发布时间:2023-09-28 10:31:42
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的13篇航空航天标准范例,将为您的写作提供有力的支持和灵感!
那么,航天专业有着怎样神秘的内涵?若想投身于航天事业,应该选择什么专业?在大学时代要做好哪些职业准备?航天专业毕业生的就业前景又如何呢?
专业设置特点
航天是个令人向往又神秘的职业。为了推出本期专题,记者在做了充分案头准备后进行了调查采访,现在,就让我们按照航天器的发射程序走进航天类专业。航天器升空的每一个步骤都涉及很多交叉学科与专业,本文中所列举的,是每一个步骤所对应的比较重要的专业之一,其中有些专业既涉及航空类,也涉及航天类。
小贴士:载人飞船升空分几步?
第一步,随着倒计时口令,点火升空。逃逸塔分离。
第二步,助推器分离。一、二级分离,一级坠落。
第三步,整流罩分离,船箭分离。5次变轨控制后,航天器进入预定椭圆轨道。
第四步,太阳能帆板打开。
第五步,航天员执行空间任务。
第六步,返回大气层。
航空和航天有着密不可分的联系,又有所区别。前者是研究近地面飞行环境及物体的,而后者是研究大气层外高空飞行环境及物体的。航空航天类专业主要研究飞行器的结构、性能和运动规律,培养把飞行器设计制造出来并送上太空的工程技术专业人才。无论是飞机还是航天飞行器,都是综合科学技术的结晶,因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机等都是航空航天技术不可或缺的学科基础。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。
中国有7所国防院校,11家央属国防企业集团。涉及航天领域的专业,排名前三位的高校分别是哈尔滨工业大学、西北工业大学和北京航空航天大学。其中尤属哈工大的航天专业实力强,毕业生中有很多已成为各领域的专家和骨干,如中国航天科技集团副总经理马兴瑞、中国空间技术研究院院长袁家军、海王集团总裁张思民等。
“关行器设计专业,一共包括三个方向:卫星、火箭和导弹。最开始觉得火箭和导弹都比较‘暴力’,所以高考填报志愿时,我选择了与航天工程紧密相连的卫星方向。”北京航空航天大学宇航学院大四的小和介绍说,北航宇航学院下设三个专业:飞行器设计与工程专业、探测制导与控制技术专业和飞行器动力工程专业。其中,飞行器设计与工程专业的学生主要学习飞行器设计方面的基本理论和基本知识,并受到航空航天飞行器工程方面的基本训练;探测制导与控制技术主要负责航天器送入太空后,对其进行制导和各种变轨姿态调整控制;而飞行器动力工程主要负责研制火箭发动机。据宇航学院的学生介绍,这三个专业中,飞行器设计与工程专业最热门,而选择探测与动力专业的人数则要少一些。
航天专业的学业与素质要求
航空航天类专业对学习者的要求是“厚基础、强能力、高素质、重创新”。学生要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力、以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。
如果你想学习航天专业,那么,除了一腔热情外,还需要做好哪些心理上的准备呢?
由于航天职业的特殊性,从事航天职业需要三种精神。
1. 刻苦学习精神
航天专业要求高、课程多、任务重,要成长为一个合格的航天人,除了工科的基础课程之外,还要学习诸如发动机设计、自动控制理论、数字电路等专业课程。
以北京航空航天大学飞行器动力工程专业为例,该专业一个本科生成长为博士生,仅力学就要学习20几门,学生们每天自习到11点已是习惯性作息。
同工科专业一样,航天工程对学生的实践能力要求也很强。学生除了修完课程、掌握理论,还要懂技术。因此,动手能力强、有组织协调能力的考生学这个专业很适合。
2. 吃苦奉献精神
“特别能吃苦、特别能战斗、特别能攻关、特别能奉献”被誉为“载人航天精神”。神舟成功发射,被大众熟悉的只有少数几个人,但是背后有数以万计的航天人在默默无闻地工作着。“飞行工作更多的是辛苦,而不是神秘。工作人员需要比较强的抗压能力,以及良好的心理素质。”一位在航天一院702研究所做航天测试测量技术与设备的工作人员告诉记者,他们的工作时间上朝九晚五,但是来了试验任务,就要加班加点不分昼夜地把它完成。具体到个人的职业,航天火箭与飞船的设计制造需要反复测试某些零部件、程序的稳定性及安全性,比如像飞机上的“黑匣子”之类的东西,以保证飞行器、导弹等执行任务时万无一失,并获得飞行中或执行任务时所需要测量的参数。
此外,航天工作人员会经常去酒泉、西昌的靶场执行任务,而靶场是炮弹爆炸或飞船起飞、卫星发射的地方。
3. 团队协作精神
航天系统内部分工精细,一个课题需要众多研究者协作完成,团队协作精神在航天领域体现得更为充分。航天系统内部分工精细,一个课题需要众多研究者协作完成,有的时候自己的成果仅为别人做嫁衣裳而已,因此,在航天领域里少不了团队协作精神,一个人只能完成更多的任务,但是绝对不可能包揽所有的工作。正如一位在航天一院工作的孟先生所说:“航天是一项既神秘又平凡的事业,航天事业是一个巨大的系统工程,需要许多行业、许多不同专业的工程技术人员及科研管理人员共同协作,需要每个人都具有协作意识、吃苦耐劳精神以及奉献精神,安于自己平凡的岗位,做一个螺丝钉,不要太计较个人得失。”
需求趋势与就业前景
近几年,随着神舟飞船的频繁发射,航天专业进一步升温。有媒体报道,最被看好的12类专业中,航空航天专业名列其中。
据哈工大招生就业处负责人介绍,该校航天专业的学生在入学时成绩在全校是数一数二的,录取分数在全校最高,集中了校内的“尖子生”;在就业方面去向也非常好,主要给中国航天科技集团公司和航天科工集团公司输送航天人才。学生毕业时国内的航天科研院所都抢着要。
复旦大学力学与工程科学系博士生导师唐国安教授预测,我国飞行器可供开发的空间很大。载人火箭发射成功,意味着我国准备开始对外空间进行和平开发,航空航天科技工业极具发展前景,对人才的需求会持续旺盛。北京航空航天大学宇航学院党总支书记孟庆春介绍说,我国飞行器可供开发的空间很大,许多应该用到飞行器的民用领域目前还未开发利用,在私人使用上也几乎是空白,因此,飞行器设计与工程专业的人才会是我国将来急需的人才。
航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理、航空航天飞机总体设计与研发、发动机研发与制造、零部件研发与设计、航空航天新材料研发等方向,其中航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。
“我想以后在航天五院好好发展,做一名总体设计师。”学飞行器设计与工程专业的小和2012年6月份从北京航空航天大学毕业,去了航天五院深造,完成了他儿时作为一名航天工作者的梦想。
据小和介绍,宇航学院的本科生毕业之后也能找到工作,比如他们班当年就有人去了航天火工、东航、西安飞机强度研究所、北京现代、东风日产、陕西鼓风机等企业。也有很多本科生选择继续深造,读研或读博,并且几乎都去了十大航天院所,如航天一院、二院、三院、五院和八院、沈飞、成飞、西飞等等。“飞行器设计专业是国家自建国以来持续扶植的产业。我国的火箭技术相比于美国俄罗斯还比较落后,为了日后的载人登月计划,必须研制出更强大的火箭。我很看好本专业的就业前景。”
未来十年是我国航空航天事业发展的重大战略机遇期,需要更多更好的人才。为了加强对航空工程骨干专业技术人才的引进和培养,建立高水平、高素质的航空专业技术队伍,航空工业第一、二集团公司在北京航空航天大学、南京航空航天大学、西北工业大学等院校设立了航空奖学金,金额每人每学年7000~11000元不等,以支持立志投身祖国航空事业的学子顺利完成学业,这对于家庭经济比较困难的同学无疑是很好的选择。
同时,除了飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程等专业外,航空航天事业还涉及信息、能源、制造等技术的综合专业。随着我国国民经济的发展和综合国力的提高,航空航天高科技领域的成果已不仅仅应用于航天飞船上,也在逐渐向电子、机械、汽车等领域渗透。也就是说,学习航空航天类专业的同学一样能在其他领域大展才华。
报考注意事项
航天人才≠杨立伟
高校航天专业的培养目标都是航天工程领域的技术与管理人才,而非培养宇航员。形象地说,航天专业出来的人才可以当戚发轫这样的总设计师或袁家军这样的总指挥。要是想当杨立伟一样飞上太空的宇航员,现阶段在我国只能报考飞行员。
身体条件要求
近年来,我国航空航天企业信息化建设取得显著成效,已经广泛应用在产品设计、制造、管理的各个环节,诸如CAD,CAPP,CAM,CAE,PDM,PLM和ERP等单项技术与系统的应用比较普及,产品研制周期明显缩短,设计制造质量显著提高。
1 航空航天行业的信息化建设内容与作用
航空航天行业方面信息化建设主要包括企业总体的信息管理、研制与制造的协同及产品研制能力的提升3部分。
1.1 企业总体的信息管理
企业资源计划(Enterprise Resource Planning,ERP)系统,是指建立在信息技术基础上,以系统化的管理思想为企业决策层及员工提供决策运行手段的管理平台。在航空航天企业中,由于需要涉及整体调动和资源整合很多,ERP作为对企业资源进行有效共享和利用的系统,可以使航空航天行业达到整体的资源规划统一。
1.2 研制与制造的协同
在航空航天行业,信息化主要为科研生产服务。该行业的重大工程是1个多学科综合、多专业集成、多个子系统集成和多单位跨地域协同的庞大系统工程;其复杂性、研制周期以及研制过程中各种因素的不确定性,需要采取信息化手段进行约束;其设计与制造中涉及大量的信息系统,并且需要在严格的流程管理控制下实现这些信息系统之间的交互和协作,以支持并行的协同设计和制造。设计研制过程中会涉及到成百上千个子系统、多种BOM表和多种变更管理。航空航天产品研制生产数据分散存放在各承担单位,大多数分系统和单机的研制生产数据没有实现集中存放和统一管理,上下游间难以保证数据的一致性和数据的有效重用。同时,近年来航天企业的研制与生产并重,设计与制造间的协同需求也很迫切。如此众多的系统、流程以及异构的数据协同实现集成需要1个统一的管理平台和集成环境。
航空航天行业又与其他行业不同,对质量管理、产品可靠性的要求非常严格,每个零部件要能追溯生产制造源头。
PDM主要针对的是产品数据管理。它以软件技术为基础,以产品为核心,实现对产品相关的数值处理过程、资源一体化的集成管理技术。PLM则指产品生命周期管理,作为全局信息的集成框架,可有效实现资源集成和协同研发生产及精益化管理。所谓集成框架,即在异构分布式计算机环境中能使企业内各类应用实现信息集成、功能集成和过程集成的软件系统。PDM和PLM可为航空航天产品的研制和制造创造协同工作环境。基于信息化协同工作环境,设计人员可以跨越空间的限制,利用计算机通信网络等技术实现资源共享,完成异地协同设计与协同制造。
重点需要实现下列两个方面的集成:(1)PDM,PLM与CAD/CAPP/CAM的集成;(2)PDM,PLM与ERP的集成。ERP与PDM,PLM的互通,可以最大限度地共享企业全部信息系统。将PDM和PLM技术引入航空航天企业的研制和生产过程中,对改进现有技术和管理流程有非常重大的意义,能在一定程度上解决航空航天企业在研制过程中信息与流程的集成与管理及协同。
1.3 实现航空航天产品的三维全数字化定义设计与制造集成,提升产品研制能力
CAD,CAPP,CAM及CAE主要针对航空航天产品的研发及制造过程的信息化,在产品设计和制造加工的集成上提升产品的研制能力。从技术角度看,航空航天产品的研制过程涵盖现代科技的诸多领域,如机械、材料、电子、力学、声学、热学和能源等;多学科多性能的要求致使各种CAE之间需要协同,而在CAE仿真后进行的优化也需要CAD与CAE之间实现协同。
在航空航天产品的研制技术方面(CAD和CAE),通过数字样机的建立,可以实现部件或整机的虚拟装配运动机构仿真、装配干涉检查、空间分析管路设计、气动分析和强度分析等。总体而言,在航空航天产品研制中全面采用信息化技术,可实现三维数字化定义、三维数字化预装配和并行工程,建立产品的数字样机,取消全尺寸实物样机,使工程设计水平和产品研制效率得到极大提高,大幅度降低干涉、配合安装等问题带来的设计更改。
CAPP与CAM则指航空航天产品的制造协同。CAPP包括工装设计系统建立和工艺系统,在工装分类和典型化基础上,建立各自的工装设计资源库;开发基于工装族和有工艺知识支持的专用辅助工装设计系统,加强工装标准化、组件化和系列化工作,显著提高工装设计效率;实现产品模型在工装设计过程中的信息共享,提高工装设计与产品设计的协同程度;进行基于三维模型的计算机柔性化组合夹具工装研究,使工装快速组合装配,满足型号不同研制阶段和状态的快速工艺准备需求。工艺方面,针对产品制造过程中的铸造、数控加工、钣金成型、焊接等关键工艺过程,利用CAE进行计算机模拟的研究与应用,实现工艺方案的评估及优化;最终实现工艺流程的优化。CAM方面,运用CAD进行制造过程的前期设计,利用CAE进行计算机模拟,实现CAM方式与过程的优化。
总之,设计人员通过CAD完成设计,由专门仿真人员利用CAE完成设计多性能之间的协同仿真优化,通过CAD得到最终设计;而后通过CAD,CAE与CAPP,CAM的协同完成航空航天产品制造的过程。同时,运用两者之间的沟通,通过对航空航天产品的整体信息化建设,建立起CAD设计知识库、CAE仿真知识库、CAPP和CAM的制造工装知识库,使其成为航空航天企业在研发、制造方面的宝贵经验财富。
2 航空航天行业的信息化建设目标
通过上述几个部分的交互运用和协同,可以实现航空航天行业的管理、资源、设计、制造的全方位信息化工程,最终达到以下目标:
(1)实现信息的共享和传递速度,加强各地各部门之间的沟通与交流,提高工作效率;
(2)确保整体信息流的畅通,如产品各方面性能的仿真协同、设计协同等,有效开展工艺与设计的网上协同工作;
(3)提高总体设计能力,建立航空航天行业的设计知识库、仿真知识库和制造知识库等;
(4)提高制造过程信息化应用水平,建立工艺管理平台。实现制造过程计算机化,工艺流程管理及工艺信息与其他信息系统的集成,优化工艺和制造过程;
(5)建立产品设计、制造协同平台;
关键词:航空航天零部件;无氰镀镉;镀层结构;高耐腐蚀性
引言
传统的氰化镀镉溶液性能稳定,镀层质量优良,因此,航空航天、航海以及一些特殊电子零部件采用氰化镀镉工艺制备防护层。氰化物是国家严令禁止使用的污染物之一,用无氰镀镉代替氰化镀镉已成为业内进行研究的热点课题。按照国家发展改革委员会《产业结构调整目录(2011年修改版)》的要求和贵州省经济和信息化委员会《关于淘汰部分含有毒有害氰化物电镀工艺专题会议纪要》(黔经信专议[2013]67号)工作部署,贵州省内电镀企业在2016年底前淘汰氰化物镀锌和氰化物镀镉有毒有害生产工艺。应贵州省装备制造业协会表面工程分会的要求,广州超邦化工有限公司开发了NCC-617无氰酸性镀镉工艺,提供了一种用于航空航天零部件的高耐腐蚀性镀镉层。NCC-617镀镉电镀废水用二甲基二硫代氨基甲酸钠沉淀处理后,镉离子的质量浓度小于0.01mg/L,满足GB21900-2008《电镀污染物排放标准》要求。
1镀镉工艺
无氰镀镉溶液成分及操作条件。
2制备流程
2.1钢铁基体镀镉钢铁基体镀镉具体操作如下:
1)前处理。对钢铁零部件进行碱性化学除油水洗碱性阳极电解除油水洗酸洗水洗阴极电解除油水洗活化水洗的工序。
2)镀镉。采用NCC-617无氰镀镉工艺制备镀镉层,其δ为6~20μm,按GB/T13346-1992标准在200℃对镀件进行除氢处理20h。
3)钝化。镀镉层经2%~3%的硝酸出光水洗铬酸盐低铬彩色钝化水洗干燥60℃老化15min,钝化层δ为0.3~0.5μm。
2.2铝合金基体镀镉铝合金基体镀镉具体操作如下:
1)前处理。对铝合金零部件进行化学除油水洗浸蚀水洗出光水洗的工序。
2)浸锌。第一次浸锌水洗退锌水洗第二次浸锌水洗。
3)化学预镀镍。在浸锌层上采用专用的碱性化学镀镍溶液制备化学预镀镍层。
4)镀镍。在化学预镀镍层上采用瓦特镀镍溶液制备镀镍层,其δ为5~10μm。
5)镀镉。在电镀镍上采用NCC-617无氰镀镉工艺制备镀镉层,其δ为6~20μm;然后200℃对镀件进行除氢处理20h。
6)钝化。镀镉层经1%~3%的硝酸出光水洗铬酸盐低铬彩色钝化水洗干燥60℃老化15min,钝化层δ为0.3~0.5μm。
3镀层性能
3.1耐腐蚀性
钢铁件按上述工艺制备的镀镉层,按照GB/T10125-1997《人造气氛腐蚀试验盐雾试验》进行中性盐雾试验。试验结果表明,采用NCC-617无氰镀镉工艺制备的镀镉层耐腐蚀性能明显高于氰化镀镉工艺,测试2064h镀件表面无白色腐蚀物生成,耐腐蚀性比航天工业部标准QJ453-1988《镀镉层技术条件》中96h中性盐雾试验的要求高21倍。
3.2柔软性
用弯曲法定性检验镀层的脆性,采用δ为0.2mm的黄铜片按NCC-617工艺镀镉,镀层δ为23.7μm,将试片弯曲180°,镀镉层无爆裂,镀层柔软性较好。
3.3结合力
按JB2111-1977《金属覆盖层的结合强度试验方法》,以热震试验法测定镀层结合力。将镀件放在烘箱中加热至190℃,然后取出放入室温水中骤然冷却,镀层没有起泡和脱落,结合力良好。
4结语
NCC-617无氰酸性镀镉工艺是为满足航空航天企业的要求而开发的,使用的添加剂与配位剂,克服了含EDTA无氰酸性镀镉工艺存在的镀层性能差和废水处理困难的缺点。在贵州省航空航天企业的应用表明,NCC-617无氰镀镉层耐蚀性、柔软性及结合力等性能均满足航空航天工业部标准的要求,并且废水处理能够达标排放,尤其是镀层的耐腐蚀性取得了较大的突破,能大幅度提高航空航天零部件的使用寿命,受到了航空航天企业的青睐。
参考文献
[1]万冰华,杨军,王福新,等.无氰镀镉工艺开发研究与应用[J].电镀与精饰,2014,36(3):22-25+46.
[2]李博.无氰镀镉替代氰化镀镉工艺研究[J].电镀与精饰,2016,38(4):32-35.
中图分类号:F74文献标识码:A文章编号:1672-3198(2008)12-0021-04
1 引言
我国航空航天器制造业从建国以来从无到有、从小到大,以惊人的速度不断发展。航空航天器制造业长久以来被誉为制造业之花,是因为其的技术含量远远高于一般机械制造技术,因此其技术状况成为衡量一个国家科技综合水平的一个重要标志。随着神五神六神七的成功,我国的航空制造业取得了很大的成就。是我国综合实力的标志性成果。2002年中国正式实施的《国民经济行业分类》国际标准,把航空航天器制造业分为飞机制造及修理、航天器制造和其他飞行器制造三部分。根据我国颁布的《高技术产业统计分类目录》,航空航天器制造业也是高技术产业的重要组成部分。此外航空航天器制造业更是关系国家安全 、国民经济发展的战略性产业。不仅在军用方面不可替代的地位,在商用和民用方面也是提高生活的科技水平的重要战略产业之一。因此,提高我国航空航天器制造业的国际竞争力,有着及其重要的意义。
2 我国航空航天器制造业国际竞争力的评价体系
2.1 出口竞争力
关于产业国际竞争力,我国学者金碚认为,产业国际竞争力的实质可以这样定义:在国际间自由贸易的条件下,一国特定产业相对于他国的更高生产率,向国际市场提供符合消费者或购买者需求的更多产品 ,并持续地获得盈利的能力。
(1)贸易竞争指数
贸易竞争指数是指某一产业或产品的净出口与其进出口总额之比。用公式表示:
TSC=(Ei-Ii)/(Ei+Ii)(1)
其中Ei为产品I的出口总额;Ii为产品I的进口总额。贸易竞争指数表明一个国家的I类产品是净进口国,还是净出口国,以及净进口或净出口的相对规模。贸易竞争指数为正,表明该国I产品的生产效率高于国际水平,对于世界市场来说,该国是I类产品的净供应国,具有较强的出口竞争力;贸易竞争指数为负则表明该国I类产品的生产效率低于国际水平,出口竞争力较弱;如果指数为零,则说明该国I类产品的生产效率与国际水平相当,其进出口纯属与国际间进行品种交换。
(2)显示性比较优势指数
巴拉萨(Balassa,1965,1989)提出的“显示性比较优势(revealed comparative advantage, RCA)”指数,认为,国家在I产业或产品贸易上的比较优势,可以用I产业或产品在该国出口中所占的份额与世界贸易中该产品出口占总出口的份额之比来显示出来,即:
RCAia=(xia/Yit)/(Xwa/Ywt)(2)
式中,Xia是国家A在产品I上的出口,Yit是国家A在T时期的总出口,Xwa是产品I在世界市场上的总出口,Ywt是世界市场上在T时期的总出口。这一指标反映了一个国家某一产品与世界平均出口水平比较来看的相对优势,自20世纪80年代开始进行国际竞争力的比较以来被广泛采用。一般而言,若RCAia1,则处于比较优势,取值越大比较优势就越大。
如果一个国家或地区的某类产品对这些工业发达国家或地区的出口具有优势或市场占有率高,则说明该国的这类产品确实具有很强的国际竞争力。这时,RCA指数可用公式表示为:
RCAkij=(Xkij/Xkij)/(Ykij/Ykij)(3)
式中,RCAkij表示在产品I上K国对J国的显示性比较优势指数,xkij表示在产品I上J国对K国的进口额,∑Xkij表示J国对K国的进口总额,∑Ykij表示J国在K产品上的进口总额,∑∑Ykij表示J国所有产品进口总额。
一般而言,RCA>2.5表示该类产品具有极强的出口竞争力;1.25
2.2 市场占有率
(1)国际市场占有率的定义为:
A国I产品的国际市场占有率=A国I产品出口额/世界I产品出口总额。(4)
该指标反映的是一个国家或地区出口的产品在国际市场上占有的份额或程度。一个产业的国际竞争力的大小,最终将表现在该产业的产品在国际市场上的占有率。在自由、良好的市场条件下,本国市场和国际市场一样,都是对各国开放的。一种产品在国际市场上的占有率,就可以反映出该产品所处产业的国际竞争力的大小。国际市场占有率越高,该产品所处产业国际竞争力就越强;国际市场 占有率越低,就说明该产品所处产业国际竞争力越弱。
(2)国内市场占有率:
Qi=(Si-Ei)/(Si-Ei+Ii)(5)
式中,Qi表示产品I的国内市场占有率,Si表示全国产品I的销售收入,Ei表示全国产品I的出口总额,Ii表示全国产品I的进口总额。
2.3 质量与附加值
(1)进出口价格比
同类产品出口价格与进口价格比较,可以间接地反映出一国产品的质量(附加价值)的差别。用公式表示如下:
价格比=出口商品单位价格/进口商品单位价格(6)
同类产品出口价格与进口价格比较,可以间接地反映出同类产品中出口品与进口品的质量或附加价值的差别。通过价格比这个指数,可以在一定程度上对我国出口商品的质量与国外商品的质量进行比较对本国而言,一种产品的进出口价格比越高。说明出口品的质量和附加价值高于进口品的质量和附加价值,那么该产品所处的产业国际竞争力就越强;反之则弱。
2.4 劳动生产率
市场竞争的实质主要不是数量的对比,而是效率的较量。劳动生产率是反映产业效益的重要指标,是衡量一个国家经济竞争力的关键尺度之一。我国是一个劳动力资源丰裕的国家,劳动生产率的提高对产业的发展,乃至经济增长极为重要。并且,劳动生产率不只是一个经济问题,而是很大程度上反映了一个民族素质的高低。因此,有必要对我国的航空航天器制造业的劳动生产率进行实证分析和国际比较。
全员劳动生产率的定义为:
A国i产业劳动生产率(元/人)=A国i产业增加值A国i产业从业人员平均人数
该指标反映的是劳动者的生产效率。它作为衡量产业国际竞争力的指标,研究的是产业技术进步与劳动生产率提高的关系。往往是产业技术进步越快,其产业劳动生产率越高,竞争力越强。为直观起见,我们用全员劳动生产率即各劳动者在一年内生产出来的产品价值总额来反映产业的竞争力大小。其值越高产业的竞争力越强;反之则弱。
3 中国航空航天器制造业 国际竞争力的实证分析
3.1 产品选择及数据来源
本文根据海关理事会(CCC)制定的《商品名称和编码协调制度》六位分类法“HS2002”的分类,采用联合国统计署历年的《国际贸易统计年鉴定》(Yearbook of international trade statistics(各类产品海关数据的详细汇总,由各国海关提供数据)。主要计算了下列所示主要航空制造业产品:
88011000滑翔机及悬挂滑翔机
88019000汽球、飞艇及其他无动力航空器
88021100空载重量不超过2吨的直升机
880212102吨<空载重量≤7吨的直升机
88021220空载重量>7吨的直升机
88022000小型飞机及其他航空器
88023000中型飞机及其他航空器
880240101025吨≤空载重量<45吨客运飞机
8802401090其他大型飞机及其他航空器
88024020特大型飞机及其他航空器
88026000航天器(包括卫星)及其运载工具
88031000飞机用推进器、水平旋翼及零件
88032000飞机用起落架及其零件
88033000飞机及直升机用其他零件
88039000其他未列名的航空器、航天器零件
88051000航空器的发射装置及其零件等
88052100空战模拟器及其零件
88052900其他地面飞行训练器及其零件
84071010输出功率≤298KW航空器内燃引擎
84071020输出功率>298KW航空器内燃引擎
84091000航空器发动机用零件
对于劳动生产率及利润指标两类数据的来源,本文采用了由中国统计局编制的《中国高技术产业统计年鉴--2004》及美国《财富(Furtune)杂志历年公布的全球企业500强的财务数据。
为了保持数据计算口径的统一,本文计算各指标的原始数据均来自于联合国统计属的comtrade.省略/网站。
3.2 出口竞争力
(1)贸易竞争力
从表5、6、7的比较优势指数来看,和发达国家相比我国航空制造业的优势很小,其中航空器发动机用零件类的产品表现最好,说明要赶超世界先进国家的水平,还有需要进一步的努力。
3.3 国际市场占有率
本文选用2000-2004年中国航空航天器制造业6位商品分类目录产品的国际市场占有率来进行中国航空航天器制造业国际竞争力的比较研究。
表8给出了2002-2006年我国航空制造业出口的6大类产品的国际市场占有率。从结果可以看出,从2002-2006年我国航空制造业在国际市场上的占有率非常低,国际市场占有率达到1%以上的产品只有航空器内燃引擎、航空器发动机用零件。从国际市场占有率的发展趋势上来看,我国航空航天器制造业的在浮动中都略有上升。
3.4 质量与附加值
为反映中国航空制造业产品相对于国外航空航天器制造业产品质量的国际竞争力,本文计算了02至06年航空制造业的进出口价格比
计算结果表示,这6大类产品中,没有产品的进出口价格比大于l。说明我国制造的这些产品的质量和附加值低于国际一般水平。尤其是无动力飞行器的进出口价格比都非常低,有的甚至接近于零。
从我国航空航天器制造业产品进出口价格比的发展趋势来看,零部件变化不大,航空发射装置及甲板停机装置及类似装置及零件06年显著下降,航空器发动机用零件逐年下降,其他的都在浮动中略有上升。说明我国的航空制造业产品的附加值普遍低于国际水平。
3.5 劳动生产率
本部分关于劳动生产率的数据表10表11为网上摘录特此声明
由于数据的可得性,表10中数据偏老,2003年我国高技术产业全员劳动生产率为航空航天器制造业全员劳动生产率的2.5倍,而我国航空航天器制造业全员劳动生产率只达到我国制造业全员劳动生产率的平均水平的60%,可见,我国航空航天器制造业的全员劳动生产率较低。从劳动生产效率的提高比率来看2000~2003年间,我国制造业全员劳动生产率从4.3万元/人提高到7.0万元/人,提高比率为162.8%,高技术产业全员劳动生产率从7.1万元/人提高到10.5万元/人,提高比率为147.9%,而我国航空制造业全员劳动生产率从2.3万元/人提高到4.2万元/人,提高比率为182.6%。可见我国航空航天器制造业劳动生产效率提高速度慢于高技术产业平均水平,也慢于制造业平均水平。
再看我国航空制造业劳动生产率与我国高技术产业劳动生产率平均水平的差距来看,2000年航空航天器制造业劳动生产率占高技术产业劳动生产率平均水平的32.4%,到了2003年,该比例下降到40%,上升了7.6个百分点。相对于我国制造业劳动生产率平均水平,2000年航空航天器制造业劳动生产率占制造业劳动生产率平均水平的53.5%,到了2003年,该比例下降到60%,上升了6.5个百分点。可见,我国航空制造业的生产效率在不断提升。
4 结语
本文通过对中国航空航天器制造业国际竞争力的比较分析,可以得出以下几点结论:
(1)在本文分析的21种6大类中国航空制造业产品中,没有一项产品的RCA指数大于1,说明我国航空制造业总体国际竞争力很弱,难以全面参与国际竞争。可见我国航空制造业虽然已经成绩卓著,但还有待进一步发展,尤其是先进科技向生产力的转化方面有待提高。这要求我们一方面努力研发的同时,积极参与国际竞争,提高科技转化能力和速度。
(2)从各项数据的表现可以看出,认识到不足的同时,可以肯定我国航空制造业正在逐步发展,某些产品已经初步具有了一定的国际竞争力。
(3)在产品层次方面,我国总体上技术层次还比较低、附加值也较低,这表明我国航空航天器制造业的科技竞争力与国际水平存在相当的差距,有待提高。这显然同样基于科技创新,更重要的是技术向生产力的转化。
(4)我国航空航天器制造业的劳动生产率与发达国家存在巨大差距,而且,我国航空航天器制造业劳动生产率的平均水平低于我国高技术产业平均水平及制造业平均水平。因此这从劳动效率的角度来看,我国航空航天器制造业的国际竞争力还很弱,需要进一步提高。
综上所述,虽然我国技术上的巨大进步已得到广泛的认可,但是还需提高的地方依然任务严峻,本文提出以下几个建议:
(1)改革现行中国航空航天事业政府管理体制,我国目前主要是政府主持投资的,这有利于资源的有效集中,而适度的引住竞争,也许更加有利于技术向生产力的转化,从而提高效率
(2)能够根据航空制造业总体发展状况,即使调整战略和相应的产业政策,支持航空制造业进行产业结构调整与优化,加快我国航空航天器制造业的高技术产业化进程,进一步是指形成具有显著经济效益的支柱产业。
(3)在国际竞争中,发挥我国的比较优势,进步是一个过程,而过程中积极参与国际竞争是必要的,在进步的同时,注意根据目前的实际情况,发挥比较优势,从而获得经济效益,将对我国航空制造业的发展起到极大的推动作用。
(4)金融方面的的支持。这不仅包括产业发展所必须的资本投入及资本配置效率的提高,还包括国际贸易中能有力提高竞争力的金融服务等,例如:在国际市场上购买飞机使用买方信贷或租赁经营已是惯例,为推动我国民机尽快批量进入市场,应该建立一个国内外用户都可以使用的买方信贷和租赁系统,这将对我国民机制造业发展发挥积极作用
(5)另外,我国航空制造业应该注意把握世界高技术发展趋势,努力在一些重要领域接近或达到国际先进水平,并能够不断发出具有自主知识产权的技术。
参考文献
[1]迈克尔•波特.竞争优势[M],华夏出版社,2002.
在价值链分析的基础上,霍尼韦尔航空航天集团梳理、精简自身业务流程并建立了GDM,定义了各个业务之间的衔接关系。其中,采购、生产、分销和订单管理等运营核心流程全部交由统一的ERP 系统实现。统一的ERP系统能够实现整个集团业务的可视化,比如供应商名单、全球库存、生产流程、分校流程、订单管理、维修管理、财务状况等,提升集团管理效率。更重要的是,统一的ERP系统能够实现集团信息存取共享,高效完成集团资源在全球的优化配置。野中郁次郎(Ikujiro Nonaka)指出,企业的竞争优势来源于企业自身的知识储备与知识分享。在霍尼韦尔航空航天集团当中,客户主数据、供应商主数据、物料主数据都属于公共主数据,在集团内部可以进行同步更新,员工可以实时了解自己所需的信息,优化决策与工作流程。
打破内部外部壁垒的流程
作为相关多元化的企业集团,霍尼韦尔航空航天集团必须在相关业务上实现协同效应,才能充分利用相关多元化的优势。基于统一的ERP系统,相关业务各自的流程变得清晰,流程中互补、互联的活动得以合并(比如新产品开发所需的全周期活动集中在PLM系统中);流程中相同的活动得到标准化(比如财务上实现会计科目的统一化),这便是所谓的“横向协同化和纵向集中化”。以流程为中心的管理方式能够打破企业内部不同部门间的壁垒,但更重要的是这种管理方式能够实现与上下游企业的流程对接,打破企业间的壁垒,实现真正意义上的“供应链管理”,而这一切都以集团的知识共享为基础。
姓
名:
性
别: 女
出生年月: 1986年11月
工作经验:
毕业年月: 2014年4月
最高学历: 硕士
毕业学院: 南京航空航天大学
所修专业: 化学
居 住 地: 江苏省
籍 贯: 山东省
求职概况 / 求职意向
职位类型: 全职
期望月薪: 面议
期望地点: 山东省 青岛市 ,北京市 ,江苏省 南京市
期望职位: 质量检验 管理培训生
意向概述: 材料化学专业出身,基础扎实,专业技能娴熟,想谋求一份质量管理类的工作。 多年学生干部经历,具有良好的沟通能力和团队协作精神,因此也想尝试做一名管理培训生
教育经历
2009年9月 - 2012年4月 南京航空航天大学 化学 硕士
工作经历/社会实践经历
2008年7月 - 2008年10月 中华平原化工有限公司 分析员
校内奖励
2008年10月 国家励志奖学金 德州学院
2009年1月 山东省优秀毕业生 德州学院
2010年4月 优秀学生党员 南京航空航天大学
2009年9月 优秀学生奖学金 南京航空航天大学
校内职务
2009年12月 - 2011年10月 院研究生会副主席 南京航空航天大学
2009年9月 - 2010年9月 班级党支部书记 南京航空航天大学
2006年4月 - 2009年4月 系学生会副主席、团支部书记 德州学院
2005年9月 - 2009年6月 班长 德州学院
自我评价
具有科研能力:系统完成了复合材料的制备、表征、机理、性能等一体化研究; 拥有写作能力:起草、编写过若干申请、省部级发展战略文件及报告,多项活动总结等; 具有沟通能力:多年学生干部、善于沟通合作,具有较强组织能力和团队协作精神; 熟悉国家标准:依据国家标准,开展过各类材料的性能检测、失效分析等技术; 为人诚恳踏实:敢于面对困难、勇于接受挑战,爱好旅游、羽毛球、登山等活动 。
联系方式
关键词:高技术产业;空间集聚;空间自相关;EG指数;Moran指数
一、 引言
本文主要围绕空间集聚程度以及空间溢出效应等方面来考察中国高技术产业集聚的行业特性以及造成这种行业特性的主要原因。具体地,采用EG指数测度空间集聚程度,以规避传统指标未充分考虑企业规模、技术溢出等因素的缺陷;采用Moran指数检验产业布局的空间自相关性,以弥补传统指标和EG指数难以体现产业集聚发生地点及其空间关联性的不足。
二、 中国高技术产业空间集聚的演变态势
1. 指标选取。
目前,用于测度产业空间集聚程度且发展较为成熟的指标为EG指数(Ellison & Glaeser,1997)。假设某一经济体被划分为m个区域,在这些区域内分布着行业i的n个企业,则行业i的EG指数(γi)为:
其中,xj为区域j所有行业的总产值(或总就业人数)占全国所有行业的总产值(或总就业人数)的比重,sij为行业i在区域j的总产值(或总就业人数)占该行业全国总产值(或总就业人数)的比重,zik为企业k的产值(或就业人数)占行业i的全国总产值(或总就业人数)的比重,Gi、Hi分别为行业i的空间基尼系数和赫芬达尔指数。此外,γi<0代表行业i的空间布局呈分散化趋势,γi>0代表行业i的空间布局呈集聚化趋势。Ellison和Glaeser(1997)还指出,若γi<0.02,行业i为低度集聚;若0.02≤γi<0.05,行业i为中度集聚;若γi>0.05,行业i为高度集聚。参照此标准的建立方法,张明倩(2007)基于中国制造业数据进一步提出了适合于评价国内产业集聚程度的标准:若γi<0.026,行业i为低度集聚;若0.026≤γi<0.098,行业i为中度集聚;若γi>0.098,行业i为高度集聚。由于缺乏单个企业的详细数据,本文假设属于同一规模类型的企业具有相同的产值(或就业人数),调整后的赫芬达尔指数为:
其中,sil、sim和sis分别为大、中、小型企业的产值(或就业人数)占行业i的全国总产值(或总就业人数)的比重,nil、nim和nis分别为这三类企业的个数。按照《中国高技术产业统计年鉴》的界定,高技术产业包括医药制造业、航空航天器制造业、电子及通信设备制造业、电子计算机及办公设备制造业、医疗设备及仪器仪表制造业等五个行业。本文所涉及区域为31个省、自治区和直辖市,时间跨度为1997年~2010年。考虑到中国的就业数据会受国有企业劳动力过剩以及地区劳动生产率差异的干扰,本文在计算EG指数时采用产值数据。
2. 实证分析。
本文利用《中国高技术产业统计年鉴》的当年价总产值,得出分行业的EG指数(见表1)。
从表1看出,其一,五个高技术行业的历年EG指数均为正,说明它们的空间布局在1997年~2010年都呈现集聚化趋势。参考张明倩(2007)的标准,航空航天器制造业为高度集聚;医药制造业除了2005年的EG指数略高于0.098以外,在其它年份为中度集聚;医疗设备及仪器仪表制造业为中度集聚;电子计算机及办公设备制造业除了在1997年~1998年、2000年~2002年为中度集聚以外,在其它年份为低度集聚;电子及通信设备制造业为低度集聚。本文认为,市场进入壁垒通过影响企业的生产决策和区位选择,能够对产业布局的地理集中化程度产生影响,故市场进入壁垒高低是解释行业集聚程度差异的一个重要方面。航空航天器制造业具有高技术、高资金的特点,加之涉及国家安全,其市场准入门槛也较高,若不具有发展基础就很难进入这一领域。因此,一旦某一(些)区域依托初始优势成为带动该行业发展的增长极,这一(些)区域的初始优势就容易在体制、技术和资金等壁垒的影响下进入“自我加强”的累积循环,从而使行业长期处于“强集聚”状态。1997年~2010年,陕西、西南(四川、贵州)和东北(黑龙江、辽宁)始终占据中国国防工业体系重要地位,这些区域占全国总产值的平均比重为19.4%、17.5%和22.6%。相反,其它高技术行业的资金、技术、体制性壁垒相对较低,企业进入市场较为容易,从而使各行业呈现一定的“弱集聚”态势。其二,航空航天器制造业、医药制造业的EG指数呈现倒U型变化,电子及通信设备制造业的EG指数呈现U型变化,电子计算机及办公设备制造业、医疗设备及仪器仪表制造业的EG指数呈现不规则变化。本文发现,Gi在绝大多数情况下与γi同方向变化,对γi的变化贡献度为92.2%①。因此,γi的变化正反映了行业i空间布局非均衡性的变化。以航空航天器制造业为例,在1997年~2004年,东北(黑龙江、辽宁)、陕西、西南(四川、贵州)等重点区域的产值占全国总产值的比重分别由18.6%、17.0%、16.0%上升到23.7%、24.7%、20.2%,从而使γi由0.123 5逐年上升到0.248 8。进入2005年以后,航空航天器制造业的发展战略逐渐由“以军为主”向“军民结合”转变,飞机制造及修理行业的外资规模不断扩大,综合导致产业布局朝着更为多极化的方向演变,形成了“以东北(黑龙江、辽宁)、陕西、西南(四川、贵州)为第一层级,环渤海(北京、天津)、长三角(上海、江苏)、江西为第二层级”的格局,从而使γi由0.242 9下降到0.187 6。在此复合式格局中,第一层级的竞争优势主要体现在航空产品的研发和生产上,其中,陕西集聚了西飞、陕飞、西航等重点企业,西南集聚了成飞、成发和贵航等重点企业,东北则集聚了沈飞、哈飞等重点企业;在第二层级中,环渤海,特别是天津滨海新区在组装大型飞机业务方面具有优势,长三角,特别是上海在飞机维修业务方面具有优势,江西在生产直升机方面具有优势。由此看出,其EG指数在近几年有所下降不代表航空航天器制造业进入了过度集聚,进而引发空间分散化的阶段,而是反映了航空航天器制造业正在形成各具特色的地方专业化,进而有利于区域分工格局的合理演进。
三、 中国高技术产业空间布局的自相关性
1. 指标选取。
转包生产是指由对方企业发包(包,即工作包,包括需采购产品的品种、规格、数量、交货期等),必要时提供设备、技术和培训,由我方按对方企业图纸、技术规范等要求制造,最后由对方企业接受产品的生产模式。随着中国航空工业集团公司“两融、三新、五化、万亿”大集团战略的提出,为增强中国航空制造业的竞争优势,满足与国际接触、市场相融的需求,中国的航空转包业务不断扩大,为了适应顾客以及市场的需要,本文重点叙述了国外航空企业(以下简称国外航企)在质量管理上对转包生产的几点应用。
一、国外航空企业质量管理体系AS9100的介绍
1、AS9100产生的背景
AS即Aerospace(航空),AS9100的名称为《航空航天质量管理体系―要求》。AS9100是国际航天太空行业以ISO9001为基础,增加航空航天产品在安全、可靠度及质量上的特殊要求,而专门制定的质量管理体系。
航空航天质量体系标准AS9100产生于1997年,1999年正式公布,2001修改为SAE 9100:2000版标准,2004年将SAE 9100:2000作为AS9100B出版,2009年1月SAE正式颁布了AS9100C版标。是美国航空质量集团(AAQG)根据ISO9000基本要求开发的针对航空航天领域相关产业的AS9100国际质量体系标准,并获得国际航空航天质量协调组织 International Aerospace Quality Group (IAQG)的认可。在中国,国家国防科学技术工业委员会于2003年9月25号HB9100-2003,等同采用了AS9100标准要求,并于2003年12月1日开始实施。由于ISO9001:2008的,IAQG(国际航空航天质量协调组织)也对AS9100进行了调整,并于2009年1月了AS9100C版.
2、AS9100标准适用的企业
该标准适用于机场和航空公司的运作、飞行操作和货物处理,以及航空设备、零配件产业和飞机维修产业,为世界各地的组织使用供方建立运用要求,以改进质量和安全,降低成本,是国际航空航天的供方市场准入的先决条件之一。波音(Boeing)、空客(Airbus)、通用航空(GEAE)、联合技术公司(UTC)等公司均要求将该要求作为对其供应商的必须要求。从行来来分:可以是五金加工企业、电子零件制造商、塑胶加工企业、化工制造企业,只要为航空航天器提供零件制造的任何企业。
3、AS9100标准认证给企业带来的效益
(1)获得知名供应商名誉。认证后的企业,将在航空航天整个供应链中得到广泛公认,将获得更多的航空航天商机。
(2)提升商业竞争力。尤其是在明确要求认证作业采购供应先决条件的商业场合,通过AS9100成为企业进入航空航天领域的首准入证。
(3)树立商业信用。按照全球认可的行业标准进行独立的第三方验证,提升企业信用度及客户满意度。
(4)增进顾客满意。向客户持续提供始终满足的产品或服务。
(5)降低运营成本。标准采用过程管理的思路,重视过程控制,减少发生质量问题的可能性,在持续改进的基础上大幅提高组织的运营效率,进而降低运营成本。
(6)提高风险管理能力。标准要求企业进行关联的风险评价,增强产品的一致性或可追溯性,最大限度降低企业风险。
(7)符合法律法规。AS9100标准关注并要求企业严格遵守国际、国家及行业的法律法规,这必将提升企业法律法规的意识,并将法律法规的要求贯彻在企业的实际运营中。
二、国外航空企业在质量管理上对转包生产的要求
1.首件检验
(1)首件检验的定义
首件检验是指对试生产的一件(或首批中的几件)产品零部(组)件进行全面的过程和成品检查,以确定条件是否能保证生产出符合设计和订单要求的产品。是一个完整的、独立的并文件化的物理的和功能的检验过程,用以验证规定的生产方法可生产出工程图样、采购订单、工程规范和其他适用的设计文件锁规定的合格产品。
(2)首件检验所适用的范围
对于以下情况需要进行首件检验:
(a)首次投产及赚点生产的首件。
(b)影响零(组)件的配合、外形或功能的设计更改。
(c)可能潜在的影响配合、外形或功能的制造源、过程、检验方法、制造场所、工装或材料方面的更改。
(d)可能潜在的影响配合、外形或功能的制造货源、过程、检验方法、制造场所、工装或材料方面的更改。
(e)当发生自燃或人为的事件,造成了对生产流程的影响。
(f)产品生产间隔时间超过2年。
(g)顾客或技术规范有特殊要求时。
(3)首件检验的报告的构成
根据AS9102标准的要求,首件检验报告分为三个部分。第一部分是零(组)件编号明细表,如果该零件由多个单件组成,必须在第一部分中明确各单件的图号及其对应的首件报告编号。第二部分是原材料、特殊过程及其试验信息的表格,如果零件在加工中采用了特殊过程,必须在第二部分明确所有特殊过程的名称、对应的规范、顾客批准的情况及其各个过程的合格证信息等。第三部分是特性的检查、验证和符合性评价,设计图的每个特性应有唯一的特性编号,应验证每个特性并记录结果,包括验证的结果、验证的方法、验证的频率及其人员等。
2.授权供应商自主放行产品的资格
由于成本及其对供应商质量管理的需要,国外航企对供应商交付的产品不再进行入库检验,而是要求供应商建立一套供应商自主放行的体现,国外航企在对该体系进行审核后进行供应商自主放行进行授权,授权后对供应商交付的产品施行免检。如果供应商未取得自主放行资格,国外航企将会邀请第三方机构或客户自己对将要交付顾客的产品在供应商处进行产品的放行,而供应商将支付很大一笔放行零件的费用,因此供应商必须取得自主放行的资格。
供应商质量验收代表是由国外航企批准的在供应商处进行产品放行的供应商员工,供应商的质量验收代表除具有检验员的相关要求外,还要具有英语的读写说及理解能力。在国外航企进行供应商的质量验收代表授权前,必须参加相关的培训并通过考试。在供应商进行自主放行产品后,供应商的质量验收代表必须定期参加国外航企组织的再授权培训,以便供应商的质量验收代表能及时掌握其要求,通常是两年一次。供应商的质量验收代表在放行产品时,需对采购文件、图纸、技术要求、生产记录、特种工艺等与产品有关的要求进行验证。国外航企会对供应商的质量验收代表在履行职责后每年进行一次审核,以确认其工作的有效性和准确性。
3.特种工艺及其无损检测的批准
由于X射线探伤技术在航空航天领域起着巨大的作用,所以在工作过程中使用X射线探伤技术是不可避免的。为了最大限度地降低工作人员受到辐射,X射线探伤技术只能在探伤室内进行使用,探伤室将辐射与工作人员存在的环境相隔离,为工作人员的健康提供了保障。由此可见,探伤室的防护效果尤为重要,其主防护墙的屏蔽厚度、屋顶的屏蔽厚度、通风管道的屏蔽厚度的参数都需要经过准确地分析、计算来确定。
1工业X射线探伤技术的主要介绍
X射线探伤技术是一种无损探伤,是在保证工件或原材料状态的前提下,对其进行全面检查与测试,确保其质量、性能等方面符合预期的标准。除了X射线探伤技术以外,常见的无损探伤技术还有超声波探伤技术、渗透探伤技术等,由于X射线探伤技术的可靠性与准确性与其他技术手段相比都十分优秀,因此X射线探伤技术在航空航天领域中的应用比较常见,并且在航空航天中的各个环节中都发挥着巨大的作用。在航空航天产品的生产阶段,需要经历5个阶段,分别是原材料入场、原材料复验、毛坯生产阶段、精加工阶段、成品交付阶段,每一个阶段的正常运行都离不开X射线探伤技术的无损检测,在检测过程中,不合格的产品会被自动剔除,只留下优质的产品,也就是说,只有通过检测的航空航天产品的质量才有保障。航空发动机为航空提供了飞行动力,其使用环境处于高温、高压、高荷载状态下,如果航空发动机的质量不过关,会造成严重的安全隐患,飞机无法维持其正常飞行状态,对飞机上的工作人员、人民群众的生命财产安全带来巨大的威胁,由此可见,航空发动机作为飞行的必要工件,其无损检测非常必要。X射线探伤技术是在高温环境下,使用工业X射线探伤室中的X射线球管来发射X射线,从而对航空航天的工件或原材料的状态进行检测,如果在使用过程中屏蔽措施不合理,就会造成X射线泄漏的现象,众所周知,X射线对人体的伤害是非常大的,并且具有极强的穿透性与辐射性,普通的防护措施是无法降低其影响的,不仅会对人体造成巨大的辐射伤害,还会对资源环境产生反射性的污染。在使用X射线探伤技术进行工件或原材料状态检测的时候,X射线会穿透墙面、门窗对人体、环境造成透射、散射、漏射,也就是说,在对X射线进行防护的时候,也要从墙面、门窗这两个方面进行屏蔽。在进行X射线防护的时候要遵守3个基本原则:第一,要进行减少X射线的使用时间,从根本上断绝X射线泄漏的可能性。第二,增大与X射线接触的距离,虽然X射线的辐射能力非常强,但是也并不是没有弱点,还是有一定的范围限制,只要工作人员尽可能地拉开与X射线的距离,就能够大大降低受到辐射的严重程度。第三,要根据科学的技术手段进行X射线的屏蔽。
2工业X射线探伤室辐射的防护设计
2.1探伤室的规格与参数
探伤室是对工件或原材料的状态进行检测的场所,起到屏蔽X射线的效果,一般情况下,会分为探伤间、控制间、附属用房等。通过相关参数我们能够了解到,X射线呈环向照射,管电压为320kV,22.5mA的额定工作电流。由此我们能够分析出探伤室的规格与相关参数:管电压在15~320kV,管电流在0~22.5mA,具体的数据结果还要根据X射线探伤技术的使用情况来确定。
2.2屏蔽厚度计算
2.2.1主防护墙屏蔽厚度探伤室的墙体、门窗,都是屏蔽X射线的有效方式,因此,经过科学计算确定墙体厚度是非常重要的。确定主防护墙屏蔽厚度分两个步骤进行:首先,要能够熟练掌握主防护墙的屏蔽厚度计算公式;第二,要注意对最大允许透射量的计算,从而确定主防护墙的屏蔽厚度的最小值,其屏蔽厚度一定要高于最小值才能确保对X射线的屏蔽,为工作人员的生命安全提供保障。除了要注意X射线透射的屏蔽以外,还要注意X射线散射的屏蔽。散射贯穿于X射线探伤技术中的每一个环节,顾名思义,散射是X射线向四周发散,也就是说,除了要加强墙壁的屏蔽能力以外,还要注意探伤室顶棚的屏蔽厚度。2.2.2探伤室顶棚屏蔽厚度由于工作人员的主要工作环境都是围绕在探伤室的周围,在顶棚活动的情况不常见,所以在计算过程中各个参数的数值也发生了不同程度的变化。因此,应严格按照计算公式进行探伤室顶棚屏蔽厚度的计算,为工作人员的生命安全提供基本保障,加强对环境资源的保护。
3探伤室通风管道的防护设计
在探伤室内使用X射线探伤技术的时候,会发生一系列的化学反应,而这些化学反应或多或少都会产生一些对人体有害的化学产物,如果不将其及时排出,会对工作人员的健康造成极大伤害,同时也不利于落实我国保护环境的基本国策。在众多有害物质中,以臭氧(O3)、氮氧化合物为主,如果工作人员的工作环境中臭氧(O3)的含量达到了0.3mg/m3,就会对工作人员造成伤害,由此可见,为了防止有害气体的堆积,对探伤室的通风管道设计非常必要。通风管道的设计不可避免地要穿过探伤室的墙壁,如果不注意其施工过程中的穿孔位置,就会造成X射线泄漏的现象发生。在进行通风管道施工的时候,要尽量选择不受X射线影响,或者影响效果比较小的位置进行施工,为工作人员的健康提供保障。
4结语
综上分析可知,X射线探伤技术在航空航天领域中受到了广泛关注,能够对航空工件或原材料的状态进行检测,而X射线对人体与环境的伤害都比较大,因此在使用过程中要在探伤室内进行,合理设置探伤室的主防护墙的屏蔽厚度和顶棚的屏蔽厚度,对探伤室的通风管道进行科学处理,确保X射线的防护效果,在不会对航空工件或原材料的状态造成损伤的前提下进行检测,确保其力学性能符合实际标准。
参考文献
“嫦娥三号”相关技术,将对我国空间科技和航天产业具有直接而广泛的推动作用,包括运载技术、卫星技术、地面遥测系统和深空测控网等一系列基础建设。另外,据专家说,“嫦娥三号”技术的二次开发带来的作用,包括对航天器本身、航天技术本身的促进,以及对于人工技能、机器人、遥控作业、办公自动化、超音速飞行、光通讯、数据处理,超高强度、超高温材料,电能微波传送,无污染飞行器,空间生命研究等高科技产业都将发挥溢出效应。如:用于“嫦娥三号”月球车的一些关键技术将可望实现“民”,被应用于商业领域,推动国内机器人产业的发展。中国航天科技集团公司第八研究院承担了“嫦娥三号”月球车四个半分系统的研制,该院正计划将用于月球车的移动系统和机械臂等机器人技术向民用领域拓展,用于服务和工业机器人,实现“民”。
事实上,航天技术推广是需要一个过程的。如美国“阿波罗”计划实施后,过了约30年时间,大量航天军用技术才被普及。从目前国内政策看,政府正鼓励相关技术的“民”,在不远的将来这些技术肯定会向民用转化。
探月工程同时也是一项全社会广泛参与的高科技工程,在“嫦娥三号”任务各系统研制过程中,一大批民营配套单位积极参与、无私奉献、发挥自身优势,为“嫦娥三号”任务作出了重要贡献。如华力创通很早就进入军品领域,目前公司的仿真业务属于军工核心领域。该公司研制的半实物仿真系统HRT-1000应用于中国“神舟”系列飞船研制、国产先进战机“歼十”的研制和自主产权的支线客机ARJ-21的航电测试系统中。华力创通的案例仍是数量稀少的个案,大批非航空航天系统的企业仍被阻挡在行业门外。
对于民营企业参与军工建设来说,有机会也有壁垒。由于军工涉及到国家的安全,具有保密性,因此其竞争并非是完全市场化的。同时,国内非航空航天系统的企业并不了解我国航空航天等军工领域的运作模式,很多民企更是抱着“赚一把”就走的目的硬闯这个领域。因而,民营企业为了更好地服务军工领域,需要做足工课。
按照加大自主创新、发展高新技术、推进产业化、提升产业规模的要求,民营企业应当研究开发科技含量高、市场前景好的航天军民两用高新技术产品,参与航空航天等军民结合高新技术产业的发展,参与航空航天科研生产任务的竞争和项目合作。民营企业可承担航空航天分系统和配套产品研制生产任务,具体承担任务的范围按照国防科技工业主管部门的武器装备科研生产许可目录及有关管理办法执行。
为了进一步推动军民结合,有关部门需要加强内部各单位之间在技术链、产业链之间的协同与配合,促进资源整合与能力的形成,同时积极推动与有关大企业集团的战略合作。打破军工集团“自成体系、部门封闭、企业全能、产研分离”的状态,通过吸收更多优势资源向武器装备科研生产领域集聚,形成开放竞争的国防科技工业发展格局。大力发展军民两用技术,提高军民通用资源和重大设施的共享程度。
中图分类号:V257 文献标识码:A 文章编号:1674-098X(2016)10(c)-0004-02
与铝合金结构、钢结构材料等传统材料相比,先进性复合材料在综合性能上更具优势,其用量成为了代表着航空航天先进性的一个标志,占据着重要的地位。我国若要在竞争激烈的世界市场中站稳脚跟并且不断向前发展,就要对先进性复合材料这一被全球强国重视的核心技术进行深入研究与重点发展。
1 先进复合材料的基本定义
先进复合材料,简称ACM,即是在进行主承力结构与次承力结构等加工过程中,可以运用的刚度性能以及强度性能≥铝合金等传统材料的一种复合材料,不但在质量的轻度上占据优势,其比强度、比模量都更加高,还具有抗腐蚀、耐高温与低温、减震隔音及隔热的良好性能,并且具有较佳的延展性,如今被大量地推广应用在建筑行业、机械制造行业、医学行业以及航空航天行业等领域中[1]。
2 先M复合材料的特点
作为当今时代的主导材料,复合材料有着以下一些特点:首先是可设计性与各向异性,根据构件的使用要求与环境条件,可以在设计环节进行合理的组分材料选择、材料匹配,并且通过界面控制尽可能地满足预期要求,达到工程结构所需性能的标准要求。传统材料的运用上常见的材料冗余问题也可以很好地避免,实现材料结构的效能最大化。其次,复合材料的构件和材料一起形成,提高了结构的整体性能,无需过多的零部件,实现了加工周期的缩短与成本的减少。然后,复合材料在其复合效应下形成新性能,并不存在单一材料或几种材料简单混合的性能缺陷问题。
再者,复合材料能产生很多功能,比如吸波和透波、防热和导电、透析和阻燃等等一系列功能,在结合其他先进技术的基础上,形成一种新复合材料,比如纳米复合材料、生物复合材料和智能复合材料等。最后,需要注意的是,在复合材料的成形过程中,其组份材料会发生物理变化与化学变化,使得复合材料构件性能在很大程度上依赖其复合工艺,难以准确地对工艺参数进行适当的控制,以至于性能具有较大的分散性。
3 先进复合材料在航空航天领域的应用
3.1 先进复合材料在无人机领域的应用
现代战争理念的改变,使无人机倍受青睐。无人机除在情报、监视、侦察等信息化作战中的特殊作用外,还能在突防、核战、化学和生物武器战争中发挥有人军机无法替代的作用。无人机的发展方向是飞行更高、更远、更长,隐身性能更好,制造更加简便快捷,成本更低等,其中关键技术之一就是大量采用复合材料,超轻超大复合材料结构技术是提高其续航能力、生存能力、可靠性和有效载荷能力的关键。
3.2 先进复合材料在民航客机的应用
复合材料在民机结构上的应用近年来取得较大进展。复合材料的优点不仅仅是质轻,而且给设计带来创新,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸/透波等其他传统材料无法实现的优异功能特性,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,复合材料可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后差别更明显。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目和紧固件数目,从而减小结构质量,降低连接和装配成本,并有效降低总成本。
3.3 先进复合材料在航空器领域的应用
功能材料在航天领域的应用更为广泛,其中最重要的是返回式航天器的表面热防护功能材料。中国材料研究学会学者唐见茂研究指出,航天飞行器(导弹、火箭、飞船、航天飞机等)以高超声速往返大气层时,在气动加热下,其表面温度高达4 000 ℃~8 000 ℃;固体和液体火箭发动机工作时,燃烧室产生的高速气流冲刷喷管,烧蚀最苛刻的喉衬部位温度瞬间可超过3 000 ℃。
4 结语
通过以上的研究可以发现,随着航空航天技术的飞速发展,对材料的要求也越来越高。一个国家新材料的研制与应用水平在很大程度上体现了其国防和科研技术水平,因此许多国家都把新型材料的研制与应用放在科研工作的首要地位。新型航空航天器的先进性标志之一是结构的先进性,而先进复合材料是实现结构先进性的重要基础和先导技术。我国将成为世界上先进复合材料的最大用户,笔者认为,我国应该针对国外技术封锁与国内技术储备不足的国情,不断地自主创新,努力探索原材料、设计问题,运用理论、低成本技术以及政策支持等一系列的解决方法,不断提高航空航天器的结构先进性,不断加强对先进复合材料先导技术的研究与发展。
北京时间2016年3月2日12点25分,凯利与俄罗斯宇航员米哈伊尔・科尔尼延科(Mikhail Kornienko)在国际太空站执行任务340天后,乘坐俄罗斯“联盟号TMA-18M”飞船安全返回地面。 走近太空的4种方式
目前太空旅行有四种方式:轨道飞行、亚轨道飞行、高空飞行和抛物线飞行。其中,轨道飞行才算得上是真正的太空旅行,可搭乘太空飞船抵达外太空国际空间站,以国际空间站为飞行器进行地球轨道飞行,一般为期十天左右,费用大约2000万美元。现在只有美国和俄罗斯的太空飞船可以和国际空间站对接,而美国NASA的太空任务仅供科研之用,太空旅行以俄罗斯的飞船为主。
另外三种飞行模式虽然算不上标准意义的太空旅行,但价格比较容易接受,比如体验抛物线飞行只需5000美元。
■ 亚马逊CEO杰夫・贝索斯(Jeff Bezos)旗下太空旅行公司“蓝色起源”(Blue Origin)证实,该公司将在2017年进行测试飞行,然后在2018年实施商业飞行。
■ 2016年10月11日,一支国际性科学家团队宣布成立首个太空国家,命名为Asgardia,旨在保护地球免受小行星的毁灭性撞击,第一个举措是2017年发射一颗人造卫星。现在人们可以在Asgardia项目的网站注册,前10万名注册者将成为Asgardia的公民。注册地址:asgardia.space/。 世界上唯一可以真正体验太空旅行的地方
美国休斯敦太空中心(Space Center Houston)位于休斯敦东南45公里,与大名鼎鼎的NASA(美国太空总署约翰逊宇航中心)相邻。约翰逊宇航中心是美国最大的航天研究、生产及控制中心,美国的航天火箭、航天飞机都是在佛罗里达发射,但所有的控制都是在这里完成,这里也是1969年“阿波罗11号”登月的控制中心。休斯顿太空中心是NASA的旅游中心,相当于一个宇航科技馆和主题公园,有各种关于太空的演示项目和游乐设施,展出来自月球的土壤和岩石样本的集合。如果想看真家伙,可以坐小火车到约翰逊宇航中心,搭游览车参观NASA园区内的各个实验楼,可以进入实验厂房参观宇航员的培训舱、新型月球车的模型、机器宇航员的模型测试实验等。游览车每20分钟一趟,全程大概两小时。
更多体验
■ 北京航空航天博物馆
中国首个航空航天科学技术的综合科技馆,展出300多件国内外公认的航空航天文物精品以及结构、发动机、机载设备等珍贵实物。
■ 香港太空馆
1980年10月开幕,是全球首座电脑化的天文馆,定期举行各类天文展览及讲座。
■ 美国国家航空航天博物馆
北航艺术设计专业建立于2002年,2006年成立新媒体艺术与设计学院。学院下设数字动画艺术系、视觉传达设计系、绘画系及数字媒体北京市重点实验室。学院自2007年正式招收硕士研究生,拥有设计学一级学科硕士授予权。
北航新媒体艺术与设计学院努力把握信息时代的艺术设计发展趋势:
注重以网络传播为主的设计学学科建设与人才培养;
努力构建美术与设计相辅相成的共生关系与教学平台;
重视拓宽专业口径的综合素质与实践能力培养;
重视兼具艺术素质与技术能力的复合型人才培养。
二、招生专业/学制/学费
招生专业:设计学类(1305)。
专业培养方向:数字动画艺术、视觉传达设计、综合绘画。
招生计划:2014年面向北京市、河北省、山西省、、辽宁省、吉林省、四川省、山东省、河南省、湖南省、浙江省、湖北省、新疆维吾尔自治区计划招生60名(其他省市无招生计划)。
学制:四年。学生修业期满,成绩合格者获北京航空航天大学本科毕业证书,并按照《中华人民共和国学位条例》规定条件授予学士学位。
学费:10000元/年(学习用具、材料等费用自理)。
三、专业教学
新媒体艺术与设计学院按照小班化、导师制培养模式实施专业教学。
综合专业基础教学阶段(前四个学期):主要专业基础课程有素描、色彩、 中外美术史、设计艺术史、摄影基础、平面设计与动画艺术基础。
专业教学阶段(后四个学期):学生自第五学期始主要依自己的兴趣与志向选择任一专业方向(数字动画艺术、视觉传达设计、综合绘画)学习,主要专业方向课程有:综合绘画、插画与图画书创作、计算机绘画、网页设计、招贴设计、版式设计、DV拍摄与制作、二维及三维动画创作等课程。
本专业还开设Internet与计算机导论、计算机硬件基础、高级语言程序设计等计算机科学技术课程。
我们加以选择与整合的具有新媒体传播特色的综合专业教育能有效地拓宽专业口径,使学生具备较宽广的适应能力,可以面对不同专业领域的工作选择和个人发展方向;可以从事影视动画、平面设计、综合绘画与图画书创作、插画与书籍设计及与网络传播有关的艺术设计工作;毕业生就业率均在98%以上;读研率(含出国读研)达50%以上。
四、考试科目/时间/地点
北京
考试科目
静物素描,静物色彩,人物速写。
报考地点
北京市海淀区学院路37号 北京航空航天大学逸夫科学馆 (体育馆对面)
现场报名及确认时间
2014 年2月25日-26日
08:30-17:00
2014年3月4日-5日
08:30-17:00
考试时间
2014年2月27日
2014年3月6日
素描:上午09:00-11:00
速写:上午11:15-11:45
色彩:下午13:30-15:30
素描:上午09:00-11:00
速写:上午11:15-11:45
色彩:下午13:30-15:30
山东青岛
考试科目
静物素描,静物色彩,人物速写。
报考地点
青岛海大学术交流中心(青岛市市南区红岛路8号-中国海洋大学鱼山路校区四校门)
联系电话:0532-82931888
报名时间
2014年2月17日- 18日08:30-17:00
考试时间
2014年2月20日
素描:上午09:00-11:00
速写:上午11:15-11:45
色彩:下午13:30-15:30
五、报考条件
遵守中华人民共和国宪法和法律。
符合2014年全国普通高等院校统一招生考试报名条件者。
有一定美术基础,获得各省市美术统考合格证。
身体健康,无色盲、色弱。
六、北京考点网上报名要求
自2014年1月2日起至3月5日止,登录北京航空航天大学本科招生信息网(zsjyc.buaa.edu.cn),进入“网上报名系统”,选择“我要报考艺术类”进行网上报名。请考生按提示信息进行注册报名,完整准确填写个人信息,上传照片并提交成功后下载打印《北航艺术类2014年专业考试报名表》。
考生须持本人身份证原件与《北航艺术类2014年专业考试报名表》打印件两份于报名时间到报名现场参加初试,经确认、现场拍照等程序后方可领取准考证。
报名现场可网上报名。
专业初试
考生须持本人速写作品(或现场速写)一张(不小于A4)参加专业初试。
经专业初试合格后按报名流程报名。
报名考试费180元,完成报名程序后请了解考场安排与考试注意事项。
参加山东青岛考点考试按当地招生考试中心要求报考。
七、考生注意事项
山东考生可任选考点参加考试,其他省市考生须在北京本校考点报考。
考生可于2014年4月1日后登录北航本科招生信息网 ( zsjyc.buaa.edu.cn )网上报名系统查阅本人专业考试成绩。我校将于4月15日前寄发成绩合格通知单(不合格者不寄发成绩通知单)。请准确填写本人详细通讯地址,以免误投或延迟寄达。
发放专业考试合格证的数量约为招生计划的4倍。
考生在户口所在地报名参加全国普通高等院校统一招生考试(简称文化考试)。
考试期间食宿自理。考生需自备四开画板,颜料及其它画具。
八、录取
录取批次:参加全国艺术类专业提前批录取。
政治思想品德考查和体检合格者(由考生户口所在地招办办理)。
本专业实行文理兼收;外语语种为英语;本专业文化考试录取控制分数线为各省市确定的第二批次普通本科录取控制分数线的80%。
根据各省市考生专业考试校考成绩(三科满分为600分、各科满分均为200分)和文化考试成绩相加后排序,依德、智、体全面考核,按各省市招生计划择优录取(文理科统一排序)。
新生入学后,我校根据招生政策和录取标准进行复查,凡不符合条件或有舞弊行为者,取消入学资格。并通知考生所在地招办。
凡2014年第一志愿为本专业且专业考试名列前十位但因总分不够未被录取者,如有意2015年报考我院,可于2015年2月底以前提出2015年专业免试申请。
九、联系方式
地址: 北京市海淀区学院路37号北京航空航天大学知行南楼302室
北京航空航天大学招生办公室
邮编: 100191
联系电话: 010-82339725 010-82317288 (新媒体艺术与设计学院办公室)
010-82338793 (北航招生办公室)
纪检监察电话:010-82317582