发布时间:2023-09-26 14:44:48
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇人工智能研究综述范例,将为您的写作提供有力的支持和灵感!
Disrupted resting-state functional connectivity in mild cognitive impairment and Alzheimer’s disease
Abstract: Alzheimer’s disease (AD) is the most frequent type of dementia, including an estimated 60%-80% of all dementia cases. It can be clinically characterized by impairments of memory and other high cognitive functions. Previous studies suggested that these impairments are not only associated with disrupted of brain regions structure and function but with abnormal functional connections among brain regions, leading to a disconnection notion in AD. In this review, we summarize the recent progress of seed-based functional connectivity studies in AD and mild cognitive impairment (MCI,the prodromal stage of AD). These studies open a new window into our understanding of the pathophysiological mechanisms of AD and consider the potential to uncover imaging biomarkers for the clinical diagnosis of this disease.
Keywords:Alzheimer’sdisease;mildcognitive impairment;functional connectivity;functional magnetic resonance imaging
阿尔茨海默病(Alzheimer’s disease, AD),是老年痴呆中最常见的类型,约占所有痴呆患者的60%-80%。临床特点表现为逐渐出现记忆力减退、认知功能障碍、行为异常和社交障碍,最终丧失独立生活的能力。2009年国际阿尔茨海默病协会 (ADI)报告,自2010年起,全世界将有3560万人患有痴呆,20年后这个数字将会成倍地上升,到2030年痴呆人数估计为6570万,到2050年将为11540万 (World Alzheimer Report 2010, )。而这个数字在中国,印度等发展中国家将会上升得更快。轻度认知障碍(mild cognitive impairment,MCI)是介于正常老化与老年痴呆之间的一种临床状态,处于这种状态下的患者具有记忆障碍或其他的轻度认知功能障碍,但保留日常生活功能。MCI向AD的平均年转化率为10%-15%,远远高于正常老年人的年转化率1%-2%,而其5年内的转化率更是达到50%以上。因此MCI是进展为AD的高度危险因素。
近年来,研究者们利用神经影像学数据对阿尔茨海默病患者的结构和功能进行分析,发现AD患者不仅在局部脑区的结构和功能存在异常,在脑区之间的结构和功能连接也存在异常,表明AD是一种脑网络失连接综合征 [1]。静息态功能磁共振成像 (resting-state functional magnetic resonance imaging)是通过测定脑神经元活动引发的血流动力学改变对脑功能活动进行定位的一种非常有前景的非入侵的神经影像学技术。受试者在扫描仪器中不需要完成特定的任务,处于一种清醒的休息状态,并且不能系统的思考问题。Biswal等[2]第一次证实了静息态下血氧水平依赖(Blood oxygenation level dependent,BOLD)信号具有低频波动(low frequency fluctuations LFFs,f
以海马为种子点的研究
AD病理学假说认为AD疾病的产生是因为淀粉蛋白沉积和神经元纤维缠结导致的。有研究表明神经元缠结选择性的损害海马区域[4]。因此,神经元的损伤可能导致海马与其他区域的功能失连接。Wang等[5]用双侧海马前部为种子点分析了AD患者的功能连接,他们发现AD患者右侧海马区域与内侧前额叶,腹侧前扣带,楔叶,楔前叶,后扣带和右侧颞下功能连接降低。该研究发现的与海马连接降低的区域,包括内侧前额叶,腹侧前扣带和后扣带,都是默认网络的经典区域。因此这一结果支持了AD患者是默认网络活动减低的观点。AD患者降低的海马与视觉区域的连接表明降低的海马相关网络的整合。该研究也发现在AD患者中左侧海马区域与右外侧前额叶的功能连接增加。增加的连接提示可以为一种功能连接代偿的机制。2007年,Allen等[6]做了相似的研究同样以双侧前海马为种子点,发现AD患者有显著降低的功能连接,包括与额叶不存在直接的连接。但没有发现海马连接增强的区域。2012年,Kenny等[7]发现AD组左侧海马与右侧脑岛和顶下区域的功能连接增加,但没有发现海马连接降低的区域。这三篇AD的研究结果有一定的矛盾性,两篇研究发现左侧海马有增强的功能连接,但是Allen却仅仅发现降低的连接。这一矛盾的结果可能由于被试量的大小,被试病程的不一致性导致的。种子点的选取的不一致性也可能导致不一致的结果。有研究表明海马是解剖非匀质的结构,可以分为不同的子区域包括海马角,齿状回和海马下托复合体[8]。AD相关的研究发现不同的海马子区域AD患者的结构和功能损伤不一致。因此,将来的大样本的特定的AD疾病时期的海马功能研究需要发展,不同海马子区域的功能连接异常模式也需要更全面的研究。2011年,Wang等[9]同样用双侧海马为种子点研究了MCI患者的功能连接,发现双侧海马与双侧颞叶,右侧额叶和右侧脑岛的功能连接在MCI组降低。同时,与左侧后扣带,楔前叶,海马,尾核以及右侧枕叶的功能连接在MCI组增加。同一年,Bai等[10]人用海马不同的子区域研究了MCI患者纵向数据的功能连接异常,发现六个纵向的海马子区域功能连接网络在MCI患者中呈现相似的改变模式,主要是与内侧额叶,外侧颞叶,岛叶,后扣带回和小脑的功能连接异常。
以后扣带回为种子点的研究
病理组织学研究,结构和功能影像学研究一致地表明后扣带回是AD病理生理学的核心区域[11, 12]。2009年,Zhang等[13]用后扣带为种子点发现AD组后扣带回与左侧海马,右侧丘脑,双侧视觉,腹内侧前额叶和楔前叶等功能连接降低,与左侧额顶区域的连接增加。Kenny等[7]以后扣带回为种子点却没有发现显著地组间功能连接差异。2010年,Zhang等[14]以后扣带回为种子点研究了功能连接随着AD病程的改变,发现AD组后扣带回与视觉区域,海马,内侧前额叶和楔前叶的连接显著降低,且这种降低强度随着病程进展增加。这一研究结果与Zhang的结果是一致的。2014年,Xia等[15]研究了AD患者后扣带回不同子区域的功能连接,发现不同的子区的功能连接在AD组都有显著地降低,且这些降低与认知功能的下降相关。2011年,Han等[16]发现MCI组后扣带回与眶额,右侧额中回,右侧尾核等功能连接降低,与右侧额下回,左侧梭状回和中央前回的功能连接增加。Bai等[17]人研究了遗忘型MCI患者后扣带回的功能连接,发现遗忘型MCI患者后扣带回与颞叶的功能连接降低但是与额叶的功能连接增加。
问题和未来方向
目前。静息态种子点功能连接研究在阿尔茨海默病及轻度认知障碍中已经得到大量的研究。尽管如此,为了静息态种子点功能连接研究在今后能够应用于MCI的诊断和AD的早期识别以及治疗监测中,被试的样本量仍需要扩大,在实验设计和方法学上还存在诸多问题有待研究。
1. 已有的研究仍然用的小样本量,随着现在磁共振成像技术的广泛应用,我们需要采用大样本量且均质的AD数据。这样能增加结果的可信度。
2. 由于AD临床起因依旧不是很清楚并且AD的病情呈现出进行性加重,目前仍无法根治且治疗效果也不是很好,所以寻找出AD早期改变的生物学标记是进行早期诊断和及时干预的关键举措,除了将AD的研究提前到MCI期以外,对AD风险人群(如APOE ε4携带者)的种子点功能连接的研究也是一个很重要的研究方向。
3. 种子点的选取。虽然本文回顾了与AD最为相关的区域的种子点功能连接的研究,已有的研究大多以整个脑区为种子点做功能连接研究,但现在有研究表明很多基于解剖的划分存在脑区子区域,不同的亚区连接模式不相同[10, 15],将来对于子区域的研究可能有助于我们更全面地查看AD异常的连接模式。而且种子点功能连接的方法对于种子点的选取太过依赖,现在AD的病源尚没有明确的定位,我们还需要探索性的用不同的种子点看AD功能连接的变化。找到AD最敏感的种子区域。
总结
综上所述,目前静息态种子点功能连接的研究已经发现阿尔茨海默症和轻度认知障碍患者在海马及后扣带回与全脑的功能连接受到损伤。今后的研究一方面需要对已有的成果在大样本均质的被试上加以证实和解释,另一方面还需要找到AD的病源区域并以此为种子点进行研究,或者不基于先验的知识,全脑寻找种子点的方法找到AD最敏感的功能连接异常的网络。
参考文献:
1. Delbeuck, X., M. Van der Linden, and F. Collette, Alzheimer's disease as a disconnection syndromeNeuropsychol Rev, 2003. 13(2): p. 79-92.
2. Biswal, B., et al., Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri. Magnetic Resonance in Medicine, 1995. 34(4): p. 537-541.
3. Fox, M.D. and M.E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007. 8(9): p. 700-11.
4. Hirano, A. and H.M. Zimmerman, Alzheimer's neurofibrillary changes. A topographic study. Arch Neurol, 1962. 7: p. 227-42.
5. Wang, L., et al., Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage, 2006. 31(2): p. 496-504.
6. Allen, G., et al., Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol, 2007. 64(10): p. 1482-7.
7. Kenny, E.R., et al., Functional connectivity in cortical regions in dementia with Lewy bodies and Alzheimer's disease. Brain, 2012. 135(Pt 2): p. 569-81.
8. Amunts, K., et al., Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl), 2005. 210(5-6): p. 343-52.
9. Wang, Z., et al., Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J Neurol Sci, 2011. 309(1-2): p. 79-85.
10. Bai, F., et al., Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: a longitudinal resting-state study. PLoS One, 2011. 6(12): p. e29288.
11. Rowe, C.C., et al., Imaging beta-amyloid burden in aging and dementia. Neurology, 2007. 68(20): p. 1718-25.
12. Del Sole, A., et al., Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: an FDG PET study. Eur J Nucl Med Mol Imaging, 2008. 35(7): p. 1357-66.
13. Zhang, H.Y., et al., Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behav Brain Res, 2009. 197(1): p. 103-8.
14. Zhang, H.Y., et al., Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology, 2010. 256(2): p. 598-606.
15. Xia, M., et al., Differentially disrupted functional connectivity in posteromedial cortical subregions in Alzheimer's disease. J Alzheimers Dis, 2014. 39(3): p. 527-43.
16. Han, S.D., et al., Functional connectivity variations in mild cognitive impairment: associations with cognitive function. J Int Neuropsychol Soc, 2012. 18(1): p. 39-48.
2教学方法研究
研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。
2.1加强教学设计
教学设计就是对教学活动进行系统计划的过程, 是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。
2.2抓好课堂教学环节
教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。
1) 以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。
2) 教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。
3注重培养学员学术研究能力
学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。
1) 选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。
2) 研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。
3) 论文结构。结构清晰、完整,论述严谨,表达规范。
4) 占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。
4加强实验环节教学
人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。
例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。
实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。
5适度开展双语教学
研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。
1) 专业术语全部用英语表示。
在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如Knowledge Representation(知识表示)、Depth-First Search(深度优先搜索)、Breadth- First Search(广度优先搜索)等。
2) 以英文原版教材为教学参考书。
选定机械工业出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”
3) 加强英文文献的阅读。
在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。
经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。
6考试与成绩评定改革
考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。
7结语
经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。
参考文献:
[1] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社,2002:1.
[2] 李志厚. 国外教学设计研究现状与发展趋势[J]. 外国教育研究,1998(1):6-10.
[3] 肖川,胡乐乐. 论研究生学术能力的培养[J]. 学位与研究生教育,2006(9):1-5.
[4] 周金海. 人工智能学习辅导与实验指导[M]. 北京:清华大学出版社,2008:204.
[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:机械工业出版社,2009:754.
Reform on Postgradrates Artificial Intelligence Course Teaching
TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei
【关键词】人工智能 发展 应用
人工智能是产生于20世纪50年代的一门综合高科技学科,它将机器智能和智能机器的概念和技术进行了融合,应用过程涉及了信息科学、心理学、思维科学、生物科学、认知科学以及系统科学等多种学科,随着近些年的不断发展和进步,已经在社会中的很多地方得以应用,向着多元化的方向发展,例如,在博弈、智能机器人、模式识别、自动程序设计、知识处理、自然语言处理、专家系统、自动定理证明、知识库等方面,人工智能都已经取得了很高的成就,备受世人关注。
1 人工智能概述
人工智能,又称为AI,是Artificial Intelligence的简称。可以算作是计算机科学的一个分支,是在1956年的Dartmouth 学会上由McCarthy正式提出的,之后便跻身于世界三大尖端技术之一。很多学者都将人工智能定义为通过研究使计算机来完成之前只有人才能完成的智能属性较高的工作。但是关于人工智能的最完整定义,当前业内还存在一定的正义,尚未形成统一的结果,但是所有的这些说法都能够反映出人工智能的基本内容和基本思想,因此在本文中,笔者将其概念整理为:研究人类智能活动的规律,构造具有一定智能行为的人工系统。
2 人工智能的发展
人工智能的发展最早始于20世纪50年代,并在20世纪60年代更加壮大,形成了人工智能的初级阶段。这一时期的研究偏向于运用领域知识和启发式思维发展,编写相关的智能计算机程序,为现代的计算机理论奠定一定的基础。从1963年之后,人工智能便进入了研究的第二阶段,人类尝试用自然语言通讯,实现了计算机对自然语言的理解,并将分析图像和图形处理变得可行。70年代中,在进行了大量的研究和探索后,一些专家级的程序系统相继出现,在各个领域得到运用。80年代,人工智能进入到以知识为中心的发展阶段,更多的人开始注意到模拟智能中知识的重要性,围绕这一现象进行了更多的研究和探索。现如今,人工智能的发展正在朝着大型分布式人工智能及多专家协同系统、并行推理、多种专家系统开发工具,以及大型分布式人工智能开发环境和分布式环境下的多智能体协同系统等方向发展。
3 人工智能的研究与应用
3.1 问题求解
求解问题往往是人工智能发展的第一步。一般过程是将复杂问题分成一些较简单的子问题,通过解决子问题的基本技术完成人工智能基本技术的组成。当前依然存在一些未真正解决额问题,例如问题的表示也成为问题的原概念在表述时往往存在解决不了的问题,这边构成了人类发展人工智能过程中的主要工作内容。
3.2 专家系统
专家系统也是研究人工智能的重要分支,这一理论能够将所研究的问题转化为知识求解的专门问题,从而实现人工智能从理论研究到实际应用的重要过度。专家系统可以看作是一种智能的软件,通过启发式方法对一般难以解决的问题进行求解,在不完全、不精确的信息背景下做出结论。专家系统的基本结构如图1所示。
3.3 机器学习
机器学习是对计算机模拟人类活动并实现人类活动而进行研究的过程。它是在专家系统之后出现的人工智能另一重要领域,是计算机能够有智能属性的根本途径,具有很高的重要性。
3.4 神经网络
人工神经网络是由数量巨大的神经元互相连接组成的,也可称作类神经网络或神经网络。神经网络通过大量节点之间的相互连接构成运算模型,通过模拟人的大脑的基本运算机制和机理来实现特定方面的功能。
3.5 模式识别
模式识别是指通过计算机技术让计算机代替人类进行感知和识别。计算机模式识别系统能够让计算机在模拟人类感觉器官功能的帮助下对外界形成感知能力。随着模式识别的发展和壮大,量子计算机技术也已经在模式识别系统中得到运用。早期的模式识别系统仅仅是针对文字或二维图像,但是随着技术的进步,对三维景物的识别方面也已经有了重大突破,并已经延伸到活动物体的识别和分析,取得了长足的进步。
4 结束语
作为一门伟大的科学成就,人工智能的诞生无疑成为20世纪最重要的技术之一,而它也必将成为未来发展的主导学科之一。当前,人工智能的一些研究成果已经在国民生活和生产中得到了广泛的应用,随着信息时代网络技术和知识经济的不断发展,人工智能的技术成果必将受到更多的重视,得到更广泛的应用,更多的推动社会和科技的进步和发展,为人类的生活发挥更多的作用。
参考文献
[1]魏金河.人工智能能否完全替代人类智能[J]. 创新科技,2007(08).
[2]钱铁云.人工智能是否可以超越人类智能?―计算机和人脑、算法和思维的关系[J].科学技术与辩证法,2004(05).
[3]雷・库兹韦尔,盛杨燕.如何创造思维:人类思想所揭示出的奥秘[J].中国科技信息,2014(08).
[4]蔡曙山.哲学家如何理解人工智能―塞尔的“中文房间争论”及其意义[J].自然辩证法研究,2001(11).
DOI:10.16640/ki.37-1222/t.2017.07.119
0 简介
人工智能((Artificial Intelligence)),它是一门新的技术科学,主要用于模拟、延伸以及扩展人类的智能的方法、理论、技术以及应用系统。人工智能主要就是对人类的思维、意识的信息过程的合理化的模拟。人工智能它并不是人的智能,但是,它却能像人那样的思考,而且也可能会超过人类的智能。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些复杂工作。
1 人工智能的运用现状
目前,在很多方面人工智能有着运用,其中一个主要表现就是全球人工智能公司数量在急剧的增加,专家系统在目前来看是在人工智能各领域中最为活跃,且最为有成效的一个领域。它是一类基于知识的系统,并可以解决那些一般仅有专家才能够解决的复杂问题。我们这样定义专家系统:专家系统是一种具有特定领域内大量知识与经验的程序系统,它是基于程序系统依靠人工智能技术,来模拟人类专家求解复杂问题的过程,大多情况下,专家系统的水平甚至可以超过人类专家。专家系统的基本结构图如下图所示:
2 人工智能的影响
人工智能对经济的影响:人工智能的的确确会影响到社会、生活、文化的方方面面,特别是对于实体经济将来会有巨大的影响。以后,每个行业几乎都会产生颠覆性的变化。在人工智能的研究上,中国并不落后,将来的中国一定可以从中获得非常大的收益。一成功的专家系统可以为它的用户带来很明显的经济效益。用比较经济的办法执行任务而不需要具有经验的专家,从而极大地减少开支。专家系统深入各行各业,带来巨大的宏观效益,促进了IT网络工业的发展。
人工智能对文化的影响:在人工智能原理的基础上,人们通常情况下会应用人工智能的概念来描述他们的日常状态和求解问题的过程。人工智能可以扩大人们知识交流的概念集合,描述我们所见所闻的方法以及描述我们信念的新方法;人工智能技术为人类的文化生活提供了巨大的便利。如图像处理技术必将会对图形艺术和社会教育部门等产生深远影响。比如现有的智力游戏机将会发展成具有更高智能的一种文化娱乐手段。随着技术的进步,这种影响会越来越明显地表现出来。当然,还有一些影响可能是我们目前难以预测的。但可以肯定,人工智能将对人类的物质文明以及精神文明产生更大的影响。
人工智能对社会的的影响:一方面,AI为人类文化生活提供了一种新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。另一方面,人工智能能够代替人类进行各种脑力劳动,所以,从某种意义上来讲,这将会使一部分人失去发展的机遇,甚至可能失业。由于人工智能在科技以及工程中的应用,一部分人可能会失去介入信息处理活动的机会,甚至不得已而改变自己的工作方式;人工智能还可能会威胁到人类的精神。一般人们觉得人类与机器的区别就是人类具有感知精神,但如果有一天,这些相信只有人才具有感知精神的人也开始相信机器能够思维和创作,那他们就会感到失望,甚至于感到威胁。他们会担心:有朝一日,智能机器的人工智能可能会超过人类的自然智能,从而使人类沦为智能机器的奴隶。
3 人工智能的发展趋势
有机构预测,2017年人工智能投资将同比增长300%以上,在技术上将会更迅猛发展,工控自动化商城的智能语音、智能图像、自然语言以及深度学习等技术越来越成熟,就像空气和水一样将会逐步地渗透到我们的日常生活。行业专家关于2017年人工智能的发展方向主要有以下几点:(1)机器学习目前正在被应用在更复杂的任务以及更多领域中,且被更多的人作为挖掘数据的方式。无监督的学习会取得更多进展,但也存在很大的挑战,故在这一方面离人类的能力还是差得很远的。计算机在理解和生成自然语言方面,预计最先会在聊天机器人和其他对话系统上落地。 (2)深度学习、其他的机器学习、人工智能技术的混用,是成熟技术的典型标志。将深度学习应用到医疗领域中(医疗图像、临床数据、基因组数据等),各种类型数据上的研究以及成果将会大大的增加。 (3)聊天机器人和自动驾驶汽车可能会取得较大的进展,预计更多人类基准将会被打破,特别是那些基于视觉以及适合卷积神经网络的挑战。而非视觉特征创建和时间感知方法将会变得更加频繁、更加富有成果。
4 结论
人工智能是人类长久以来的梦想,同时也是一门富有挑战性的学科。尽管人工智能带来很多问题,但当人类坚持把人工智能只用于造福人类,人工智能推动人类社会文明进步将毋庸置疑。就像所有的学科一样,人工智能也会经历各种挫折,但只要我们有信心、 有毅力,人工智能终将成为现实,融入到我们生活的方方面面,为我们的生活带来更大的改变。
参考文献:
[1]朱祝武.人工智能发展综述[J].中国西部科技,2011,10(17):8-10.
0 引言
随着经济的快速发展,人们生活水平得到了较好的改善。经济的繁荣使得我国工业水平正在不断提高。在社会主义市场经济环境下,竞争机制不断完善和发展,各企业要想在竞争激烈的市场环境中稳定发展,提高企业自身的工作效益非常重要,而人工智能在提高企业经济效益上有着重要作用。随着科学技术的不断发展,人工智能技术不断成熟并广泛的应用在电气工程自动化中,有效的提高了电气工程自动化的效率,为企业的发展带来了良好的经济效益。
1 人工智能概述
人工智能也可以称作为机器智能,是人类对自然改造做制造出来的系统所表现出来的职能,人工智能是以计算机技术为依靠的。从某种意义上将,人工智能就是沿用人工的方法和技术,以人类的智慧为模型,实现机器智能化的发展。人工智能的产生是随着科学技术的发展而发展的,是人类与计算机技术发展的产物结晶。科学技术是第一生产力,随着科学技术的不断发展,人工智能的发展已经超越了计算机这一门学科。心理学、计算机学科、哲学、物理学等众多学科都与人工智能有着密切的关系。
2 电气工程中实现人工智能控制的意义
在我国,是一个能源消耗大国,工业的发展,使得在人力上、物力上、财力上的投入不断增加,近年来,我国电气工程事业得到了飞速发展,为了满足人们日益增长的物质文化需求,适应经济快速发展的步伐,在竞争激烈的市场环境中,电气工程面临着巨大的挑战。随着科学技术的不断发展,人工智能逐渐进入到人们的视野,并且所担任的角色也来越重要。人工智能在电气工程中所扮演的角色尤为重要。当前我国电气工程很容易出现设备故障,经济效益低下,为了改变这些状况,在市场环境中长远生存下去,利用人工智能技术已经迫在眉睫了。在电气工程中,利用人工智能,可以实现智能化作业,在电气设备上实现智能化自我检修,防止出现设备故障,从而提高设备的工作效率,给电气工程事业带来经济效益[1]。
3 人工智能在电气工程自动化控制技术中的应用
在我国电气工程中,运用人工智能作业,可以有效的提高智能化作业水平,在作业过程中,可以自行的对机械设备进行检查,从而加大对电气工程自动化作业的控制,提高电气工程自动化作业水平。下面就以火力发电工程为例,来分析人工智能在工程中自动化的控制技术。
3.1火力发电的原理
火力发电系统中主要由燃烧供给系统、给水系统、蒸汽系统、冷却系统、发电系统等主要部件构成。火力发电是指利用石油、煤和天然气等燃料燃烧时所产生的热能来加热水,使水变成高温、高压水汽,然后再由水蒸气推动发电器来发电。热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程[2]。
3.2产品设计人工智能化控制
在火力发电场中,电气设备的设计是一个非常艰难的过程,设备性能的好坏直接影响到了发电系统的整体效果,要想保障火力发电系统的正常使用,产品设计的科学性很重要。人工智能利用计算机科学技术,经过模型设计,计算出电力系统做需要产品的规格,从而提高了工作效率,缩短了设计的周期,在发电系统中便利统一指导和管理[3]。
3.3经济运行人工智能化控制
随着计算机技术的发展,在火力发电厂中,运用计算机技术实现火力发电各系统之间的监控,而人工智能集合了计算机技术与人类的智慧于一体,在火力发电厂中,利用人工智能可以计算出火力发电厂各个系统运行的功率,单位的流量。火力发电厂场中,各个分系统之间是相互联系的,利用人工智能,能够计算出会理系统所需要的燃料,蒸汽系统中的水温变化情况,已经发电成效,对火力发电系统中各个子系统都能够有效的控制起来,从而保障火力发电厂经济运行[4]。
3.4机械设备人工智能化控制
火力发电厂所需要的设备较多,所要投入的人力也较大,一般都是一个子系统由两到三个人监控,发电系统能够正常运行。通过计算机监控技术,只要一个中央控制系统就能对发电系统的各个子系统中进行人工智能操作,不仅能够节省大量的人力,还能针对设备故障进行自动化检修,保障设备运行的效率,实现人工智能化控制[5]。
4 结语
随着我国科学技术的不断发展,人工智能已经逐渐成熟起来,并且广泛应用在当前企业的经营活动中。伴随着电气工程规模不断的扩大,电气自动化技术在电气工程中的作用也越来越大。在社会主义市场经济当中,随着市场竞争越来越激烈,我国电气工程要想在市场中取得发展,不断满足现代化经济快速发展的需要,就必须提高电气工程自动化的办公效率,利用人工智能技术,对企业办公实行自动化控制,从而有效的改善电气工程运行环境,提高经济效益,促进经济发展。
【参考文献】
[1]徐志国.人工智能(AI)在电力系统中的应用[J].现代电子技术,2013,06(21):24―25.
[2]王同文,管霖,张尧.人工智能技术在电网稳定评估中的应用综述[J].电网技术,2011,01(12):136―137.
[3]李华勇,王诗明,王华.电网智能操作票管理系统的研制与开发[J].江西电力,2012,10(06):104―105.
[4]毛钢元,刘志国.智能控制系统设计方法的比较研究[J].淮阴工学院学报,2010,10(05):198―199.
“人工智能”是在1956年的Dartmouth学会上提出的,英文缩写是AI。它是计算机科学等多种学科互相渗透而发展起来的综合性、交叉性学科。从计算机应用系统的角度出发,人工智能是研究如何模拟人类智能活动,使机器能够胜任一些需要人类智能才能完成的复杂工作,以延伸人类智能的科学。
二、人工智能技术的发展状况
随着计算机、信息和并行程序设计技术的发展,人工智能的研究已经发展成为智能体系的研究。到目前为止,人工智能程序已经知道考虑他们要解决的问题,从而寻找比较好的答案。智能体体系可以被认为是智能体的软件工程模型,智能体语言是智能体的软件系统。在我国,智能体技术多被应用到处理具有异构、布、态、规模及自主性的系统中,如Internet,是人工智能技术的新应用。
目前,人工智能技术在美国等欧洲国家仍保持非常快的发展速度。在人工智能技术领域十分活跃的IBM公司,已经为加州劳伦斯利佛摩尔国家实验室制造了号称具有人脑的千分之一智力能力的ASCIWhite电脑。据称,其正在开发的更为强大的blue jean电脑的智力水平将与人脑相当。
三、新一代计算机和人工智能技术的应用
随着人工智能技术的不断发展,越来越多的技术发展都涉及到人工智能,人工智能已经被广泛应用到许多领域。
(一)人工智能技术在计算机符号计算中的应用
计算机最主要的用途之一就是科学计算,通常分为纯数值的计算和符号计算两种。其中符号计算是一种智能化的计算。随着新一代计算机的开发和普及以及人工智能技术的发展,多种功能计算机代数系统软件相继出现,都是用C语言写成的,可以在绝大多数计算机上使用。
(二)人工智能技术在计算机模式识别中的应用
计算机用数学方法研究模式的自动处理就是模式识别。用计算机实现模式的自动识别和判断,是利用人工智能技术开发智能机器的关键,计算机模式识别的特点是效率高,速度快,准确率高,也为人类认识自身智能提供了有利线索。
(三)计算机的机器翻译
计算机把一种语言转变为另一种语言的过程就是机器翻译。目前,我国的机器翻译软件的翻译特点,大致可以分为三类:词典翻译、汉化翻译和专业翻译。词典翻译软件可以迅速查询英文单词或词组的词义,并提供发音;汉化翻译软件提出“智能汉化”的概念,辅助翻译作用更加明显。
(四)人工智能技术在计算机机器学习中的应用
计算机的机器学习主要研究如何使计算机能够模拟或实现人类的学习能力。机器学习是机器具有智能能力的重要标志,也是机器获取知识的根本途径。机器学习是一个难度较大的研究领域,它与认知科学和逻辑学等学科都有着密切的联系,并对人工智能的其他分支也会起到重要的推动作用。
(五)人工智能技术在计算机问题求解中应用
人工智能技术在今天的计算机程序已能够达到各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手的表达能力和洞察能力等。人们通常都能根据具体问题找到思考问题和解决问题的办法,目前,人工智能技术已能通过计算机程序知道如何考虑要解决的问题,寻找较为准确的解答方法。
(六)人工智能技术在计算机推理证明中应用
逻辑推理在人工智能研究中是最持久的探究领域之一,其别重要的是,通过找到合理准确的方法,集中注意力在大型数据库中的有效事实上,关注可信证明,并在出现新信息时适时修正这些证明。因此,在人工智能方法的研究中,定理证明是一个极其重要的论题。
(七)人工智能技术在计算机语言处理中的应用
自然语言处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人瞩目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
(八)人工智能技术在计算机专家系统中的应用
专家系统是人工智能技术中最活跃、最有成效的研究领域,是具有特定领域内大量知识与经验的程序系统,已出现成功应用人工智能技术的趋势。计算机程序如果能体现和应用人类知识,就应该可以帮忙解决问题,而且能发现人类专家在推理过程中出现的差错。
四、新一代计算机和人工智能技术的发展趋势
新一代计算机和人工智能技术的发展潜力巨大,其作为一个整体的研究才刚刚开始。人工智能技术的发展总是超乎人们的想象,要准确地预测人工智能的未来,从目前一些前瞻性的研究中可以看出,未来人工智能技术可能会朝以下几个方向发展:模糊处理、并行化、神经网络和机器情感。
(1)自动推理是新一代计算机和人工智能技术最经典的研究分支,其基本理论是新一代计算机和人工智能技术其它分支的共同基础。其中知识系统的动态演化特征及可行性推理的研究,是最新的热点,很有可能取得突破。
(2)机器学习的研究使得许多新的学习方法相继问世,并获得了成功应用。但是也应看到,现有的机器学习方法尚不够有效,寻求一种新的方法,以解决新一代计算机和人工智能技术研究中的在线学习问题,是研究人员共同关心的问题。
(3)自然语言处理是新一代计算机和人工智能技术应用于实际领域的典型范例,这一领域已获得了大量令人瞩目的理论与应用成果。智能信息检索技术近年来已成为新一代计算机和人工智能技术的一个独立研究分支,将新一代计算机和人工智能技术应用于计算机科学与技术领域的研究,是人工智能走向应用的突破口。
五、结束语
很多新一代计算机和人工智能技术研究的成果已经进入人们的日常生活。未来,人工智能技术的发展将会给人类的知识、思考、生活、工作和教育产生巨大的影响,在人类的生活中占据一席之地,成为人类生活的伙伴。
参考文献:
引言
足球机器人系统是一个典型的多智能体系统和分布式人工智能系统,涉及机器人学、计算机视觉[1]、模式识别、多智能体系统[2]、人工神经网络[3]等领域,而且它为人工智能理论研究及多种技术的集成应用提供了良好的实验平台。机器人球队与人类足球一样,它的胜负不但取决于机器人本身的性能,而且取决于比赛策略,只有将可靠的硬件与先进的策略结合才能取胜。人工智能技术在足球机器人的平台上有着重要的作用。从机器人的外观到机器人最重要的核心部分——控制、决策,都无不起着重要的作用。专家系统[4]、人工神经网络在机器人的路径规划[5]上得到充分的应用。
1.人工智能研究现状
人工智能[6-8]是一门研究人类智能机理,以及如何用计算机模拟人类智能活动的学科,该领域的研究包括机器人、语言识别[9]、图像识别、自然语言处理和专家系统等,涉及数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示[10][11]、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
几乎所有的编程语言均可用于解决人工智能算法,但从编程的便捷性和运行效率考虑,最好选用“人工智能语言”[12]。常用的人工智能语言有传统的函数型语言Lisp、逻辑型语言Prolog及面向对象语言Smalltalk、VC++及VB等,Math-Works公司推出的高性能数值计算可视化软件Matlab中包含神经网络工具箱,提供了许多Matlab函数。另外,还有多种系统工具用于开发特定领域的专家系统,如INSIGHT、GURU、CLIPS、ART等。这些实用工具为开发人工智能应用程序提供了便利条件,使人工智能越来越方便地运用于各种领域。
智能机器人是信息技术和人工智能等学科的综合试验场,可以全面检验信息技术和人工智能等各领域的成果,以及它们之间的相互关系。人工智能技术中的视觉、传感融合、行为决策、知识处理等技术,需要使无线通讯、智能控制、机电仪一体化、计算机仿真等许多关键技术有机、高效地集成统一。人们在很多领域都成功地实现了人工智能:自主规划和调度、博弈、自主控制、诊断、后勤规划、机器人技术、语言理解和问题求解等。
2.人工智能主要研究领域
人工智能的研究领域非常广泛,而且涉及的学科非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在足球机器人设计、制造、控制等过程中常用的人工智能技术[13]。
2.1专家系统
专家系统是一个智能计算机程序系统,是一个具有大量专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。专家系统一般具有如下基本特征:具有专家水平的专门知识;能进行有效的推理;具有获取知识的能力;具有灵活性;具有透明性;具有交互性;具有实用性;具有一定的复杂性及难度。
2.2人工神经网络
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织和非线性映射等优点的神经网络与其他技术的结合,以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有优点,因此将神经网络与其他方法相结合,取长补短,可以达到更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。
2.3图像处理
图像处理是用计算机对图像进行分析,达到所需结果,又称影像处理。图像处理技术主要包括图像压缩,增强和复原,匹配、描述和识别三个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。数字图像处理中的模式识别技术,可以对人眼无法识别的图像进行分类处理,可以快速准确地检索、匹配和识别出各种东西,在日常生活各方面和军事上用途较大。
3.人工智能在足球机器人中的应用
3.1基于专家系统的足球机器人规划
路径规划或避碰问题是足球机器人比赛中的一个重要环节。根据工作环境,路径规划模型可分为基于模型的全局路径规划和基于传感器的局部路径规划。全局路径规划的主要方法有:可视图法、自由空间法、最优控制法、栅格法、拓扑法、切线图法、神经网络法等。局部路径规划的主要方法有:人工势场法、模糊逻辑算法、神经网络法、遗传算法[14]等。机器人规划专家系统是用专家系统的结构和技术建立起来的机器人规划系统。大多数成功的专家系统都是以基于规则系统的结构来模仿人类的综合机理的。它由五部分组成:知识库、控制策略、推理机、知识获取、解释与说明。随着人工智能计算智能与进化算法研究的逐步发展,遗传算法、蚁群算法等的提出,机器人路径规划问题得到了相应发展。尤其是通过遗传算法在路径规划中的应用,机器人更加智能化,其运行路径更加逼近理想的优化要求。以动态、未知环境下的机器人路径规划为研究背景,利用遗传算法采用了基于路点坐标值的可变长染色体编码方式,构造了包含障碍物排斥子函数项的代价函数,使得路径规划中的地图信息被成功引入到了遗传操作的实现过程中。同时针对路径规划问题的具体应用,改进了交叉和变异两种遗传算子,获得了较为理想的路径搜索效率,达到了较好的移动机器人路径规划效果。
3.2人工神经网络在机器人定导航中的应用
人工神经网络是一种仿效生物神经系统的信息处理方法,其优点主要体现在它可以处理难以用模型或规则描述的过程和系统;对非线性系统具有统一的描述;有较强的信息融合能力。因此在移动机器人定位与导航方面,基于神经网络的多传感器信息融合正是利用了神经网络的这些特性,将机器人外部传感器的传感数据信息作为神经网络的输入处理对象,从而获得移动机器人自身位置与对障碍物比较精确的估计,实现移动机器人的避障与自定位。
结语
随着人工智能技术的进一步研究,足球机器人竞赛水平将不断提高。但就目前情况来看,在现有的基础上扩大应用的范围,增强应用的效果,还应主要在人工智能技术上做进一步的研究。专家系统在专家知识的总结、表述及不确定的情况下推理是目前专家系统的瓶颈所在。制造生产的多变复杂性及操作的人工经验性,使人工智能的应用受到限制。此外,一些工艺参数的定量化实现也不易。随着技术的飞速发展,人工智能技术也在进一步完善,如多种方法混合技术、多专家系统技术、机器学习方法、并行分布处理技术等。随着新型人工智能技术的出现,制造业将会更加光明,性能更加优越的足球机器人也不再遥远。
参考文献:
[1]郑南宁.计算机视觉与模式识别[M].北京-国防工业出版社,1998.3.
[2]Wang Hongbing Fan Zhihua She Chundong Formal Specification of Role Assignment for Open Multi Agent System Chinese of Journal Electronics[J].2007,16(2):212-216.
[3]LIMING ZHANG AND FANJI GU NEURAL INFORMATION PROCESSING VOLUME 1[M]Fudan University Press, 2001.
[4]Cai Zixing,King-Sun Fu. Expert-System-Based Robot Planning ?Control Theory & Applications[J] .1988(2): 35-42.
[5]张锐,吴成东.机器人智能控制研究进展[J].沈阳建筑工程学院学报(自然科学版),2003,19(1):61-64.
[6]蔡自兴,徐光祐.人工智能机器应用(第三版)清华大学出版社,2004.
[7]艾辉.谢康宁,谢百治.谈人工智能技术[J]中国医学教育技术,2004,18(2):78-80.
[8]Nilsson NJ.Artificial Intelligence:A New Synthesis[M].Beijing:China Machine Press,2006:72-95.
[9]Han Jiqing Gao Wen Robust Speech Recognition Method Based on Discriminative Environment Feature Extraction Journal of Computer Science and Technology[J]. 2001;16(5):458-464.
[10]Tang Zhijie Yang Baoan Zhang Kejing Design of Multi-attribute Knowledge Base Based on Hybrid Knowledge Representation Journal of Donghua University 2006,23(6):62-66.
[11]Hu Xiangpei Wang Xuyin Knowledge representation and rule——based solution system for dynamic programming model Journal of Harbin Institute of Technology 2003,10(2):190-194.
一、引言
随着人工智能技术的快速发展,越来越多的企业将人工智能技术应用到企业的日常生产经营活动中来。NarrativeScience和国家商业研究所的报告显示,在2016年仅有38%的企业表示引用了人工智能技术,而到了2017年这一数字迅速增长到了61%。与此同时人工智能技术在营销领域的应用也越来越广泛,在零售行业,人工智能可以通过自我学习,为消费者添加标签,描绘用户画像;在网络消费场景,智能人工助理可以帮助营销人员及时在线回答用户问题。人工智能的应用让消费者与企业的互动更加频繁,这也给企业营销活动本身带来了如隐私泄露、过度营销、用户倦怠等问题。如何正确处理人工智能技术在营销领域的应用问题,成为了学者们日益关注的重点。以往的研究已经从人工智能营销的技术基础、概念、隐私担忧等方面进行了分析,本文将从人工智能营销的内涵、趋势、挑战等方面进行梳理研究,希望能够对人工智能态势下的市场营销有更加全面的认识,为企业应对人工智能营销活动中的问题提供有价值的参考。
二、人工智能态势下的市场营销
(一)智能营销的内涵
智能营销,是伴随着人工智能应用的发展而产生的一个新的营销概念。智能营销不等同于电子营销,它是建立在大数据、人工智能、云计算等综合技术基础上的一种智能化运作模式(汪涛2014),是可以模仿营销人员的部分行为活动的过程。随着人工智能技术在营销领域的应用,智能化的设备通过仿真、思考、行动等模式完成了营销人员所需要进行的一部分工作,深刻改变了营销思维和方式。作为智能经济条件下的新产物,目前学者们对智能营销还没有形成一致的概念界定。但是随着对人工智能的逐步深入了解,业界逐渐形成了一种共识,即它是企业借助计算机网络、移动互联网等智能技术来进行营销活动的各种新思维、新方法、新工具的一种创新营销新概念(常亚平2018),它包括智能识别、智能存储、智能执行等多个方面。
(二)智能营销的技术基础
人工智能营销的兴起离不开技术的支持,根据以往文献的研究,可以将智能营销发展的技术基础大致归为三个方面:首先,移动互联网和5G技术为智能营销发展提供了海量数据来源的保障。智能营销发展的重要基础就是数据,持续可靠的数据获取是智能营销所需的核心技术之一。随着移动互联网和5G技术的发展,营销活动借助虚拟现实技术、仿真技术、人工生物智能技术广泛深入到消费者的工作、娱乐、生活、消费等日常行为活动中,全方位地记录了消费者的行为数据,为智能营销的后续分析处理工作提供了海量的数据信息来源。其次,云计算帮助智能营销完成了复杂的数据计算和处理分析。移动互联网时代,大数据的发展使网络数据成几何倍增长,如何计算和处理分析这些海量数据成为了智能营销发展所必须解决的重要问题。云计算技术凭借强大的数据计算能力,很好地解决了人工智能技术应用过程中的海量数据处理问题,通过多维度数据的连接实现了万物互联,从而使消费者和智能设备的交互体验更加完善,营销场景也因及时准确的数据分析而更加智慧化。最后,人工智能商业化应用技术为智能营销发展提供了网络应用环境。德勤2019年《全球人工智能发展白皮书》显示,当前人工智能技术已进入全方位商业化阶段,并预测全球人工智能市场在未来几年会经历现象级增长(钱明辉2019)。我国也出台了相应政策来支持人工智能商业化应用的发展,2019年我国从事人工智能业务企业数量居全球第二。人工智能商业化的发展环境以及人工智能商业化应用技术的支持,为智能营销的发展创造了良好的外部网络应用环境。
(三)人工智能在营销中的应用体现
人工智能技术在营销中的应用,使营销活动体现出了新的特点,如:视觉、听觉、触觉等多种形态的新互动方式、个性化需求的预测等。根据营销活动的不同过程阶段,可以从四个方面来分析人工智能在营销中的应用体现。1.营销调查研究阶段。营销调查研究是营销活动的起点,通过提前的调研企业可以了解市场占有情况、消费者意愿、目标消费群体需求等重要信息。大数据技术以及人工智能技术的应用,极大地提高了企业营销活动前期的营销调研效率。消费者在各种生活消费场景中会留下自己的痕迹和使用信息,人工智能技术会帮助企业将海量的用户数据进行归类,如账户数据、交易数据、浏览数据等,并利用这些数据进行用户画像,从而准确分析出消费者的日常消费偏好、消费方式等信息,帮助营销人员获取营销调研后的第一手分类数据。2.营销策略的制定阶段。人工智能技术从全网智能抓取相关数据进行分析,并智能分析出最新热度关注点,帮助营销人员完成寻找吸引消费者的创新点环节,摆脱了以往只依赖于营销人员自身经验判断和小范围营销调研结果的限制。同时借助仿真技术、生物识别等技术,人工智能技术所创造的“人工脑”可以完成营销策略制定过程中的一部分思考工作,如创意筛选、优化等方面。3.营销执行阶段。以往的营销推广活动,需要营销人员提前进行宣传媒介的选择并且派大量人员进行实地配合,受限于地点、经费等外部因素。而人工智能技术根据网络热度数据分析,自行筛选出适合企业产品宣传的网络平台,并且根据用户使用偏好数据测算出适合的营销时间点、次数等,在用户进行相关网络访问时个性化推送符合该用户需求特征的营销方案,如喜马拉雅会根据用户年龄、性别、收听历史记录等自动推送相关收听图书资源和购买活动等。4.营销效果的评估阶段。以前的营销活动效果评估需要事后进行监测,而人工智能技术的应用帮助企业实现了实时监测,系统自动在全网络进行相关内容的数据抓取和分析处理,并将监测效果及时反馈给营销人员,方便营销人员根据消费者反应及时修改营销方案,降低了突发事件对企业营销活动的影响。
三、人工智能带来的营销管理新趋势
人工智能技术在营销领域的应用深刻地改变了企业的营销思维和营销方式,也让营销管理活动有了新发展,对于人工智能带来的营销管理新趋势可以从下面几个方面来理解:一是技术驱动营销变革。智能技术将成为下一代营销变革的新支撑。目前,仿真技术和人工生物智能技术的初步使用已经能够帮助智能设备进行部分营销工作中的思考问题。营销专家智能系统可以实现专业知识的传递和学习,在营销专家的训练下智能系统会增长解决问题所需的知识,并向用户提供解决问题的办法。电子自动订货系统,会根据企业线上线下的销售数据自动进行分析,智能识别畅销品和滞销品,并根据实际情况自动交换订单信息,减少营销人员在了解销售状况和消费者偏好等信息时所投入的时间成本。人工智能技术的应用带来了营销理念、方法、手段、工具等各个方面的改变,未来如何利用好人工智能技术来帮助企业进行营销活动是营销人员需要关注的重点。二是营销方式的多元化和营销推荐的大规模定制化。人工智能技术的应用给营销方式带来了巨大的变革,短视频营销、直播营销等新型营销方式使企业营销活动不再局限于传统线下和网络页面广告等方式。这种多元化的智能营销方式,可以更加广泛深入地获取消费者的各种使用数据信息,如抖音小视频会根据用户关注信息来自动推送相关产品宣传视频。智能化的营销方式让大规模定制化成为可能,企业可以借助智能技术和数据处理技术实现对每个用户的精准识别与记录,从而为其个性化推荐相关信息,实现营销个性化的批量自动生产。三是“AI+”智慧营销带来的跨场景营销。“AI+短视频”营销、“AI+KOL”的粉丝营销等不同营销策略,在人工智能技术的支持下各自发挥所长,应用到营销活动的各个环节当中。“AI+”的使用增强了消费者的互动体验感和真实感,如唯品会的智能试装功能可以帮消费者实现线上虚拟体验,大大提升了消费者从“看”到“买”的效率,缩短了购买转化时间。在移动互联网时代,消费场景碎片化、消费行为流动化,人工智能技术的使用可以帮助企业处理复杂的消费使用数据,系统整合消费者在不同场景的多维行为数据,从而精准识别不同消费个体在不同消费场景下的差异化需求,结合消费者的实时场景,为消费者适时提供跨场景的营销服务,突破圈层和场景的限制,扩大营销推广范围,提升企业的56品牌宣传度。四是基于智能识别、语音互动等技术的线上线下一体化智慧营销。根据2018年人工智能应用行业报告,目前人工智能技术已经可以应用到零售的全链条环节,既可以线上进行用户画像和精准个性化推荐,也可以线下智能物流、智能选址、优化消费者行为分析和商品运营环节等,这种线上线下一体化智慧营销,需要完整的人工智能技术体系的支持。通过分析消费者轨迹数据、可穿戴智能设备的身体数据以及社交消费平台数据等信息,利用线上线下信息的同步传输、人脸识别等技术,人工智能可以及时捕捉消费者行为及心理需求,并实现精准匹配。
四、人工智能时代市场营销面临的挑战
人工智能技术在营销领域的应用给企业和消费者都带来了极大的便利,但是技术都是具有两面性的,我们必须理性对待人工智能技术,正视人工智能应用过程中产生的问题。根据以往文献的研究,可以从以下几个方面来认识人工智能时代市场营销面临的挑战。一是人工智能背景下复合型营销人才的不足,带来的技术和营销的进一步对接问题。当前,智能营销领域的一个显著问题就是技术与营销的进一步深度衔接问题,懂技术、懂市场的复合型人才的不足使得企业在应用人工智能过程中出现很大障碍。一些机构掌握着最新智能技术,积累了海量数据;而另一些机构则了解市场,不掌握技术,技术应用与市场营销之间的衔接出现了隔阂。人工智能技术在营销的应用给所有领域的营销人员都带来了挑战,人才和工作需求双向失衡。企业必须培养复合型的营销人才,引进新技术培训课程,提升现有营销人员的整体技术素质,从而帮助企业解决智能技术与营销的进一步对接问题。二是人工智能营销过程中暴露的数据隐私保护和流量造假问题。各种数据隐私新闻案件的曝光,让越来越多的用户对新技术的使用保持着高度敏感。大量未经用户本人同意的数据非法监测和解读严重干扰着消费者的日常生活,一些企业甚至利用智能技术对用户个人信息进行预测分析来以此获取用户隐私。而流量数据造假问题更是进一步瓦解了消费者对网络消费活动的信任,一些企业为了短期的盈利,利用内容剪切等网络工具打造虚假流量信息,给消费者带来了误导,同时也严重干扰了正常的市场竞争秩序。为了能够让企业更有效地推进人工智能技术与营销活动的衔接,必须及时惩治非法获取消费者隐私的企业,营造良好的网络使用环境,同时企业也要在内部加强管理,提升营销人员的道德素养。三是全方位人工智能营销环境下的消费者心理倦怠问题。人工智能技术可以给消费者推荐各种个性化信息,但这种根据消费者使用痕迹来进行持续性的精准推荐很难不让消费者产生厌倦心理。随时随地的广告推荐、跨屏的无广告拦截、用户浏览记录的跟踪推荐等行为,在智能技术的推动下变得更加自动频繁。虽然人工智能技术可以帮助企业精准分析用户数据,但数据也不能完全反映消费者的内心,企业要避免对智能技术的完全盲从,以防消费者产生厌倦心理。营销活动是对人进行的活动,因此企业也要关注营销人员的营销经验,不能以技术决定一切,要将技术与人的主观感受相结合,真正做到从消费者本身需求出发。
五、结论
人工智能在营销领域的应用目前还处于初步发展期,企业在应用人工智能技术时必须理性看待人工智能技术。既要看到人工智能给企业营销带来的数据分析、精准识别等便利,也要看到人工智能应用带来的技术陷阱、用户隐私等问题。当然,人工智能技术在营销领域的应用未来还将有更进一步的发展,企业也要及时进行探索研究。本文仅从理论层面梳理分析了人工智能在营销领域应用的相关问题,未来还可以在其他方面进行深入研究:如何更好地解决人工智能应用过程中带来的隐私泄露问题,从而提升消费者的使用体验;人工智能的特征如何对消费者的行为产生影响;智能互动方式的改变对营销活动的影响,等等。
参考文献:
[1]高山行,刘嘉慧.人工智能对企业管理理论的冲击及应对[J].科学学研究,2018(11).
[2]常亚平,王良燕,黄劲松,等.3D(大数据、数字化和发展中)背景下的营销战略与转型专栏介绍[J].管理科学,2018(5):1-2.
[3]Shankarv.Howartificialintelligence(AI)isreshapingretailing[J].JournalofRetailing,2018,94(4):vi-xi.
[4]汪涛,谢志鹏.拟人化营销研究综述.外国经济与管理,2014(1):38-45.
[5]Wangtao,XIEZhipeng.Areviewoftheliteratureofper-sonificationmarketing[J].ForeignEconomics,Manage-ment,2014(1):38-45.
[6]钱明辉,徐志轩.基于机器学习的消费者品牌决策偏好动态识别与效果验证研究[J].南开管理评论,2019(3):66-76.
[DOI]1013939/jcnkizgsc201711213
1相关概念界定
11“消费体验”的定义
目前的消费类型主要分为功能型消费和体验型消费,和传统的功能型消费不同的是,体验型消费的重点不仅仅是购买商品,购物的过程同样受到关注。在体验式消费中,消费者通过看、听、触摸等感官感受来感知产品和品牌内涵。消费体验就是体验型消费中的重要部分。
方征(2007)认为,消费体验是一种超乎有形产品或服务的非凡感受或情感,而这种感受或情感的来源是由消费者主动追求或消费者间互动而成的。
12“人工智能”的定义
人工智能(Artificial Intelligence,AI),是计算机技术领域的一个重要研究部分,至今已经过了一个多世纪的发展。斯图尔特・罗素(2013)认为,人工智能是一种类人行为,类人思考,理性的思考,理性的行动。人工智能工程师张思楠认为,人工智能的重点应在“智能”上,他认为“智能”是一种获取知识的能力。在他看来,人工智能即由人类造的智能实体,这种智能实体,只是在标准和功能上要求与人的思考与认识水平相近或是超越人类。美国MIT大学Winston教授(2012)认为:人工智能是研究如何使计算机去做过去只有人才能做的智能的工作。目前“人工智能”的定义仍未统一,但关于人工智能的基本内容已经形成共识,因此笔者认为人工智能可以理解为利用人工手段,通过机器模范人的思维与行为,并对其进行拓展。
2文献综述
对现有的文献进行研究后发现,目前对消费体验的研究已经趋于成熟。而人工智能在国内作为一个新兴事物,其研究仍处于起步阶段。
菲利普・科特勒在《市场营销》(2003)一书中提到,产品策划者需要考虑产品和服务的三个层次,每一个层次都会增加消费者价值。第一层是:顾客核心价值;第二层是:产品策划者必须围绕产品的核心利益,构造一个实体产品;第三层是:产品策划者还要向顾客提供一些附加服务的利益,以便围绕核心利益和实体产品构造扩展产品。如今,我们正处于新一轮的消费升级阶段,在这一阶段,第三层内容格外受到重视。这也就意味着消费者在消费时会更加注重售前与售后服务和连带性消费体验。菲利普・科特勒的产品与服务层次见下图。
在现有的相关研究中,不同学者提出了不同的消费体验模型。
方征(2007)总结了几种消费模型:Holbrook提出的体验观点ES表;Pine和Gilmore将体验的运作分为两大构成及四种类型;而Schmitt认为,要想给予消费者满意的消费体验,最重要的任务是为消费者创造不同的体验形式。由此提出了战略体验模型,将消费体验分为感官体验、情感体验、思考体验、行动体验和关联体验五个维度。本文也将以此模型为基础,探讨人工智能是如何提升消费体验的。
吴秋蓉(2011)认为,战略体验模型的五个维度可以分为个人体验(感官、情感和思考体验)与共享体验(行动和关联体验)。他认为个人体验是即时性的,形成的时间比较短,容易被感受到,但会随着时间的流逝而逐渐消退,常常被外界的环境刺激诱发;而共享体验是在与人的互动过程中形成,而且需要一定时间的积累,这种体验不容易被感受到。
在有关人工智能的研究中,人工智能和营销的结合的研究多停留在现状的描述和案例分析层次。
丁道师(2016)以百度为案例,探讨了人工智能为品牌带来的价值。他认为人工智能为品牌带来了新的营销价值,同时人工智能在场景营销中的应用能够帮助提升用户价值。谷虹(2016)在文中将人工智能与品牌结合,提出人工智能将推动“品牌智能”的发展,品牌将从前智能阶段进化到高级智能阶段。韩思齐(2016)提出,在人工智能时代,营销开始向智能化发展,营销活动的智能化体现在:人工智能优化营销数据搜集和处理方式、人工智能提供个性化的营销策略、人工智能改变广告投放方式三个方面。从现有的人工智能相关研究上来看,大多数学者都已经意识到人工智能为营销带来的改变,同时提到人工智能对用户体验和价值都有提升,但却没有文章对其进行系统的论述。
3人工智能创造全新消费体验
2016年成为中国智能化营销的元年,人工智能更好地理解市场、联系市场,从而为消费者创造更好的体验。在营销领域,人工智能的三种革命性技术将极大地改变消费体验:以准确预测和个性化服务为主要应用场景的数据洞察技术、以虚拟现实、数字语音交互推动的互动技术、以云计算、机器学习和神经网络为基础的基础技术。
31数据洞察技术――了解消费者需求
随着大数据技术的发展,企业和品牌可以通过获得大量的数据来更好地理解自己的商业,并改善消费者的购物体验。而在智能化时代,人工智能和大数据的结合,让被营销人员忽略的“暗数据”开始发挥作用,在加快个性化服务发展的同时,更加准确地预测消费者需求。
IBM的Watson,作为目前最出名的人工智能系统,拥有最新的消费者-产品配对的大数据技术,并且与全球众多销售品牌进行合作,提品服务。户外服装品牌The North Face利用Watson打造全新的购物体验。消费者在购买The North Face产品时,Watson会提出一系列问题,并根据消费者对这些问题的回答筛选出相应的产品,从而最大限度地满足消M者需求。
The North Face采用的是文本分析技术,但社交网络和智能手机的发展带来了海量图片信息,图像识别与数据处理技术的结合将成为人工智能另一个发展方向。这项技术通过捕捉消费者上传的图片并进行深度理解,丰富用户画像,使得营销者对消费者的洞察更加立体。
管理大师彼得・德鲁克认为,营销的终极目的是充分洞察和了解顾客,通过人工智能技术对文本和图片信息进行深度分析,使得营销人员能够更加准确地了解消费者需求,满足消费者需求,增强消费者在消费时积极的情感体验,引发消费者的内在情绪,使消费者在不知不觉中融入品牌所创造的氛围中,并在不断的接触中增强对品牌的好感度。
32互动技术――激起消费者心流体验
营销从最开始的图文时代到视频时代,其目的都是为了通过寻找新的信息载体来提升消费者观看广告的体验,更加主动地接受广告信息。而如今的人工智能与VR技术的结合,通过互动感和沉浸感成为吸引消费者的最大法宝。随着VR和人工智能技术的日渐成熟,将营销推向一个全新的阶段。
2016年,我国最大的VR看房平台“无忧我房”推出了人工智能销售――Hugo。消费者通过戴上VR设备,操作手操柄唤出AI,并向其提问,AI通过记录消费者的相关数据,包括房屋不同位置停留时间、语音语调等来形成客户分析表,分析客户购房意向和实力并对客户进行分级。Hugo通过将人工智能与VR结合,为购房者提供了更良好的购房体验,并推动房地产行业进入科技营销时代。
同时,人工智能和VR技术还将应用于食品行业。百度和伊利联合推出的“度密看伊利”VR体验活动,将人工智能与VR结合,消费者通过手机百度就可以“亲临”牧场,体验加工厂。百度还和伊利联合定制了纸盒版VR眼镜,消费者可以通过VR设备进入VR模式,将可视化引进食品行业,为消费者提供更真实有趣的消费体验。
除了VR营销外,人工智能还应用在语音互动广告技术方面。优数科技的一款智能软件可以帮助用户跳过片头。例如,在视频的片头广告中设置一系列问题,用户在观看广告的同时可以利用语音与广告进行交互,答对问题就能够跳过片头。通过这一方法,用户在节省时间的同时还能够了解到品牌和产品信息。在这一过程中,用户会融入自己的思考体验,从而加深对品牌的认知与记忆。
一直以来,京东凭借其极速物流而获得大量用户青睐。但最近,京东的技术研发体系不断在智能技术上发力,期望构建一智能电商王国。在看到语音交互的趋势后,京东通过叮咚智能音箱,将语音技术、电商服务、人工智能技术相结合,实现语音购物体验。消费者可以通过该设备完成订单追踪、查询商品信息和下单指令。京东通过将语音交互入口和互联网结合,拓展了购物空间和人群,并提供更为便捷的购物方式。
在人工智能的互动技术下,传统的营销方式正在改变,品牌不再是冰冷的一个标志,消费的过程也不再是一成不变的过程的重复。人工智能的互动技术将营销引入了一个全新的领域,通过与消费者进行互动,使消费者在互动中进行思考,激起消费者的心流体验,提升消费者在消费过程中的情感与思考体验。
33基础技术――打造会话式互动
Forrester、埃森哲和德勤都在其2017新技术趋势报告中提到了“对话营销”一词。这意味着营销已经开始从“社会化营销”向“对话营销”转变。在Forrester的消费趋势报告中写到,如今的消费者更倾向于自动化的消费体验,自己解决问题。同时,社交媒体的创意广告对消费者将不再具有明显的吸引力,而一对一的营销模式才是消费者更能接受的。“对话营销”带来的是会话式互动,会给消费者带来更好的消费体验。
很多具有前瞻性的企业已经开始利用会话式互动来提升消费者的消费体验。2016年4月,上海肯德基选择与百度的“度秘机器人”进行合作,联合推出智能概念店“KFC original+”“度密机器人”在体验店中帮助消费者完成以点餐为主的服务。例如,在点餐区域,消费者可以利用机器人完成点餐活动;在全息投影区域,消费者通过机器人可以看到肯德基食品的制作过程。“度秘机器人”与肯德基的结合是基于特定场景的消费者服务,肯德基与智能机器人的结合,不仅为消费者带来一对一的服务和新鲜便捷的消费体验,还通过这种一对一的会话式互动,以消费者乐于接受的方式加深品牌印象,并为肯德基贴上“智能化”的标签。
作为一家电商企业,亚马逊也在智能化方面推陈出新。作为亚马逊智能家具的入口产品,智能音箱Echo的基本功能就是语音购物,语音选购商品,并进行语音支付,并且支持重新买你以前买过的东西。Echo通过内置的Alexa人工智能服务来完成消费者的每一个口令,整合购物的每一个环节。同时,它还包括外卖、优步等O2O服务,增加消费的便捷性。Echo通过提供一对一服务满足消费者需求并与其进行互动,而其背后代表的亚马逊品牌也在消费者与Echo的对话中进行隐形的互动。
任何消费体验的提升都在于如何满足消费者需求。人工智能对产品带来的一个深刻的影响,是从单一功能的极致转向连续场景的整合,可以让用户以较低的成本和较短的时间解决不同场景的需求。亚马逊的智能音箱和“度秘机器人”可以在与消费者的对话中轻松地满足消费者的需求,在提升消费者情感体验的同时与消费者进行互动,保持行动体验。
4结论
人工智能已经从计算机领域渗透营销领域,人工智能和营销结合所产生的富有创意且沉浸式的内容、互动的场景都为消费者创造了更好的消费体验。首先,在产品设计上更具有科技感,刺激消费者的感官体验;其次,通过一系列的产品设计和服务优化消费者消费过程,增加消费者在消费时愉悦的感受,提升消费者情感体验;最后,将产品与人工智能结合,在互动中提升消费者的思考与行动体验。但是,在对人工智能产品进行分析后发现,大部分产品都致力于提升消费者的情感、思考和行动体验,而关联体验却被忽略,大部分产品的社交属性并不明显。在人工智能时代,智能产品的社交化发展也许会成为下一个趋势。
虽然人工智能可以帮助品牌在多个方面提高营销效果,但若想营销完全智能化,笔者认为目前是不可能的。菲利普・科特勒认为,市场营销是个人和集体通过创造并同他人交换产品和价值以满足需求和欲望的一种社会和管理过程。他认为,营销的目的都是为了发现用户需求和激发欲望,而消费者的欲望很难用机器捕捉。同时,激发和满足欲望少不了营销沟通,而营销沟通是双向互动行为,在目前是无法完全由人工智能代替的。因此,智能化虽然是营销发展的新方向,但完全的营销智能化还有很长的路要走。
参考文献:
[1] 方征消费体验研究概览[J].湖北第二师范学院学报,2007,24(7):73-74
[2]Russell,Norvig人工智能:一种现代方法[M].2版北京:人民邮电出版社,2010
[3] 邹蕾,张先锋人工智能及其发展应用[J].信息网络安全,2012(2):11-13
根据《朗曼应用语言学词典》中的定义,双语教学(Bilingual Teaching)指的是用两种语言作为教学媒介语,通过学习学科知识来达到掌握第二语言的目的。双语教学作为学科教学延伸,不是简单的母语加第二语言,而是将第二种语言融进学科知识,通过学习学科专业知识提高学生第二语言的听、说、读、写综合能力,培养学生用第二语言思考、解决问题的能力,培养适应社会发展需求的高素质、复合型人才,以适应信息时代我国经济和社会发展的需要。人工智能的主要目标是让机器具有应用符号逻辑的方法模拟人的问题求解、推理、学习等方面的能力,能够在各类环境中自主地或交互地执行各种任务,比如水下作业、输油管道、森林救火等。人工智能的发展,不仅代表计算机等科学技术的发展水平,也是一个国家工业化水平的重要标志。这对高校的教育提出了新的挑战。因此,选择人工智能课程的双语教学模式是非常必要的。
1人工智能课程分析
人工智能是一门多学科交叉的课程,特别涉及控制论、信息论、语言学、神经生理学、数学、哲学等多种学科[1-2]。学习该课程需要具有较好的数学基础和较强的逻辑思维能力,大多教师、学生在教、学的过程中都显得比较吃力。如何结合课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的能力,提高学习兴趣成为教学研究过程中的首要目标。在目前高校提倡双语教学的环境下,我校已将人工智能立项为双语教学示范课程。人工智能课程具有如下特点:
(1) 是一门非常前沿的学科。
计算机最初是用来做科学计算的,但随着计算机科技的迅猛发展,人们开始考虑计算机还可以做些什么,能不能像人一样学习、思考,然后解决问题?这就是基于人的知识和经验,用符号推理的办法让计算机来做事情,是人工智能最早的研究成果。但是,知识并不都能用符号表示为规则,智能也不都是基于知识的。人们相信,自然智能的物质机构――神经网络的智能是基于结构演化的。因此,20世纪80年代在人工智能理论发展出现停顿时,人工神经网络理论出现新的突破,基于结构演化的人工智能迅速成为人工智能研究的新方向。事实上,智能问题无论从广度还是深度,都远比人们想象的要复杂得多。因此,我们一刻也不能放弃钻研,并且要时刻关注该领域发展的最新动态。在高校开展人工智能课程的双语教学,可以促使学生了解该领域以及相关领域,如模式识别、机器视觉、智能检索、人工生命等发展的最新动态,掌握大量的专业词汇,锻炼理解问题、解决问题、了解领域文化等实际能力,对培养国际化、工程化、实用化的复合型人才等具有重要的现实意义。
(2) 涉及面宽、难度大。
人工智能是一门多学科交叉的、极富挑战性的前沿学科,它几乎涉及于社会科学和自然科学的每个领域。人工智能课程是一门理论性非常强、知识点比较分散、知识更新快的课程,它以编程语言、数据库原理、概率统计、数据结构、离散数学以及编译原理等前趋课程为基础,还涉及到控制论、信息论、通信原理、图像处理、模式识别等课程。因此,人工智能课程的知识点难度较大。通过该课程的双语教学过程,学生不但学习了课程的专业知识,而且还学习了相关理论课程的第二语言表示方法及应用情况,对于培养具有个性化的多层次人才具有重要的价值。
人工智能课程的特点决定了它的双语教学也具有很大的难度。根据普通高校的实际情况,我们组织了人工智能的双语教学体系结构,教学实践表明,该模式行之有效。
2人工智能双语教学体系结构
要达到双语教学的目的,就必须将传统的“注入式”教学模式改变为新型的“以学生为中心”的教学模式。然而,这种“以学生为中心”的双语教学模式是多样化的,其教学过程是复杂的,在我国还处于探索阶段[3-5]。在人工智能课程的教学过程中,根据学生的实际情况,我们采用课堂教学多样化、基于CDIO理念的实践教学,不断地探索研究,形成高校人工智能双语教学体系结构,如图1所示。
计算机双语教学的正常开展,必须依托优秀的计算机专业外语教科书和教学参考用书。根据学生的实际情况,我们采用了Nils J.Nilsson教授编著的《Artificial Intelligence A New Synthesis》,该教材是美国斯坦福大学计算机系本科教材,不仅内容丰富、取材新颖,更重要的是内容组织结构比较符合学生的认知规律,便于学生学习、理解。参考书主要选用了蔡自兴、徐光v老师的《人工智能》。
3双语教学方法
由于人工智能是一门非常前沿、涉及知识面宽、应用范围广的学科,因而在教学的具体过程中,我们多种教学手段并用,主要采取理论联系实际的案例驱动讲授、CDIO实践模式、综合考证等讲授方法。
3.1理论教学
(1) 修改教学大纲和课程设计的实验大纲。参考吸收国外先进教材中的内容,结合普通高校的实际情况,形成有针对性的、合理的教学体系。
(2) 采用多种教学方法和手段。设计和制作简洁、易懂的英文电子教学课件,采用多媒体教学手段,丰富教学内容。建设课程网站,电子课件在网上公开,帮助学生预习专业词汇、了解教师讲解线索和重点内容,降低学习难度。
(3) 课堂提问。提问一些重要内容,鼓励学生积极思考,既能加深学生对所学课程知识的理解,也有利于其英文表达能力的提高。
(4) 案例驱动法。将有意义的案例贯穿在教学过程中,培养学生的兴趣,提高学生分析问题、解决问题的能力;
(5) 课后小组讨论。每6~8位同学分为一组,实行小组长负责制,组织学生讨论和解决学习中遇到的问题,交流学习心得,一方面起到温故而知新的作用,同时培养团队协作精神。
3.2实践教学
由于学生的英语水平、专业基础知识以及知识面都有差别,因此教师必须因材施教,培养学生的兴趣。实践课题来源于实际工程,将CDIO理念贯穿于实践教学过程中,提高学生综合创新能力与团体协作精神。
(1) 实验题目多样化。学生可以选择,也可以根据老师的要求自己构思,以培养学生的兴趣与查阅资料的能力。
(2) 分工与合作。来源于工程实践的题目,学生通常很难在短时间内独立完成,因而需要分工合作,培养学生的协作精神。
(3) 整体设计方案的灵活性。学生领会题目本意,自主设计解决方案,培养学生分析问题、解决问题的综合创新能力。
(4) 编程实现。培养学生的编程能力,形成科学的编程风格。
3.3考核方式
(1) 多种形式的平时测试(30%)。主要包括平时测验、讨论、作业等。主要考察学生对基本知识的掌握,英文表达能力以及知识面的拓宽等。
(2) 实践教学(30%)。主要考察学生对实践题目的理解、整体方案的设计、团队间的协作精神以及实现结果等。
(3) 期末考试(50%)。试题全部用英文形式出现,鼓励学生用英文作答。
人工智能课程采用双语教学,可以使学生最准确地理解专业知识,又可以使英语和专业课的学习相互促进。
4教学效果分析
课程结束后,我们对学生进行了教学效果讨论与调查,结果如表1所示。
从本课程讨论和调查的结果以及其他普通高等院校的双语教学调查结果可以看出,双语教学效果基本上达到了要求。但也存在一些值得思考的问题:不适应的人数比例偏高,专业知识的学习效果一般,甚至有学生因为跟不上进度放弃专业课的学习。为此,提出以下的建议:
(1) 加强学生认识。学生必须从思想上认识到人工智能双语教学的重要性,克服教学过程中的种种困难、持之以恒,主动与同学、老师进行讨论,密切关注学科发展动态。
(2) 提高实施条件。双语教学过程中,学生是主体,教师是关键。因此,要求老师要有较高的专业知识和英语水平,学生要有较好英语基础。
(3) 完善教学体系结构。双语教学在我国还处在探索阶段,因而必须在教学实践过程中不断地改进完善双语教学的体系结构。
只有解决好这些问题,才能培养出更高素质的复合型人才,适应国内外科学与经济发展的需要。
参考文献:
[1] Nils J Nilsson. Artificial Intelligence A New Synthesis[M]. 北京:机械工业出版,2002.
[2] 蔡自兴,徐光v. 人工智能[M]. 北京:清华大学出版社,2003.
[3] 贺志荣. 双语教学的实践与思考[J]. 黑龙江教育:高教研究与评估版,2008,62(10):45-46.
[4] 王树根,姜昕. 我国双语教学的历史发展阶段综述[C]. 安徽黄山,2007年全国测绘学科教学改革研讨会,2007.
[5] 汤东. 中外高校双语教学模式的比较研究[J]. 黑龙江教育:高教研究与评估版,2008,62(11):69-70.
Exploration and Practice on Bilingual Teaching Architecture for Artificial Intelligence Course
LI Zhu-lin, HAO Ji-sheng, MA Le-rong
中图分类号:TM73 文献标识码:A 文章编号:2095-1302(2013)01-0032-05
0 引 言
智能电网是当今世界电力系统发展的重大变革,也是21世纪电力系统的重大科技创新和发展趋势。2003年,美国“未来能源联盟”首次提出智能电网的概念。同年,美国能源部了“Grid 2030”设想[1],将美国的未来电力系统描述为一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。2005年,欧洲技术论坛(ETP)提出了“Smart Grid”概念[2],计划通过智能电网的建设,向所有用户提供高度可靠、经济有效的电能,充分开发利用大型集中发电机和小型分布式电源,提高电网公司运营效率,降低电能价格,加强与客户的互动,应对来自市场、安全和电能质量、环境等方面的压力。
国内也高度重视智能电网建设。2010年6月7日,总书记在两院院士大会上的讲话中提出,要“构建覆盖城乡的智能、高效、可靠的电网体系”。国家科技部于2009年11月24日的《关于加快我国智能电网技术发展的报告》中提出了明确的目标和任务。国家电网公司于2009年5月了“坚强智能电网”愿景及建设路线图。南方电网有限责任公司在2010年7月提出了“建设一个覆盖城乡的智能、高效、可靠的绿色电网”的目标。2011年2月,陕西省地方电力(集团)有限公司作为专业的配电网公司,联合清华大学提出了建设“多指标自趋优”智能配电网的目标。
智能电网涉及能源、环境、社会、经济和管理等多个学科,由于其具备系统工程和创新技术的特点,目前智能电网的研究趋向发散,对智能电网的认识多从企业自身出发,尚未收敛到智能电网本质的研究,影响和干扰了对智能电网发展方向的研判。本文在分析国内外智能电网相关研究的基础上,结合实践应用,溯源了智能电网的本质——智能,提出了智能电网分代标准,建立了智能电网分代模型,探讨了智能电网分代的社会经济意义。
1 国外智能电网分代研究状况
分代研究在计算机和战斗机等领域已经取得了共识。计算机按照所采用的电子元件,历经了电子管计算机、晶体管计算机、集成电路计算机、大规模集成电路计算机,现在正在研发信息获取、存储、处理、通信与人工智能相结合的第五代计算机。20世纪40年代中期,以喷气式发动机为动力的战斗机出现后,按时代和技术水平,战斗机历经三代,目前正在研制第四代战斗机。
由于智能电网尚未大规模应用,与计算机、作战飞机等其他领域分代研究更注重“回头看”的方法不同,智能电网分代更注重“向前看”,这个特点导致智能电网分层次、分步骤、分阶段的研究异彩纷呈,莫衷一是。国外智能电网分代的相关研究综述如下。
1.1 智能电网演进模型
2010年1月,加拿大学者Hassan Farhangi从功能和投资回报率(ROI)两个维度,提出了如图1所示的智能电网的演进模型[3]。他认为,由于化石燃料的成本猛增,电力公司无法扩大发电能力以满足用户对电能不断上升的需求,只有从配电网着手,加强需求侧管理,才能保障电力公司拥有较高的ROI水平。模型表示,智能电网最初的投资用来满足计量设备由机电式到单向自动抄表(AMR)的功能转变,AMR具有节约人力以及时间成本的优势,但是由于其只具有单向通信能力,无法支持电力公司依据从电表获取数据采取调控措施。高级计量架构(AMI)能够提供双向的通信系统,旨在为电力公司提供实时的能耗数据,允许客户以价格为基础,对能源使用做出选择。智能电网演进的最终目标是分布式控制与微网相结合的互联电网。
1.2 智能电网持续发展理论
2011年7月,美国GridNet公司执行副总裁兼首席战略官Andres Carvallo和能源与IT行业学者John Cooper合作出版了“The Advanced Smart Grid — Edge Power Driving Sustainability”一书,提出了智能电网持续发展理论[4]。书中认为第一代智能电网(Smart Grid 1.0)实现了发电厂到终端计量设备的电流与信息流的传输,典型的第一代智能电网是美国科罗拉多州博尔德市智能电网的建设。下一代智能电网(Smart Grid 2.0)将是一个集成的、先进的智能电网体系,从战略上进行顶层设计,在组织、运行、系统集成与建模等多个维度进行柔性规划,下一代智能电网的一些技术已经在美国奥斯汀市智能电网研究项目Pecan Street中浮现。书中对第三代智能电网(Smart Grid 3.0)进行了展望,并将其定义为一个基于互联网络的重新设计的能源系统。
1.3 智能电网层次理论
IBM高级电力专家Martin Hauske认为智能电网的基本概念有3个主要元素:首先是广泛连接资产与设备的传感器;其次是数据的搜集与整合体系;最后是依据数据进行相关分析,以优化运行和管理的能力。与之对应,智能电网也就有三个层面的含义[5]:首先是利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控;然后将获得的数据通过网络系统进行收集、整合;最后通过对数据的分析、挖掘,达到对整个电力系统运行的优化管理。因此,智能电网可以被认为是通过传感器把各种设备、资产连接到一起,形成一个客户服务总线,通过对信息进行整合分析,从而降低成本,提高效率和可靠性,促进管理和运行达到最优化。
1.4 智能电网成熟度模型
智能电网成熟度模型是IBM、美国生产力和质量中心(APQC)及全球智能电网联盟(GIUNC)合作研究的成果[6]。智能电网的成熟度分为5个阶段:第1阶段,只有对智能电网的设想,主要工作是对技术的试验和评价,以及建立业务模型;第2阶段,企业在至少一个智能电网的重要业务领域进行投资和实施;第3阶段,企业对智能电网的组成部分进行重新配置,实现业务领域整合或产业链升级;第4阶段,实现企业范围的跨业务综合观测及综合控制,力争形成新的经济或商业模式;第5阶段,企业有能力在新的业务、运行、环境等机会出现时,充分利用并发展壮大。
综观国外的相关研究,智能电网演进模型以计量系统为主线,没有加入交易环节,同时忽视了人工智能在电网中的应用。智能电网持续发展理论有对智能电网分代以及各代相应功能的描述,但是缺乏对智能电网本质的分析,特别是对三代智能电网核心的描述。智能电网层次理论以传感器为基础,触及到智能电网的基本,但是数据收集与整合体系等没有体现人这一重要因素的参与,理论阐述不够全面。智能电网成熟度模型实质上是智能电网的推进步骤。因此,上述研究都没有涉及智能电网的本质。
2 智能电网的本质——智能
对国外智能电网的研究和实践进行分析,能够为国内的相关研究带来启示和借鉴。从人类认识事物的基本方法来看,对智能电网进行分代研究,必然要从智能电网的本质着手。智能电网可以认为是人工智能在传统电网中的应用,而人工智能又起源于人类智能,因此,必须从人类智能出发,探求智能电网的本质——智能。
2.1 人类智能的发展阶段
人类智能经历了从初级到高级、从简单到复杂的演化过程。这种过程只在个体的前十几年表现得尤为突出,正是这一过程决定了每个人一生智能水平的高低,也决定了人类群体智能水平的多样性。
1983年,美国学者Howard Gardner提出多元智能理论,将智能分为语言智能、数学逻辑智能、空间智能、身体运动智能、音乐智能、人际智能、自我认知智能、自然认知智能等8个方面。瑞士心理学家Jean Piaget从时间维度对人类智能演化规律做出经典总结,提出了人类智能发展理论[7],将个体从出生到青年时期的智能发展水平分为感知运动阶段、前运算阶段、具体运算阶段和形式运算阶段。
虽然多元智能理论并不着眼于各个智能在个体层面的发展顺序,但是结合Jean Piaget的认知发展理论,同时根据Howard Gardner对每种智能概念的描述,可以对智能的8个组成部分以发展为时序,在多元维度上进行归类。在感知运动阶段,空间智能和音乐智能是人类智能重点发展的部分;到了前运算阶段,语言智能和身体运动智能在儿童身上表现较为明显;数学逻辑能力和自我认知能力在具体运算阶段得到了迅速发展;最后,从青少年阶段开始,终其一生,对自然的认知,人际交往能力随着阅历的丰富、经验的积累而日趋成熟。
2.2 人工智能是对人类智能的模拟、延伸和扩展
人类智能的演进规律遵循着Jean Piaget的人类智能发展理论,这些研究成果也深刻地影响着另一个与之紧密相关的学科,即以计算机为基础的人工智能的研究。人工智能最初被定义为“让机器的行为看起来就像人所表现出的智能行为一样”,到后期逐渐演变为让机器拥有自己的思维。对比人类智能发展的历程,人工智能的演进呈现出与之相似的路径。
(1) 人工智能发展的初级阶段是对人类智能的模拟。通过传感器远程传送信号,需要操作者通过计算机终端控制机器执行动作,这类似于人类智能的感知运动阶段,具体的应用如排爆机器人、勘探机器人等。
(2) 人工智能发展的中级阶段是对人类智能的延伸。着眼于通过程序算法实现机器的逻辑运算和自我认知能力,类似于人类智能的前运算和具体运算阶段。智能机器人通过处理器分析传感器收集的信息,在无人操控的状态下执行动作。有些智能机器人还能通过对人类语言的识别和模拟实现与人类的语言交流,如日本的ASIMO智能机器人,可以通过“脑—机”系统达到人类思维直接控制机器人的效果。
(3) 人工智能的更高阶段,智能将成为一种系统层面的应用。人工智能体现出自我思维和机器情感等人类特有的能力,通过自我思维产生对外部环境的认识,通过机器感情与外部环境产生更为复杂的交互,这些能力使得人工智能发生了从模拟、延伸到扩展人类智能的突破。
2.3 智能电网是人工智能在传统电网中的应用
智能电网建立在电力电子技术、传感与测量技术、控制仿真决策技术、信息与通信技术、人工智能技术等基础技术之上,以实现发电、储能、输电、配电、用电等环节的智能化为目的。其中,人工智能技术在推动智能电网发展中起着重要作用。
(1) 人工智能的应用能够推动整个电力系统的发展。传统电网存在大量非线性的、模糊的、不确定、不精确、不完全真值的问题,人工智能技术应用的目的就是解决上述问题。基于人工智能的电网故障检测与诊断、具有灵活自愈功能的配电自动化等技术的应用表明,在期望能取得低代价的解决方法和鲁棒性方面,人工智能的应用显著改善了传统电网对不确定、高度非线性环境的适应能力。
(2) 人工智能技术的应用体现了智能电网的本质。智能电网的本质是智能,现代人工智能技术是对人类智能的模拟,因而人工智能的应用是电网“智能化”的根本体现,人工智能技术应用使智能电网回归到了它的本质——智能。从这种意义上说,人工智能技术是否应用是评价一个电网是不是智能电网的基本依据。
(3) 人工智能技术在电网中的应用程度体现了智能电网区别于传统电网的特征。传统电网未能完整地体现人工智能“感知、思维、行为”三要素,导致人的参与程度较低,传统电网始终徘徊在由工业化主导的阶段,在信息化与工业化融合时,遇到了重重困难。智能电网中,人工智能技术的广泛应用将使得电网逐步具有模拟人类智能的能力,从而减少人的参与程度。
(4) 未来智能电网的发展中,人工智能是推动智能电网跃进发展的革命性力量。未来智能电网将是一个具有自预测、自诊断、自愈、自组织和自管理特性的电网。智能电网的跃进发展将主要依靠电网的自学习能力,人的干预将退居其次。人工智能的应用,使得电网的自学习成为可能。在可以预见的将来,除了人工智能技术,其他技术均无法有效增强电网的自学习能力。
3 智能电网分代原则、标准与模型
以上分析了智能电网的本质,以下在智能电网的本质基础上提出智能电网分代的原则、标准以及智能电网分代模型。
3.1 智能电网分代原则
智能电网分代必须遵循以下原则:
(1) 惟一性原则:下一代和上一代的智能电网必须按照智能电网的本质进行划分。
(2) 革命性原则:下一代智能电网必须在整体,而不是局部取得标志性进展和突破。
(3) 连续性原则:下一代智能电网发展的关键要素必须蕴含在上一代智能电网的发展过程中。
3.2 智能电网分代标准
智能电网的本质是智能。人工智能是人类智能应用于传统电网的纽带,人工智能将人类智能的8个方面归纳为“感知、行为、思维”3个要素,上述3个要素也是智能电网分代的标准。
感知是客观事物通过感觉器官在大脑中的直接反映。在多元智能的8个方面中,感知体现语言智能、空间智能、音乐智能。感知在人工智能技术中的体现有语音识别、机器视觉等。
行为是器官对外界刺激所产生的反应。行为体现身体运动智能,行为在人工智能技术中的体现有机器人学、智能控制等。
思维是主体处理信息及意识的活动。思维体现数学逻辑智能、人际智能、自我认知智能、自然认知智能,思维在人工智能技术中的体现有知识系统、专家系统、神经网络、进化计算等。
3.3 智能电网分代模型
智能电网发展的各阶段均须具备人工智能3个要素的全部或部分,不具备3个要素的电网属于传统电网。依据3个要素在传统电网中渗透与融合的深度和广度,建立智能电网分代模型如图2所示。
图2中将智能电网划分为具有以下特征的三代智能电网:
(1) 第一代智能电网:自感知智能电网(Self-sensing Smart Grid)。第一代智能电网在传统电网的基础上具备自主感知能力,是人工智能在电网中应用的初级阶段。智能电网关键设备能够自主感知电属性(负荷等)和电相关属性(温度等)的变化,需要人参与进行决策并采取行动,第一代智能电网只具备简单的自主决策和初级的自主行为能力。典型的自感知智能电网设备及系统如电子式及光学式互感器、智能环网柜、智能在线监测系统、智能终端等。
(2) 第二代智能电网:自适应智能电网(Adaptive Smart Grid)。第二代智能电网在第一代智能电网自主感知能力的基础上,具备一定的自主决策能力和自主行为能力,是人工智能在电网中应用的中级阶段,较少需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是独立的,即只在单一设备或系统局部的感知域内进行决策并根据决策结果驱动单一设备或系统局部采取行动,以达到局部最优。典型的自适应智能电网应用系统如智能调度系统、智能自愈系统等。
(3) 第三代智能电网:自趋优智能电网(Self-approximate-optimization Smart Grid)。第三代智能电网在第二代智能电网自主决策和自主行为能力的基础上,是人工智能在电网中应用的高级阶段,更少需要或不需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是系统的、全局的,即在整个系统感知域(或子集)内进行决策并根据决策结果驱动相关(部分或全部)设备采取行动,使得电网自身状态趋向最优。目前,已经提出来的自趋优智能电网如智能广域机器人(Smart Wide Area Robot,Smart-WAR)[8]。
4 智能电网分代的社会经济意义
技术创新与人类解放之间的历史发展进程表明,人的劳动方式在逐渐变化,技术创新使人在生产劳动中逐渐从事必躬亲的执行者演变成监督者、命令者,这种角色的演变,反映出技术创新在人的实践过程中所具备的强大能动作用。智能电网作为当前电网行业最重要的技术创新形式,同样发挥着着解放人类劳动的作用,亦即电网运行中人的参与程度不断减弱。
第一代智能电网通过技术创新实现自我感知,不但极大地拓展了认知的深度和广度,而且还使人的身体在一定程度上获得了解放。
第二代智能电网通过技术创新实现自我行为,将会极大地减轻人的劳动强度,甚至取代了劳动者在电网运行过程中仅有的操作、监督和控制工作,使人得以在很大程度上从体力劳动中解放出来。
第三代智能电网通过技术创新实现自我思维,“电脑”开始代替“人脑”控制电网运行,机器人劳动取代人的劳动,使人的活动逐渐从电网运行中淡出,这将使人的思维劳动强度得以极大的减轻。
以智能电网建设为标志的技术创新为电力产业提升运行管理水平,开发新产品和服务,以及延伸整个产业链奠定了坚实的技术基础。随着技术手段的革新与经营管理模式的转变,电力产业尤其是电网企业的供给可能性边界将极大扩展,不仅能够满足目前存在的潜在需求,而且还能在未来引领和创造新的需求,在供需双方良性互动的作用下,电力产业将不断优化升级,产业整体影响力和竞争力都会获得显著的提升。
5 结 语
智能电网分代是一个全新的课题,但是分代研究在计算机等其他领域并不鲜见,对这些领域进行分代的目的是通过研究“上一代是什么”来推测“下一代是什么”,因此有必要通过分代研究来预测和引导智能电网的发展方向。与其他领域分代研究更注重“回头看”的方法不同,智能电网尚未大规模应用,分代更注重“向前看”,正是人类智能与人工智能的发展规律,奠定了我们“向前看”的基础。未来,伴随智能电网的深入推进,实践应用总结出的成果和经验,将有助于深化对智能电网本质的认识,理论的可行性与实践的迫切要求,也必将对智能电网分代研究起到促进作用。
参 考 文 献
[1] US Department of Energy. Grid 2030: A national vision for electricity's second 100 years[R].USA: US Department of Energy Initiative, 2003.
[2] European Commission. European technology platform smartgrids: vision and strategy for Europe's electricity networks of the future[EB/OL]. [2012-09-20]. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.
[3] FARHANGI Hassan. The path of the smart grid [J]. IEEE Power and Energy Magazine, 2010, 8(1): 18-28.
[4] CARVALLO Andres, COOPER John. The advanced smart grid: edge power driving sustainability [M]. Boston: Artech House Publishers, 2011.
[5] IBM论坛2009. 点亮智慧的地球[EB/OL]. [2012-09-25]. http:///cn/forum2009/wisdom.shtml.
中图分类号:TP18 文献标识码:A 文章编号:1671-2064(2017)07-0193-02
1 围棋与人工智能
围棋作为中国传统四大艺术之一,拥有着几千年的悠久历史。围棋棋盘由19条横线和19条竖线组成,共有19*19=361个交叉点,围棋子分为黑白两种颜色,对弈双方各执一色,轮流将一枚棋子下在纵横交叉点上,终局时,棋子围上交叉点数目最多的一方获胜。围棋棋盘上每一个纵横交叉点都有三种可能性:落黑子、落白子、留空,所以围棋拥有高达3^361种局面;围棋的每个回合有250种可能,一盘棋可长达150回合,所以围棋的计算复杂度为250^150,约为10^170,然而全宇宙可观测的原子数量只有10^80,这足以体现围棋博弈的复杂性和多变性。
人工智能(Artificial Intelligence,AI)主要研究人类思维、行动中那些尚未算法化的功能行为,使机器像人的大脑一样思考、行动。长期以来,围棋作为一种智力博弈游戏,以其变化莫测的博弈局面,高度体现了人类的智慧,为人工智能研究提供了一个很好的测试平台,围棋人工智能也是人工智能领域的一个重要挑战。
传统的计算机下棋程序的基本原理,是通过有限步数的搜索树,即采用数学和逻辑推理方法,把每一种可能的路径都走一遍,从中选举出最优路径,使得棋局胜算最大。这种下棋思路是充分发挥计算机运算速度快、运算量大等优势的“暴力搜索法”,是人类在对弈规定的时间限制内无法做到的。但是由于围棋局面数量太大,这样的运算量对于计算机来讲也是相当之大,目前的计算机硬件无法在对弈规定的时间内,使用计算机占绝对优势的“暴力搜索法”完成围棋所有局面的择优,所以这样的下棋思路不适用于围棋对弈。
搜索量巨大的问题一直困扰着围棋人工智能,使其发展停滞不前,直到2006年, 蒙特卡罗树搜索的应用出现,才使得围棋人工智能进入了崭新的阶段,现代围棋人工智能的主要算法是基于蒙特卡洛树的优化搜索。
2 围棋人工智能基本原理
目前围棋人工智能最杰出的代表,是由谷歌旗下人工智能公司DeepMind创造的AlphaGo围棋人工智能系统。它在与人类顶级围棋棋手的对弈中充分发挥了其搜索和计算的优势,几乎在围棋界立于不败之地。
AlphaGo系统的基本原理是将深度强化学习方法与蒙特卡洛树搜索结合,使用有监督学习策略网络和价值网络,极大减少了搜索空间,即在搜索过程中的计算量,提高了对棋局估计的准确度。
2.1 深度强化学习方法
深度学习源于人工神经网络的研究,人类大量的视觉听觉信号的感知处理都是下意识的,是基于大脑皮层神经网络的学习方法,通过模拟大脑皮层推断分析数据的复杂层状网络结构,使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象,其过程类似于人们识别物体标注图片。现如今,应用最广泛的深度学习模型包括:卷积神经网络、深度置信网络、堆栈自编码网络和递归神经网络等。
强化学习源于动物学习、参数扰动自适应控制等理论,通过模拟生物对环境以试错的方式进行交互达到对环境的最优适应的方式,通过不断地反复试验,将变化无常的动态情况与对应动作相匹配。强化学习系统设置状态、动作、状态转移概率和奖赏四个部分,在当前状态下根据策略选择动作,执行该过程并以当前转移概率转移到下一状态,同时接收环境反馈回来的奖赏,最终通过调整策略来最大化累积奖赏。
深度学习具有较强的感知能力,但缺乏一定的决策能力;强化学习具有决策能力,同样对感知问题无能为力。深度强化学习方法是将具有感知能力的深度学习和具有决策能力的强化学习结合起来,优势互补,用深度学习进行感知,从环境中获取目标观测信息,提供当前环境下的状态信息;然后用强化学习进行决策,将当前状态映射到相应动作,基于初期汇报评判动作价值。
深度强化学习为复杂系统的感知决策问题提供了一种全新的解决思路。
2.2 蒙特卡洛树搜索
蒙特卡洛树搜索是将蒙特卡洛方法与树搜索相结合形成的一种搜索方法。所谓蒙特卡洛方法是一种以概率统计理论为指导的强化学习方法,它通常解决某些随机事件出现的概率问题,或者是某随机变量的期望值等数字特征问题。通过与环境的交互,从所采集的样本中学习,获得关于决策过程的状态、动作和奖赏的大量数据,最后计算出累积奖赏的平均值。
蒙特卡洛树搜索算法是一种用于解决完美信息博弈(perfect information games,没有任何信息被隐藏的游戏)的方法,主要包含选择(Selection)、扩展(Expansion)、模拟(Simulation)和反向传播(Backpropagation)四个步骤。
2.3 策略网络与价值网络
AlphaGo系统拥有基于蒙特卡洛树搜索方法的策略网络(Policy Network)和价值网络(Value Network)两个不同的神经网络大脑,充分借鉴人类棋手的下棋模式,用策略网络来模拟人类的“棋感”,用价值网络来模拟人类对棋盘盘面的综合评估。
AlphaGo系统主要采用有监督学习策略网络,通过观察棋盘布局,进行棋路搜索,得到下一步合法落子行动的概率分布,从中找到最优的一步落子位置,做落子选择。DeepMind团队使用棋圣堂围棋服务器上3000万个专业棋手对弈棋谱的落子数据,来预测棋手的落子情况。期间,系统进行上百万次的对弈尝试,进行强化学习,将每一个棋局进行到底,不断积累“经验”,学会赢面最大的棋路走法,最终达到顶级围棋棋手的落子分析能力。而AlphaGo的价值网络使用百万次对弈中产生的棋谱,根据最终的胜负结果来进行价值网络训练,预测每一次落子选择后赢棋的可能性,通过整体局面的判断来帮助策略网络完成落子选择。
3 围棋人工智能意义
经过比赛测试证明,AlphaGo系统的围棋对弈能力已经达到世界顶级棋手水平。一直以来,围棋因为复杂的落子选择和巨大的搜索空间使得围棋人工智能在人工智能领域成为一个具有代表性的难度挑战。目前的硬件水平面对如此巨大的搜索空间显得束手无策,AlphaGo系统基于有监督学习的策略网络和价值网络大大减少搜索空间,在训练中开创性地使用深度强化学习,然后结合蒙特卡洛树搜索方法,使得系统自学习能力大大提高,并且AlphaGo系统在与人类顶级棋手对弈中取得的连胜卓越成绩,槠湓谌斯ぶ悄芰煊虻於了坚实的里程碑地位。
虽然围棋人工智能取得了如此优秀的成绩,但是也仅仅是它在既定规则内的计算处理能力远远超过了人类的现有水平,并且还有有待提高和完善的地方。在人类的其他能力中,例如情感、思维、沟通等等领域,目前的人工智能水平是远远达不到的。但是随着科技的进步和人类在人工智能领域的研究深入,人工智能与人类的差距会逐渐减小,像围棋人机大战人工智能连胜人类这样的例子也可能在其他领域发生,这就意味着人工智能的发展前景十分可观。
4 结语
人类和人工智能共同探索围棋世界的大幕即将拉开,让人类棋手结合人工智能,迈进全新人机共同学习交流的领域,进行一次新的围棋革命,探索围棋真理更高的境界。
中图分类号:TU857文献标识码: A
一、前言
在电梯群中使用人工智能化技术对电梯进行有效的控制,提高了电梯的运行速率,为人们的快捷出行提供了方便,通过智能控制提高了电梯的运行效率。
二、电梯去控制的含义
所谓电梯群控,就是将原先的多部电梯独立控制改为一个系统统筹协调控制,这样在很大程度上提高了运行效率、增强了用户体验。假如某用户在五楼请求上楼,他面前有两部电梯,一部正在从二楼向上运行,另一部正在从八楼向下运行,如果他先看到的是后一部,并且按下上楼键,之后发现另一部正在上楼且快要到五楼了,这时他又在这部电梯按下上楼键,随后乘该电梯上楼,若干分钟后最初的那部电梯来到五楼响应之前的上楼请求,但是实际上五楼可能已经不再有上楼请求了,那么这就是资源的浪费,造成了该电梯效率的降低;如果该用户只看到了后一部电梯并且只按下该电梯的上楼键,那么他要等该电梯先执行完下楼任务再回来送他上楼,而另一部电梯可能已经从他面前上去,这对该用户来说浪费了时间,对电梯来说浪费了资源,多执行了一次任务。由此可见电梯群控系统的设计研发是很有意义的,不仅减少了资源的浪费、提高了电梯运行效率,而且在服务质量、用户体验度上也得到了提升。人工智能是在经济发展迅速的时代大背景下产生的新技术。它研究了自然科学和社会科学,所涉及的知识面非常广。人工智能技术自然离不开计算机技术的大力支持,大部分的人工智能技术都是以计算机编程为基础实现的。人工智能其实也就是采取一定的计算机编程来做到模仿人的目的,其主要的模仿对象有信息的收集、人的判断能力、数字图像的识别和一些相对来说较为简单的反应等,以这种人工智能技术来代替人类的智慧,就目前来说,主要的人工智能领域包括图像语言识别、自然语言处理、机器人,以及一些较为简单的专家系统等。在这些众多的领域当中,我们可以用在电气自动化控制当中的主要就是专家系统,专家系统应用在电气自动化控制系统当中不仅
三、电梯群控制系统组成及原理分析
通常,电梯群控系统是指对由3部或3部以上电梯组成的电梯群进行派梯控制.由于调度的动态性、随机性和非线性的存在,给轿厢的调度和电梯间的协作带来很大的难度.合理的派梯方案,对降低乘客候梯焦躁度、提高乘客乘梯舒适度以及节约电梯运行能耗具有重要的意义.从系统架构的角度来说,电梯群控系统一般由呼梯登记模块、优化调度模块及运行管理模块3大部分构成,当任意模块运行出现异常时,都将触发电梯连锁自保装置,从而达到保护乘梯人员安全的目的.电梯群控系统基本运行原理框架如图1所示.
图1 电梯群控运行框架图
从系统真实硬件组成角度来说,电梯系统由机房、井道底坑、层站及轿厢4部分组成.为了提高电梯群控系统研究的实用性,电梯的微缩模型,使用了PLC、传感器、变频调速器、交直流电机控制等技术,具有轿厢升降、自动平层、自动开关门、顺向响应轿厢内外呼梯信号、直驶、安全运行保护等功能.同时也可与上位机通信实现组态控制。
四、电梯群控制系统使用人工智能化技术
目前,应用智能控制方法进行群控系统研究的途径有很多,最主要的思路是依据客流的分布将电梯群分成若干运行模型.在派梯阶段,结合不同运行模型的特点,使用相关优化算法来获得满意的派梯方案.近些年来,已有大量文献从不同角度对电梯群控系统进行了相关研究,并取得了丰硕的成果.HirasawaK等用遗传网络的方法,建立了一个双层电梯控制系统.JamaludinJ等提出了一种带有自适应机制的模糊逻辑群电梯群控调度算法,降低了乘客等待和乘梯的时间.对多轿厢电梯群控系统,ValdivielsoA等根据不同交通流状况识别出不同的客流模型,得到最佳的电梯调度和抗干扰方案.ZhangJl等针对不同的电梯运行模式,在降低电梯运行能耗方面做了重点研究.大连理工大学的杨祯山对电梯群控系统最新发展概况做了综述,并详细分析了电梯群控系统研究中的控制算法等相关问题,指出多种新型智能控制手段的融合使用是今后电梯群控研究的重要方向之一.不过,已有的文献研究中难免也存在一些不足,如电梯运行模型划分不精确、评价群控算法性能的电梯动态指标不易计算,以及电梯运行模型与相应控制策略的切换机制不完善等等
五、人工智能化技术应用
在人工智能发展之前,各种数学方法、模型、算法早已成熟的应用到了电梯群控问题上,主要是数据统计分析等方法,但是随着科技的进步,传统统计分析的不足也日益体现,人工智能的优势得到了发展,智能控制已经应用在许多复杂的控制领域上,在电梯控制领域同样也得到了极大的应用,目前人工智能在电梯控制领域主要有以下一些控制调度方法:
1、基于专家系统的电梯调度方法。由于电梯控制调度系统是一个非常复杂、非线性、不确定的实时系统,因此传统的数学模型以及设计方法已经无法满足,而运用领域知识及长期积累的统计分析经验进而形成一个专家系统则可以大大解决这方面的不足。专家系统是人工智能的产物,具有高度的智能性,可以利用所存储的专家知识、领域知识、经验规则等进行启发式推理,可以说是从完全不同的一个思路解决电梯调度、群控问题。当然专家系统的产生、形成本身也是一个复杂、困难的事情,因为专家知识、领域知识尤其是经验都是需要长期积累,而且必须是准确可靠的规则才可以写进专家系统的知识库,因此专家系统对知识库的依赖也是非常严重的。日本电机公司曾推出的AI-2100系列就属于这一类。
2、基于模糊模型的电梯调度方法。模糊模型是一种专门用来解决不完全信息系统的人工智能方法,而电梯调度群控正是属于这种系统。模糊控制具有较强的鲁棒性,在解决复杂问题时并不需要依靠建立完整准确的模型,因此是非常适合用于解决电梯调度群控这样复杂、模糊、随机的问题。但它与专家系统都存在一个共同的问题难以解决,即规则、知识等启发信息的获得存在一定难度,这些启发信息都必须要经过长期的积累才能得到确定可靠的知识与规则。日本三菱公司曾经将此方法用于解决电梯群控问题,虽然取得了一定的可用性,但由于严重依赖知识库,规则难于更新,不具有学习启发能力,所以并未得到良好的应用效果。
3、基于遗传算法的电梯调度方法。遗传算法同样是解决不确定、非线性、随机问题的良好方法之一,与模糊模型相比它的优势在于具有良好的自启发、自组织、自学习能力。但是它只能通过多轮迭代遗传形成一个可以接受的解空间,而不会产生真实意义上的最优解,因为获取最优解的成本很大,大到没有必要去获取最优解,实际上在很多情况下一个可接受的满意解已经可以满足我们的需要。但目前遗传算法在解决电梯群控调度问题上仍有其致命弱点,即其搜索迭代的效率无法满足电梯群控系统的高实时性要求。
4、基于神经网络的电梯调度方法。神经网络与遗传算法一样,具有良好的自启发、学习、自组织能力,此外它还可以逼近连续函数,相比遗传算法有一定的优势。但它也有自身的不足,它内部的信息是隐含的,还有就是神经网络结构及权值以及各神经元之间关联关系的设计都存在一定的难度,但它和模糊神经结合使用的话则会克服各自的弱点。
六、结束语
在当前科学技术发展的过程中,电梯群控制系统的人工智能化技术是最终的发展方向,通过人工智能化控制能提高电梯的运行效率,满足人们乘座电梯的各种需求,对电梯的运行实现人性化管理。