发布时间:2023-09-18 16:33:15
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇人工智能教学策略范例,将为您的写作提供有力的支持和灵感!
1我国农业发展背景和农业培训必要性分析
11我国农业发展背景
我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。
12开展农业知识培训的必要性
反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。
2人工智能在教育中的应用与发展
近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。
21基于人工智能的计算机网络课程
计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。
22基于人工智能的教师辅助系统
近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。
23基于人工智能的教育数据库系统
随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。
3人工智能与农业知识培训的结合
新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。
人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。
31人工智能应用于农业知识培训的优势
从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。
311个性化教育针对性强
相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。
312教育资源利用率高
我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。
4平台开发的系统架构
基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。
41学生模型
学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。
另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。
42教师模型
教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。
教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。
在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。
另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。
43综合数据库模型
综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。
知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。
专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。
为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。
44人机交互接口
随着现代科学技术的飞速发展,先进的技术在教学领域得到了广泛的应用,并对教学过程产生了深刻的影响。其中,人工智能技术产生的影响最为深刻。它将先进的教学手段引入教学过程,在营造理想的学习环境、激发学生的学习兴趣以及提高教学效率等方面起到了重要作用。
一、人工智能
1. 人工智能的定义
人工智能(Artificial Intelligence,简称AI)是计算机科学、控制论、信息论、神经生理学、语言学等多种学科相互渗透发展起来的一门综合性的交叉学科和前沿学科。其精确定义是:一个电脑系统具有人类知识和行为,并具有学习、推断、判断来解决问题、记忆知识和了解人类自然语言的能力。
2. 人工智能的研究内容
人工智能作为一门综合性学科,其研究内容涉及到许多方面,其中与教学实际关系较为密切的是以下四个方面:
(1) 问题解决。问题解决(Problem Solving)是人工智能研究初期的主要研究内容之一,也是其他内容的研究基础,它主要研究计算机的知识表达和推理技术。
在教育领域中,研究问题解决的实际意义在于,把人类解决问题的基本过程赋予计算机,使其能够按照人类的思维规律进行问题解决,帮助学生进行有效的学习。
(2)模式识别。模式识别(Pattern Recognition)是近三十年来在信息科学与计算机科学的基础上发展起来的新兴科学,后期它又受到了人工智能科学的影响,得到了新的发展。因此,常被作为人工智能学科的一个分支。
简单地说,模式识别就是研究用电子计算机代替人来识别事物和环境的方法。所谓模式是指那些供参照模仿用的理想化的标本。因此,具体来说,模式识别的含义就是识别出给定的事物与哪一个标本相同或相似。模式识别有时可以理解为模式分类,即判别给定的事物应该属于哪一类标本。被识别的给定事物通常是字母、符号、汉字、图像、声音、语言、景物,也可以是统计数字、图表、教授状态、学习状态等,应用于教育时则称为教育模式识别和学习模式识别。
(3)自然语言理解。对自然语言理解(Natural Language Processing,简称NLP)的研究能为实现人机自然语言直接通信提供可能,并减少软件生产的负担,从而间接地推动计算机的广泛应用,提高自动化操作效率。因此,它已经成为人工智能研究中最为棘手的问题。
自然语言是人机对话的最方便的语言,其发展的最终目标是把自然语言作为程序语言来使用,使计算机直接执行自然语言,不需要中间的解释过程。
在教育领域中,计算机对自然语言的理解有助于人机对话的实现,从而能够增进计算机与学生之间的交互作用,把原有的计算机辅助教学条件下的计算机主动变为智能计算机辅助教学条件下的人机交互主动。
(4)专家系统。所谓专家系统是指一个(或一组)能在某特定领域内,以人类专家的水平去解决该领域中困难问题的计算机系统。其特点在于能把人类专家在解决问题过程中使用的启发性知识、判断性知识分成事实与规则,以适当形式存储到计算机中,建立知识库,并基于知识库采用合适的产生式系统,按输入的原始数据选择合适的规则进行推理、演绎,作出判断和决策,可起到专家的作用,因此称为专家系统。
专家系统是人工智能中最为重要的研究内容,在教育领域中的应用也最为广泛与活跃。教学专家系统的任务是根据学生的特点,以最合适的教案和教学方法对学生进行教学辅导。
二、计算机辅助教学
1. 计算机辅助教学的定义
计算机辅助教学(Computer Aided Instruction,简称CAI)是在计算机辅助下进行的各种教学活动,以对话方式与学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI能为学生提供一个良好的个人化学习环境。通过综合应用多媒体、超文本、人工智能和知识库等计算机技术,克服了传统教学方式上单一、片面的缺点,有利于激发学生的学习兴趣和认知主体作用的发挥。同时,它所提供外部刺激的多样性有助于知识的获取与保持。因此,使用CAI能有效地缩短学习时间、提高教学质量和教学效率,实现最优化的教学目标。
2. 计算机辅助教学的现状
尽管计算机辅助教学要比传统的教学模式先进不少,但并不是最完善的,它还存在许多不足,主要表现在以下几方面:
(1) 缺乏人机交互能力。在教学过程中,CAI课件的教学信息是按预先设置的教学流程机械式地提供,教师只能按预定的课件流程进行操作,学生的学习也是被动的,不能很好地参与教学过程。因此,人机交互能力没有很好地体现出来。
(2)缺乏师生互动。学生在自学及使用现有的CAI课件时,大多采用的是自主学习的方式。使用这种方式时鲜有师生互动,因此课件的效果会大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI课件都是在单机环境下运行的,无法使用网络来快速更新知识内容,更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。
(3) 缺乏智能性。现有的CAI系统很多都没有智能性,无法进行有针对性的教育。学生的学习是被动的,他们不能根据自身情况调整学习进度。对教师而言,教学参与度太低,他们不能按照学生的认知模型为其准备最适合的学习内容,更不能给予不同的教学模式与方法。
(4) 缺乏广泛性。CAI系统的设计都是围绕某一知识领域,对于教学内容、问题的设计和答案的呈现,都必须在原设计系统允许范围内实现,无法根据具体教学、学习情况提出新的方案。
由此可见,传统的CAI系统本身具有无法克服的缺点。随着人工智能技术的发展,人工智能技术将会越来越多地应用在教育领域。把人工智能技术引入CAI系统,使CAI系统能合理安排教学内容,变化教学方法来满足个性化教学的需要,因此就产生了智能计算机辅助教学系统。
三、智能计算机辅助教学系统
随着计算机科学和人工智能技术的不断发展和成熟,将AI引入CAI中,使CAI系统可以理解教什么、教谁以及如何教,因而也就能合理安排教学内容、改变教学方法,去满足个别教学的需要,这就是以AI技术和认知科学理论为基础而形成的智能计算机辅助教学系统(Intelligent Computer Assisted Instruction,简称ICAI)。它是计算机应用技术的一个新领域,代表了一种新的教学思想和教学方式。智能计算机辅助教学系统的出现,提高了教学质量,改善了教学的效率。
1. 智能计算机辅助教学系统的基本结构
ICAI系统主要是在知识表示、推理方法和自然语言理解等三方面应用人工智能技术。其本质上是一个基于知识的教学专家系统,通常由专家模块、学生模块、教师模块和智能接口模块组成。它的组成结构如下图所示:
(1)专家模块(知识库)。专家模块是由题域知识构成,它包括两方面的知识:一是教材内容、提问信息、教材重点、难点、评价等有关课程的知识;二是有关应用这些知识来生成问题,推理解题的知识。其功能有:作为系统全部知识的来源,为系统其他模块频繁调用,以实时完成用户行为响应,通过知识库知识,生成相应的问题、任务以及解释;通过同步问题解答,并通过预期学生行为与实际学生行为之间的比较,评价学生知识掌握程序以及学习状态、学习方式偏好等。这个部分相当于一个根据事实进行演绎推理求出解答的专家部件。
(2)学生模块。系统通过学生模块建立对学生的了解,通过比较学生行为与专家行为,对学生进行智能模拟,包括学生的知识状态、认知特点和个性特点等。学生模块用来表示学生的学习历史、当前知识水平、解题行为等方面的知识。其任务是:表示学生对所学知识的理解程度,反映学生已掌握和未掌握的部分,通过发现错误并作出错误根源的假设,为进一步指导提供依据。
(3)教师模块(教学策略模块)。在CAI 课件的交互作用中,教学策略是与教学内容融合在一起,通过教学的分支来体现的。这样做的不足是,某一教学内容只能按某一种(或几种)固定的教学策略来教。而在ICAI中,教学策略与教学内容是分开的。这样在教学过程中,系统可随时根据教学的需要,选择不同的教学策略。
教师模块的主要任务是在一定的教学原理的指导下,选择适当的教学内容,并通过接口以适当的表达形式,在适当的时刻展示给学生。该模块的主要功能有:为学生提供学习环境;指导学生的学习活动;解释现象、过程和原因;为学生提供帮助和学习材料;监视和评价学生学习活动。
(4) 智能接口模块。智能接口模块的作用是处理学生与系统间的信息交流。模块要完成两项任务,一是在教学模块作出教学决策后,智能接口模块要以一定的形式把教学内容发送出去;二是建立学生输入信息的方式,接收学生输入的信息。
2. 智能计算机辅助教学系统的发展方向
ICAI系统在发展中不是孤立、单一的,它是伴随着多种技术以及人工智能在多种领域应用的不断发展而发展的。其未来的发展方向表现为以下几方面:
(1)与网络技术的结合。随着多媒体技术和Internet网络的飞速发展,多媒体教育应用与Internet网进一步融合,CAI 不仅仅只在智能上单一发展,它不可避免地还要向多维的网络空间发展。目前,已有不少基于Internet网的多媒体教育系统在使用,它们借助网络的优势,完成在线学习、实时讨论、网上测试等多种教学任务。将网络CAI与智能CAI有机结合,互相补充,能构建成一个新的系统工程。
(2)智能(Intelligent Agent)技术的使用。人工智能(AI)技术在ICAI中的应用,除了体现在对多媒体教学系统中引入学生模块和知识推理机制以外,还可以起到在“智能导航”浏览中,使用“智能”技术代替教师、学生进行指导学习和搜索学习的作用。
在CAI中,学生学习查询有效知识可以使用进行搜索、导引,由于它自身具备的学习功能,能够主动、高效地从Internet中发现和收集用户所需要的信息。因此,它有助于解决使用单一关键字匹配查询、搜索引擎引起的大量无关信息的涌现、信息检索的精确度不高等问题。将“智能”技术引入到ICAI中,将使得教师和学生在教与学的过程中,提高知识选取效率、加强交互学习和自主能动性学习。
(3)远程教学。结合网络CAI、智能CAI以及多协作,可以实现真正意义上的远程教学模式。ICAI系统不仅可以作为教师,为学生学习提供指导,也可以作为学生,辅助学生学习,还可以成为学生学习、交流、协作过程中多方面的。因此,具有多种特性优势的远程教学具有广阔的发展前景。
(4)虚拟现实(Virtual Reality)的应用。虚拟现实也叫人工现实(Artificial Reality),是由多媒体技术与仿真技术以及计算机技术相结合而生成的一种交互式人工世界。它的根本目标就是达到真实体验和基于自然技能的人机交互。在教学辅助中,使用创建的虚拟环境,在一般人所不能亲身体验的情景中,达到演示、操作的教学目的。目前在教学中使用的有:基于Web的火电厂的虚拟实景建构学习、建筑设计的实景化学习、医学内消化道实景教学等。
四、结语
到目前为止,人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。随着人工智能技术的发展,智能计算机辅助教学系统的成效将更加明显。新世纪的教学手段将是以智能化CAI为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,大大扩展了人类的能力,促进了教育事业的进一步发展。
参考文献:
[1]何克抗.教学媒体的理论与实践[M].北京:北京师范大学出版
社,2003.
[2]谢三毛.人工智能在计算机辅助教学中的应用[J].华东交通大
学学报,2005(12).
一、人工智能的定义
人工智能也称机器智能,它是计算机科学、控制论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉科学,逐渐形成一门涉及心理学、认知科学、思维可循、信息科学、系统科学和生物学科等多学科的综合性技术学科。
二、计算辅助教学体系和现状
计算救助教学是利用多媒体计算机的功能与特点,利用计算机辅助教师完成各个教学环节,并通过与计算机之间的交互活动,激发学生的学习积极性和主动性,帮助学生更有效地学习。实用计算机辅助教学,有利于认识主体作用的发挥,它所提供的图像、声音、动画等信息由利于学生知识的获得与保持,达到提高教学教学的目的。
目前为止,所实用的绝大多数传统以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学将全部教学信息以编程方式预置于课件中,这样的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。因此现有的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学系统面临许多挑战,它主要存在以下几个方面的问题。
1.计算机辅助教学系统的闭塞性
不具有开放性是目前以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。其弊端在于固定内容的局限性使课件的适用面狭窄,而且设定的运行路线使授课缺乏自主性;授课的针对性不强;无法利用新出现的资源在较高起点上进行二次开发。
2.智能性的欠缺
现有的计算机智能辅助课件系统不能对不同何曾度的学生进行有针对性的教育,学生的学习是被动的,不能由系统自动提供助学信息而使学生有选择地学习。
3.人机交互能力较弱
现有计算机智能辅助大多以光盘作为信息的载体,将材料中的内容以多媒体的形式展现出来,教学信息是按预置的教学流程机械式地提供给学者,学习者使用计算机智能辅助课件学习是完全被动的。
4.教师与学生的互动在教学中的缺乏
现有计算机智能辅助课件在学生自学以及进行操作使用时,如何学习都是学生自己的事。教师不能全完了解学习者的情况,学生在蹦到问题时不能向教师求教,师生之间互相封闭,谈不上师生互动,因此课件所起的效果大打折扣。
5.课程特点没有突出
各门课程在教学上有不同的要求,但现有课件对于这些不同要求完全不予理会。例如很多课程都要涉及到大量的曲线或曲面,对有些课程来说,将这些曲线或曲面给出了一个简单的展示就足够了,而有些课程这样的展示不能达到教学目的的要求。
6.教学计划的欠缺
在课件的开发过程中实际上离不开教学策略的设计,但课件的制作者往往并未意识到这一点。例如:现有的绝大多数课件都是单一的展播式,这样的可见制作“精美”,但它不可逆、不能互动。实际上运用课件教学只是手段而不是目的,应该在教学设计理论的指导下讲求课件的实效性,着眼点在于学生学习新知识、掌握新技术、培养各种能力有帮助,而不是表面上的制作“精美”。
综上所述,现有的计算机智能辅助存在许多问题,随着新技术的不断出现,这些问题将使计算机智能辅助越来越不能适应新的要求。因此以智能计算机智能辅助为代表的心的计算机辅助教学系统将成为教育技术上需要不断探求、努力实现的发展方向。
三、智能计算机辅助教学系统
智能计算机辅助教学系统(Intelligent ComputerAided Instruction),简称ICAI。教学过程是一个复杂的教与学的思维过程,它需要教师以专门知识和经验为依据,经过吸取、讲解、推理、示例、综合等多个步骤才能较好地完成。计算机辅助教学实际上是一个由计算机系统辅助教师进行教学以及学生进行学习并得以实现的系统。在智能ICAI中,教学思想、方法、学习内容可用知识形式表示,如何解决知识的形式化表示以及知识的访问与调用问题,是人工智能的核心技术之一,也是将ICAI引入教育技术领域中所要面临的一个问题。知识库是实现知识推理与专家系统的基础,可以用知识库作为智能ICAI的构建环境。在知识库中,教学内容等的有关知识可以用事实与规则表示,并存储于知识库内,教学与学习过程既是对知识库中知识进行推理,并最终得出所需结果的过程。ICAI系统的一般包括以下几个模块:
1.知识库。知识库是关于教学内容的模块,解决“教什么”问题。知识库中的教学内容有待于教学与控制模块和学生模块进行选取、调用。
2.学生模块。学生模块是用于记录学生的学习情况,对学生学习的各个环节信息进行搜集,以便系统对学生的学习情况进行自动评估,提出具有针对性的学习建议和个别化的辅导。学生模块描述学生对教学内容理解、掌握的程度,系统可以根据学生模块的具体情况调整教学策略并提供适当的反馈。
3.用户接口模块。这是系统与用户交流的界面。整个系统依靠用户接口模块把教学内容呈现给用户、接受用户输入的信息、并向用户提供反馈。
4.教学与控制模块。这是教学过程与整个系统的控制模块,涉及到“如何教”的问题。它具有领域知识、教学策略和人机对话等方面的知识。根据学生模型提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因进而针对地提出合理的教学建议、学习建议以及改进方法。
新世纪的教学将是以智能化的ICAI为主线,是多学科、多方位发展的新技术的体现。随着人工智能技术的发展、计算机辅助教学的成效将更加明显。
中图分类号:G250.73 文献标识码:B 文章编号:1673-8454(2012)01-0030-04
计算机辅助教学(Computer Aided Instruction,简称CAI)是利用计算机来模拟教师的行为,通过学生与计算机之间的交互活动来达到教学的目的。即在计算机辅助下进行的各种教学活动,主要是以对话方式和学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI为学生提供一个个人化的学习环境,综合应用多媒体、知识库等计算机技术,这是传统CAI的主要应用方式。
在没有智能系统支持的情况下,传统CAI尽管可能具有良好的教学材料模型,但它往往仅借助于计算机来展示教学内容,并不能很好地根据它所教学生的学习特征,以不同的教学策略和教学方法来教授;只是盲目地传授知识给学生,如果某个学生不能接受提供的教学策略,系统没有为这个学生提供可供选择的另外的教学策略。目前使用的绝大多数CAI是将全部教学信息以编程方式预置于课件中,这样的CAI课件一旦制作完成,很难对课件进行更新和维护,尤其是在这样的CAI系统中,学生的学习仍然处于被动状态,即完全受计算机控制。
一、智能化计算机辅助教学概念
现代教育技术的日益发展以及与其他领先技术的结合,必然促使计算机辅助教学CAI的进一步发展。人工智能技术应用于CAI产生的基于网络环境的智能化CAI,就是现代信息化社会发展的产物,并在教育教学领域中有很好的发展前景。
人工智能是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的,目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多地是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、博弈、智能决定支持系统、人工神经网络等等。人工智能技术与专家系统的成就,促使人们把问题求解、知识表示这些技术引入CAI,并借助于网络环境来实施,这便是智能型计算机辅助教学。
智能计算机辅助教学ICAI(Intelligence Computer Assisted Instruction)属于人工智能的一个分支,是以认知科学和思维科学为理论基础,综合人工智能技术,教育心理学等多门学科的知识对学生实施教育的一门新的教育技术。ICAI通过研究人类学习思维的特征和过程,探索学习知识的模式,利用信息化网络环境使学生获得个别化自适应性学习的获取知识方法,从而使学生的学习更有针对性,更有效。
ICAI依靠人工智能技术的进步,主要应在因材施教方面取得进展。其主要特点是:
(1)能自动生成适合学习者程度的学习内容。
(2)能根据学生的不同认知水平与学习风格选择教学策略和教学方法。
(3)能评价学生的学习结果,并不断地在教学中改善教学策略。
二、智能化计算机辅助教学研究现状
现阶段,在一些发达国家,如美国、日本、加拿大、英国、法国、澳大利亚等,CAI已经普遍存在于学校和家庭中,正起着越来越大的作用。而ICAI的研究还处于初始阶段。目前国内在这一领域的研究主要集中在CAI和ICAI的优缺点比较,ICAI的理论来源、系统特征、模块建设、发展趋势等基础理论知识的研究,基于相关课程或学科的实践研究还比较少见。智能教学系统的设计和开发是一项复杂的系统工程,由于需要考虑的因素较多,系统比较庞大,同时也依赖于人工智能等技术的发展,因而要建立完善的ICAI还是比较困难的。[1]因此ICAI有很大的理论和实践发展空间。
完善的ICAI系统需能够充分调动学生的主动性,并能通过分析推理,对某具体学生做出适合的教学决策。使学生获得个别化自适应性学习的学习方法,达到因材施教的目的。人工智能技术的发展必将会对ICAI的发展起到巨大的推动作用。随着计算机科学的发展,21世纪的教育教学辅助手段将是以ICAI为主线,多学科、多方位发展的新技术的体现,越来越多的教育工作者会从更多的视角审视ICAI,并从事ICAI的研究。相信ICAI将会在现代教育领域中有更广泛的应用。
“现代教育技术”既是教育技术专业的必修课程,也是大中专院校广泛设置的选修课程,适用范围非常广泛。本文以《现代教育技术》这门课程为主要研究对象,来研究智能化教学系统设计在具体实践中的应用。
三、ICAI决策系统的理论依据
1.综合集成理论
教育是以人为主体参与的活动,而人本身就是一个复杂巨系统,因此以这种大量的复杂巨系统为子系统组成的系统――教育系统,是一个复杂巨系统。依据系统与其环境是否有物质、能量和信息的交换,将系统划分为开放系统和封闭系统来看,学生的学习受到教师、同学、家庭及社会等因素的影响,所以教育系统是一个开放的复杂巨系统。
钱学森的理论和实践研究表明:现在能用的、惟一能有效处理开放的复杂巨系统的方法,就是定性定量相结合的综合集成方法论。综合集成方法论(Meta-synthesis Methodology MSM)是方法论上的创新,它是研究复杂巨系统和复杂性问题的方法论。[2]定性定量相结合的综合集成方法是将专家群体(各种有关的专家)、数据和各种信息与计算机技术有机结合起来,把各种学科的科学理论和人的经验知识结合起来,发挥这个系统的整体优势和综合优势。[3]它把人的经验、知识、智慧以及各种情况、资料和信息系统集成起来,从多方面定性认识上升到定量认识,从而达到解决复杂系统问题的目的。在解决问题的过程中,专家群体和专家的经验知识起着重要的作用。
教学系统设计是一个复杂的系统,它是由教育系统的复杂性决定的。教育系统具有复杂系统的基本特点,它在结构与功能上表现为规模大、相关因素多且相关方式复杂、目标多样等;在运动上表现为随机性、非线性等。用一般的理论方法无法全面合理地解决这一不良结构的问题,本研究尝试用综合集成方法论来指导、分析教学设计智能化过程。因此,运用综合集成理论的方法来研究教学设计系统,探讨具体科目的教学设计在设计过程中遇到的复杂性问题,进而构建科学合理的教学设计系统,具有重要的理论和实践价值。
2.教学设计理论
本文采用“双主”教学模式作为ICAI的教学设计的理论基础。“双主”教学模式既能发挥教师的主导作用又能充分发挥学习者认知主体作用,是在教师主导下的课堂中能让学习者参与进来共同学习的一种教学模式。
基于“双主”的教学模式,要求根据学习者的特征、学习内容、学习策略、学习目标等多种因素的不同情况研究它们的结合方式,以使系统达到理想的教学效果。
基于网络环境的ICAI相对于传统的CAI来说,充分体现了“双主”的教学模式。ICAI中有专门分析学习者学习方式和认知水平的学生模型,有专门为不同的学习内容选择不同的学习策略的策略库模型(也称为教师模型),有评价学习效果并反馈给系统的评价模型。学生模型是对学习者的学习特征进行分析,包括学习者的学习风格、认知水平。策略库模型包含有丰富教学策略和有一个智能推理机,能根据学生模型的信息和学习目标为学习者选择合适的学习策略,指导学习者学习。
3.建构主义学习理论
当代建构主义者主张,世界是客观存在的,但是对于世界的理解和赋予意义却是由每个人自己决定的。建构主义者认为学习者要以自己的经验为基础来建构现实,或者至少说是在解释现实,每个人的经验世界是用自己的头脑创建的。
学习过程同时包含两方面的建构:一方面是对新知识意义的建构,同时又包含对原有经验的改造和重组。建构主义者强调学习者在学习过程中能够灵活地建构起用于指导实践活动的图式,这种图式是对概念的丰富理解,依据个人经验背景的不同而不同。
教学应当把学习者原有的知识经验作为新知识的生长点,引导学习者从原有的知识经验中,生长新的知识经验。教学不是知识的传递,而是知识的处理和转换。
ICAI伴随着这种理论的发展而发展,它注重的是由学习者来控制学习过程,重视学习内容的知识结构和学习情境,让学习者主动构建对自己有意义的知识的活动。基于网络环境的ICAI积极地为学习者创设学习情境,帮助学习者用他们已有的知识去建构、生成、整合新的知识。
4.教学处方理论
“教学处方理论”是郑永柏博士于1998年提出的一种新型适合于信息化教学设计的理论,他通过对教学系统设计理论和计算机辅助教学设计方面的研究,建构了一种新型的教学系统设计理论――教学处方理论。该理论主要包括:六个基本概念、一个理论框架、三条基本原理和两个关于教学设计的知识库。[4]
该理论指出教学处方可以看作是教学设计者(有时可以看作是教师)依据系统分析后使用的各种教学模式、教学方法和教学内容处理模式的组合;说明了在特定教学条件下对特定教学结果的教学,以不同的学习理论和教学理论为指导将会采用不同的教学方法,即教学处方,这也是本研究的核心内容,是该系统设计的指导理论。“教学处方理论”具有更好的包容性、开放性,能够吸收和容纳丰富的学习和教学研究成果。
四、ICAI系统的模块结构
1.前端分析模块:认知能力、学习动机、认知风格
前端分析是美国学者哈利斯(Harless,J.)在1968年提出的一个概念,指的是在教学设计过程开始的时候,先分析若干直接影响教学设计但又不属于具体设计事项的问题,本文主要指认知能力、学习动机和认知风格方面的分析。前端分析模块主要是建立相应的学生特征类型的数据库。
认知能力的测量采用认记、理解、应用、分析、综合、评价六个维度,每个维度有“优、良、中、差”四个选项。通过数据分析找出学习者的现状和期望之间的差距,确定需要解决的问题是什么,并确定问题的性质,形成不同层次的教学设计项目的目标。
学习风格和学习动机通过专门的量表来收集数据。
2.内容分析模块
教学内容分析就是在确定好总教学目标的前提下,借助归类分析法、图解分析法、层级分析法、信息加工分析法等方法,分析学习者要实现总的教学目标,需要掌握哪些知识、技能或形成什么态度。通过对教学内容的处理,确定学习者所需学习内容的范围和深度,确定内容各组成部分之间的关系,为以后教学顺序的安排奠定好基础。
对教学内容的处理主要包括:教学内容的选择、教学内容的编排、确定单元目标及对内容进行初步评价、分析教学内容类别及性质等四个基本方面。在构建规定性教学内容处理模式库时,应对上述四个方面提供具体的方法。[5]
3.决策模块
教学策略(处方)的制定就是根据特定的教学目标、教学内容、教学对象等条件,来合理地选择相应的教学顺序、教学方法、教学组织形式。在数据库中建立可供选择的不同的教学策略(处方),是本文所研究的ICAI系统的主要模块,也是特色模块。
教学策略(处方)的制定包括教学顺序的确定、教学方法的选择、教学组织形式的选择等。教学顺序的确定就是要确定教学内容各组成部分之间的先后顺序;教学方法的选择就是要通过讲授法、演示法、讨论法、练习法、实验法、示范模仿法等不同方法的选择,来激发并维持学习者的注意和兴趣,传递教学内容;教学组织形式主要有集体授课、小组讨论和个别化自学三种形式,各种形式各有所长,须根据具体情况进行相应的选择。教学策略的制定是根据具体的目标、内容、对象等来确定的,要具体问题具体分析,不存在能适用于所有目标、内容、对象的教学策略。
4.评价模块
在基于网络环境的ICAI的评价模块,要依据前面确定的教学目标,运用评价量表,分析学习者对预期学习目标的完成情况,主要收集三个方面的基本信息,一是要收集关于教师对教学设计方案和教学方案实施结果的满意度的信息数据,二是要收集关于学习者对教学过程、教学策略的适应性的信息数据,三是要看与其他方法相比,本处方中所采用的方法是否有独到之处,是否有不足之处。[6]在数据分析的基础上,对教学策略和教学内容的修改和完善提出建议,并以此为基础对ICAI各个环节的工作进行相应的修改。
5.ICAI系统模型框图
学习者前端数据采集数据库包括:认知结构测量及分析系统、学习动机测量及分析系统、学习风格测量及分析系统和学生基本信息系统。系统模型如图所示。
五、ICAI决策系统实验数据来源
本课题实践研究的调查对象来自云南大学,是2008届市场营销教育和财会教育本科生,共89人,课程设置为现代教育技术。学生调查表包括本科生基本信息表,所罗门学习风格量表,学习者认知能力调查问卷,学习者学习动机调查问卷四份表格组成。实际收到数据表89份,有效数据表75份。数据表中的信息选项根据所占权重,统一折合成百分制进行处理。
六、总结
本文把教学设计理论、方法与“现代教育技术”课程相结合,拟研发出一个基于综合集成方法论的广义智能网络教学设计辅助系统。主要研究成果如下:
(1)把综合集成方法论引入解决教学设计这一不良结构问题;
(2)结合数字化方法和数据挖掘技术,它能对学习者进行数字化的前端分析;
(3)它所自动化给出的教学设计方案,可为青年教师提供良好借鉴,有利于教师因材施教、因风格施教、因需要施教;
(4)它所自动化给出的学习者学习建议方案,有利于促进学习者自主学习。
现有的CAI存在的许多问题随着新技术的不断出现而显得越来越不能适应新环境的需求,因此以基于网络环境的ICAI为代表的新计算机辅助教学系统,将是教育教学研究人员在教育技术上需要不断探求、努力实现的发展方向。
参考文献:
[1]杨采坚,董玉铭.智能教学系统设计[J].中国电大教育,1993(3).
[2]于景元,涂元季.从定性到定量综合集成方法――案例研究[J].系统工程理论与实践,2002.5.
[3]钱学森,于景元,戴汝为.一个科学新领域:开放的复杂巨系统及其方法论[J].自然杂志,1990(1).
随着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。
1人工智能对新工科人才的新要求
1.1具备多学科交叉知识。人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。1.2具备多领域应用能力。人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。1.3具备人工智能创新创业精神。目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。1.4具备人工智能人文素养。人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。
2人工智能导论课程教学现状
目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:⑴本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。⑵研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。⑶实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。⑷人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当实践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。⑸教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。
3人工智能导论实践教学初探
3.1人工智能导论课程实践平台建设。为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。3.2人工智能导论课程实验内容优化。在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。3.3人工智能导论实践教学模式改革。⑴校企合作为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。⑵“双导师”负责制人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。⑶采用案例教学法以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。
4结束语
在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。
参考文献:
[1]杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44
[3]陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107
[4]刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42