发布时间:2023-09-27 15:05:24
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇多目标优化设计范例,将为您的写作提供有力的支持和灵感!
中图分类号:TD452 文献标志码:A 文章编号:1672-1098(2014)02-0005-04
抛射强度(振动强度)K表示颗粒受到离心力后,被抛起的可能性和在筛面上跳动的频度,它是振幅、频率及其它因素交互作用的结果。弛张筛作为潮湿细粒物料干式筛分的有效设备,其抛射强度的值国内外还无规范,有研究认为K可以达到50 g[1-4]623,而有的研究认为2.5 g[5] 即可满足弛张筛工作的需要,数据相差过大。因此,对影响抛射强度的关键参数进行研究,优化相关参数,选择合理的K值,为弛张筛的设计确定合理的参数,提高筛分工作的技术经济指标,具有重要意义。
1 抛射强度模型的建立和系列优化
1.1 常规模型系列优化
弛张筛从工作原理上属于直线振动筛,直线振动筛抛射强度的表达式为[6]
虽然式(1)没有充分涵盖弛张筛的特征参数,但仍然可以将它视为常规目标模型对抛射强度K值和相关变量实行优化。相关参数的约束条件为e [5.5, 6.5],α[15,25],β[88,92],n[550,700],在K=2.0、2.2、2.4、2.5、2.6、2.7、2.9、3.0、3.1、3.2、3.3、3.5、3.7、3.9的系列内实行14次优化。得到的优化结果为: K=2.98,e=6.35 mm,α=24°,β=90.4°和n=614 (r・min-1)。
抛射强度K=2.98可以较好地满足直线振动筛的筛分作业要求, 相应参数系列优化的值如图1所示。
根据常规模型和优化结果,得到抛射强度关于偏心距e和转速n的三维特性曲面(见图2),该特性曲面变化态势比较平坦。由该特性曲面提取两组计算数据:当n=550 (r・min-1),e=5.9 mm时,Kmin=2.3;当n=675 (r・min-1),e=6.5 mm时,Kmax=3.8。特性曲面的变化态势和计算数据表明直线振动筛的K值变动在一个较小的范围内。
常规模型既看不出两横梁最大间距L对K的影响,也体现不出时间参数t对K的影响,因为建立常规模型时简单的将弛张筛视为直线振动筛,没有体现出弛张筛的弹性筛面做相对运动的特点,所以必须建立体现弛张筛运动特点的新模型对抛射强度实行系列优化。
1.2 按有载模型进行系列优化
将有载加速度模型[8]代入抛射强度K的定义式K=asin βgcos α,得到弛张筛抛射强度的有载模型
由文献[9]知道弛张筛的加速度关于外死点(ωt=180°)周期性的对称,所以将ωt的约束条件限定为[0,178],其余相关参数的约束条件为:n[550,700]、e[5.5, 6.5]、α[15,25]、β[88,92]和 20 e < L< 100 e/3,对K=-2.5、-2、0、1、2、3、4、5、7、9、15、25、40、70、100、135、170、200 的系列范围内展开18次优化。 优化结果为: K=7.8・g或76, n=650(r・min-1), e=6.0 mm,α=25°,β=90°,L=202 mm。系列优化的结果如图3所示。
此优化K值远高于常规模型的优化结果, 此时弛张筛的曲柄传动机构连杆部位的振动强度K1(以CZS型弛张筛为例, 支撑板R=400 mm,e=6 mm) 弛张筛筛面的振动强度与传动机构的振动强度K1之比为:K/K1=76/2.83=27;弛张筛内、外筛框部位的振动强度K2 弛张筛筛面的振动强度与筛框的振动强度之比为:K/K2=76/0.021=3619;普通振动筛的筛面振动强度与主机振动强度之比K面/K机=1;弛张筛同普通振动筛机相比,很显然弛张筛不仅能很好地解决普通振动筛在筛分细粒潮湿煤炭时遇到的难题,而且筛机运动平稳,传动系统的使用寿命增加。
图4显示了抛射强度同转速n、驱动轴转角ωt的三维特性曲面,由于特性曲面采用的是单对数坐标,因此在特性曲面里传动机构的转角优化约束取值范围为[74°,178°]。表1的数据来自三维特性曲面的部分计算数据,在n=700(r・min-1),ωt=175°的抛射强度高达K=256,远远高于按常规模型所得到得最大值3.8;而ωt=90°的抛射强度则低至K=4。这是由弛张筛的运动和结构特点引起的,在筛面没有完全伸展开时,筛机体现出普通振动筛的运动特性,弛张筛和普通振动筛的抛射强度值接近。当驱动轴转角ωt的超过一定的数值,筛面展开,筛面的弹性特性得到体现,引起抛射强度迅速增大。正是由于抛射强度的这种特殊的周期性高变化趋势,保证了弛张筛筛分作业的正常运行。
2 关键参数回归分析
驱动轴转角ωt受到弛张筛结构参数L和e的影响及制约,而转角与弛张筛抛射强度之间存在周期性变化的关系。如果依据系列优化的数据进行回归分析,得到ωt=f(e)和ωt=f(L)函数,那么就可以建立K=f (e, n) 和 K=f (L, n) 模型。
2.1 模型的建立
对系列优化结果进行回归分析,得到ωt和e的模型ωt=4.0589 e-22.097,如图5所示,此拟合模型具有R2=0.976的相关程度,转角ωt和偏心距e呈现较强的规律性,属于线性正相关。ωt和L数学模型为ωt=0.1234 L-22.66,如图6所示,拟合模型也具有较高的相关度,R2=0.9521,它们也体现明显的线性正相关规律。
2.2 三维特性曲面的建立
将ωt=4.0589 e-22.097和ωt=0.1234 L-22.66分别代入(2)式,得到含有结构参数e、L的K=f (e, n) 和 K=f (L, n) 模型。载入相关参数,得到展示弛张筛特征参数e和L的变化对K值影响的三维特性曲面,如图7~图8所示。
图7、图8显示了抛射强度K与e和L之间周期性的类正弦变化规律,在一定范围内,结构参数e和L的增加都会引起K的明显增大,并且e的变化对K的影响要强于L变化的影响,这一点同图3展现的结果是一致的。至于K和n,它们之间显示出一种快速上升的非线性关系。
表2是在α=25°,β=90°,L=202 mm的前提下,提取偏心距e分别为6 mm、6.2 mm的计算数据进行比较, 当n=650(r・min-1),e=6 mm时K=69,与优化结果相吻合;当e=6.2 mm时,K达到峰值。K值增大,筛面物料的加速度、速度、抛射距离及高度都增大,对物料的松散和分层极其有利,可以有效降低物料的堵孔问题,提高筛分效率;但K值过大,物料在筛面上的跳动次数减少,被快速抛离筛面,减少透筛机会,降低筛分效率,筛机使用寿命也降低[6]。因此,提湿细粒煤炭的筛分质量和效率,并不是K 值越大越有利,综合考虑各参数和制造工艺的可行性[10-11],依据K 值的系列优化结果,确定偏心距e的最佳值为6 mm。
图8的数据在α=25°,β=90°,e=6 mm的前提下计算得到的。图8显示:L=160 mm时K达到峰值,但此时筛板间距偏小,连接筛板的横梁数量增加,筛机结构也随之变得复杂;在L=208 mm时, K的峰值过大, 影响筛分作业及筛机寿命, 因此L=160 mm和L=208 mm均不适宜为最大横梁间距的最佳距离。
4 结论
本文通过建立弛张筛抛射强度模型,并对其展开系列优化与回归分析,得到如下结论:
1) 弛张筛抛射强度的优化值为7.8 g,与实测结果7.30 g相吻合。
2) 筛面倾角的优化值为25°,高于现场采用的20°。振动方向角的优化值β=90°,横梁最大间距的优化值202 mm,偏心距的优化值6 mm和驱动轴转速的优化值650 (r・min-1)与工业实践中使用的值一致[4]624。
(上接第8页)
3) 抛射强度关键参数回归分析结果显示ωt和e、L之间呈线性正相关; K同e、L之间存在类正弦规律的变化关系,显示出弛张筛的非线性动力学特性。
参考文献:
[1] HIRSCH,W.Flip-Flow Screens of the third Generation[J].Aufbereitungs-Technik,1992,33(12):686-690.
[2] J ZUBER.Screening of difficult materials on bivitec screens with flip-flow systems,Aufbereitungs Technik[J].1995,36(7):305-303.
[3] 闫俊霞,刘初生,张士民,等.集中驱动式弛张筛面动力学分析[J].矿山机械,2011,39(4):95-97.
[4] 唐敬麟.破碎与筛分机械设计选用手册[M].北京:化学工业出版社,2001:622-625.
[5] 品川义和.筛面曲张筛[J].日本矿业会志,1980,10:750-752.
[6] 选矿手册编辑委员会.选矿手册[M].北京:冶金工业出版社,1993:186-195.
[7] 赵跃民,刘初升.干法筛分理论及应用[M].北京:科学出版社,1999:164-166.
[8] 李君,方代正,黄绍服.张紧量对弛张筛运动的影响[J].煤矿机械,2007,28(7):54-56.
中图分类号:TM614 文献标识码:A 文章编号:1009-914X(2015)45-0013-02
风光互补混合供电系统是一种比单独的光伏和风能供电更加有效、经济的供电形式,也是可再生能源进行单独立供电的一种优化选择,可以极大降低供电系统对电池储蓄能量的需求。因此,人们越来越重视对风光互补混合供电系统的多目标优化设计进行研究,取得了一定的成就,本文主要介绍运用改进微分进化算法对其进行多目标优化设计的研究方法。
一、风光互补混合供电系统概述
风光互补混合供电系统的主要构成装置是多种型号不一样的风力发电机组,光伏电池构件以及多个蓄电池。这些组成部分对环境的适应性各不相同,同时对用户供电可靠性的要求也不相同,所以把这些装置集合在一个系统中互补有无,以便可以在符合供电系统要求的基础上,尽可能实现最经济、最可靠的供电[1]。风光互补混合供电系统的构成图如下所示:
(一)风力发电机组。风力发电机组的发电功率和风速之间的关系如下所示:
具体的计算过程如下:
(一)设置初始参数:将系统的种群数量N,终止迭代次数C、系统变异因子的上限和下限Fmax、Fmin,以及供电系统的杂交因子的上限和下限Crmax、Crmin设置出来[4]。
(二)进行优化设计的种群初始化。在系统决策变量的最大范围中,使其随机形成对个解。
(三)将系统父代种群的适应度方差准确计算出来。将F和Cr的最小值计算出来。
(四)供电系统多目标有针对性地实行变异和交叉操作,进而产生子代种群。
(五)把上述形成的子代种群代入约束条件计算式(8)和(9)实施检验,如果计算结果与需求的条件不符合,就需要根据改进的算法进行计算。
(六)将供电系统父代种群和子代种群互相适应的数值计算出来,接着运用贪婪方法做出操作选择,同时将目前最优的个体和相应的适应数值准确记录下来。
(七)再判断目前的种群分散程度,针对于部分立即要进行重叠的个体,要对其实行解群转换的操作。
(八)将以上步骤重复计算,一直到实现系统的迭代次数为止。
目前,大多数风光互补混合供电系统多目标优化设计方案中,都将选择光伏电池的倾角设置成当地的纬度值。可是,在混合供电系统选择光伏电池的倾角时,要综合考虑日照、风速、组件的容量等[5]。由于混合系统光伏电池的倾角选择与其发电量的变化有直接的关系,就需要将蓄电池组的数量增多以更好地确保电力系统的安全性和稳定性,可是这种改变会极大增加电力系统的总成本。所以,就要将光伏太阳板的倾角看成是一个决策的变化量,再将其代入进行计算。
结束语
综上所述,全面结合了风速、日照、地理方位、负荷等的不同变化,对风光互补混合供电系统的多目标优化设计进行了一定的探讨,尤其是光伏太阳板的倾角的选择,不能只是将其设置为当地的纬度值,而是要结合当时的风速和电量符合等因素,使其和太阳能形成一定的互补性,再将其代入计算。
参考文献
[1]王绍钧.风光蓄独立供电系统应用研究[D].华北电力大学(保定),2014,21(11):17-23.
[2]刘皓明,柴宜.基于GA-PSO的微电网电源容量优化设计[J].华东电力,2013,41(2):311-317.
中图分类号:TB381文献标文献标识码:A文献标DOI:10.3969/j.issn.2095-1469.2014.01.07
Abstract:Based on the finite element model of the plate partially treated with active constrained layer damping(ACLD), a multi-objective optimization model of the ACLD/plate was established. Design variables include the location-numbering of the ACLD patches, and the objective was to maximize the first two modal loss factors. The fast and elitist non-dominated sorting genetic algorithm (NSGA-II) was improved to carry out the optimization. After the optimal locations were obtained, the controller employing the FxLMS algorithm was developed. The vibration control simulations of the ACLD/plate excited by the same disturbance were carried out with different optimal ACLD patches configurations. It is shown that the better result of vibration reduction can be achieved in passive and active control modes when the optimal ACLD patches configuration are employed.
Key words:active constrained layer damping(ACLD); multi-objective optimization; fast and elitist non-dominated sorting genetic algorithm(NSGA-II); FxLMS algorithm
主动约束层阻尼(Active Constrained Layer Dam-ping,ACLD)技术已被证明是一种有效的减振降噪技术[1-3],它结合了传统的约束层阻尼技术和主动振动控制的优点,在较宽的频段范围内都能够很好地抑制结构的振动噪声。ACLD采用离散结构时,其布置位置对抑制结构振动具有重要的影响。对ACLD的位置进行优化设计,可以保证在主动控制失效时,仍然有较好的减振降噪效果[4]。目前,采用ACLD技术对结构进行主动振动控制时,对ACLD衬片布置位置的选择多是基于某一单一的性能指标[5-7]。但在工程应用中,ACLD的配置优化问题多为多目标优化问题,要求能够同时有效抑制若干阶模态的振动,且考虑到实际的条件限制,还要求有备选方案。因此,研究基于ACLD衬片多目标优化问题的结构振动控制,是十分必要的。
本文首先基于局部覆盖ACLD片体的悬臂板有限元动力学模型,建立了多目标优化设计模型。然后采用改进的NSGA-II算法对4片ACLD衬片的布置位置进行了多目标优化设计研究,确定了基于Pareto最优解理论的ACLD衬片的布置方案。最后选取3组ACLD衬片的布置方案,基于FxLMS算法设计了前馈控制器,研究了在同一外扰激励下,采用不同的ACLD配置方案时,结构的振动控制效果。
2.1 NSGA-II算法
NSGA-II是一种基于Pareto方法的多目标进化算法。该算法是Deb[10]等人在非支配排序算法(Non-Dominated Sorting Genetic Algorithm,NSGA)的基础上改进得到的。由于NSGA-II算法具有算法简单、收敛速度较快和鲁棒性较强的特点,已经成为多目标优化算法的基准算法之一。2.2 对NSGA-II的改进
本文采用全新的能够处理整形变量的Laplace交叉算子和幂变异算子,对NSGA-II算法进行改进。
2.2.1 Laplace交叉算子
4 数值算例
以部分覆盖ACLD的悬臂板为研究对象,ACLD板由基层的铝板、粘弹性层的ZN-1型粘弹材料以及约束层的P-5H压电陶瓷组成。各层板的材料参数见表1。约束阻尼板一端约束,形成悬臂板,左端为约束端,将其单元划分4×8个单元,则单元的优化布置区间为[1,32],单元编号如图4所示。在下述的优化过程中,选取布置4片ACLD衬片。
以上述的悬臂板的前两阶损耗因子最大化为优化目标,采用改进后的NSGA-II算法对ACLD衬片的位置多目标优化计算。设置合适的遗传算法参数,达到最大进化代数时结束程序。各个目标的进化历程可以看出大约进化10代左右,各个目标的最大值已经收敛。得到的Pareto前沿,对应的9组ACLD衬片的优化配置方案,即Pareto最优解集,见表2。由图6可知,Pareto前沿近似为一条曲线,但比较分散,这是由于设计变量为一离散的整数空间而导致的。从Pareto最优解集中,挑选4组ACLD的配置,进行振动响应分析,可以看出,采用配置1时,第1阶响应最小,但第2阶的响应最大;采用配置9时,则反之。采用配置3和7时,第1阶振动响应相对于配置9分别下降了5.6 dB和1.9 dB,第2阶振动响应相对于配置1分别下降了6.2 dB和8.8 dB。与配置1和9相比时,配置3和7则能够同时对前两阶的振动响应都具有较好的抑制,其中配置3的控制效果更好。
分别选取ACLD衬片的配置1、3和9,基于FxLMS控制算法,建立悬臂板的SISO振动控制系统。f1和f2分别为悬臂板结构的第1、2阶模态频率),悬臂板结构控制前后的响应曲线如图8所示。悬臂板第1阶模态的振动能量较第2阶模态的振动能量大,在同样的激励下,第1阶振动响应就比较大。此外,配置9对第1阶的振动抑制较弱,因此,采用优化配置9时,未控制的振动响应大于优化配置1和3。在同样的控制器参数和控制能量下,配置9的振动响应趋于发散,配置1和配置3都能够有效抑制结构的振动,振动响应分别由2.05 mm和2.14 mm衰减到0.25 mm和接近于0 mm。图9是ACLD不同衬片下的振动响应的频域图。在未施加控制时,频响曲线的结果有同样的趋势。配置3对第1阶和第2阶振动响应都能够很好地抑制,配置1则对第1阶振动响应更有效。由此可以看出,采用多目标优化算法,对振动被动控制时的ACLD衬片配置进行优化,并基于此设计振动主动控制器对结构进行主动振动控制时,都能够有效地衰减悬臂板的前两阶振动响应,保证了ACLD技术用于主被动模式时都具有较好的振动抑制效果。
5 结论
本文基于主动约束层阻尼结构的有限元动力学模型,采用改进的NGSA-II算法对ACLD衬片进行了多目标优化设计,并基于优化设计的结果设计了FxLMS前馈控制器,对结构的振动抑制情况进行了仿真分析和研究。结果表明,当ACLD结构工作于被动模式时,采用多目标优化算法得到的ACLD配置能够同时对结构的前两阶振动响应进行较好的抑制;工作于主动模式时,基于优化的ACLD配置设计的控制系统,具有更好的振动抑制效果,这就保证了ACLD技术用于主被动模式时都具有较好的振动抑制效果。
参考文献(References)
BAZ A,RO J. Vibration Control of Plates with Active Constrained Layer Damping[J]. Smart Material and Struture,1996(5):272280.
RAY M,SHIVAKUMAR J. Active Constrained Layer Damping of Geometrically Nonlinear Transient Vibrations of Composite Plates Using Piezoelectric Fiber-Reinforced Composite[J]. Thin-Walled Structures,2009,47(2):178-189.
曹友强. 基于机敏约束阻尼的车身结构振动噪声控制研究[D]. 重庆:重庆大学,2011.
Cao Youqiang. Study on Vibration and Noise Control of Car Body Structure Based on Smart Constrained Layer Damping [D]. Chongqing:Chongqing University,2011.(in Chinese)
RO J,BAZ A. Optimum Placement and Control of Active Constrained Layer Damping Using Modal Strain Energy Approach[J]. Journal of Vibration and Control,2002, 8(6):861-876.
ZHENG H,CAI C. Minimizing Vibration Response of Cylindrical Shells Through Layout Optimization of Passive Constrained Layer Damping Treatments[J]. Journal of Sound and Vibration,2005,279(3-5):739-756.
LEPOITTEVIN G,KRESS G. Optimization of Seg-mented Constrained Layer Damping with Mathematical Programming Using Strain Energy Analysis and Modal Data[J]. Materials & Design,2010,31(1):14-24.
XU B,JIANG J S,OU J P. Integrated Optimization of Structural Topology and Control for Piezoelectric Smart Plate Based on Genetic Algorithm[J]. Finite Elements in Analysis and Design,2013(64):1-12.
LIU T X,HUA H X,ZHANG Z Y. Robust Control of Plate Vibration Via Active Constrained Layer Damping[J]. Thin-Walled Structures,2004,42(3):427-48.
Zhang Dongdong,Zheng Ling,Li Yinong et al. Combined Feedback/Feedforward Active Control of Vibration of Plates with Active Constrained Layer Damping Treatments[C]. The 14th Asia Pacific Vibration Conference,Hong Kong,2011-04-1885.
DEB K. A Fast and Elitist Multi-objective Genetic Algori-thm:NSGA-II[J]. Evolutionary Computation,2002,6(2):182-197.
作者介绍
责任作者:张东东(1986-),男,山西晋城人。博士研究生,主要从事结构振动噪声控制研究。
E-mail:
我国风能的储量巨大,可开发利用。我国对开发风能资源非常关心,把利用风能资源作为转变经济能源结构和社会可持续发展的重要举措,风力发电成为对风能开发利用的重点对象。进行大规模发展风力,风电开发的重点是进入“建设大基地,融入大电网”。到2008年底,我国风电总装机容量达12248MW,提早完成了我国2010年预定的风电目标,图1是风电发展趋势的统计图。
1 多目标优化调度彼此关联技术
1.1 传统经济与节能调度的差异性
(1)电网单位买电成本上的差别;经济调度的发电机组的电网价格与市场具有竞争性;节能调度则首先考虑风、水等可再生资源发电,这些新能源机能发电要比火电机组的上网电价高。
(2)减少排放的成效性不同;经济调度以发电成本低为主要目的,而就目前的社会发展中煤的燃烧是成本最小的发电资源,经研究煤的燃烧有大量的污染物排放,对环保十分不利;电力供应充足的时候,节能调度本着经济节能的原则,选择由小到大的污染物排放资源作为发电顺序,这对电源发电是有好处的。
(3)发电的成本不同;节能发电是用降能低耗的方式,排放最少废气污染物;经济调度的成本资源会更低,增加了发电效率和产值。
(4)针对各种不同的机组发电序位也不同;节能调度里的不同发电机组按照排好的顺序找准序位:没有调节能力的可再生资源如太阳能、风能、海洋能等发电机组,具有调节能力的可再生资源如地热能、生物质能、水能等垃圾发电机组,核能发电机组,按照供热量的多少来确定发电量的方法,应用燃煤放热和别的资源结合发电机组,烧油发电机组,烧煤发电机组;经济调度是凭借机组报价,与周边发电机组的成本相比,报价的低的机组先进行发电。
1.2 应用实时调度技术
电网调度智能系统运用实时调度技术;实施调度计划过程中,有AGC机组内存容量不充裕,收效甚微的机组跟踪计划,安全区域与运行点靠近,风能发电功率不好掌控等等因素;实时调度机组必须选择执行计划强,性能比高的机组为调度机组;通过以10分钟为一个超前调整机组的周期出力的超短期发电预测,从而排除不肯定因素的影响;所以,以10分钟周期的超前调度控制方案,这种方案具有按时段编制发电的功能,还可预测下一个时段调度的风电出力情况,影响爬坡的速度效率,机组的额定限值,滚动发电策划,调度系统安稳运行时,我们可按节能减排标准推行发电计划,排除计划误差;因为电场在10分钟内是相对稳定的时段出力,所以实时调度技术是风电接入的调度重点,也是AGC控制及协调调度计划的切入点。
2 特性各异的电源多目标协同优化调度系统设计研究方案
2.1 调度系统的功能设计
2.1.1 滚动系统调度
在短期预y的拓展上,60分钟是启动周期,最大限度的应用最新的信息预测和实时信息,及时修改计划,实现预测发电的调整计划,有效减小日前计划的不准确性,滚动调度系统是下发计划指令,限制调整,改进在线滚动,推测超短期风功率,联络交接线管理计划等组成的。
2.1.2 综合归纳监视系统
监督并把一日内的电网滚动优化,实时调度,超短期推测数据等有关讯息,通过可视的信息平台展现出来,从管理的重点分析涵盖负荷,调度系统业务的组织信息,规划风电,装机规模,发电,电量合同,断面等等方面进行关注与研究。
2.1.3 计划系统
计划由计划数据展现和计划数据透传两大功能来实现。
2.1.4 实时调度系统
实时调度系统是在线调度实时,下发指令的自动性,超短期负荷的推算,安全校核等几部分构成;以电网模型,风电出力推算,超短期预测发电 ,实时数据通信的前提,10分钟是一个启动周期,在综合滚动发电计划,机组出力限制,安排AGC机组发电计划实时,;重新推测下个10分钟的发电计划调整,排除计划数值与推算数值的误差,加强电网的风电接入功能,成为联接协调调度计划和AGC控制安全网络的关键点。
2.1.5 安全校核系统
安全校核系统的职能是对实时调度产生的发电机组出力数据调动,输出计划方案的校核成果,滚动调度系统模块等的功能调整;对一日这中的最新设备状态信息,预测能力信息,电网模型,有计划的实时静态安全分析,分析计划多种发电机对功率转移的线路潮流分布因子,电网各个网点的联接形式,整理分析系统阻塞形势,并做相应的阻塞管理;内置功能主要有潮流分析,灵敏度分析,校核断面自动生成,静态安全分析等,做出系统的静态安全校核算法。
2.1.6 系统管理部分
系统管理功能主要有用户管理,日志管理,基础数据维护,权限管理等。
2.1.7 效果系统评估
用先进的可视化设备对特性各异的电源协同优化进行时段调度协调的工作效果展现;效果评估方面有节能减排的情况分析,经济性,开机方式,利用的清洁能源,风电,机组影响等多个方面。
2.1.8 接口的通信功能
协同优化调度系统和日前计划系统,OMS系统,EMS系统等各系统的接口通信。
2.2 系统设计方案
2.2.1 总体结构框架
特性各异电源的多目标协同优化调度系统的总体结构框架设计要求有:
(1)要求的标准化;系统的研究开发与设计准则和自己开发创新的原则相结合,遵守国内外和各个行业的通行法则,总结各国胜利成果的经验和先进技术,做好了智能电网的长远发展目标,保证电网的运用安全稳定;
(2)要求的一体化;系统设计调控的详细划分,实现调度运行控制,分析计算能力进行界面设计及系统的设计功能,电网的调度管理,电网的编制计划等一人体化的管理;
(3)要求的集成化;集成化设计是实现现代化管理及电网的调度信息,也这完成智能化调度做铺路;调度系统研究,依照数据集成的应用观点,建立起统一的数据应用服务平台,完成数据的共享性,整合性,一致性及应用增值,集成环境给电网调度的协同优化设计开发了强大的功能支撑。
2.2.2 集成和应用系统接口
(1)应用系统接口和其它系统接口的有机结合要从几个系统中读取数据;日前计划系统:读出计划约束讯息,第二天计划信息,负荷推测讯息;风功率预测系统:取得10分钟更新接下来的3个时段的风功率预测讯息;输出的数据传到OMS系统和AGC系统,OMS系统:传输风的功率推测讯息,抽水蓄能曲线,火电机组单机曲线,水电计划曲线等;AGC系统:发送机组计划指令新信息传到数据整合平台,在转发指令给AGC系统。
(2)和d5000智能电网接口及集成;d5000系统编制日内计划的规范功能,优化购电成本低廉,三公调度系统,发电消耗能源最少的目的,火,水电机组的发电机组制定要有针对性,个别地方的大比例风电机组,供热机组等机组功能和目标都很难实现。
3 结果论述
调度系统的实时研发,和AGC系统组成闭合控制,引进控制理论预测模板MPC,完成多时间尺度的多级协调调度形式,研制出实时调度模型及算法;增强了有功算法的可控制性;
研发设计热电联产机组,风力发电机组的调度应用机理作用及应用特点性质,实现优化调度模型;
建立特性各异电源的优化调度,火电机组,水电机组及风电机组进行举例分析,风力发电的使用要尽可能的保护环境,节约能源,经济调度遵循更好更低的火电成本为目的,在电网安全约束的运行中通过AGC系统完成优化调度的控制。
4 结语
由于风电模型预测困难,必须连接MPC系统来进行调度控制;电力系统的运用有很大的不稳定因素,电力系统的有功调度控制效果明显;社会的进步对电力的需要更是急不可待,这与发电造成环境污染和能源供应方面相互矛盾,我们要在现有的条件下学会节能环保,提高能源利用效率,节能减排改善能源的枯竭危机,我们寻找清洁的新能源是发展电力的大好光景,针对多种电源的环境污染大小,运行的条件限制,生产成本的预算等因素影响,合理的选择协调调度设计与多种发电机组的分配密不可分;多电源电力系统的多目标优化调度设计仍有巨大的发展空间,系统设计发电机组不稳定,在这方面的工作我们还就加大力度研发,对可再生清洁新能源在电力系统发电的稳定性进一步加强,能预测更长的时间,解决多电源优化调度的矛盾关系。
参考文献
[1]张明力,沈文宣,吴中华,等.消纳大规模风电的热电联产机组滚动调度策略[J].电力系统自动化,2014,35(26):20-26.
[2]郑原太,钱明光,姜术峰,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2015,35(02):2-7.
[3]沈文宣,郑原太,张明力等.风电受限态下的大电网有功实时控制模型与策略 [J].中国电机工程学报,2015,33(27):3-8.
作者简介
金元(1973-),男,朝鲜族,韩国庆安北道人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为电网管理。
金明成(1975-),男,黑龙江省尚志市人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为电网管理。
刘洋(1985-),山东省德州市人。硕士学位。现为国家电网东北电力调控分中心中级工程师。研究方向为系统安全分析。
吴珂鸣(1983-),辽宁省沈阳市人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为调控运行。
刘少午(1979-),辽宁省凌海是人。硕士学位。现为国家电网|北电力调控分中心高级工程师。研究方向为调控运行。
引言
传统的折叠桌的桌腿采用垂直着地的设计,容易造成桌子的称重能力下降、不稳定并且浪费材料的缺点,制作过程没有具体的数学模型,不利于大规模地推广与应用.基于传统折叠桌的种种弊端,本文提出了切实可行的优化方案.
文章通过全面地分析桌体高度、桌面边缘线的形状大小和桌脚边缘线的形状等因素,建立了优化模型,使平板材料的设计加工最优,稳固性最好,加工方便,用材最少,通过MATLAB算法得出平板材料的尺寸、钢筋位置、开槽长度和桌面高度最优加工参数,并结合实际情况建立软件设计模型,适合大规模地推广应用.
优化主要模型采用多目标规划,首先以桌子稳固性作为一级目标,在稳固的基础上以用材最省作为二级目标,在这两者的基础上以操作简单作为三级目标,以此建立最优设计模型.同时,结合实际生活,模型大胆创新,建立不同桌形的软件模型系统,增加客户的选择性,使模型具有很好的推广意义.本文将详细研究优化设计模型和创意软件模型建立求解的过程.
1.优化设计算法
多级目标规划
一级目标:稳定性最好
根据受力分析得出正三角形的稳定性最好.假设三条边所用的材质都相同,即:所能承受的最大应力都一样.现在在三条边的中点上分别施加一个力F并且让其逐渐增大,对三角形进行受力分析,显然当为等边三角形时桌子受力均匀,所以当桌面与最短两条桌腿的延长线构成等边三角形时,能够保证桌子稳定性最好.