当前位置: 首页 精选范文 进化博弈理论

进化博弈理论范文

发布时间:2023-09-27 15:06:10

导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇进化博弈理论范例,将为您的写作提供有力的支持和灵感!

进化博弈理论

篇1

关键词:进化稳定策略;渐近稳定性;严格N群体ESS;随机稳定集;群体稳定集

引言

进化博弈理论来自于达尔文的生物进化论,至少自雷威丁(Lewontin 1960)用于解释生态现象 ②就已经产生了。但直到1973年梅纳德·史密斯和普莱斯(Maynard Smith and Price)、梅纳德·史密斯(1974)提出了该理论的基本均衡概念----进化稳定策略[3](evolutionary stable strategy, ESS)及泰勒和乔克(Taylor and Jonker)提出该理论的基本动态概念---模拟者动态以后,进化博弈理论得到了理论界的普遍关注。特别是1992年关于进化博弈理论发展的国际学术会议在康奈尔大学的召开,正式确定了进化博弈理论在经济学上的学术地位,此后,该理论在经济学便上获得了迅速的发展及广泛的应用。越来越多的经济学家运用进化博弈理论来分析诸如社会制度变迁[阿克赛尔罗德和米尔顿(Axelrod and Hamilton 1981);阿克赛尔罗德(1984)]、行业发展趋势[波特Porter 1980)]、股市发展方向[康利斯克(Conlisk 1980);利奈尔和罗尔(Cornell and Roll 1981)]、消费者对品牌的选择[凯思和史培罗(Katz and Shapiro 1985)]、社会学习过程[弗登博格(Fudenberg 1995)]及社会习俗形成[彼特·杨,(H. Peyton Young 1993,1998)等领域的相关问题。进化稳定策略是进化博弈理论最基本的均衡概念,它具有广泛的应用并在发展中得到了不断完善。本文以进化稳定策略概念的发展为主线来介绍博弈论理论家们对它在不同条件下的拓展。

一、原初ESS定义及其缺陷

在梅纳德·史密斯和普莱斯(1973);梅纳德·史密斯(1974)提出进化稳定策略概念以前,进化博弈理论的发展还仅仅处于萌芽阶段。在这一时期生态学家们主要应用纯数学理论如极限环、分岔、奇异吸引子(罗森,Rosen 1970)等概念来描述生态演化系统并用于解释生态现象,同时把生物之间的互动行为纳入到进化模型之中(威尔·艾德瓦兹,Wynne-Edwards 1962),他们处理问题的方法已经蕴含了进化博弈理论的基本思想。

在七十年代,生态学理论和博弈理论在各自领域中都获得了迅速的发展,同时实验经济学作为一门学科也获得了经济学界的一致认同,这些条件为进化论与博弈论的结合提供了理论和现实基础。生态学家梅纳德·史密斯和普莱斯(1973)在总结以前理论的基础上,提出进化博弈理论的基本均衡概念----进化稳定策略③ ,该均衡概念的提出使得进化博弈理论的研究有了明确的方向,为进化博弈理论的进一步发展奠定了坚实的基础。

所谓进化稳定策略就是指:如果占群体绝大多数的个体选择进化稳定策略,那么小的突变者群体就不可能侵入到这个群体。或者说,在自然选择压力下,突变者要么改变策略而选择进化稳定策略,要么退出系统而在进化过程中消失。下面我们给出梅纳德·史密斯和普莱斯(1973)所定义的进化稳定策略(文献[3]对此有详细的介绍):

说是进化稳定策略,如果,存在一个④,不等式对任意都成立。其中A是群体中个体博弈时的支付矩阵;y表示突变策略;是一个与突变策略y有关的常数,称之为侵入界限(Invasion Barriers);表示选择进化稳定策略群体与选择突变策略群体所组成的混合群体。从定义可以看出,当系统处于进化稳定状态时(群体选择进化稳定策略时所处的状态就是进化稳定状态),除非有来自外部强大的冲击,否则系统就不会偏离进化稳定状态,即系统会“锁定”(Lock in)于该状态。定义的直观意思就是,当一个系统处于进化稳定均衡的吸引域范围之内时,它就能够抵抗来自外部的小冲击。显然,进化稳定策略是一个静态概念,但它却可以描述出系统的局部即吸引域内的动态性质。

原初进化稳定策略定义为以后的研究者提供了理论基础,但它是建立在许多理想化的假定之上,存在着许多不够完善的地方:第一,梅纳德·史密斯等是在研究生态现象时提出的进化稳定策略概念的,由于动植物的行为完全是由其基因决定的。因而,每个种群体都被程式化为一个纯策略,整个生态环境的所有种群也被看作一个大群体。然而,同一种群的个体由于其性别不同、需要不同、能力不同、基因突变或基因遗传⑤ 等因素都会影响到它们的行为,把每一个种群行为程式化一个纯策略是没有太强说服力的,把一个生态环境中所有种群看作一个大群体也存在不妥之处;第二,从梅纳德·史密斯等提出的进化稳定策略定义可以看出,它仅适应于互不重叠且相互独立的突变因素的影响,其吸引域半径只与单个突变因素y有关,也就是说只有等到一个突变因素对群体的影响消失之后,才能出现另一个突变因素,现实中出现这种现象是非常偶然的;第三,梅纳德·史密斯等为了技术上处理的方便及更好地利用数学工具和博弈论来描述生态演化过程而假定群体规模无限大 ⑥,即隐含地假定博弈的支付⑦ 空间是一个连通、闭集,这个假定不符合现实;第四,从原初的进化稳定策略定义可以看出,它是一个静态概念,只能描述系统的局部动态性质,没有涉及到动态系统整体的调整过程,而现实中许多系统的均衡依赖于系统的整体动态性质。

从生态意义上说,进化稳定策略把种群之间的互动行为纳入到模型之中,推广了达尔文的优胜劣汰理论,然而与纳什均衡概念相比,进化稳定策略并不能解释群体如何达到稳定的。它只能回答一旦达到了这种稳定状态,原群体就对突变者群体者具有较强的抵抗力。也就是说,它只能回答当系统处于某一个均衡点的吸引域时,在一定条件下,随着时间的演化,该系统就会趋于这个均衡点,而当系统有多重均衡或者多个吸引域时,原初的定义就显得无能为力了。事实上梅纳德·史密斯和帕克(Maynard Smith and Parker 1976)、梅纳德·史密斯(1978;1979)已经识到原初定义的某些缺陷,梅纳德·史密斯(1982)给予了一定程度的修进并提出了修进的ESS(Modified ESS)概念。下面我们从四个方面来介绍理论家对进化稳定均衡所作的拓展。

二、非对称群体中的ESS概念

梅纳德·史密斯早在1979年就已经意识到,原初的进化稳定策略在处理多群体非对称博弈时遇到了困难。他发现,在现实中,如生态学、经济学和其他社会科学中的许多策略互动行为可能发生于两个或多个群体的个体之间,个体之间进行的是非对称博弈,单用原初定义不能很好解释现实中的这些现象。如何把静态的单群体进化稳定标准拓展到多群体情形呢?在单群体中,所有的个体都被程式化了一个纯策略(梅纳德·史密斯假定只有纯策略是可以遗传的),个体之间进行的是两两重复匿名博弈;并且在单群体中,规模很少的突变因素对群体所产生的影响是可以忽略的,因此,非严格纳什均衡策略不可能侵入到最优反应的严格纳什均衡策略群体。在多群体中,突变因素可能来自于各个群体,突变策略者的互动行为会对群体行为产生不可忽略的影响。因此,原初的进化稳定标准仅仅限于严格纳什均衡之间的选择就不能运用于解释多群体情形。Selten(1980)认为,把均衡概念由单群体拓展到多群体不是一个简单的过渡,而是涉及到系统的动态调整过程及动态稳定性等一系列的变化。哈曼斯顿(Hammerstein 1981)认为,在非对称博弈中,个体更加倾向于应用稳定策略来选择行为并决定竞争结果,而这些稳定策略与进化稳定策略相比,可能会有更少的“吸引域”。因此,由进化稳定策略定义所得的结论就显得有点似是而非了,但他没有作出进一步解释。

泽尔腾(Selten (1980))首次深入地研究了非对称博弈动态稳定性并利用两群体博弈情形证明 “在非对称博弈原初进化稳定策略必定是严格纳什均衡”。后来,Van Damme(1987)在更一般的情形下证明了这个命题⑧ 。我们知道,严格纳什均衡本来就显示出很好的性质,如果一个理论把其主要的注意力集中于研究严格纳什均衡,那么它就没有任何理论价值;更重要的是许多非对称博弈根本就不存在严格纳什均衡,因而也就无法研究动态系统的稳定性;在非对称博弈中,渐近稳定性(Asymptotic Stability)实质上也蕴含了严格纳什均衡,因此,渐近稳定性在非对称博弈中也不是一个合适概念;进化稳定策略是一个静态概念,虽然能够描述系统的局部动态性质,但在非对称博弈中,原初的进化稳定均衡与动态演化过程极限结果之间的对应关系却不明显(即出现了局部与全局的矛盾)。因此,要研究非对称博弈的动态稳定性就必须通过考察系统的动态演化过程来寻求能够适应于对称博弈与非对称博弈的稳定性概念。为了能够更精确地描述非对称博弈,泽尔腾(1983,1988)通过对引入角色限制行为(Role Conditioned Behavior)而提出了适应于非对称博弈的ESS概念。

他的定义如下:在有角色限制的博弈G中,一个行为策略称为进化稳定策略,

如果 (ⅰ)对任意的,满足

(ⅱ)如果那么对任意的有。

然而,泽尔滕的ESS概念尽管适应于描述两群体非对称博弈的情形,但它只能描述系统的局部动态性质,而且该定义并不能够显示出均衡概念与动态演化过程极限结果之间的关系。因此,要更好地描述非对称博弈均衡,就必须正确处理好均衡概念与动态演化过程均衡结果之间的关系。于是,弗里德曼(Friedman 1991)考察了非对称博弈的更一般的单调调整过程并得出了四个基本结论:(1)每一个纳什均衡都是动态系统的静止点(rest point)⑨ ;(2)渐近稳定结果必定是纳什均衡;(3)在对称和非对称博弈中,对所有单调调整过程而言ESS不一定是渐近稳定的;(4)对某些单调调整过程而言,正规ESS是渐近稳定的。在此基础上,他得出了“渐近稳定结果必定是纳什均衡”结论。莱瑞·萨谬尔森和张建波(Larry Samuelson and Jianbo Zhang 1992)在弗里德曼(1991)的基础上进一步考察了非对称博弈的累积单调选择动态(Aggregate Monotonic Selection Dynamic)并得出:在非对称博弈中,单调调整过程能够剔除所有严格劣的纯策略,并且能够确保均衡结果必定是纳什均衡。同时,他们证明了“稳定点必定是纳什均衡”及“渐近稳定结果必定是严格纳什均衡”,进而强化了弗里德曼(1991)的“渐近稳定结果必定是纳什均衡”的结论。

Swinkels(1992)认为,进化稳定标准不对突变策略组合给予适当限制是说不过去的。特别地,在处理某些经济问题时,突变策略可能来自于参与人或者企业的创新、试验等活动,这些突变策略组合本身可能会影响系统的稳定性。因此,考察相对于后进入突变群体最优反应策略组合的稳定性可能会更合理,并且这些稳定性概念很容易由单群体情形推广到多群体N-人非对称博弈。于是他定义了适应于非对称博弈的策略稳健性概念。

定义:称之为相对于均衡进入者的稳健策略(Robust against Equilibrium Entrants REE),如果存在对所有的策略组合及满足:。其中表示突变策略;表示选择突变策略者在群体中所占的比例;表示混合群体;表示突变策略相对于策略x的最优反应策略,他并且证明了REE是ESS的一个子集。然后,他又把REE概念推广到了N-人非对称博弈的情形而提出了均衡进化稳定(Equilibrium Evolutionarily Stable EES)概念:

定义:称集合是均衡进化稳定的(EES),如果它是相对于下面性质的最小集: X是纳什均衡策略集合一个非空闭子集,存在,如果及,那么。

换句话说,EES集是纳什均衡策略集的最小闭集,它能够保证任何小规模的均衡进入突变者不可能使得群体离开进化稳定均衡的吸引域。

三、有限群体上的ESS概念

梅纳德·史密斯等提出的ESS概念另一个缺陷就是,他们为了在技术上处理的方便而认为群体规模无限大,这个假定与现实尤其应用于解决经济问题时并不相符。为了使理论与现实更接近,许多博弈论理论家对有限群体的均衡问题进行了深入的研究。沙弗尔(Schaffer 1988)首次放开群体规模无限大的假定,考察了有限规模群体的进化稳定性并提出了有限群体ESS(Finite Population Ess)概念。他证明“在一般情况下,有限群体ESS并不是纳什均衡策略”。汉森和萨谬尔森(Hansen and Samuelson 1988)分析了经济博弈的演化过程,并把有限群体ESS称之为“普遍生存策略”(universal survival strategy)。他们认为,在现实世界竞争中,未来的利润和可供选择的策略具有不确定性,这就会阻碍企业选择最优化策略,企业必须通过不断的试验、学习过程来寻求有利可图的满意策略 ⑩(不一定是最优策略)。沙弗尔(1989)应用“普遍生存策略”来研究寡头企业之间的竞争并得出结论:通过经济自然选择过程 ⑾而得以生存下来的策略是相对的而不是绝对的利润最大化策略。泰尼克(Tanaka 2000)利用模拟者动态,考察了差别产品对称寡头企业竞争的情形并定义了“全局生存策略”(Globally Surviving Strategy GSS)。他得出结论的是:在价格与数量竞争的寡头模型中,GSS都是随机稳定的并且在两种情况下它们是等价的。

以上所得到的均衡概念基本上是适应于单群体有限个体情形,并不适应于有限个体多群体博弈。哈佛保尔和西格蒙德(Hofbauer and Sigmund 1988)证明了“两群体对称博弈中不存在混合策略ESS”。泽尔腾(1988)在考察了大量的两人对称博弈的基础上也得出了类似的结论。克瑞斯曼(Cressman 1992)定义了有限两群体非对称博弈的进化稳定策略,1996年对他所定义的概念作了进一步说明。他认为,在模拟者动态下,至少一个群体的突变者所得到的平均支付少于选择稳定策略者所获得的支付,才能保证静止点的渐近稳定性。Garay and Varga(2000)认为,定义有限数目多群体的均衡概念应该满足如下三点:其一是突变者不能侵入他自己的群体;其二是现有群体对来自外部的随机冲击具有较强的抵抗力;其三是多群体ESS定义应该与非对称博弈理论的基本结论一致。众所周知,纯策略模拟者动态的渐近稳定集并不一定是ESS。那么,哪一种动态稳定概念等价于ESS呢?克瑞斯曼(1990)指出,在单群体条件下强稳定性等价于ESS,那么多群体的ESS定义也应该满足多群体稳定性概念等价于多群体ESS。根据这个标准,Garay and Varga(2000)定义了严格N群体ESS概念。其定义如下:

定义:策略组合 称之为N-群体进化稳定策略,如果对每一个,存在,对所有的都有:

框架。

四、随机因素影响下ESS概念

梅纳德·史密斯等提出的ESS概念第三个缺陷是要求突变因素是不连续且不重叠的。原初ESS定义由于仅仅考虑单个因素对系统的影响,所以任何偏离均衡状态的行为都会随着时间的演化自动回复到原来的进化稳定状态。帕克和菲尔德曼(Peck and Feldman 1988)认为,由于群体规模和后代数目很大,因而随机因素对动态系统的影响是可以忽略不计的。现实并不是这样,经济演化系统常常会受到来自突变和其他偶然事件的冲击,这些因素可能会对系统产生不可忽略的影响。福斯特和杨(Foster and Young 1990)认为,首先,ESS概念把影响系统的因素都看成是一个个孤立的事件,而在现实中系统常常会受到连续的随机冲击。如果假定有一个因素的影响消失以后,再考虑另一个因素对系统的影响,那么,系统当然就不会远离原来的均衡状态;其次,现实中出现上述情况纯属偶然现象,一个只能处理偶然现象的理论是没有任何存在价值。现实中,尽管单个随机因素对动态系统的影响较少,但它们却可能对系统产生累积作用而定量地改变系统的稳定性,使得系统离开进化稳定状态,系统什么时候回复到当初的进化稳定状态,依赖于动态过程的全局结构,而ESS定义是一个局部概念,因此在考虑随机冲击时就不能作为判断系统稳定性的标准;再次,由于系统的极限行为依赖于初始条件,同时在吸引子集合中只有一部分状态是随机稳定的,且随机稳定状态的选择还依赖于随机过程特定的结构,因此,ESS和一般意义上的吸引子(Attractors)由于没有充分地考虑到随机因素对进化系统的影响,在描述随机系统的稳定性时也很不理想。于是,他们首次把影响系统的随机因素纳入到进化模型之中并提出了一个既不同于传统ESS也不同于吸引子(Attractor)概念的随机稳定性(Stochastic Stability)概念。他们的定义如下:

定义:群体向量是随机稳定的,如果随着随机影响,极限密度对的每一个小邻域都赋有正概率;更精确地说,其中。其中是当时,的极限分布,表示随机因素对系统所产生的影响。

粗略地说,一个状态P是一个随机稳定的,如果在长期中,随着随机冲击因素影响的不断变少,系统几乎一定(nearly certain)不会离开P的任意少的邻域。随机稳定的群体向量总是存在的,它有如下性质:随着及,它是一个最小闭集。接着,他们又提出了更一般的概念----随机稳定集(Stochastic Stable Set)。随机稳定集 是一个满足如下条件的状态集合,即从长期来看,随着随机冲击的不断变少,系统几乎一定处于包含于S的任何一个开邻域中。随机稳定集概念的提出把传统确定性动态模型中的ESS拓展到随机性动态系统中,并且它是一个比进化稳定策略集更精练的概念,是进化稳定集的子集。随机稳定集已经成为描述随机动态系统的基本均衡概念。

五、ESS与动态的结合

从ESS的定义可以看出,它只能描述系统的局部动态性质而与系统的全局动态过程无关,然而,要更准确地描述一个系统的动态性质就必须对仔细考察整个系统的动态调整过程。泰勒和乔克(Taylor and Jonker 1978)首次把传统的ESS定义用模拟者动态模型表示出来,他们证明在一个多群体的模型中,进化稳定策略是渐近稳定的充分但非必要条件。但他们没有作出进一步的研究。鉴于此,吉尔博和马特休(Gilboa and Matsui (1991))在考察群体行动态调整过程的基础上,提出了“循环稳定集”(Cyclically Stable Set)又一均衡概念。“循环稳定集”直接来源于群体行为的调整过程,其基本思想是“可接近性”(Accessibility)。一个策略分布f称为可以从另一个策略分布g接近是指,如果存在一条从f到g的道路,且在该道路方向上任何一点都是相对于该点的最优反应。“循环稳定集”是指在满足“可接近性”条件下是封闭的策略分布集合(在该集合中任何两个分布之间都是接近的)。与一般均衡理论不同,仅当参与人按照均衡策略而作出选择时才有效,CSS并不要求群体保持这种决策状态。CSS的直观意义是,在一个很短的时间间隔内,只有少部分人离开或者死亡并且由一些新来的人(新生的孩子)代替,这些新来者从他们的母体那里继承一些行为模式,并且在现行预期(也就是说他们并不关心行为模式未来的变化)条件下作出最优的反应,一旦新来者选择了某一行动,他就会一直坚持下去(转换成本的存在是他坚持这个行动的一个重要原因)。马特休(Matsui 1992)给出了一个“稳定”策略的静态表述,在存在对原群体中各策略的初始分布冲击的情况下该策略能够保持这种分布。斯温克斯(1992)在马特休的基础上提出了“群体稳定策略”(Socially Stable Strategy SSS)。相对于均衡的进入者而言,所谓“群体稳定策略”是指如果存在一个突变群体(或者进入者群体,譬如说群体A),其支付高于原群体的支付,那么必定存在另外一个群体(如群体B),在这个包含大部分原群体个体而有一少部分群体A的个体的群体中,群体B将获得高于群体A的支付。这个概念也称为“稳健策略组合”。当然在某些情况下,“群体稳定策略”可能并不存在,但不是这个概念本身的缺点,出现这种情况与我们所研究的动态过程本身是分不开的。然而,我们可能会问,实际的行为模式又是怎么样呢?如果这个过程并不是稳定状态,那么稳定状态又是什么呢?在对这个问题作出回答时,马特休利用了吉尔博和马特休(1991)所提出的集值解的概念(Set-valued Solution),同时他也证明了循环稳定集的存在性。Binmore and Samuelson(1993)把参与人的学习过程纳入到了进化模型中并提出了自我强化均衡[10](Self-confirming Equilibrium)。他们认为,每个参与人都会通过自己的经验来推断对手可能选择的策略而作出最优反应,这个学习过程可能使得系统在不同自我强化均衡的吸引域之间漂移而不会停留在某一个均衡,由于在非均衡路径上的推断不一定正确,所以自我强化均衡可能不一定是纳什均衡。

结束语

进化博弈理论从发展到现在虽然只有二十几年的历史,但它却受到社会学、经济学、生态学们的普遍关注。特别是该理论的基本均衡概念----进化稳定均衡提出以后,理论界已经从不同的方面对它进行了拓展,并取得了令人瞩目的成果,使进化博弈理论体系得到了在发展中不断完善。进化博弈理论具有较强的实用性和广阔的发展前景 ⑿,相信它会引起更多经济学家的兴趣,必将成为主流经济学的一部分。

注释: ①张良桥:中山大学岭南学院经济学系数量经济学硕士研究生,广东省顺德职业技术学院经济管理系教师(邮政编码:528300;联系电话:0765-2338029;13825507060,值此文发表之际谨向他们致以深深的谢意,同时要感谢经济管理系的仇颖老师对此文中英文名字进行了认真的翻译。 ②生物学家在研究生态现象时发现,利用纳什均衡可以很好地解释生物进化结果。然而,生物是没有思维的更谈不上理性要求了,它们的行为却可以趋于纳什均衡,因此,理性要求并不是纳什均衡的必要条件。这样,生物进化论与博弈论的结合便成为可能,为进化博弈理论的产生奠定了基础。进化博弈理论以群体(Population)为研究对象,主要处理群体中近视且幼稚的(Navie)个体进行重复、匿名博弈的动态调整过程。其基本思想为:给定群体所处的状态,随着时间的演化更合适的策略会被更多参与者采用,其目的是为预测群体最终行为提供一个理论依据。 ③此后本文称之为原初定义 ④实际上相当于吸引域的半径,也就说进化稳定策略考察的是系统落于该均衡的吸引域范围之内的动态性质,而落于吸引域范围之外是不考虑的,所以说它只能够描述系统的局部动态性质。 ⑤如长颈鹿进化的过程。 ⑥对群体模型为无限大的要求有两个原因:其一是机械式的,为了假想的“侵入界限”(Invasion Barriers)也就是突变者群体在大群体中所占的份额(Population Share),当突变群体模型超过1/n时,n是大群体的个体数,突变群体就有可能侵入到大群体,进化稳定策略的条件就有不满足了。其二是技术上的,群体模型足够大,就可以忽略掉现行群体个体的行为对其他突变者群体未来行为的影响,即不考虑学习过程。 ⑦其中的支付是生态学上的适应度(Fitness)或繁殖成活率。 ⑧下面我给出Van Damme1987的证明:首先设是进化稳定的,并且令所有参与人都选择不变的策略。令,对所有的。令,其中,那么对所有,满足及,因此,由进化稳定性可知。所以,而是任意的,所以。其次,设是一个严格纳什均衡策略,并且,那么至少存在一个满足,由的连续性可知,至少存在一个,对所有及,至少存在一个 满足:,这就说明 是进化稳定的。 ⑨静止点(Rest Point)就是当动态系统处于静止点时就不会离开该点。 ⑩Alchian(1950)指出,企业必须通过对所观察到的市场参与者的行动与结果之间的比较来得知什么是好的策略什么是不好的策略。 ⑾他考察了如下的选择过程,每一个企业所能够选择的策略不随环境的变化而变化。在每一个阶段结束时,如果企业1的利润大于企业2的利润,那么企业1在下一阶段生存下来的概率就大于企业2在下一阶段生存下来的概率。相应地可以把企业的生存规则看作为策略的幸存,成功策略在群体中所占的比例通过企业之间对策略的模仿而得以增长 ⑿杨小凯教授(1995)认为,博弈理论当前最有趣的研究成果及日后有可能获得诺贝尔奖的工作就是信息不对称的动态博弈模型,以及对策游戏规则演化模型(也就是进化博弈模型)。事实上1996年及2001年的诺奖都属于研究信息经济学的经济学家,这说明杨教授具有超前的预见性,进化博弈理论研究者虽然还没有获得诺贝尔经济学奖,但也可以说明杨教授非常看重对进化博弈理论的研究。

[参考文献]

[1] 王则柯(1999):《博弈论平话》,中国经济出版社。

[2] 张维迎(1999):《博弈论与信息经济学》,上海三联出版社。

[3] 张良桥(2001):《进化稳定均衡与纳什均衡:兼谈进化博弈理论的发展》,《经济科学》,3,103-111。

[4] 张良桥(2001):《理性与有限理性:论经典博弈理论与进化博弈理论之关系》,《世界经济》,8,74-78。

[5] Binmore, K., G., and Larry Samuelson(1993): Musical Chaires: The Evolutionary Mechanica of Equilibrium Selection, Mimeo, (University College London and University of Wisconsin, Madison) .

[6] Cressman, P.,(1992): The Stability Concept of Evolutionary Game Theory (A Dynamical Approach), Lecture Notes in Biomathematics, Vol. 94, Springer Berlin.

[7) Cressman, P.,(1996): Frequency-dependent Stability for two-species interactions, Theoretical Population biology, 49, 189-210.

[8] Cressman, r.,(1990): Strong Stability and Density-dependent Evolutionarily Stable Strategies, Theoretical Population biology, 145, 319-330.

[9] Friedman, D.(1991): Evolutionary games in economics, Econometrica 59.

[10] Fudenberg, D. (1998): Learning in Games, Cambridge MIT Press.

[11] Gilboa, I. and A. Matsui (1991): Social Stability and Equilibrium, Econometrica,59, 869-867.

[12] Hammerstein, P., (1981): The role of Asymmetries in Animal Contests, Anim. Behav. 29, 193-205.

[13] Hansen, R. G., and Samuelson, W., (1988): Evolution in Economic Games. Journal of Economic Behavior and Organization, 10, 315-338.

[14] Hofbauer, J., Sigmund, K.,(1988): The Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge.

[15] Lewontin, R. C. (1960): Evolution and the Theory of Games. Journal of Theoretical Biology, 1, 382-403.

[16] Matsui, A.(1992): Best Response Dynamics and Socially Stable Strategies, Journal of Economic Theory, 67, 343-362.

[17] Maynard Smith(1974): The theory of Games and the Evolution of Animal Conflict, Journal of Theoretical Biology, 47, 09-221.

[18] Maynard Smith(1978): In defence of Models, Anim, Behav. 26, 632-633.

[19] Maynard Smith, J. And Price, B. R. (1973): The Logic of Animal Conflict, Nature, 246, 15-18.

[20] Peck, J. R., and Feldman (1988): Kin Selection and the evolution of Monogamy, Science, 240, 1672-1674.

[21] Rosen, R. (1970): “Dynamical System Theory in Biology,” Vols. 1 and 2, Wiley-Interscience, New York.

[22] Samuelson, Larry and Jianbo, Zhang(1992), Evolutionary Stability in Asymmetric Games, Journal of Economic Theory 57.363-391.

[23] Schaffer, M. E., (1988): Evolutionarily Stable Strategies for a Finite Population and a Variable Contest Size. Journal of Theoretical Biology, 132, 469-478.

[24] Selten, R.(1980), Evolutionary Stability in Extensive Two-person Games-Correction and Further Development, Mathematical. Social. Science, pp. 93-101.

[25] Selten, R.(1983), Evolutionary stability in extensive two-Person Games, Mathematical. Social. Science 5. 269-363.

[26] Selten, R.(1988), Evolutionary stability in extensive two-Person Games—Correction and further development, Mathematical. Social. Science 16 . 93-101.

[27] Swinkels, J. (1992): Evolution and Strategic Stability: From Maynard Smith to Kohlberg and Mertens, Journal of Economic Theory, 57, 333-342.

[28] Swinkels, J. (1993): Adjustment Dynamics and rational Play in Games, Games and Economic Behavior, .5, 455-484.

[29] Tanaka, Y., (2000): Stochastically Stable States in an oligopoly with Differentiated Goods: Equivalence of Price and Quantity Strategies, Journal of Mathematical Economics, 34, 235-253.

[30] Taylor, P. D., and Jonker, L. B. (1978): Evolutionarily Stable Strategies and Game Dynamics, Mathematical. Bioscience. 40, 145-156.

篇2

一、两个简单的例子

1.1 老鹰(Hawk)与鸽子(Dove)博弈

1.2 系统选择博弈

二、进化博弈理论的产生及其发展

2.1 理性的由来及其缺陷

2.2 心理学研究成果及有限理性概念的提出

2.3 进化博弈理论的产生及其发展

三、进化博弈理论的基本内容

3.1 进化博弈理论基本模型分类

3.2 进化博弈理论基本均衡概念-----进化稳定策略

3.3 进化博弈理论基本动态概念----模仿者动态

四、进化博弈理论的应用

五、传统方法的缺陷及进化博弈理论研究方法的现实性

5.1 新古典经济学均衡分析法的缺陷

5.2 经典博弈理论的策略互动分析法及其缺陷

5.3 进化博弈理论局部动态分析方法的现实性

5.3.1 局部动态分析法的均衡观

5.3.2 局部动态法的时间观

5.3.3 局部动态法的均衡选择观

5.3.4 局部动态法的特殊性

六、结论

参考文献

摘要

本文从两个简单的博弈例子出发,以通俗的语言全面介绍了进化博弈理论的理性基础及其形成、发展、基本内容和部分应用,在此基础上文章进一步比较了新古典经济学、经典博弈理论 ①及进化博弈理论在研究方法上的不同之处,并特别强调了进化博弈理论局部动态法的均衡观、时间观、均衡选择观及方法上的特殊性。进化博弈理论的局部动态分析方法既是经济学研究方法的一次创新又是经济学直面现实的有力武器。

关键词:沉默互动;社会互动;进化稳定策略;模仿者动态;均衡分析法;局部动态法

引言

为什么同样一项经济制度在某个地方对经济发展有积极的推动作用而在另一个地方对经济发展却起着消极的阻碍作用?为什么能够有效降低交易费用的中介在一些地方会出现而在另一些地方却不能出现?为什么同样的管理方法在一个地方显示出高效率而在另一地方却不具有效率?诸如此类的问题,新古典经济学利用均衡分析法都无法给出令人满意的答案。均衡分析法的最大缺陷是把经济系统中参与人看作是互不联系的单个人(仅研究单个生产者或消费者的行为),不能把其所考察的问题放在一定的环境中去,该方法完全忽略了制度环境、社会环境及人文环境等对参与人行为的影响,单纯考察某个条件与结果之间的一一对应关系。因而,无法对现实中出现的诸多现象给予合理的解释。博弈理论尽管把参与人之间行为互动关系纳入到了模型之中,但依然没能跳出新古典均衡分析法的基本框架,并且由于其对理性赋予更强的假定,使得该理论更加脱离现实。进化博弈理论则一反常规,从一种全新的视角来考察经济及社会问题,它所提供的局部动态研究方法是从更现实的社会人出发,把其所考察的问题都置于一定的环境中进行更全面的分析,因而,其结论更接近于现实且具有较强的说服力。进化博弈理论属于经济学的前沿理论,该理论从其理论框架建立到现在仅仅只有近三十年的历史,但其在经济学、社会学、生态学等领域却得到了广泛的应用,近年来已经成为主流经济的研究方法之一。在我国由于历史原因,对经济学的研究起步较晚,特别对进化博弈这样的前沿理论更是知者甚少,本文的主要目的是以通俗的语言介绍进化博弈理论的相关内容及其应用,让读者对该理论有一个全面的了解。

本文的结构如下:第一部分给出进化博弈理论的两个典型的例子;第二部分对进化博弈理论的产生及其发展进行阐述;第三部分对进化博弈理论的基本内容进行简要的介绍;第四部分概述进化博弈理论的有关应用;第五部分论述传统的经济学研究方法的缺陷及进化博弈理论研究方法的现实性;第六部分对进化博弈理论的发展及理论前景进行简要的说明。

一、两个简单的例子

为了下文说明的方便,本文先给出进化博弈理论中两个具有代表性的例子,在此基础上再进一步给出该理论的基本内容及其研究方法的基本特点。

1.1 老鹰(Hawk)与鸽子(Dove)博弈

假定一个生态环境中有老鹰与鸽子两种动物,它们为了生存需要争夺有限的资源(如食物或生存空间等)而竞争。老鹰一般比较凶悍,必要时在斗争中直到重伤。鸽子一般比较温驯,竞争时在强敌面前常常退缩。竞争中获胜者得到了生存资源就可以更好地繁衍后代,重伤者则不利于其后代生长,即会减少其后代的数量。如果群体中老鹰与鸽子相遇并竞争资源,那么老鹰就会轻而易举地获得全部资源,而鸽子由于害怕强敌退出争夺,从而不能获得任何资源(当然不会受伤);如果群体中两个鸽子相遇并竞争生存资源,由于它们均胆小怕事不愿意战斗,结果平分资源;如果群体中两个老鹰相遇并竞争有限的生存资源,由于它们都非常勇猛而相互残杀,直到双方受到重伤而精疲力竭,结果虽然双方都获得部分生存资源但损失惨重,入不敷出。假定竞争中得到全部资源为50个单位(该数字也可以表示为生物的适应度、繁殖成活率或后代数量);得不到资源则表示其适应度为零;双方重伤则用来表示。于是老鹰、鸽子两种动物进行的资源竞争可以用一个对称博弈来描述,博弈的支付矩阵如下:

操作依赖于该群体的初始状态。如果初始时,该宿舍有多于4人使用操作系统,那么该宿舍所有学生最终都会使用该操作系统;否则所有学生最终会使用操作系统。

二、进化博弈理论的产生及其发展

进化博弈理论是经济学研究方法的一次创新,该理论从否定传统理论赖以成立的基础----理性人假定出发而建立起来一个新的分析框架,它结合了生态学、社会学、心理学及经济学的最新发展成果,从有限理性的社会人出发来分析参与人的资源配置行为。

2.1 理性的由来及其缺陷

经济学自从古希腊哲学中分离出来并成为一门系统的学问,是在亚当•斯密1776年发表《国富论》之后。以斯密为代表的古典经济学关注的核心是资源的稀缺程度如何能被人类经济活动所减少,他们关注的重点不是资源配置问题而是国民财富的增长及国别差异的原因。1890年马歇尔《经济学原理》的出版,标志着新古典经济学的成形,马歇尔之后,新古典经济学关注的核心逐渐转向在给定稀缺程度下资源的最优配置问题。稀缺资源的配置是需要人的参与,也就是说经济学研究的问题演变为关于经济中参与人如何把稀缺的资源配置到效率最高地方去的问题,强调个体行为在资源配置中的作用。经济中参与人的决策行为是通过高度复杂的思维活动作出的,为了更好地从微观个体行为来解释资源配置问题,新古典经济学借用了哲学中“理性”概念对复杂的人类行为过程进行了抽象的假定。然而,理性一词用于经济学时却对其含义的理解与哲学中对其含义的理解已经有了明显的区别。哲学中的理性是指人类所特有的用以探索自然和社会奥秘的认知能力,当代伟大的哲学家康德在其著作《纯理性批判》一书中指出,人类理性即认知能力并不是万能的,而是有限的。经济学中的理性则是指一种行为方式,具体地说即是经济中参与人对其所处世界的各种状态及不同状态对自己支付的意义都具有完全信息,并且在既定的条件下每个参与人都具有选择使自己获得最大效用或最大利润的能力。

经济学家认为理性是至高无上的,人们凭借理性就可以完全地认识自然与社会。经济学中对理性的含义经过这样的处理以后,就使得经济学能够充分运用数学理论发展的成果来进行分析。为了应用数学工具并更好地处理经济问题,传统经济学家们从偏好,信念及理性三个方面来界定经济主体的特征,其中信念就是个体认为不同结果将会出现的基于个体所获信息之上的条件概率。偏好则是基于不同结果的信念之上的序。理性是根据上述偏好及信念,个体获得最优决策的程度以及个体根据已经获得的信息来修正其信念的能力。这三个特征使得经济学研究的对象由现实人转向了理想化的对象,经济学越来越偏离了现实。

由理性概念而引致的缺陷首先表现在理性人具有无限的信息收集及处理能力的均衡观,认为经济系统常常处于均衡状态,非均衡只是一种暂时的现象,当受到外生因素扰动而使系统偏离均衡状态时,系统会以线性的方式回归均衡,这种机械式线性反应的均衡观来源于牛顿力学,由此而得出的比较静态分析法完全忽视了系统受到非线性扰动及连续因素的影响。其次表现在由全知全能的理性人而引致的均衡跳跃观,认为经济系统达到均衡或者从一个均衡到另一个均衡是不需要时间的,认为时间是可逆的,即经济变量与物理学的变量一样,只要条件相同系统的均衡也就相同,市场和经济对于过去的记忆是短暂的或者是没有的。这种应用经典牛顿力学分析方法来分析高度复杂的参与人经济行为使得其预测效果大打折扣。最后表现在其比较静态分析方法上,传统经济学的最基本分析方法----比较静态分析法赖以成立的基础是假定经济系统只受到外界一个个相互独立、互不重叠的冲击的影响,或者当一个因素的影响消除之后,下一因素才开始对经济系统产生影响。我们知道现实世界是普遍联系的,各种因素之间不可能相互独立,系统中任何一个因素的变动都会引起其他因素的变动,这些因素之间相互作用的时间可能很短也可能很长,各因素对最终目标会产生不同程度的影响。比较静态法却只见局部不见整体,企图通过比较不同均衡来找出系统达到均衡的条件,因此得不出符合现实的结论,其研究方法上的局限性大大降低了其理论的现实意义。

2.2 心理学研究成果及有限理性概念的提出

随着经济学家对理论研究的深入,特别近来实验经济学的迅速发展,主流经济学赖以成立的基础“理性人”假定及其基本的比较静态均衡分析法越来越受到了人们的质疑。相继出现了许多其他的研究方法,其中在经济学中影响最大的就是心理学的研究方法。心理学应用于经济分析有着非常曲折的历史。事实上,斯密、马歇尔、庇古、费雪尔和凯恩斯等一批古典经济学家都仔细地分析了偏好和信念的心理学基础。但从1940’s开始,一方面受到萨缪尔森及希克斯等新一派基于理性假定经济学家的影响,心理分析在经济学中的地位慢慢地被降低了;另一方面理性模型也遇到了许多如Allais(1952)悖论等难以给出合理解释的经济现象。于是1960’s开始,许多微观经济学家再次运用心理学研究方法来解释现实中的异常现象,宏观经济学也把经验法则和适应性预期纳入到其模型之中,正是在这一时期心理学家Simon(1957)提出了其著名的“有限理性”概念。然而,1970’s初随着Robert Lucas等人提出的理性预期理论、Selten、Kreps等倡导的强调正确信念及贝叶斯修正的博弈理论及Stiglitz、Spence等研究的信息经济学理论相继成为主流经济学的一部分,经济学界再一次掀起了排除渗透在经济学领域中心理学研究方法的热潮,心理的研究方法在经济学界几乎无立足之地,严格理性假定席卷整个经济学界。行为经济学的发起者Amos Tversky在经济学界根本找不到志趣相投者。1970’s末期,随着心理学家Amos Tversky与Kahneman合作发表了一系列应用心理分析方法来研究经济学问题的原创性文章,如1974年他们在Science发表的Judgment under uncertainty: Heuristics and biases,1979年他们合作在Econometrica发表Prospect theory: An analysis of decision under risk,慢慢消除了经济学界中存在的对心理学分析方法的偏见,此后应用心理分析方法来解释经济现象的文献见诸于各种经济学期刊之中,心理分析方法也渐渐地成为了主流经济学的研究方法之一。

进入1980’s,随着经典博弈理论、生态理论及心理学理论研究的深入发展,特别是心理学家西蒙把其在心理学领域研究的成果直接应用经济分析并因此获得了诺贝尔经济学奖,极大地激励着经济及社会学家从现实人行为出发来解释经济及社会现象。心理学研究表明人类认知过程首先表现为人们通过一种“感知秩序”进行学习活动,并形成分散的非同质的知识,其中“感知秩序”是指人的理解力、知识和人类行动之间的关系;其次表现为个体通过学习所达到的理性程度的有限性,组织学习个体学习行为的整合而形成的多层次“理性结构”,个体理性便会在一个累积性的组织或制度环境中得到塑造和提高并发挥作用,在这个过程中,个体学习行为总会受到组织、习惯和文化等制度性的限制和影响。西蒙认为人类并不是完全理性而是有限理性的,因为人类认知能力有着心理的临界极限,人类进行推理活动需要消耗大量的能量,推理也是一种相对稀缺的资源,另外决策者决策时需要大量的信息,而这些信息是不可能免费获得的,获得决策所需要的信息是需要大量成本的。考虑到参与人有限的知识水平、有限的推理能力、有限的信息收集及处理能力,经济主体的决策行为并非总是最大化的结果,其决策受到参与人所处的社会环境、过去的经验、日常惯例及其他人相似情形下的行为选择等因素的影响。在有限理性条件下,由于参与人无法免费获得决策所需要的全部信息,并且参与人即使获得了决策所需要的全部信息也可能由于有限的计算能力而无法得出最优决策。因此,参与人只能采取模仿、学习等简单的直观决策方法或一些固定的常规来进行决策。人类的决策结果受到复杂的认知过程的影响,不同的人或者同一个人在不同时间即使给出相同的条件也可能会得出不同的决策结果,即决策结果受到认知过程的路径影响。

2002年诺贝尔经济学奖得主之一心理学家丹尼尔·卡内曼(Daniel Kahneman)将源于心理学的综合洞察力应用于研究在不确定条件下参与人的决策过程及行为结果并展示了人为决策是如何异于标准经济理论预测的结果。在1979年,他与有着深厚数学及哲学背景的心理学家特韦尔斯基(Tversky)提出了震撼经济学界的“前景理论”(Prospect theory)。他们的发现激励了新一代经济学研究人员运用认知心理学来研究经济学,使经济学的理论更加丰富。一个理论获得诺贝尔经济学奖不仅是对获奖者过去成就的肯定,更主要说明了获奖理论将会成为主流经济学未来的发展方向。2002年诺贝尔经济学奖授予给丹尼尔·卡内曼标志着经济学的研究对象从传统的“经济人”转向现实的“社会人”,经济学直面现实。如何从有限理性出发来研究参与人的行为,许多经济学家对之进行了广泛而深入的研究并提出了许多理论,在这些理论之中影响最大且受到了经济学界普遍接受的理论即进化博弈理论。

2.3 进化博弈理论的产生及其发展

进化博弈理论源于对生态现象的解释,1960年代生态学家Lewontin就开始运用进化博弈理论的思想来研究生态问题。生态学家从动植物进化的研究中发现,动植物进化结果在多数情况下都可以用博弈论的纳什均衡概念来解释。然而,博弈论是研究完全理性的人类互动行为时提出来的,为什么能够解释根本无理性可言的动植物的进化现象呢?我们知道动植物的进化遵循达尔文“优胜劣汰”生物进化理论,生态演化的结果却能够利用博弈理论来给予合理的解释,这种巧合意味着我们可以去掉经典博弈理论中理性人假定的要求。另外,1960年代生态学理论研究取得突破性的进展,非合作博弈理论研究成果也不断涌现并日趋成熟,进化博弈理论具备了产生的现实及理论基础。

进化博弈理论应用于研究经济学问题在学术界曾经引起极大的争议,争论的焦点在于理性假定。当时由于理性概念在经济学界已经根深蒂固。多数人认为利用研究生态演化的进化博弈理论来研究参与人的行为是不合适的。因为动植物行为是完全由其基因所决定的,而经济问题则涉及到具有逻辑思维及学习、模仿能力的理性参与人的行为,因此,借助于进化博弈理论来研究远比动植物复杂的人类行为显然是行不通的。但随着心理学研究的发展及有限理性概念的提出,越来越多的经济学家应用进化博弈理论来解释经济现象并获得了巨大的成功,利用进化博弈理论来研究并解释经济现象的文献大量出现于各种经济学期刊了。尽管如此,利用进化博弈理论来解释经济现象还是需要对该理论的基本分析框架作出相应的调整。如果去掉参与人偏好、信念及理性假定等条件,那么参与人是如何作出决策的呢?进化博弈理论在处理有限理性参与人决策问题时,常常假定参与人遵循某种比贝叶斯法则更简单的行为规则,这种行为规则应该告诉如何采取行动及如何根据经验来改变行为选择,这样参与人只要知道什么会发生,而不必知道为什么会发生。

1970年代,生态学家Maynard Smith and Price(1973)结合生物进化论与经典博弈理论在研究生态演化现象的基础上而提出了进化博弈理论的基本均衡概念----进化稳定策略(Evolutionarily stable stragegy ESS),目前学术界普遍认为进化稳定策略概念的提出标志着进化博弈理论的诞生。此后,生态学家Taylor and Jonker(1978)在考察生态演化现象时首次提出了进化博弈理论的基本动态概念----模仿者动态(Replicator Dynamics)。至此,进化博弈理论有了明确的研究目标。

1980年代以后,随着新古典经济学及博弈论固有的缺陷逐渐被人们所认识,有限理性概念得到了学术界的普遍认可,加之进化博弈理论在解释生态现象时获得的巨大成功,特别是经济学界于1992年在康奈尔大学召开的进化博弈理论学术会议,正式确立了该理论的学术地位。一大批如Larry Sameulson、Ken Binmore、Peyton Young等经济学家从不同的角度对传统的进化博弈理论分析框架进行拓展,并使之逐渐转化为描述经济行为的理论。目前,进化博弈理论的基本理论体系虽然已经形成但还是相当粗糙。因此,它仍然处于不断发展和完善的阶段,但该理论提供了比传统理论更具现实性且能够更准确地解释并预测参与人行为的研究方法,从而得到了越来越多的经济学家、社会学家、生态学家的重视,我们有理由相信该理论成为主流经济学的一部分已经为时不远。

三、进化博弈理论的基本内容

进化博弈理论结合经典博弈理论及生态理论研究成果,并以有限理性的参与人群体为研究对象,利用动态分析方法把影响参与人行为的各种因素纳入其模型之中,并以系统论的观点来考察群体行为的演化趋势。

进化生态学与博弈论的结合至少已有三十几年的历史,初看起来使人觉得奇怪,因为博弈论常常假定参与人是完全理性的,而基因和其他的演化载体常常被假定是以一种完全机械的方式运动。然而一旦用参与人群体来代替博弈论中的参与者个人,用群体中选择不同纯策略的个体占群体中个体总数的百分比来代替博弈论中的混合策略,那么这两种理论就达到了形式上的统一。尽管这两种理论在形式上达到了统一,但进化博弈理论与经典博弈理论还是存在本质区别。在进化博弈理论中每个参与人都是随机地从群体中抽取并进行重复、匿名博弈,他们没有特定的博弈对手 ④。在这种情况下,参与人既可以通过自己的经验直接获得决策信息,也可以通过观察在相似环境中其他参与人的决策并模仿而间接地获得决策信息,还可以通过观察博弈的历史而从群体分布中获得决策信息。对参与人来说,观察群体行为的历史即估算群体分布是非常重要的,首先,群体分布包含了对手如何选择策略的信息。其次,通过观察群体分布也有助于参与人知道什么是好的策略什么是不好的策略。参与人常常会模仿好的策略⑤ 而不好的策略则会在进化过程中淘汰,模仿是学习过程中的一个重要组成部分,成功的行为不仅以说教的形式传递下来,而且也容易被模仿。参与人由于受到理性的约束而其行为是幼稚的(Naive),其决策不是通过迅速的最优化计算得到,而是需要经历一个适应性的调整过程,在此过程中参与人会受到其所处环境中各种确定性或随机性因素影响。因此,系统均衡是达到均衡过程的函数,要更准确地描述参与人行为就必须考察经济系统的动态调整过程,动态均衡概念及动态模型在进化博弈理论中占有相当重要的地位。

3.1 进化博弈理论基本模型分类

进化博弈理论的基本模型按其所考察的群体数目可分为单群体模型(Monomorphic Population Model)与多群体模型(Polymorphic Populations Model)。单群体模型直接来源生态学的研究,在研究生态现象时,生态学家常常把同一个生态环境中所有种群看作一个大群体,由于生物的行为是由其基因唯一确定的,因而可以把生态环境中每一个种群都程式化为一个特定的纯策略。经过这样处理以后,整个群体就相当于一个选择不同纯策略(纯策略集的数目就相当于群体中的种群数)的个体。群体中随机抽取的个体两两进行的都是对称博弈,有些文献中称这类模型为对称模型(Symmetry model)。严格地说,单群体时个体进行的并不是真正意义上的博弈,博弈是在个体与群体分布所代表的虚拟参与人之间进行。如第一部分的老鹰----鸽子博弈,该生态环境中有两个种群老鹰与鸽子,它们代表两个不同的纯策略,用进化方法进行处理时认为该生态群体中每个个体都有两种可供选择策略即老鹰策略与鸽子策略,此时的博弈并不是在随机抽取的两个个体之间进行,而是每个个体都观察群体状态(选择老鹰策略与鸽子策略个体数在群体中所占的比例),给定此状态它就可以计算自己选择不同策略所得的期望支付(严格地说这并不是期望支付,但为了说明的方便本文仍然借用该概念)进而确定选择哪一个策略不选择哪一个策略,对物种而言这就意味着种群数量的增加或减少。

多群体模型是由Selten (1980)首次提出并进行研究的,他在传统单群体生态进化模型中通过引入角色限制行为(Role Conditioned Behavior)而把对称模型变为了非对称模型。在非对称博弈个体之间有角色区分,此时可以从大群体中区分出不同的小群体,群体中随机抽取的个体之间进行真正意义上的两两配对重复、匿名非对称博弈,有时又称之为非对称模型(Asymmetry model)。如果我们把系统选择博弈中的宿舍变成学校(整个学校相当于一个大群体)而把十个人变成十个班(每一个班看成是一个小群体,且同一班的同学无角色区分即与单群体情形一样),每个班的学生都有多种选择,此时该校学生所进行的计算机系统选择博弈就是非对称博弈。非对称博弈模型并不是对单群体博弈模型的简单改进,由单群体到多群体涉及到一系列的如均衡及稳定性等问题的变化。Selten(1980)证明了“在多群体博弈中进化稳定均衡都是严格纳什均衡⑥ ”的结论,这就说明在多群体博弈中,传统的进化稳定均衡概念就显示出其局限性了。同时,在模仿者动态下,同一博弈在单群体与多群体时也会有不同的进化稳定均衡。

按照群体在演化过程中所受到的影响因素是确定性的还是随机性的,进化博弈模型可分为确定性动态模型和随机性动态模型。确定性模型一般比较简单并且能够较好地描述系统的演化趋势,因而,理论界对之进行较多的研究。随机性模型需要考虑许多随机因素对动态系统的影响,一般比较复杂,但该类模型却能够更准确地描述系统的行为,近年来理论界对之也进行广泛的探讨[对随机动态的详细讨论可以参阅这方面的经典文献Foster, D., and P. Young.(1990), Fudenberg, D. and C. Harris (1992), Kandori, M. G. Mailath, and R. Rob(1993)]。

3.2 进化博弈理论基本均衡概念-----进化稳定策略

进化博弈理论的基本均衡概念---进化稳定策略⑦ [文献2、5有详细介绍]是由Maynard Smith and Price(1973)及Maynard Smith(1974)在研究生态演化问题时提出来的,其直观思想是:如果一个群体(原群体)的行为模式能够消除任何小的突变群体,那么这种行为模式一定能够获得比突变群体高的支付,随着时间的演化突变者群体最后会从原群体中消失,原群体所选择的策略就是进化稳定策略。系统选择进化稳定策略时所处的状态即是进化稳定状态,此时的均衡就是进化稳定均衡。下面给出Maynard Smith and Price(1973)对进化稳定策略的定义(此后本文称之为原初定义),用符号表示如下:

说是进化稳定策略,如果,存在一个<,不等式对任意都成立。其中A是群体中个体博弈时的支付矩阵;y表示突变策略;是一个与突变策略y有关的常数,称之为侵入边界(Invasion Barriers);表示选择进化稳定策略群体与选择突变策略群体所组成的混合群体。实际上相当于该吸引子对应吸引域的半径,也就说进化稳定策略考察的是系统落于该均衡的吸引域范围之内的动态性质,而落于吸引域范围之外是不考虑的,所以说它只能够描述系统的局部动态性质。至于系统是如何进入吸引域的原初的进化稳定策略定义所没有给予足够的重视。

要准确地理解进化稳定策略概念就必须正确理解突变者和侵入边界的含义。我们可借助于前面的两个例子来理解。在老鹰、鸽子博弈中,当该生态环境中只有老鹰(或只有鸽子)时,这时系统已经处于均衡状态,但它们都是不稳定的均衡,因为这两个均衡都可以被突变者侵入。开始时,假定该生态环境处于老鹰均衡,如果由于某种原因而进入鸽子时,那么随着时间的演化,整个生态系统最终就会稳定于一半为老鹰一半为鸽子的状态,即混合策略纳什均衡是进化稳定的。这说明该博弈中两个纯策略纳什均衡是不稳定的。因为,当系统处于纯策略所表示的状态时,只要存在突变者系统就会离开这种状态,所以它们都不是进化稳定的。相反混合策略纳什均衡却不一样,即当系统处于一半是老鹰一半是鸽子时,如果由于某种因素使得系统偏离该状态,那么系统会自动恢复到原来状态。另外,在系统选择博弈中突变者、侵入边界就更为明显,所谓突变者即是指选择进化稳定策略以外的策略者,且侵入边界与不同的均衡有关。该博弈有两个纯策略纳什均衡和一个混合策略纳什均衡(),前一个均衡所对应的侵入边界就是,也就是说如果选择操作系统的学生数占群体总数的比例大于(即学生数大于4),那么选择操作系统的突变者就不可能侵入到该群体中,如果选择操作系统的学生数占群体总的比例小于(即学生数小于4),那么选择操作系统的突变者就会侵入到该群体中而原来选择操作系统的学生会转而学习操作系统。

最初进化稳定策略定义有比较苛刻的条件限制,如单群体、群体中个体数目无限大、系统只受到不连续且互不重叠冲击的影响等。这些条件大大地限制该定义的应用,随着学术界对进化博弈理论研究的深入,许多理论家们从不同的角度对最初定义进行了拓展,如Selten 1980首次给出了适应于描述多群体均衡的定义;Schaffer 1988首次给出了适应于描述有限规模群体的均衡定义;Foster and Young(1990)首次给出了适应于描述连续随机系统的均衡定义等等(有关对进化稳定策略进行拓展的讨论见文献[5])。最初定义是在解释生态现象时提出来的,如果进行经济分析,时需要进行相应的改变。在分析生态现象时,把每一个种群的行为都程式化为一个策略,因此进化的结果将会是突变种群的消失(消失的原因在于生物的行为是由其遗传基因唯一确定的)。如果用于经济分析,那么进化的结果将是那些选择突变策略的个体最终会改变策略而选择进化稳定策略(因为人类可以通过学习、模仿等来改变自己所选择的策略)。

经典博弈理论中的核心概念纳什均衡即是指一种策略组合,在该策略组合下任何个人单独偏离都不会变得比不偏离好。纳什均衡是一个静态概念,不能描述系统的动态性质,用数学语言来说它是动态系统的不动点,纳什的成功就是在于他应用拓扑学的不动点定理证明了纳什均衡的存在性。进化稳定策略必定是纳什均衡策略,它是纳什均衡的精练,文献[3]对此有详细的介绍。在进化稳定策略的定义中引入突变者及侵入边界使之能够更好地描述系统的局部动态性质。第一部分的两个例子中,按照纳什均衡的概念是无法得知两个系统最终会选择哪一个均衡,但利用进化稳定策略却可以说明系统最终会稳定哪一个均衡并可以分析系统达到不同均衡的条件,在某种程度上,较好地解决了多重均衡选择问题。

3.3 进化博弈理论基本动态概念----模仿者动态

进化博弈理论来源于生态学的研究,该理论基本上从“优胜劣汰”的进化论观点来看待群体行为的调整过程。一般的进化过程都包括两个可能的行为演化机制:选择机制(Selection Mechanism)和突变机制(Mutation mechanism)。选择机制是指本期中能够获得较高支付的策略,在下期被更多参与者选择;突变是指参与者以随机(无目的性)的方式选择策略,因此突变策略可能获得较高支付也可能获得较低支付,突变一般很少发生。新的突变也必须经过选择,并且只有获得较高支付的策略才能生存(Survive)下来。进化博弈理论需要解决的关键问题就是如何描述群体行为的这种选择机制和突变机制。博弈理论家对群体行为调整过程进行了广泛而深入的研究,由于他们考虑问题的角度不同,对群体行为调整过程的研究重点也就不同,因而提出了不同的动态模型,如Weibull(1995) 提出的模仿动态(Imitation Dynamics)模型,认为人们常常模仿其他人的行为尤其是能够产生较高支付的行为;Börgers and Sarin(1995,1997)等提出并应用强化动态(Reinforcement Dynamics)来研究现实中参与人的学习过程;Skyrms (1986) 引入了意向动态(Deliberational Dynamics)模型对哲学中的理性问题进行了讨论;Swinkels(1993)提出了近似调整动态(Myopic Adjustment Dynamics);Borgers and Sarin(1995)提出了刺激—反应动态(Stimulus-Response Dynamics)等等。到目前为止,在进化博弈理论中应用得最多的还是由Taylor and Jonker(1978)在对生态现象进行解释时首次提出描述单群体动态调整过程的模仿者动态(Replicator Dynamics)。所谓模仿者动态是指使用某一策略人数的增长率等于使用该策略时所得的支付与平均支付之差。下面就给出Taylor and Jonker(1978)提出的模仿者动态的微分形式:

化的而且因素之间的互动作用也是需要时间的。因此,均衡只是一种暂时现象或者在多数情况下,系统根本不可能达到的现象,要更准确地考察参与人的行为就必须运用系统论的观点,把行为互动性、因素互动性及时间因素纳入到其模型之中。

5.2 经典博弈理论的策略互动分析法及其缺陷

考虑到新古典经济学没有把参与人行为之间的互动关系纳入到其模型之中,经典博弈理论则在理性人假定的基础上把参与人行为的互动关系纳入到其模型之中进一步考察了参与人的决策问题。在我国,对人类互动行为的研究至少可以追溯到三国时期田赛马的故事,但作为一种正式理论提出来,一般认为是始于冯·诺意曼和摩根斯藤(Von Neumann and O. Morgenstern, 1944)出版的《博弈论与经济行为》一书,直到纳什(Nash 1950)在研究非合作博弈的基础上提出著名的纳什均衡(Nash Equilibrium)概念才使得博弈论成为一门完整的理论。经过近五十年的发展,终于在1994年,三位杰出的博弈论大师:纳什(John F. Nash)、泽尔藤(Rechard Selten)和海萨尼(John C. Harsanyi)获得了经济学的最高荣誉——诺贝尔经济学奖,在全球经济学界再次掀起了对博弈论的研究热潮。经典博弈论为社会科学提供了一个新的研究视角,使我们能够以全新的方法来处理各种冲突与合作的问题。博弈论作为一种理论工具,其应用相当广泛。在信息经济学中得到了充分的应用,1996年诺奖得主Mirrlees等、2001年诺奖得主Akerlof等都对信息经济学研究作出了卓越的贡献。这充分说明了博弈论在经济学的地位可见一斑。

经典博弈理论的核心概念----纳什均衡就是由普林斯顿大学数学家纳什在研究非合作博弈时提出来的。纳什均衡即是指给定其他参与人选择的情况下,每一个人单独偏离均衡都不会变得比不偏离好,显然纳什均衡是一个静态均衡概念。经典博弈理论尽管把参与人的互动行为引入到其模型之中,并认为现实中参与人不是孤立地作出自己的决策,每一个参与人的决策不仅依赖于其自身所面临的条件及其所拥有的信息,而且也依赖于其他参与人的决策选择。但该理论却面临着其自身无法克服的缺点。首先,博弈论中的互动是一种“沉默互动⑨ ”,这种互动不允许参与人之间存在任何形式的交流,即假定参与人都是一个个只会理性计算的孤立经济人而非社会人,一旦引入社会互动,许多博弈都无法进行分析,也就是说经典博弈理论中的互动并不“社会互动”而是孤立的“沉默互动”。其次,博弈论的基本均衡概念纳什均衡要求博弈各方都是理性的,并且理性是共同知识,博弈时如果某一方选择了非理,那么博弈就无法进行下去。特别地该理论在利用后向归纳法(Backward Induction)对纳什均衡进行精练时,不但要求参与人完全理性,而且还要求参与人的行为满足序贯理性(Sequential Rationality)要求。这一比理性更强的要求使得博弈论更加远离现实人。再次,在处理参与人所面临的不确定性时,不仅要求各参与人知道世界的各种状态,而且要求参与人知道每一种状态所出现的概率,并且给定一个先念信念,当出现任何新信息时,每个参与人都能够应用贝叶斯法则修正自己的先念信念,也就是说参与人不但具有很强的计算、推理能力,而且能够在一个大的状态空间上应用贝叶斯法则解决相当复杂的问题。现实中多数情况下,参与人并不都具有这种计算、推理能力。最后,博弈论碰到了其最棘手的问题就是多重均衡的处理,当博弈出现多重均衡特别是多重严格纳什均衡时,尽管许多理论家提出了一些方法(Selten(1965)提出的子博弈精炼纳什均衡概念,Selten(1975)提出的颤抖手精练纳什均衡,Kerps—wilson(1982)提出的序贯均衡,Schelling(1960)提出的聚点均衡等)来处理多重均衡问题,但始终没能获得一致认可的结论。

与新古典经济学相比,经典博弈理论虽然在其模型中纳入了行为的“沉默互动”关系,但该理论给出的研究方法仍然没能跳出新古典经济学的均衡分析框架,这种只注重结果而忽略达到结果的过程的分析方法依然把对经济系统的影响因素都看作为一个个孤立因素,依然认为影响因素与决策结果是一一对应的关系,依然没能把参与人所处社会环境等因素纳入到其模型之中,因而不能准确地描述现实中人的决策行为,其结论也仅仅具有理论意义而缺乏政策含义。

5.3 进化博弈理论局部动态分析方法的现实性

进化博弈理论利用达尔文“优胜劣汰”的生物进化论、经典博弈理论并结合心理学的研究成果,从西蒙提出有限理性(Bounded Rationality)的参与人群体出发,通过对群体行为的研究进一步得出参与人个体的行为。进化博弈理论跨越了完全理性的“经济人”与有限理性的“社会人”的鸿沟,实现了经济学研究方法革命性的突破。与传统均衡分析法相比,进化博弈理论的局部动态分析方法在以下几个方面独具特色。

5.3.1 局部动态分析法的均衡观

传统的均衡分析方法认为完全理性参与人能够对环境的任何变化作出迅速的最优反应,因而,经济系统是常常处于均衡状态的,分析参与人的行为只需要研究均衡结果,并以此来预测经济人的行为,通过比较不同均衡结果来寻找系统达到均衡的条件。这种处理方法为了数学上处理的方便而撇开现实中“因素互动”而分别考察单个因素对均衡的影响,使得理论更加缺乏现实基础。进化博弈理论则完全摒弃传统理论中非现实的“理性人”假定,直接从有限理性参与人群体出发而提出的一种全新的研究方法----局部动态法。局部动态法把经济系统达到均衡结果的过程纳入到其模型之中,认为经济系统达到均衡需要一个长期的渐进过程,均衡结果依赖于达到均衡的过程,也就是说任何一个结果都是路径依赖的,它与混沌经济学完全动态的研究方法具有某种程度的相似之处。

5.3.2 局部动态法的时间观

传统的均衡分析法并没有纳入因素互动关系并且理性计算是不需要时间的,所以得出经济系统常常是均衡的结论。进化博弈理论的局部动态法一个显著特征就是把参与人的决策过程时间及因素互动的时间纳入到其基本模型之中,强调系统达到均衡的过程,并认为经济系统由于受到各种互动行为及互动因素的影响,有些系统达到均衡可能只需要很短的时间,有些系统达到均衡可能需要很长的时间,有些系统可能无法达到均衡。时间因素对经济学研究有着非常重要的意义,如均衡分析法无法考虑宏观经济政策中“时滞”使得许多实施时有效的政策在发生作用时却出现了与原意相反的结果。时间是度量政策效率的一个很重要的因素,如果不考虑时间因素有些政策可能很有效率,但纳入时间因素,一些需要太长时间才能使系统达到意愿均衡的政策可能根本就没有效率。进化博弈理论把时间纳入到模型分析中并充分应用数学中的相图来描述经济系统达到均衡的路径,这样有利于决策者控制经济系统使之朝向既定的目标前进,也有利于决策者寻找能够最大限度地促进系统向意愿均衡转化的因素,使系统尽快达到有效率的均衡。

5.3.3 局部动态法的均衡选择观

新古典经济学研究的逻辑有理性就有均衡,然后在既定均衡下通过对不同均衡的比较来寻找系统达到不同均衡的条件,即比较静态法,最后结合条件找出希望达到的均衡,因此,该理论不存在真正意义的均衡选择问题。经典博弈理论提供的分析方法在多数情况下都存在其自身所无法处理的多重均衡问题。如老鹰与鸽子博弈及系统选择博弈中多重均衡问题。进化博弈理论的局部动态法引入突变因素就能够较好地解决了多重均衡的选择问题,在老鹰与鸽子博弈中,尽管全是老鹰(全是鸽子)都是均衡的,但这两个均衡都极不稳定即都不是进化稳定均衡,一旦有鸽子(老鹰)突变者进入该系统就会使系统偏离,随着时间的推移而使得系统趋向于混合策略进化稳定均衡即一半鸽子一半老鹰(该均衡是一个全局吸引子);在系统选择博弈中经典博弈理论无法解释系统最终会趋于哪一个均衡,局部动态法引入了突变因素就能够很好地解决了均衡选择问题,即系统最终会趋于哪一个均衡依赖于系统的初始状态即路径依赖。进化博弈理论的基本均衡概念----进化稳定均衡描述的是当经济系统一旦进入到某一均衡的吸引域内时,系统就会对其他的突变策略具有一定程度(即在突变边界内)的抵抗力。

5.3.4 局部动态法的特殊性

新古典经济学与经典博弈理论均衡分析法都是以单个消费者、单个生产者、单个市场为研究对象来考察参与人的最优决策行为,并由此研究整个社会的资源配置问题。然而它们却碰到了如何由个体行为转化到群体行为的困难,因为这种转化过程涉及到各种互动因素的影响。一个明显的例子是经典博弈理论中囚徒困境博弈,在该博弈中两个囚徒都从个体理性出发,但得到了集体非理性均衡的结论。也就是说,均衡分析法根本无法实现从个体行为向集体行为的过渡,在此框架内寻找宏观经济的微观基础的困难是非常大的。进化博弈理论的局部动态法则从人的社会性出发,利用系统论的处理方法来看待参与人的决策行为。该理论直接以参与人的群体为其研究的逻辑起点,在考虑到影响参与人行为的社会因素、文化因素、民族习俗及个体生活习惯等因素的基础上进一步考察群体中有限理性个体的行为互动关系,很巧妙地避开由个体行为向集体行为转化问题,因而能够更加真实地反应现实人的决策过程及其决策结果。

六、结论

进化博弈理论是经济学领域的前沿理论,它来源于对生态现象的研究,虽然该理论应用于经济分析的时间不长,但它为经济学研究提供了一个全新的分析方法,较好地克服了新古典经济学及经典博弈理论中理性假定及多重均衡的困难。并且,应用进化博弈理论来研究经济系统能够获得比传统理论更准确的结果,能够更加现实地解释经济现象,因而在短期内为多数经济学家所接受。从某种意义上说引入进化博弈理论局部动态法来分析经济中参与人的行为是经济学研究方法的一次创新。

注释: ①本文把源于冯·诺意曼和摩根斯藤经纳什发展而成的博弈理论称之为经典博弈理论。 ②即无性生殖,这样假定的意思就是说后代继承其母体的策略,并且永远不改变,当然用于研究人类的行为时,需要作相应的调整。 ③所谓近视调整即是指参与人不管未来怎么样,只知道使当前的支付最大化 ④ 经典博弈理论中每一个参与人都有特定的博弈对象,并且,在重复动态博弈中,后行动者通过观察先行动者的理而利用贝叶斯法则来修正自己的先念信念,然后,在此信念下选择使自己获得最大支付的策略。 ⑤好的策略即是指能够获得较高支付的策略。 ⑥所谓严格纳什均衡即是严格占优纳什均衡。给定对手选择的情况下,每个人都通过选择严占优的策略而组成的纳什均衡。 ⑦事实上,这与Selten提出的颤抖手均衡概念具有相似性,所谓颤抖手均衡是指一个战略组合,只有当它在允许所有参与人都可能犯错误时仍是每一个参与人的最优战略的组合时才是一个均衡,其严格定义可以参阅张维迎的《博弈论与信息经济学》。其中的颤抖或者犯错误与进化稳定策略中的突变因素有差不多的含义,但它们之间存在本质上的不同。 ⑧由模仿者动态方程进行支付变换,可得。 ⑨这一点我们可以从博弈论一个著名的捐款----回赠实验中看出,募捐者要求每一个人都自愿捐款,最终募捐者以3倍于捐款总额的钱平均分派给每个捐款者,为了使得博弈能够分析下去,募捐者要求自愿捐款时每个人都不得与其他人讨论,否则该博弈就无法进行下去,因此,本文称博弈论中的互动是一种沉默互动而非社会互动。这个实验充分体现了古典经济学及博弈论研究对象上的一致性,即它们都是研究单个个体的行为而排除了人的一个重要特征----社会性。参考文献

[1] 王则柯(1999):《博弈论平话》,中国经济出版社。

[2] 张维迎(1999):《博弈论与信息经济学》,上海三联出版社。

[3] 张良桥,冯从文(2001):《进化稳定均衡与纳什均衡:兼谈进化博弈理论的发展》,《经济科学》,3,103-111。

[4] 张良桥(2001):《理性与有限理性:论经典博弈理论与进化博弈理论之关系》,《世界经济》,8,74-78。

[5] 张良桥(2003):《论进化稳定策略》,《经济评论》,2,70-74。

[6] 张良桥,郭立国(2003):《论模仿者动态》,《中山大学学报自然科学版》,3。

[7] 杨小凯(2000):《新兴古典经济学和超边际分析》,中国人民大学出版社。

[8] 青木昌彦, 奥野正宽(1999):《经济体制的比较制度分析》, 魏加宁等译, 北京: 中国发展出版社.

[9] Allais, M., (1952): The foundations of a positive theory of choice involving risk and a criticism of the postulates and axioms of the American school, in expected utility hypotheses and the Allais Paradox, edited by M. Allais and O. Hagen, Dordrecht: Teidel.

[10] Börgers, T. and R. Sarin (1997): Learning Through Reinforcement and Replicator Dynamics, Journal of Economic Theory, 77, 1-14.

[11] Börgers, T. and R. Sarin, (1995): “Learning through Reinforcement and Replicator dynamics”, Mimeo University College London.

[12] Conlisk, J.(1980): Costly Optimizers Versus Cheap Imitators, Journal of Economic Behavior and Organization, 1980, (1): 275-293.

[13] Cowen , Tyler, and Randall Kroszner, The Development of the New Monetary Economics, Journal of Political Economy , 1987, (95): 567-590.

[14] Crawford, Vincent, P. (1989): “An Evolutionary explanation of Van Huyck. Battalio, and Beil’s Experimental Results on Coordination,”Manuscript, Department of Economics, University of California, San Diego.

[15] Daniel Kahneman and Amos Tversky (1979):Prospect theory: An analysis of decision under risk, Econometrica, 1979, (47), 263-291.

[16] Foster, D., and P. Young.(1990) Stochastic Evolutionary Game Dynamics, Theoretical Population biology, (38): 219-232.

[17] Fudenberg, D. and C. Harris (1992): Evolutionary Dynamics with Aggregate Shocks, Journal of Economic Theory, 1992, (57): 420-441.

[18] Jones, R.. The Origin and Development of Media of Exchange, Journal of Political Economy, 1976, (84): 757-775.

[19] Kahneman, D. and A. Tversky(1974) : judgment under uncertainty: heuristics and biases, Science, 185, 1124-1131.

[20] Kahneman, D. and A. Tversky(1979) : Prospect theory: An analysis of decision under risk, Econometrica, 47, 263-291.

[21] Kandori, M. G. Mailath, and R. Rob (1993): Learning, Mutation, and Long-run Equilibria in Games, Econometrica, 61, 29-56.

[22] Kreps. D., and Wilson,(1982): Signaling Games and Stable equilibrium, Econometrica, 50, 863-894.

[23] Lewontin, R. C. (1960): Evolution and the Theory of Games. Journal of Theoretical. Biology. 1, 382-403.

[24] Maynard Smith, J. and G. R. Price.(1973): “The Logic of Animal Conflicts”, Nature, , (246): 15-18.

[25] Nash, Jr. John F.(1950), The Bargaining Problem. Econometrica.

[26] Nash, Jr. John F.(1951), Noncooperative games, Annals Mathematics 54.

[27] Schelling, T. (1960): The Strategy of Conflict, Harvard University Press, Cambridge, MA.

[28] Schelling, Thomas(1960), Strategy of Conflict, Harvard U. Press.

[29] Selten, P. (1978): The chain store paradox,Theory and decision 9, 127-159.

[30] Selten, R. (1980): A Note on Evolutionarily Stable Strategies in Asymmetric Games Conflicts, Journal of Theoretical. Biology. 84, 93-101.

[31] Selten, R.(1975), Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games, International Journal of Game Theory, 4, 25-55.

[32] Selten, R., (1965): Spieltheoretische Behandlung Eines Pligopolmodells mit Nachfagetragheit, Zeitschrift fur die gesamte Staatswissenschaft, 12, 301-324.

[33] Simon, H. A., (1955): A behavioral model of rational choice, Quarterly Journal of Economics, 69,99-118.

[34] Skyrms, Brian (1986): Deliberational Equilibria, Topoi, 5, 59-67.

[35] Smith, V. L. (1979): Indirect revelation of the demand for public goods: An overview and critique, Scottish Journal of political economy, 25, 183-189.

[36] Swinkels, J. (1993): Adjustment Dynamics and rational Play in Games, Games and Economic Behavior, .5, 455-484.

[37] Taylor, P. D. and L. B. Jonker.(1973): Evolutionarily Stable Strategy and Game Dynamics, Mathematical Social. Science (40): 145-156.

[38] Tversky, A. and D. kahneman(1992): Advances in prospect theory: cumulative representation under uncertainty, Journal of risk and uncertainty, 5, 297-323.

[39] Von Neumann, John and Oskar Morgenstern(1944), Theory of Games and Economic Behavior, Princeton U Press.

篇3

[4]李真.互联网金融征信模式:经济分析,应用研判与完善框架[J].宁夏社会科学,2015,(1).

[5]中国网络信贷行业发展报告(2014-2015)http://.cn/skwx_ps/bookdetail?SiteID=14&ID=3955175.

[6]中国征信业发展报告.http:///gzdt/att/att/site1/20131212/1c6f6506c5d514139c2f01.pdf.

[7]程鑫.互联网金融背景下征信体系完善所面临的机遇与挑战[J].上海金融,2014,(11).

[8]何树红,杨采燕.我国信用体系的健全与商业银行信贷风险的控制[J].经济问题探索,2009,(2).

[9]四川银监局课题组.互联网金融对商业银行传统业务的影响研究[J].西南金融,2013,(12).

[10]许天骆,王亭熙.博弈论域下商业银行信贷的风险控制[J].统计与决策,2012,(12).

[11]彭鹏,罗剑朝.中国信用制度设计的博弈分析[J].西安电子科技大学学报:社会科学版,2006,16(5).

篇4

 

知识经济时代,知识管理的逐渐普及和深化,使得知识共享的地位日益突出。知识共享作为知识管理的关键环节,在提高企业对环境的应变能力和知识创新能力方面有巨大的推动作用。越来越多的企业清楚地认识到,只有致力于知识的共享,才能把分散于个体头脑中的零星知识整

1文献回顾<

在知识经济中,绝大部分知识将通过共享得到应用,个人独占形式的知识将微不足道,共享成为知识价值实现的一种形式,也成为知识增值发展的一种途径。鉴于知识共享的价值和重要性,国内外已有研究人员就知识共享进行了大量的研究企业文化论文,国内对知识共享的研究要晚于国外。通过文献的查询和阅读发现目前国内的研究方向大致集中在对企业知识共享中存在的障碍及对策的分析,如文献[1];对知识共享机制的研究,如文献[2]的研究;企业文

2企业研发团队知识共

2.1知识共享

知识共享(Knowledge Sharing)的概念是伴随着知识管理理论和实践的产生而出现的,在最初的知识管理研究中,学者们只是把知识共享看作知识管理的一个子内容来研究。随着知识管理理论及其实践的逐渐普及和深化,管理者们逐渐认识到组织实施知识管理的

对于知识共享的概念,目前学术界还没有统一的定论。很多学者用不同的文字从不同的角度对知识共享进行了解释和描述,如有的学者从沟通的观点用知识转移(Knowledge Transfer)来描述知识共享,认为知识是通过个体之间的沟通交流来实现知识从拥有者到接受者的转移[2];有的学者从知识社区的视角用知识扩散(Knowledge Distribution)来描述知识共享,认为知识共享就是知识在知识社区内的扩散过程,从而实现知识的增值[6];还有的学者从市场交易的观点用知识交易(Knowledge Transaction)来描述知识共

2.2企业研发团队的

企业研发团队的知识水平决定了企业开发新产品的能力。企业研发团队的成员都是高水平的知识工作者,都拥有很专业的知

结合以上关于知识共享的定义和企业研发团队的实际,可以将研发团队的知识共享理解为将研发团队中从属不同个体的知识进行整合的过程,在这个过程中研发团队成员之间不断地进行沟通和学习小论文。在知识共享的过程中,研发团队中作为知识提供者的个体成员将其本身所拥有的知识、技能、经验等外化,提供出来,以获得某种有形或无形的收益;而作为知识接收者的其他成员通过各种方式与知识提供者互动学习

3企业研发团队知识共享的

3.1进化博弈

进化博弈论(Evolutionary Game Theory)是近年来博弈理论的新发展,最初产生于生物学领域。进化博弈论是基于生物进化论,以有限理性为前提的实用性较强的博弈理论,它突破了传统博弈论对参与人完全理性假定的限制。以进化理论为基本的进化博弈理论的基本思路是:在具有一定规模的博弈群体中,博弈双方进行着反复的博弈活动[2]。进化博弈论遵从生物进化论中“物竞天择,适者生存”的基本原则。在进化博弈论中,由于有

在进化博弈论中企业文化论文,最核心的概念是“进化稳定策略”(Evolutionary Stable Strategy ,ESS)和“复制动态”(Replicator Dynamics)[8]

若策略s*是一个ESS,当

s*构成一个Nash均衡(即对任意的s,有u (s* ,s*)

如果s*s满足u (s* ,s*)= (s*,s),则必有u(s* ,s*)>u(s,

复制动态实际上是描述某一特定策略在一个种群中被采用的频数或频度的动态微分方程。根据进化的原理,一种策略的适应度或支付(Payoff)比种群的平均适应度高,这种策略就会在种群中发展,即适者生存体现在这种策略的增长

=[u(k ,s)-u(s ,s)],k=1,2…K

其中为一个种群中采用策略k的比例,u(k ,s)表示采用策略k时的适应度,

3.2研发团队知识共享进化

由于掌握知识的个体的创新能力高于没有掌握的个体,所以其所得的企业报酬相对要高,加之知识共享使得员工充满不安全感,于是就产生了知识共享的障碍,这里将这些障碍因素看作一个综合效益参数。

研发团队知识共享的进化博弈的支付

表1 博弈双方的支

知识共享者S

知识独占者M

 

 

共享(Co)

篇5

企业内部的知识有多种形式,如个人经验、产品信息、客户信息、工作流程、各种文档。企业知识共享,就是员工互相交流彼此的知识,使知识由个人的经验扩散到企业的层面,从而提高企业的工作效率。知识共享在企业中产生的是一种知识放大效应,它通过知识管理等手段,使企业的知识资源不断得到整合与利用,从根本上推动企业竞争能力的提升。

进化博弈理论与企业知识共享机制

对于企业知识共享机制问题,可以用博弈理论进行研究。目前,国内一些研究已对此做出了初步的探索,如用“囚徒困境”模型解释不愿知识共享的问题,但是这些分析研究均是应用经典博弈理论进行分析。经典博弈理论从博弈方的完全理性出发,在信息充分的前提下找到了博弈的均衡解。然而对现实中的决策行为者来说,完全理性是很难满足的高要求。当社会经济环境和决策问题较复杂时,人的理性局限是非常明显的。因此要保证博弈分析的理论和应用价值,必须对有理性局限的博弈方之间的博弈进行分析,进化博弈论从有限理性的个体出发,以群体行为为研究对象,合理解释了生物行为的进化过程。生物进化中生物性状和行为特征动态变化过程的“复制动态”,在有限理性博弈分析中正是模拟有限理性博弈方学习博弈和调整策略过程最主要的动态机制之一,而生物进化理论中具有在动态调整过程中达到,在受到少量干扰后仍能“恢复”的稳健性均衡概念“进化稳定策略”,正是有限理性博弈分析最核心的均衡概念,或者说动态策略稳定性概念。

一般来说, 在企业内部的知识共享行为上,行为主体的理性层次较低。这主要是因为这类决策是群体决策,而行为是企业行为。此时行为主体意识到错误和调整策略的能力较差,其行为变化更多的是一种缓慢进化而不是快速学习与调整机制。因此可以用生物进化的复制动态机制模拟,即进化稳定策略(ESS)。在重复博弈中,具备有限信息的个体根据其既得利益不断地在边际上对其策略进行调整以追求自身利益的改善,不断地用较满足的事态代替较不满足的事态,最终达到一种动态平衡。在这种平衡中,任何一个个体不再愿意单方面改变其策略,这种平衡状态下的策略称为进化稳定策略。因此,利用进化博弈的方法分析企业知识共享机制更加接近于现实情况,也更有实际意义。

理论基础和模型构建

(一)理论基础

假定两类行为主体均采用纯策略,令S是行为主体所有纯策略的集合,(S)代表所有在t阶段采用纯策略s∈S的行为主体集合,定义状态变量θt(S)表示在t阶段采用纯策略 s的行为主体的群体比例向量,于是有:

根据前面的假设,有限理性的行为主体有一定的统计分析能力和对不同策略收益的事后判断能力, 收益较差的行为人迟早会发现这种差异,并开始学习模仿另一类行为人, 因此行为人的比例是随时间而变化的,是时间的函数。上述比例随时间变化的速度取决于行为主体的学习模仿速度。学习模仿速度取决于两个因素: 一是模仿对象数量的大小(可用相应类型的行为人的比例表示),因为这关系到观察和模仿的难易程度;二是模仿对象的成功程度(可用模仿对象的策略收益超过平均收益的幅度表示),因为这关系到判断差异的难易程度和对模仿激励的大小。于是,有以下连续时间的动态模型:

这是一个模仿者复制动态方程,在本模型中,有如下的定理:

定理(Fudenberrg,1998)模仿者动态的一个稳定稳态是一个纳什均衡,更一般地说,具有源于内部路径限制的任何稳态都是纳什均衡。反之, 如果对于一个非纳什均衡,存在一个σ>0,所有内部路径最终将从该稳态的σ邻域内被清除。

(二)模型构建

假设与前提条件。

1.博弈方:假设该博弈方都是有限理性,且划分为两类,即同事群体1和同事群体2。分析的框架是反复在两个群体中各随机抽取一个成员配对进行博弈。博弈方的学习和策略模仿局限在他们所在的群体内部。这样我们就可以分别对两类群体进行复制动态和进化稳定策略分析。

2.行为策略。博弈方都有两种行为方式:共享;不共享。如果他们的知识都不愿共享,相互封锁,那么个人的知识就会出现低水平重复,使他们各自获得的利益不多,假设为0收益;如果有一个企业成员打破常规,进行知识共享,那么他就获得m(0.5<m<1)发展机会,但共享者是有学习成本z的;如果他们的知识都实行共享,就会获得更多的发展机会p(m<p<1),此时各有学习成本z。

3.行为策略的采取比例。博弈方中可能采取“共享”与“不共享”的比例分别为x、1-x。

4.得益矩阵。用w表示参与人的收益。随机博弈中双方的得益矩阵如图1所示。

企业知识共享行为的博弈分析

由得益矩阵可知,该博弈的纳什均衡取决于其中P、m、z的具体水平或者说相对水平。根据上述假设,按照博弈的一般公式:

博弈方1中,“共享”类型参与人的收益为:

根据进化稳定策略的性质, 一个稳定态必须对微小扰动具有稳健性才能称为进化稳定策略。也就是说,作为进化稳定策略的点x*,除了本身必须是均衡状态外,还必须具有这样的性质,即如果某些博弈方由于偶然的错误偏离了它们,复制动态还会使x恢复到x*。在数学上,相当于要求当干扰使x出现低于x*时,必须大于0,当干扰使x出现高于x*时, 必须小于0。这就是微分方程的“稳定性定理”。

当0<(m-x)/(1-P)<1时,上述进化过程复制动态的三个稳定状态都是合理的,因为都处于0≤x≤1的有效范围。这时候复制动态方程的相位如图2所示。

由图2可以看出,x*=(m-z)/(1-P)是进化稳定策略。这意味着一旦企业内少数成员开始共享,那么随着获得利益的机会增多,就有更多的成员进行仿效,开始共享,直到组织中成员共享的数量比重为x*=(m-z)/(1-P)。如果超出这个比重,甚至所有的成员都进行共享,那么就会出现有些成员不愿贡献自己的知识让他人共享,反而利用其他成员创造环境氛围,从中牟利,出现“搭便车”的现象,最终仍然回到了x*=(m-z)/(1-P)的均衡比例。

随着支付矩阵的不同取值,x*可能与其它的两全解相等或者不存在第三个解,博弈退化为只有两个稳定态。

当(m-z)/(1-P)<0,也就是m由图3不难看出,这时候复制动态的唯一稳定的均衡点为x*=0,也就是说企业所有的成员都是不愿共享的。只要不是一开始所有成员都是共享型的极端情况,最终都会在长期的动态变化中趋于不共享。即使是所有成员都共享,只要在组织内部有不共享的人出现,就会破坏共享学习的氛围,破坏整个企业的现状,企业去管理就会增加成本,这样企业反而不去管,最终会趋向所有成员都不愿共享的均衡。

当(m-z)/(1-P)>1,也就是m-z>1-P的情况。此时,复制动态的三个不动点中也只有x*=0和x*=1两点符合要求。复制动态方程的相位如图4所示。

由图4可以看出,现在的进化稳定策略是x*=1,也就是所有的成员都共享,整个企业组织就是学习共享型的。在社会环境和成员的素质都很好以及从学习中获得的收益远远大于成本代价时,这样的条件下是合理的。

通过对以上三种情况的分析,我们可以知道,企业知识共享机制是个长期的问题,无法以短期来解决。企业中的成员不是每个都是知识共享型的,而是存在着“搭便车”的现象,在有限理性的条件下,不是所有的企业都是知识共享型的,不是所有的企业都能做到长期性的知识共享。这也可以解释我国有很多的企业在实施知识管理,但真正取得好的结果的却并不多。

企业知识共享的行为演化机制

通过进化博弈的参数分析,可以看出企业知识共享机制的进化博弈包括如下几种可能的行为演化机制。

企业知识共享机制的选择机制,即在博弈中能够获得较高收益的策略,在以后演化过程中被更多的参与者选择。通过进化博弈的得益矩阵分析,使企业知识共享机制容易实现较高效率进化策略均衡。只要调整好P、m和z的大小,就可以保证较高效率的企业知识共享机制顺利进行。具体来说是要求用更低的成本z,创造更多的发展机会P和m,企业就会促使更多的工作人员去实施知识共享。为此企业需要加大内部不共享行为的机会成本,务必对企业内部成员的知识自私行为进行惩罚和压制,以提高这种变异的门槛,使这种不愿知识共享的行为成为一种风险很大收益很小的活动,从而压缩不实现知识共享者的生存空间,避免企业内部的知识共享机制向不利的方向演进。

企业知识共享机制的放弃机制,即在博弈中获得较低收益的策略,在以后演化过程中被更多的参与者放弃。在进化博弈分析的第二种情况下,由于m企业知识共享机制的突变机制,即参与者以随机(无目的性)的方式选择策略,其中包括突变策略,参与者将选择获得较高收益的策略。通过进化博弈的得益矩阵分析,使p-z 变大或1-m 变小,促使(p-z)-(1-m)增大,保证企业较易地实现较高相互支持、相互协作、相互沟通,鼓励和促进企业内部的知识共享行为,褒扬部门、同事的团队精神,把知识共享变成一种自动机制,从而使企业内部采取知识共享行为者获得较高的收益,这样使企业内部采取少数不共享行为的人所占的比例越来越小,提高企业知识共享机制向理想方向进化的可能性和比例,从而促进企业知识共享机制向最理想的方向演进。

参考文献:

友情链接