来对问题进行求解,这样更直观,同时会收到更好的效果。
4 改变考核方式
考核是教学过程的一个重要环节,是检验学生学习的情况和老师教学的质量。传统的考核方法主要是期末闭卷考试,然后总的成绩是平时成绩加上期末的成绩。由于期末考试是闭卷考试,学生花了许多时间去复习一些知识点,死机硬背,对一些应用性的东西根本不管。这样一来学生也只会记,而不会用。这显然不符合应用型大学的培养目标。
我们认为有必要对考核方法进行改革。主要包括以下方面:(1)平时作业占40%,但是平时作业不再全是书上后面的习题,对于统计部分许多内容,让学生走出课堂,去或得数据,然后应用他们得到的数据来分析数据,然后提交一个调研报告。(2)期末考试占60%,概率论与数理统计分开来考。概率论部分仍然采取闭卷考试,考查学生对一些基本概念的理解和掌握以及一些基本的运算。对于统计部分,我们采取开卷考试,我们把社会上一些实际的问题,让他们来解决,这个考试分为几个小组让他们共同解决。这样不但了考试了他们对统计基本知识的掌握,同时也考查了他们如何用统计知识来解决问题,更重要的一点事这样要考查了他们团队合作的能力。
参考文献
[1] 郝香芝,田贵辰,赵永强,等.概率论与数理统计学改革研究[J].石家庄学院学报,2009(3):109-112.
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)10-0152-01
概率论与数理统计是高等学校理工科专业的一门重要工程数学课程,也是应用性极强的一门学科,其理论和方法的应用几乎遍及自然科学、社会科学、工农业生产和国民经济各个领域。因此,概率论与数理统计的学习就显得非常重要,然而很多学生在初学这门课程时感到很多知识难以理解和掌握,学习效果欠佳。为解决这样的问题,培养学生对随机现象的理解及对概率的直觉,提高学生的数学修养及严密的思维能力,我们在概率论与数理统计课程教学理念和方法上进行了一些探讨和研究。
一、数学方法的培养
数学方法的掌握与数学能力的形成紧密相关,所以怎样进行数学方法的培养就是个值得研究的课题。
如何加强数学方法的培养,我们认为应该特别注意以下几点:
1.从思想上提高对数学方法培养的认识,把学生掌握数学知识和掌握数学方法都纳入教学目的。这不是出自形式的考虑,是为了从总的方面不会忽视培养数学方法的教学,促使在备课、讲课过程中都要注意到培养学生掌握应用数学方法的能力。
2.备课时既要注意数学知识也要注意数学方法;数学知识,如概念、定理、公式,都明显地写在教科书上,不会被人忽视,而数学方法如同有机体中的生命现象、化学元素的性质等,是无形的东西。我们要提倡老师在备课时要注意有关的数学方法,留意从知识中发掘,提炼出数学方法并明确的告诉学生,阐述方法的作用,引起学生思想上的重视。例如契比雪夫不等式的证明,不能停留在证完题就了事的地步,也要告诉学生,把原来不明显的不等式,一步一步转化成明显的或已知的不等式,是证明不等式的基本思想方法。证明不等式的求差法、求比法、放缩法、利用著名不等式法等等,都是符合这种基本思想方法的。
3.运用对比手法显示方法的优越性。例如已知随机变量X的密度函数为f(x)=■e■,-∞
4.互相关联、前后照应,注意同一方法在不同教材内容中的作用。有些教学方法,如换元法、特殊值法、待定系数法,不只是使用于某段特定的教材内容,而是适用许多不同性质的问题。在不同性质问题的解决中,遇到了相同的方法,就可以加深对这种方法作用的认识,提高运用方法的技巧。
5.对不同类型的数学方法应有不同的教学要求,采取不同的教学方法。对宏观性的数学方法,应着重理解期思想实质,认识到它们的重大作用。例如常见的三种对单个正态总体参数的假设检验,我们主要是让学生根据题目(看题目要求是对哪个参数进行假设检验)选择统计量从而进行假设检验,要求学生从宏观的角度来对此类题目的方法来进行学习,并且加以应用。
二、如何组织学生
我们要求数学教师成为学生群体和个体参与数学教学过程的引导者、创造性思维的激发者、有效学习的调控者和良好学习条件的提供者、从事教学活动的组织者。因此,组织学生不仅要约束、控制学生的不良行为,更重要的是要组织学生从事积极的学习活动,提高数学学习的效率。
组织学生的几个关键字是:策划、调控、慎惩、公平。
1.教师策划可预见的课堂规则和惯例,安排清楚连续、节奏明快的教学程序,授课时注意提高课堂教学效率,让学生在学习的过程中感到学习充实,信息量大,这样学生都投入的紧张而有意义的学习活动中,也就不去违纪了,例如玩手机,上网等。
2.创设适合学生的物质和心理的课堂学习环境。比如:合理的座位安排、学习小组的划分、课后兴趣小组的讨论等等,这样可以预防一些问题的产生
3.在课堂教学中教师应正确导向,用强化的策略督促学生维护课堂规则,养成良好的学习习惯。要善于调控、正面引导,将学生的情绪调整到有利于激发思维,参与到有趣或富有挑战性的学习活动的状态上来,建立良好的师生关系,教师要充分调动学生的情感和意志这些精神需要。
4.教师应当公平对待所有学生,一视同仁。切忌偏爱学习成绩好的学生而忽视差生。要深入了解学生的心理,教师的教学行为方式对课堂教学有着明显的影响,分析其相关的因素和采取相应的策略,对提高教师的课堂教学技能有重要意义。
高校学生在学习概率论与数理统计课程时,因为思维方式和概念都跟高等数学有很大不同,特别是初次接触统计学时,一般都认为这门课程是枯燥、复杂、无趣的。我们在教学过程中要着重培养学生的兴趣和实践创新能力,提高学生运用数学理论知识解决实际问题的能力,从而改善教学效果。
参考文献:
[1]胡细宝,王丽霞,概率论与数理统计,第2版,北京邮电大学出版社,2005.
[2]傅丽芳,邓华玲. 高等院校概率论数理统计课程分级教学的实践与思考,大学数学,2008,24(1):13-16.
作者简介:牛银菊(1965-),女,甘肃甘谷人,东莞理工学院计算机学院,副教授。(广东 东莞 523808)
基金项目:本文系东莞理工学院教育教学改革与研究重点资助项目(项目编号:2012-4)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)04-0073-02
“概率论与数理统计”是工科专业学生的基础必修课程,在各个行业用处很广,但在实际的教学中仍存在一些问题。例如,教学内容上没有足够重视理论在工程应用中的作用;教学手段和教学方法单一,基本上按照教材、大纲采用注入式教学;教学效果和侧重点上重视计算方法,轻视数学概念、思想方法,结合实际领域不广泛,导致学生在实际问题中无从下手。[1,2]针对以上不足,下面以培养学生的创新能力为目的,从教学内容的调整、教学方法的改革以及教学管理措施的完善等三方面谈谈自己对“概率论与数理统计”教学的一些见解,以待与同仁商榷。
一、教学内容的调整
1.教材建设
“概率论与数理统计”是应用性非常广泛的学科,若沿用以前的教学大纲与教材,就会束缚教师的教学过程及教学思想,亦会缺乏时代性与先进性。为适应社会发展与科学进步,培养出满足社会需求的合格型人才,张忠志教授等根据本校学生的实际情况和课时数,编写了适合本校工科各专业的《概率论与数理统计》教材。[3]该教材以较多的实例引出“概率论与数理统计”的基本概念和公式,揭示其直观背景和实际意义,减少了一些烦琐的定理证明和公式推倒,使学生易学好懂,该教材在东莞理工学院2009级、2010级连续应用两年,得到了同行的认可。
2.侧重点调整
问卷调查表明:概率论部分的有关计算,中学已作为掌握内容讲过。由此可见,这部分内容从课时数及选用上需进行调整,不宜讲得过细、过透,要略讲,否则不仅造成内容的重复,使学生失去新鲜感,从而丧失对该课程学习的兴趣,更谈不上对学生创新能力的培养。而分布函数、概率密度函数、数理统计的概念等均为新内容,多数学生接受起来较慢,这无疑需要教师寻找解决难点的突破口。下面以离散型随机变量概率分布函数的求法为例,予以说明。
例:将一个质地均匀的骰子投掷一次,用X表示子朝上的点数,试写出X的分布函数。
解:第一步,让学生求出随机变量X的取值及取值的概率,见表1。这一点很简单,可引导学生自己完成。
第二步,具体求出分布函数是这道题的难点,只要紧扣对分布函数定义的分解,并用语言解释去完善该定义,学生就会很方便地求出F(X)。笔者是这样讲解的:先让学生明确函数的定义域是整个数轴,它被随机变量X所取的值分成7部分,相应的就是分段函数,然后解释分布函数定义的表达式,即表示,随机变量取小于等于x的概率,就是函数在小于等于x这个区间内、自变量x对应的函数值。如,求时函数对应的函数值,只需求出随机变量取值时的概率0(即时,)。同理,可以求出其他各段上对应的值。
对于概率论部分定理的证明,只需介绍思路及所解决的问题,不需写出详细的证明过程,否则会使本来抽象的内容更加抽象,增加学生对这门课程学习的恐惧心和厌恶感。
二、教学方法的改革
1.通过直观感受,激发学生的学习兴趣
“概率论与数理统计”作为一门应用数学课程是非常重要的,凡是有数据处理的地方,都离不开它,尤其在质量管理、计量经济学、保险数学等方面。为了让学生直观感受其重要性,可通过对现实生活中典型问题,如炒股、买彩票是冒风险的事情,人们自然要关心大量的投资是否有利可图、怎样考虑并解决这个问题、怎样估计出现各种不幸事故与自然灾害的可能性等问题,又如在桥牌活动中,经常需要判断某种花色在对方手中的分配等等。通过对类似这样问题解决思路的探讨,得出“从某种意义上讲,这类问题的解决都要用到概率论与数理统计的知识”的结论,让学生在寻找答案过程中既不觉得枯燥,又能激发他们学习的兴趣,将“学以致用”的原则真正体现在教学过程中,真正实现对传统教学方法的改革。
2.结合统计工具,强化与专业相结合的应用
众所周知,数理统计已渗透于工业统计、水文统计、统计物理学等许多领域,如气象预报、产量预报、石油勘探开发、可靠性工程等方面都要用到概率统计的有关知识。为了满足不同专业对“概率论与数理统计”知识的需求,教师应根据学科之间互相依赖、互相渗透、互相促进的原则,在精通数学知识的基础上,针对不同专业的典型问题,触类旁通,开拓思路,注意教学问题与专业应用的转化,达到活学活用的目的,从而提高学生的学习积极性,培养学生的创新能力。例如,对应用化学专业的学生可以提这样的问题:你们做实验,需要花费好多时间,时间长了就会引起厌烦,是否可以测定由于对工作的厌烦影响工作效率?解决这个问题只需测量做这个实验的时间,得出一些数据,依据这些数据,通过假设检验即可得出结论。对工程管理专业的学生可以提这样的问题:在工程测量和工程预算等实际工作中,都会遇到风险问题,对风险系统作定量分析,如何准确地估测风险事故的特征参数,最终获得处理风险事故的最优方案?要解决这些问题,就会遇到大量数据的处理,若能结合统计工具,从各种角度用各种方式去表达一个问题,总结一题多解的方法,通过比较选择最优的处理方法,这样做不仅可以使研究的问题简单化,增加课堂容量,提高课堂教学效率,更能调动学生学习的主动性,提高他们解决实际问题的能力。下面以假设检验——t检验为例,予以说明。
例:某车间加工一种钢板,要求厚度均值为13mm,现从某一天生产的钢板中随机抽取26片,测得厚度如下(单位:mm):13.7、14.5、14、12、14.2、12.9、14.1、13.5、14.4、15、13.7、13.1、12.9、14、13.8、14.2、13.6、15.0、12.8、12.7、13.5、15.2、13.4、12.8、14.3、13.6。问今天生产的钢板厚度的均值与规定的质量分布要求有无显著差异()。
传统解法:(1)计算可得;(2)查表可得,s=0.78;(3)计算得均值μ的置信水平为0.95的置信区间为(0.4110,1.0428);(4)计算得t统计量的值,因4.739没有落在置信区间(0.4110,1.0428)内,则可断定今天生产的钢板厚度不符合质量分布要求。该方法先要判断所选统计量的种类,记住相应统计量及置信区间的公式,会查分布表,准确计算公式中庞大数字的值,这样将大量时间耗费在死记硬背和初等计算上,且有一个环节出问题,就不能得出准确的结论。
统计工具:若利用统计软件SPSS,只需掌握这种软件的使用方法即可。对于上例,只需在菜单中输入样本容量26、总体均值13、置信度0.95等数据,点击“OK”,便可输出t统计量的值4.739、置信水平为95%的置信区间(0.4110,1.0428)。该方法不需要处理庞大的数据,根据输出的值就可判断t统计量是否包括在置信区间内,进而判定今天生产的钢板厚度是否符合质量分布的要求。
总之,如果能根据工科学生的培养目标和专业特点,把相关统计工具应用到讲授“概率论与数理统计”的教学中,可以使内容更生动、更形象、更具有吸引力,从而增强教学内容的趣味性,调动学生学习的积极性。同时,如果学生能结合自己专业的特点把统计学、算法、软件结合起来解决专业问题,可以使学生学以致用,培养他们创新能力。
3.重视切入点的选择,培养学生的应用能力
工科“概率论与数理统计”的教学,教师应选择合适的切入点,具体问题具体分析,从中找出规律性的东西。注意前后知识的联系,把新问题转化为老问题加以解决,让学生掌握解决处理实际问题的一般方法,逐步提高他们分析问题、解决问题的能力。
例如,在介绍点估计这个概念时,先让学生明确点估计是数理统计中几类常见的估计问题之一,所研究的总体服从的分布已知,但总体服从的分布中有未知的参数,然后这个未知参数的确定,是通过抽取样本、用样本的观测值来估计的,根据这一切入点可得出点估计的概念。对假设检验讲解,可从“是否可以认为在两种不同的环境中长大的孩子,其智商得分是不一样的”这一大家关心的问题出发,让学生分组讨论,在答案不一致的情况下,引出假设检验这个课题,以达到培养学生基本数学素养的目的。为了让学生掌握假设检验的思想及方法,可通过“双胞胎分开抚养智商测试”实验的讲解,得出两种环境中长大的孩子智商没有显著差异的结论。在讲解过程中,需抓住“小概率事件在一次实验中几乎不能发生”作为切入点,按照小概率事件与反证法相结合的基本思想,让学生明确假设检验的思路。假设检验的方法可概括为:先提出假设,然后观察会出现什么结果,根据小概率事件在一次试验中几乎不会发生进行推断,如果导致了一个不合理现象,就表明原假设不成立,否则假设成立。为了巩固和加深学生对基本概念、基本理论和常用统计方法的具体应用,可结合工程实例布置适量的具有代表性的练习,以拓展学生的知识面,培养学生的应用能力。
三、教学管理措施的完善
“概率论与数理统计”课程是工科专业的基础必修课,本校的考试形式是期末统考,阅卷方式是流水批阅,成绩总评以期末考试为主,适当考虑平时成绩。学生成绩若不合格,可以在下学期参加补考或毕业前的清考。为了加强对学生的管理,我校从2010年开始取消了补考和清考,采用重修的方式,为避免部分学生因一次考试失误而不能反映其真实水平的现象发生,可对学生的课堂管理方式进行相应的改革。例如,每次上完课后可给学生布置些实际应用的疑难问题,要求学生找出其突破口,在下次课时老师通过提问的方式进行抽查,这样不仅对学生进行了考勤,而且使学生在完成教师布置的任务中体现出了他们的价值,从而将被动上课变成自觉行动,更重要的是可避免学生的逃学现象;另外,可在课程结束时,要求学生根据自己的情况,以小论文或总结报告的形式谈谈应用所学知识解决专业某一问题的思路,为寻求“概率论与数理统计”与工科专业知识的结合点打好基础。对完成上述要求的同学,可以将平时成绩给到满分30分,并直接计入总评,这样不仅达到了督促学生严守校规的目的,还为学生取得优异成绩提供保障,从而减轻学生因考试而产生的心理和精神负担。
四、结束语
评教结果表明:大多数学生认同教师的教学理念,认为本文提出的教学改革措施可以激发他们学习该课程的兴趣、调动他们学习的主动性、培养他们的创造性思维能力以及提高他们的动手能力,同时可为专业课的学习打下坚实的基础。学生的肯定无疑为教师进一步进行教学改革增加了信心。
参考文献: