发布时间:2023-09-28 10:32:23
导语:想要提升您的写作水平,创作出令人难忘的文章?我们精心为您整理的5篇纳米化学分析范例,将为您的写作提供有力的支持和灵感!
称取一定量硝酸银溶于去离子水中,配成硝酸银溶液,另外称取一定量乙二胺四乙酸与氢氧化钠溶于去离子水中,配成乙二胺四乙酸的氢氧化钠溶液,以某一恒定的转速搅拌该溶液,均匀加入硝酸银溶液,配成Ag-EDTA络合溶液。称取一定量连二亚硫酸钠与少量氢氧化钠溶于去离子水中,配成碱性连二亚硫酸钠还原溶液,转移至梨形分液漏斗中。控制恒温水浴磁力搅拌器温度开关,保持Ag-EDTA络合溶液温度恒定,并保持一定转速搅拌该溶液,打开梨形分液漏斗阀门,控制还原剂溶液以一定的速度滴入Ag-EDTA络合溶液中;还原剂溶液滴加完毕后,再搅拌反应溶液5min,然后采用离心机离心、固液分离。银粉用去离子水洗涤3次后在真空干燥箱中于45℃下干燥12h;干燥后得到的银粉送X射线衍射、扫描电镜分析。试验药剂硝酸银、连二亚硫酸钠、乙二胺四乙酸、氢氧化钠均为分析纯。X射线衍射采用日本RIGAKU公司D/MAX-RB型X射线衍射仪;扫描电镜分析采用日本日立公司S-4800型场发射扫描电子显微镜。
2结果与讨论
连二亚硫酸钠与硝酸银的反应摩尔比为1∶2。为了提高反应的转化率,试验采用连二亚硫酸钠过量的形式,实际连二亚硫酸钠用量为理论用量的1.5倍。初步试验发现,在AgNO3浓度为0.01mol/L,连二亚硫酸钠浓度为0.005mol/L,温度为20℃,搅拌器转速为300r/min,自然pH值条件下,向AgNO3溶液中以0.12mL/s的速度滴加连二亚硫酸钠,制得银粉平均粒径在250nm左右,且粒径分布不均匀。为了制备粒径更小的银粉,将AgNO3用EDTA溶液络合,替代AgNO3溶液。经过试验探索,在AgNO3与EDTA摩尔比为1∶1,Ag-EDTA络合溶液浓度为0.01mol/L,pH值为11左右,还原剂量为1.5倍理论用量,搅拌器转速为400r/min,反应温度为20℃,还原剂滴加速度为0.12mL/s的条件下制得银粉的粒径为100nm左右,且其均匀性较好,在此基础上进行条件试验,考察络合剂用量、Ag-EDTA浓度、pH值、还原剂浓度、反应温度、搅拌速度、还原剂溶液滴加速度对所制得银粉粒径的影响。
2.1络合剂用量对银粉粒径的影响在AgNO3溶液浓度为0.01mol/L,pH=11,还原剂量为1.5倍理论用量,搅拌器转速为400r/min,反应温度为20℃,还原剂滴加速度为0.12mL/s的条件下,络合溶液用量对银粉粒径的影响见图1(图中,D50表示样品累积粒度分布百分数达到50%时所对应的粒径,也叫中值粒径,常用来表示粉体的平均粒度;D90表示样品累积粒度分布百分数达到90%时所对应的粒径,余图同)。随着络合剂EDTA用量增加,银粉粒径明显减小,在EDTA与硝酸银摩尔比为1.1∶1之后,银粉粒径随EDTA加入量的增加而减小的趋势减缓。Ag+与EDTA在溶液中形成结构稳定的螯合物,降低了Ag+的反应活性及Ag+的氧化还原电位,增大了还原反应的难度,因此能够得到粒径较小的银晶体颗粒。EDTA用量过量10%保证Ag+被完全螯合,继续增加EDTA的量对银粉粒径的影响不大。
2.2Ag-EDTA浓度对银粉粒径的影响在上述试验基础上,其它条件不变,保持EDTA过量10%,考察Ag-EDTA络合体系浓度对银粉粒径的影响(见图2),可以看出,随着Ag-EDTA络合溶液浓度的降低,银粉粒径逐渐减小,在银离子浓度为0.005mol/L时,银粉粒径达到最小,平均粒径为60nm左右,并且粒度分布均匀。继续降低Ag-EDTA浓度,银粉粒径略有上升。
2.3pH值对银粉粒径的影响保持Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,其它条件不变,Ag-EDTA络合溶液的pH值对银粉粒径的影响见图3。随着络合溶液pH值升高,银粉粒径逐渐减小,当pH值为11.5时,银粉粒度达到最小,随后银粉粒径减小趋势减缓,变化不大。pH值影响还原剂连二亚硫酸钠的还原能力和络合剂EDTA的络合能力。络合剂EDTA适宜的pH值范围为10以上,pH过低,EDTA解离不完全,络合能力降低;pH过高,则Ag+与OH-结合生成氢氧化银,并迅速转化为黑色的氧化银析出溶液,还原反应难以继续进行。
2.4还原剂浓度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5的条件下,其它条件不变,还原剂浓度对银粉粒径的影响示于图4。随还原剂浓度的降低,银粉粒径逐渐减小,还原剂浓度为0.0075mol/L时,银粉粒径达到最小;继续降低还原剂浓度,银粉粒径变化不大。本试验采用向银溶液中滴入还原剂溶液的方法,降低滴加的还原剂溶液的浓度,单位时间内加入的还原剂量减少,反应速度慢,银晶核生成粒度小且经搅拌很快分散到溶液中,有利于制备小颗粒银粉。
2.5搅拌速度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,其它条件不变,搅拌速度对银粉粒径的影响见图5。可以看出,加大搅拌速度可以明显减小反应制得的银粉粒度,在搅拌速度为400r/min时,银粉粒径最低,继续加强磁力搅拌器的搅拌速度,银粉粒度变化不大。
2.6反应温度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,其它条件不变,反应温度对银粉粒径的影响示于图6。随着反应温度升高,银粉粒径有减小的趋势,在温度50℃时达到最低,继续升高反应温度银粉粒径减小的趋势减缓。由阿累尼乌斯定律可知,提高反应体系的温度可以加快反应进行的速度,温度每升高10℃,化学反应速率增加2~3倍。提高反应温度,还原反应加快,银的成核反应速率增加,在银离子浓度及扩散有限的条件下,银晶核的生成占主导地位,获得的银粉粒径减小。
1、物理方法
真空冷凝法。等离子体在经过真空蒸发、加热、高频感应等方法使原料气化制取,最后骤冷。该方法具有下特点:晶体组织好,可控粒度大小,纯度高,技术设备的水平较高。
机械磨球法。该方法是指纳米粒子由一定控制条件下的纯元素,合金或复合材料制成。主要特点为:操作简单,成本低,颗粒分布不均匀,纯度偏低等。
物理粉碎法。通过机械粉碎、电火花爆炸等工艺来获取纳米粒子。其特点为:过程比较简单,成本低,颗粒分布的不均匀,同时纯度也低。
2、化学法
气相沉积法。通过金属化合物蒸气的化学反应制成纳米材料。纯度高,粒度分布窄。
水热合成法。在高温高压情况下,从蒸汽等流体或水溶液中制取,再经过分离、热处理来得到纳米粒子。具有分散性好、纯度高、粒度易控制等优势。
沉淀法。在盐溶液中加入沉淀剂,反应后再将沉淀进行热处理,从而得到纳米材料。简单易行,颗粒半径大,纯度低是其表现出来的特点,比较适合制备氧化物。
溶胶凝胶法。经过溶液、溶胶、凝胶,金属化合物会固化,由低温热处理后即可合成纳米粒子。表现的明显特点为:反应物种多,易控制过程,颗粒均匀,适合制备氧化物和Ⅱ~Ⅵ族化合物。
二、化学反应和催化剂方面的应用
对于化学工业及其相关工业,尤其是化学反应对其起着关键性作用的产业,它们在改进催化剂性能方面经常会采用纳米技术。因纳米粒子表面活性中心较多,粒径变小,表面积增大,所以会增强吸附性能和催化能力,为它作催化剂提供了条件。用纳米粒子催化剂可大大提高反应效率,同时有效控制反应速度,使原本不能进行的反应也能进行。此外,纳米粒子催化剂的优异性能还取决于它的容积高于表面率,负载催化剂的基质也影响着催化效率。由纳米粒子合成的催化剂要比普通催化剂的反应速度提高10~15倍,如将Si02纳米粒子作催化剂的基质,可以提高催化剂性能10倍。一般在能源工业中,采用了纳米催化剂,不仅能生产非常清洁的柴油,还能大幅的降低工艺成本,获得经济效益。
三、过滤和分离方面的应用
在化学工业中,纳米过滤技术被广泛应用于水、空气的纯化以及其它工业过程中,主要包括:药物和酶的提纯,油水分离和废料清除等。由于纳米多孔材料具有很强的吸附性能,所以在治理污染方面也得到了应用。而在膜生物方面,也有较强的过滤分离功能。在过滤工业中,使用膜生物反应器,它具备出水水质良好、管理方便、结构装置简单、水力停留时间和泥龄完全分离、消耗能量底、剩余污泥量少等特征。但是,对于膜生物污染来说,该反应器难以得到推广,所以还要积极探究新的方法:向一体式膜生物反应器中投加纳米材料从而改变料液性质,这样就可以达到提高膜生物反应器对污染物的去除效率及预防膜污染的目的,同时对电镜分析中空纤维膜的表观结构的实际变化情况进行扫描,用红外光谱来分析活性污泥性质的变化,也能从根本上起动改善污泥的活性的作用。
四、其他精细化工方面的应用
纳米材料在精细化工中可以充分发挥出自身的优越性。例如:纳米材料在涂料、橡胶、塑料等精细化工范畴内都起到了重要作用。
纳米粒子在涂料行业起着很大的作用,以纳米粒子为基础的涂料具有耐磨耗、强度、透明及导电的作用。而将表面涂层技术与纳米技术结合在一起也成为了本世纪关注的一个热点,极大地改善了涂层材料结构和功能性质。结构涂层指的是涂层提高基体的某些性质和改性,主演有以下几个特点:耐磨、超硬涂层,抗氧化、阻燃、耐热涂层,装饰、耐腐蚀涂层等。功能涂层:指赋予基体所不具备的性能,从而获得传统涂层没有的一些功能。具有几方面特点:光反射、消光、光选择吸收等光学涂层。半导体、绝缘、导电功能的电学涂层。在涂层材料中应用纳米材料,可以提高其防护能力,耐侵害、防紫外线照射,对生活中的卫生用品起到杀菌保洁作用。
如果在橡胶中将纳米SiO2加入进去,会提高橡胶的红外反射和抗紫外辐射能力。而在普通橡胶中投入纳米Al2O3和SiO2,则会有效提高橡胶的介电特性、耐磨性和弹性。此外,在塑料中添加适量的纳米材料,能够提高塑料的韧性和强度,也能提高防水性和致密性。
此外,纳米材料在有机玻璃制造、纤维改性方面也都有很好的利用。加入纳米SiO2,能够使有机玻璃抗紫外线辐射,减少热传递效果,从而达到抗老化的目的。添加纳米Al2O3,还有利于玻璃的高温冲击韧性的提高。
五、在医药方面的应用
从当代健康科学发展来看,对提高药效、控制药物释放、减少副作用、发展药物定向治疗等方面都提出了高要求。智能药物随纳米粒子进入人体后主动搜索、攻击癌细胞或修补损伤组织;纳米技术应用于新型诊断仪器,只需检测少量血液,便可以轻松地诊断出各种疾病。
一、碳纳米管修饰电极
1. 化学修饰电极的制备与分类
化学修饰电极的制备是化学修饰电极的关键问题,制备过程中关于修饰方法、过程步骤、制备的优劣都对化学修饰电极有着重要的影响。我们按照化学修饰电极上面固定材料的类型可以将其分为单分子层、多分子层以及组合型等三大类. [1]其中多分子层以聚合物薄膜为主。电极表面的修饰方法按照修饰类型的不同可以分为共价键合法、吸附法和聚合法三类。但是通常情况下我们不会使用单一的方法,而是这几种方法组合使用完成对化学电极的修饰过程。大体的分类如图1所示:
图1 化学修饰电极的制备和分类
(1)共价键合型
我们实际生活中经常用到的固体电极如金属、金属氧化物以及石墨等等,表面存在着多种含氧基。我们可以对其进行氧化还原处理增加含氧基的数目,让其与修饰化合物进行共价键合反应,把特定的功能基团留在电极的表面上。共价键合法的修饰物固定比较牢靠,但是修饰过程复杂,并且修饰效果不高。
(2)吸附型
吸附法最常见的应用是单分子层修饰电极的制备,有时也用于制备多分子层修饰电极。
(3)聚合物型
聚合物型是利用一些聚合方法方法在电极表面形成修饰膜。其中电化学聚合方法是很重要的薄膜合成法方法之一,它主要是利用氧化或者还原反应在电极上产生自由基,然后再经过缩聚反应制备该薄膜。聚合物方法形成的薄膜稳定,厚度均匀并且可控。因此在薄膜制备中得到了广泛的应用。
2. 碳纳米管修饰电极类型
纳米材料表面覆盖着的是一层非晶层,该层没有短程序和长程序。由于原子的周围原子很少,产生了许多悬空键表现出极大地极性。具有相当高的催化效率,因此其是一种很好的修饰材料,并且具有极大的潜力。现如今关于碳纳米管修饰材料的研究很热门。
鉴于碳纳米管的良好的电子特性,其进行化学反应时能很好地促进电子的迁移。关于单壁和多壁的纳米管都可以用来修饰电极和制备电极。其主要分为以下四种类型:
(1) 碳纳米管糊电极
Britto 在1996年将碳纳米管调匀后导入到玻璃管中,并用导线引出,制备出来了碳糊电极。这是碳纳米管在点分析中的最早应用,随后牛津大学、清华大学等也相继制备出了各种糊电极应用于各个领域。[2]但是上述几种纳米管普遍存在着重复性较差、寿命较短等,虽然制备过程较为简单,但是应用受到限制。因此,人们开始便致力于应用更广泛的碳纳米管薄膜修饰。
(2)碳纳米管薄膜修饰电极
碳纳米管有着诸多上述优良特性,但是其的不溶性大大限制了其在碳纳米管薄膜修饰电极方面的应用。碳纳米管的不溶性表现为其几乎不溶于所有溶剂。我们在制备前需要将其进行超声分散得到悬浮体系。根据所用分散剂的不同我们分为以下几个体系:碳纳米管-有机溶剂分散体系、碳纳米管-硫酸分散体系和碳纳米管-表面活性剂分散体系。
二、碳纳米管修饰电极在环境分析中的应用
1.碳纳米管修饰电极测定环境中的重金属阳离子
环境中的重金属阳离子Pb2+、Cd2+、Hg2+等是重金属污染物,严重危害着人们的健康发育,因此对其检测是至关重要的。利用纳米管―石墨糊电极对水体进行测定,性能稳定,使用寿命长,是一种较好的选择。
2. 碳纳米管修饰电极测定环境中的阴离子及其化合物
存在于工业废水以及食物中的亚硝酸根离子对人来有致癌的危险,研究其相关测定方法具有重大意义。人们借助一种对NO2-具有高灵敏度高选择性的壳聚糖-碳纳米管修饰电极可直接富集和测定水样中的NO2-,检测效果较好。
3.碳纳米管修饰电极测定环境中有机污染物
为了测定水环境中的苯酚含量,我们采用多壁纳米管修饰电极对其进行测定。该修饰电极具有较强的吸附特性,苯酚存在着较强的富集效率。使得苯酚在修饰电极上的氧化峰电流显著增加进行测定。
三、展望
碳纳米管修饰电极是一类新兴的电极,在环境分析中有广阔的应用前景。如能进一步研究碳纳米管的分散剂,使碳管和分散剂的作用结合起来,利用吸附和键合作用于待测物质以提高对其测定的灵敏度,必将使碳纳米管修饰电极的应用产生一个新的飞跃。
参考文献:
1实验设计
1.1实验目标
本次实验的主要目标体现在如下4个方面:①让学生熟悉并掌握金属氧化无机纳米材料主要的化学制备技术;②通过查找、整理和分析相关的文献资料,认识纳米材料的结构,以及对其结构和性能进行检测的物理技术;③能熟练运用无机纳米材料的实验方法以及热分析技术;④在充分掌握实验方法的基础上,全面了解TiO2纳米材料的光催化活性以及极强的吸附性。
1.2实验过程
1.2.1合成TiO2纳米材料
在本次实验中,TiO2纳米材料的合成方法有2种,一种是低温水热合成法,一种是水解沉淀法。在具体的实验过程中,学生可以根据自己的想法和实际情况,选择其中一种,或者是同时采用两种方法,并对比两种方法的结果。完成实验之后,参考相关的文献资料,设计出具体的实验方案。上述两种制备方法具体操作如下:
1.2.1.1低温水热合成法
该方法的主要原理就是让钛的无机盐机或者有机醇盐,在特定的温度下,通过水解反应来合成TiO2。高温和高压是水热反应的前提条件,因此该合成方法可以直接获取晶华的产物,反应的温度、时间以及水醇比例等会因素都会对TiO2产物的结构产生重要影响。该方法的实验步骤为:①取2只清洁、干燥的烧杯(250ml),其中一只加入无水乙醇和钛酸四丁酯各100ml,混合后搅拌均匀;另一只添加100ml清水,取16mol/LHNO3对其酸碱度进行调节,当pH值为1时,加热,至70℃。将2只烧杯中的溶液混合,搅拌均匀,对钛酸四丁酯的水解过程进行观察,发现生成白色凝胶,将凝胶置于70℃的干燥箱中,静置30min;②离心分离上述操作中的沉淀,经去离子水洗涤之后,至于干燥箱,收集粉末备用。
1.2.1.2水解沉淀法
该方法的主要原理为:让钛的无机盐机或者有机醇盐在水溶液中通过直接的水解反应,生成TiO2沉淀。使用这种方法获取的TiO2颗粒的粒径、尺寸和结构等,就会受到多种因素的影响,包括水溶液的酸碱度、乙醇和水的比例,水解的温度等。该合成方法的步骤与低温水热合成法基本相同,主要的差别在于,低温水热合成法需要在高温和高压环境下完成,但是水解沉淀法只要在在室靥跫下即可完成。同时,通过改变乙醇和水的比例,还可以得到不同的产物。
1.2.2TiO2纳米晶体悬浮体的稳定性分析
评价悬浮体稳定性的方法有很多,这里我们介绍其中比较简单的一种,即在不同的悬浮体中,加入相同剂量的聚沉剂,然后认真观察体系中光的密度变化,或者透光率的变化。在时间相同的基础上,透光率表现越稳定,变化越小,则表示体系的性能相对稳定。
同时,悬浮体的稳定性还与纳米颗粒的粒径具有密切联系,在绝大多数情况下,纳米颗粒的粒径越大,悬浮体的稳定性越低;反之,纳米颗粒的粒径越小,则悬浮体越稳定,二者呈反比例关系。为了判断不同TiO2纳米晶体悬浮液的稳定性,我们选取3种TiO2纳米晶体,对其粒径进行了比较,具体方法如下:①取3只具塞试管(10ml),然后取0.01g3种存在差异的TiO2纳米晶体,和10ml去离子水混合,均匀混合后,行10min超声分散,然后在室温环境下轻轻震荡20min,上述操作完成后,在其中加入2mlNaCl溶液(0.1mol/L),将试管摇晃均匀,静置30min;②20min后,从步骤1中的3只试管中,从深度相同的位置提取悬浮液,并对其透光率进行检测。将水作为参照物,波长为600纳米,每20min检测1次,再用滴管获取悬浮液时,动作一定要轻柔,不能搅动悬浮液;③根据透光率的检测时间和结果,绘制曲线图,对3种TiO2纳米晶体悬浮液的稳定性进行比较。
2实验教学的效果反馈
实验完成后,对教学效果进行调查,结果发现,学生对这种实验方式产生了浓厚的兴趣。连续2年,化学相关专业对该实验的选做率已经>90%。经过综合性的实验过程训练,不仅提高了学生对纳米材料制备的兴趣,还锻炼了他们的动手操作能力,还提高了学习的效率,一举多得。在实验的总结报告中,学生都发表了自己的看法以及在实验中的心得。有的学生认为:通过该实验了解了纳米TiO2的制备技术和光催化活性,熟悉了热重分析仪、紫外-可见分光光度计、高速离心机等仪器的原理和使用方法,初步了解了科学研究的过程和思维方法。还有的学生则表示,通过实验教学,通过查阅文献学会了纳米TiO2的两种制备方法,以及如何分析材料的吸附性能和光催化性能。对于一些希望能够利用课余时间继续进行相关实验研究的学生,我们积极配合,提供研究条件。希望更多的学生能够通过本实验课程的学习,对无机材料的化学制备技术及性能检测有一个较好的了解。
参考文献:
[1]谢敏,程世博,吴卫兵等.磁性纳米材料合成表征及浓度测定――综合化学实验[J].实验技术与管理,2014,23(11):52-56.
光电化学包括光电转化和电化学两个过程。其中光电转换过程,是具有光电化学活性的物质吸收光子而处于激发态,所产生的载流子通过与一些分子发生电子交换而产生电荷分离和电荷传递,形成光电压或光电流,实现光能向电能转化的过程,这是光电化学的核心过程?。另一方面,电化学过程又包括电子传递和界面反应两个过程。实现分离的电子和可分别向基底电极表面和电极材料与电解质溶液的界面转移,并在溶液界面处发生氧化还原反应,实现能量转换,形成光电流或光电压。
具有光电化学活性的材料通过光电化学过程产生光电响应的机理主要有以下两种:(1)当在周围电解质溶液中存在还原性物种时,处于激发态的光电活性物质可以被还原至基态,从而使光电化学过程持续循环进行,进而产生持续光电流;(2)当电子供体或受体作为猝灭分子存在时,在激发态分子与猝灭分子之间会发生电子转移(ET),进而发生氧化还原反应或电极表面电子转出,形成光电流,并使光电材料恢复至基态参与下一次光电响应M。以半导体材料为例,在外界光照、温度、电场、磁场等的作用下,半导体材料价带和导带上的电子态会发生一定的变化而表现出较为敏感的响应,并具体表现为光电、热电、光致发光、电致发光等现象和效应。在半导体材料受到光辐射激发时,光子能量大于禁带宽度时,价带电子就会吸收光子能量而被激发至导带上,而在价带上留有,产生载流子(即电子)。载流子中的电子和可以发生复合并将能量以其他形式释放,如果在一定的条件下发生分离,继而会产生光电压或光电流,实现光能与电能的转化M。如图1所示,当半导体的能带位置与电极的能级匹配时,导带位置上的电子可以转移至电极表面,同时产生的被电子供体捕获完成电极反应,形成阳极光电流;如果导带电子转移至电解质溶液界面处,并与溶液中的电子受体反应,电极表面的电子就会转移至半导体的价带并捕获,形成阴极光电流。因此,光电化学过程不仅伴随着能量转换,同时还伴随着电荷分离、电子传递、能量转移、界面反应等过程。光电化学过程的进行直接关系到光电转换效率、光电化学反应动力学及其应用。另外,光电化学过程的实现不仅与激发光的波长和强度有关,而且与光电材料的类型、性能有着直接且紧密的关系,光电材料本身的光电化学性质、制备方法、复合效果、形貌控制、电荷传导速率等对于光电化学过程的顺利实现有重要影响。
2光电化学传感器概述
随着分析科学的不断发展,新的分析方法不断涌现。自20世纪60年代光电化学过程阐明到21世纪初,光电化学分析方法作为一种新的分析方法开始出现并不断快速发展。光电化学分析是在光照射下基于被分析物、光电材料和电极三者之间电荷转移发展起来的一种分析检测技术14。光电化学分析的基本原理是基于光电化学过程。在电化学(电子传递和界面反应)和光电转换(能量转换)两个过程的基础上,利用被分析物对传感识别过程(界面识别或反应)的影响所产生的光电流或光电压的变化,建立起光电响应变化与被分析物之间的定量关系,从而构建出用于生物、环境等方面分析的光电化学传感器。
光电化学传感器主要分为电位型和电流型两种。其中电位型光电化学传感器主要是指光寻址电位传感器(LAPS)。目前研究较多的是电流型光电化学传感器,它是利用被测物质与激发态的光电材料之间发生电子传递而引起光电材料的光电流变化进行测定或根据待测物质本身的光电流对其进行定量分析。
光电化学传感器将传统的电化学传感器和光电化学结合起来,同时具有电化学和光化学传感器的优点。一方面,该检测方法与目前已经建立起来的电化学发光(ECL)方法在过程上正好相反,ECL采用电作为激发信号,检测的是光信号;而光电化学分析使用光作为激发信号,检测的是电信号,通过采用不同形式的能量作为激发信号和检测信号,使激发和检测信号互不干扰,因而背景信号较低,可获得较高的灵敏度;另一方面,由于采用电化学检测,因而具有设备简单、价廉,易于微型化的优点。
光电化学传感器以其独特的优点,在分析中有着广泛的潜在应用价值。光电化学分析通过与纳米材料的制备、免疫分析体系的构建、生物功能分子的应用等方面的结合,进一步拓宽了其应用范围。目前,光电化学传感器在生物活性分子分析(如半胱氨酸M、NADH21,22、谷胱甘肽E3,24、活性蛋白25,26等)、DNA分析、酶传感分析、免疫分析B6^、细胞相关分析、环境分析(如溶解氧、化学需氧量、有机污染物、重金属离子、有机磷农药、植物调节剂等)领域有着较为广阔的研究。
3光电化学传感器的材料选择与设计
从光电化学传感器的发展过程及其基本原理来看,光电化学传感器在功能结构上分为光电转换单元和传感识别单元两部分,其中前者主要在于选择具有较好光电化学活性和稳定性的光电活性物种来构建光电转换层,后者主要在于通过不同的分析传感策略来实现对目标物的检测。因此,光电化学传感器的构建主要从光电材料的选择修饰和传感信号产生模式两个方面来考虑和设计。
近十年来,随着光电化学传感器研究的不断增多,可用于光电化学分析的光电活性物种也得到了广泛关注。最近,有多篇综述对应用在光电传感器中的不同光电活性物种进行了总结6,5455。可用于光电转换层的材料主要包括有机光电分子、导电高分子、无机半导体及其复合材料等。
3.1有机光电分子
有机光电分子是相对于有机高分子聚合物来说的,主要是指在光照激发下能够发生电子从最高占据轨道(HOMO)到最低空轨道(LUMO)跃迁产生相应激发态和电荷转移的有机分子。该类分子的典型代表主要包括卟啉类、酞菁类、偶氮染料、蒽醌类以及有机金属配合物类等。其中有机金属配合物是有机光电分子中重要的一类,主要是利用具有较大离域电子体系的配体与某些金属离子构成的具有光电化学活性的一类物质。目前研究和应用比较多的是金属钌的一些配合物。Weber等53提出了使用钌-联吡啶作为光电化学信号标记物并给出了其光电化学转化过程。Ru(n)配合物受到光激发后形成活化的Ru(n)*,Ru(n)*失去电子变为Ru(m),然后Ru(m)被电子供体还原为Ru(n)。Dong等制备了钌联吡啶衍生物,并将其作为光电化学信号发生分子修饰到SnO2纳米半导体电极上,第一次通过光电化学法定量测定了生物素亲和素的识别作用。Gao等在ITO表面修饰具有较好稳定性和光响应的核酸加合物(PIND-Ru^PIND),通过ITO表面的核苷酸与目标核酸杂交,第一次用光电化学方法实现核苷酸检测。
有机光电分子一般具有较大的离域电子体系,对可见光有较强的吸收能力,并具有较强的电子注入和电子转移能力等B9’6a。另外,对于有机光电分子,可以根据需要直接合成或进行基团修饰,具有很好的可修饰性。Ikela等合成了一种有机光电材料--5,10,15,20四(4吡啶基)卟啉,并将其沉积在ITO电极上做成传感器,通过光电流的降低可重复检测核苷酸,其检测浓度达到^M级。Yamada等62以蒽醌(AQ)作为光敏剂制备出了蒽醌寡聚核苷酸复合物,并结合转移产生光电流的方法,实现了对DNA胞嘧啶甲基化的光电检测。Pandey等63报道了流动注射分析体系(FIA),选用具有光电化学活性的9,10肩醌衍生物作为信号发生分子,利用激发态蒽醌分子与电子供体(葡萄糖)反应产生的光电流,首次对嵌入DNA中的复合物进行了检测。
但该类材料单独作为光电转化层所产生的光电流较弱,需要与其他传导材料进行复合,以提高光电流信号和检测的灵敏度。如Hu等通过在石墨烯表面负载金纳米粒子,并进一步修饰巯基化卟啉制备出卟啉/AuNPs/石墨烯纳米复合物,以此作为电极修饰材料用于氢醌的光电化学检测,取得了较好的效果。
3.2导电高分子及其复合物
导电高分子是由具有共轭T键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体、半导体的一类高分子材料。由于材料的T电子共轭体系的成键和反键能带之间的能隙比较小,一般约为1.5-3.5eV,接近于无机半导体的导带和价带之间的能隙,因此,共轭高分子材料大多具有半导体性质。目前研究比较多的主要有聚吡咯、聚噻吩、聚苯胺等。导电高分子主要应用于与无机半导体复合和构建可以特异性识别目标分子并具有一定光电化学活性的分子印迹膜。其应用将在后文中进行阐述。导电高分子制备相对简单,并可以实现可控聚合或有目的性的识别基团修饰,具有较强的可设计性,因而有较大的研究潜力。
3.3无机纳米半导体及其复合物
无机半导体材料是目前研究和应用最为广泛的一类光电材料。该类材料可以通过多种方法制得,并可以通过形貌和尺寸控制表现出优异的光电化学性质。由于量子限域效应的存在,无机纳米半导体材料具有比块体材料更优异的光电化学活性。这类材料主要包括以TiOi、ZnO、WO;等为代表的金属氧化物半导体,以CdS、CdSe、ZnS、ZnSe等量子点(QDs)为代表的金属硫族化物半导体。
其中TiOi以其较好的稳定性、较快的电荷传导速率和较好的生物相容性等优点受到了广泛关注,基于TiO:的研究也最多和较为全面。但由于TiO2的禁带宽度较大,只能被紫外光激发;而在紫外光区域,很多检测体系会受到干扰或破坏,从而限制了其进一步的应用。因此很多研究通过使用有机分子、导电高分子、量子点或其他窄能带半导体等对TiO2进行敏化,来拓宽其应用光谱范围。鞠煜先课题组M报道了使用磺酸基铁卟啉功能化TiOi纳米粒子,构建了一种在较低电位下检测生物分子的光电化学传感器。徐静娟课题组M使用CdS与TiOi构成杂合物来构建光电转换层,通过免标记免疫法实现了对目标蛋白的检测。蔡青云课题组69通过CdTe/CdS共敏化TiO2纳米管阵列构建了一种用于八氯苯乙烯检测的免标记光电化学免疫传感器。通过使用P3HT与TiOi复合修饰电极,建立了一种在可见光下零电位检测有机磷农药的光电化学传感器。另外,也有用导电高分子与贵金属粒子共同修饰TiOi的报道。利用导电高分子与TiOi形成的多级电荷分离体系,并结合Au、Ag等贵金属的掺入对电极表面过电位的降低及对转移的促进,可以提高半导体材料的光电化学性能,这也为光电化学分析提供了新的材料复合。
无机半导体中,另一种常用的材料是CdS(Se、Te)纳米材料或QDs,目前已有综述对这类材料的优缺点及应用进行了总结B4,73。针对该类材料具有较高的电荷复合速率和光稳定性差的缺点,通过分子/电子传递体系或有效电子传导阵列,减少半导体中电子的复合,对提高其光稳定性和光电转换效率是十分重要的。近年来,随着对碳材料研究的不断深入,碳纳米管(CNTs)、石墨烯(GR)等材料以其优异的电子学性质,在促进光电极材料的光电化学性质方面有着较多应用。Wang等M合成了CdS修饰GR的复合材料,并构建了用于灵敏检测有机磷的光电化学传感器。使用一步快速溶液反应制备了GR~CdS纳米复合材料,并用这种新合成的GR~CdS纳米复合材料构建了用于检测谷胱甘肽(GSH)的光电化学生物传感器。Li等M通过苯并b]芘磺酸盐与还原的氧化石墨烯(RGO)之间的mi堆积(stacking)作用对RGO进行非共价功能化,并结合CdS纳米粒子的原位生长制备了RGO^CdS纳米复合物;以此材料为光电转换层免疫检测了前列腺特异性抗原(PSA)。制备了具有较好光电化学活性的Cd0.5Zn0.5S/RGO纳米复合材料,并基于此复合材料构建光电化学传感器,用于Cu2+的选择性检测。碳材料作为电子传导基质的引入,不仅提高了量子点的光电转换效率,也为提高其他半导体材料的光电化学活性提供了重要思路和方法。
此外,氧化钨作为一种本征型半导体氧化物,具有耐酸性和耐高温的能力,并有较高的抗光腐蚀性;其能带宽度约为2.6eV,对可见光中的蓝光有较强的吸收;由于其能带宽度较TiOi小,可直接利用太阳光,因而具有巨大的潜在应用价值62’83。我们课题组M以WO;为基础材料并与石墨烯和原卟啉复合,构建了一种多级电荷分离体系用于半胱氨酸的光电检测。Zhang等M制备了WO;修饰TiC/C核壳纳米纤维复合电极,用于H2O2的无酶光电化学检测。纳米硫化铋是一种重要的窄能带直接半导体,其禁带宽度可以调节(Eg=1.30~1.70eV),表现出具有较宽的吸收光谱和较高的吸收系数(一般在扣4?^5^-1)B5-86。我们课题组在进一步研究B^h的光电化学性质的基础上,分别构建了用于检测DNA甲基化67]、DNA甲基转移酶活性和miRNA89的光电化学生物传感器。
3.4其他
除了以上讨论的这些光电活性物质外,全碳材料M和QN4复合材料M也逐渐引起了人们的关注。另外,某些生物材料如细胞、DNA、荧光蛋白等也具有光电化学活性,利用它们自身的光激发电荷转移过程引起的光电流变化,可以研究生物分子与其他物质间的相互作用92,该领域仍需深入研究。
4光电化学传感器信号产生与传感模式
4.1直接电荷转移与氧化还原
在光电化学传感器的设计上,一般采用较多是阳极光电流。在该传感模式中,光电极的电极反应只涉及电荷转移和电子或参与的直接氧化还原反应,一般不包括分子识别、酶催化等其他过程;信号产生的重要环节是实现电荷的有效分离。在光激发下,光电活性物质发生电子跃迁产生电子,电子转移至电极表面,而留在光电层中的与电解质溶液中的待检测物分子发生氧化还原反应。被检测物一般是具有还原性的物质,通常将其作为电子供体以一定浓度直接加入到电解质溶液中。被检测物分子的加入使得光电层中产生的电子可以有效分离,减少其复合,使光电流增加。光电流的增加会随待测物浓度的增大而增强,因而可以通过光电流与被检测物分子的数量关系实现对待测物的定量分析。Cooper等63制备了亚甲基蓝和亚甲基绿固定的磷酸锆修饰的铂通道光电极,在波长620~670nm的可见光照射下,光氧化的染料与抗坏血酸发生反应产生光电流;基于该电极构建的传感器对抗坏血酸的定量检测浓度可达到1mM。鞠煜先课题组64使用磺酸原卟啉功能化的ZnO纳米粒子修饰ITO电极构建了一种光电化学传感器。所制备的电极在360nm的光照下表现出有效的光电流响应;加入的半胱氨酸作为电子供体,可有效地捕获光生而使光电流增强。基于这种光电流信号增强检测半胱氨酸的线性范围为0.6~157^M,检测限为0.2+M。另外,鞠煜先课题组M还应用基于抑制电荷复合的光电化学策略来检测多巴胺。该光电化学传感器是通过将表面未钝化的CdTeQDs直接涂覆在含氟导电玻璃(FTO)基底上制得。量子点在405nm的光激发下,产生电荷分离,电子转移至溶液中的02使其还原为O2_.,促进电荷分离。能级处于量子点价带和导带之间的电子供体可以捕获,从而抑制载流子的复合,使光电响应增强。
虽然基于直接电荷转移与氧化还原的策略具有直接、简便、易行的特点,并且灵敏度较高,但存在的问题是可用于直接检测的目标物较少,且体系抗干扰能力较弱,在选择性上往往不能给出比较满意的结果。为了提高选择性,可以通过一定的前处理过程,将目标分子有选择的转化为可用于光电流信号产生的物质,以间接的方式来达到检测目的。如Li等M首先将待检测的甲基对硫磷通过简单水解反应得到对硝基苯酣,然后以对硝基苯酣作为电子供体,在由PTCA/TiOl作为光阳极构成的光电化学池中检测光电流信号,从而间接地实现了对有机磷的检测。
4.2基于分子结合导致的位阻效应引起的光电流抑制策略
基于分子识别和结合引起的光电层表面空间位阻效应建立起的光电化学传感器,在很多方面得到了研究和应用。通过前面的介绍可知,一般对于阳极光电流的产生,需要在电解质溶液中有电子供体来捕获来完成光电极反应。在用于光电检测的光电化学池中,无毒且氧化电位较低的抗坏血酸通常会被作为电子供体加入到电解质溶液中B7]。如果在光电层与电解质溶液层之间嵌入具有空间阻隔效果的分子复合物,就会阻碍电子供体向光电层的迁移和捕获,从而使光电流降低。基于这种光电流的降低与位阻效应的定量关系可以用于目标物的分析。目前文献报道的基于分子识别和结合产生位阻效应最常用的方式是形成生物分子间强作用亲和物(如生物素亲和素、抗原~抗体、分子受体等作用方式)。Cosnier课题组M使用生物素标记的吡咯基-Ru配合物为前驱体,利用电化学方法合成了含生物素的聚(吡咯-Ru(n))复合膜,通过生物素和亲和素之间的亲合作用,将亲和素标记的霍乱毒素(choleratoxin)固定到电极表面,并利用抗原抗体结合,以光电流降低法检测了霍乱毒素抗体。徐静娟课题组99利用层层组装法将正电性的聚二甲基二烯丙基氯化铵(PDDA)和巯基乙酸(TGA)修饰的带有负电性的水溶性CdS量子点(TGA^CdSQDs)交替组装在IT0电极表面,再通过TGA表面的一C00H与IgG的一N%结合将IgG修饰到电极表面从而制备出免标记的光电化学免疫传感器。在含有0.1M抗坏血酸(AA)为电子供体的磷酸缓冲溶液中,不加抗原时该光电极有较强的光电流响应,在加入抗原后,抗原与抗体形成免疫复合物,增加了光电极表面的空间位阻,阻碍了电子供体的传质过程从而使光电流减小,该传感器在最优条件下对抗原的检测,表现出较好的选择性、灵敏度和稳定性。
还有一些文献报道了基于aptamer与生物材料之间的作用产生位阻效应来检测目标物的方法。Zhang等_分别在层层组装的CdSe纳米粒子光电层上固定了可特异性识别目标细胞和溶菌酶的aptamer,利用aptamer与目标物形成的复合物增加电子供体传输的位阻,以抑制法实现了对Ramos细胞和溶菌酶的检测。另外,也有利用修饰在电极表面某些可以与靶细胞表面残基特异性识别的分子,将被测细胞键合在电极表面形成位阻效应。如Zhao等刚将叶酸固定在GR/CdS修饰的IT0电极表面,利用叶酸与癌细胞表面叶酸受体之间的结合作用将细胞固定在电极上,以抑制法实现对目标癌细胞的检测。徐静娟课题组M以苯硼酸功能化的卟啉敏化TiOi作为光电层,利用硼酸基团与目标细胞表面的睡液酸残基结合形成的复合物来产生位阻效应,以抑制法检测目标细胞。
4.3酶抑制及酶催化法
光电化学分析中基于酶催化活性来实现信号产生和变化也是一类重要的策略。在光电化学分析中常用到的酶主要有乙酰胆碱酯酶(AChE)、辣根过氧化物酶(HRP)、葡萄糖氧化酶(GOx)、碱性磷酸酶(ALP)等。
在光电化学分析中,电极光电层表面固定的AChE可以催化硫代乙酰胆碱生成胆碱,胆碱具有一定的电活性,在被氧化后,两分子的胆碱可以通过S-S结合形成没有电活性的二聚体,同时产生光电流。该过程需要利用固定在电极上的AChE的酶催化反应来完成。当有AChE酶抑制剂存在时,AChE的活性就会降低,进而会导致生成的胆碱量减少和光电流降低_。通过这种策略既可以分析AChE酶的活性,也可以对抑制剂进行定量&04,105。如Wang等和Gong等刚分别用AChE修饰CdS/GR和BiOI光电层,利用有机磷农药对AChE酶活性的抑制作用,以光电流抑制法实现了对有机磷农药的检测。
HRP的应用主要有两个方面,一是与%02一起用于生物催化沉积(BCP)。利用固定有HRP的CdS/TiOi修饰电极,通过HRP在H2O2存在下催化氧化4氯4萘酣(4-CN),在电极表面的沉积物,阻碍电子供体传质过程,使光电流降低,并以此建立起对H2O2的光电化学检测。该课题组M还基于生物催化沉积(BCP)构建了连有HRP的三明治结构的光电化学免疫分析阵列,并考察了对鼠IgG(抗原Ag)的协同超灵敏检测。HRP在该体系中主要有三个作用:(1)HRP标记的二抗(Ab2)通过生物结合后可以增强空间位阻,(2)HRP与%O2共同催化促进BCP过程,进一步增强位阻效应,(3)HRP可以吸收部分光子,使信号降低。综合BCP^PEC免疫分析阵列的多信号协同结果,该电极表现出对抗原较好的分析性能。HRP应用的第二个方面是催化%O2分解,该方面在信号传感中又可以以两种形式实现。第一种是HRP直接催化&O2分解,促进电极与电解质溶液之间的电子传递和光电流的产生M。第二种是通过HRP标记的待测分子与未标记的待测分子之间的竞争和HRP催化共同实现的。如Kang等aw]使用抗体(Anti-PAH)修饰的TiO2纳米管(TiO2NTs)与多环芳香化合物(PAH)和HRP双功能化的纳米金(BGNPs)复合,用于PAH超灵敏光电化学免疫分析。在不加入PAH时,Anti~PAH的表面被BGNPs所饱和,BGNPs上的HRP可以催化H2O2的还原,促进电极和电解质之间的电荷传递,从而产生光电流;而在加入PAH后,PAH会与BGNPs竞争与Anti-PAH的结合位点,使BGNPs的结合减少,并导致光电流降低。除了不参与BCP外,GOx与HRP的应用基本类似。
ALP是生物体内广泛存在的一种酶,可以催化水解生物体内的许多磷酸酯。最近,徐静娟课题组112提出了以ALP标记二抗并通过纳米金扩增,催化底物中的抗坏血酸磷酸酯(AAP)原位产生抗坏血酸作为电子供体,以光电流信号增加的方式免疫检测了前列腺癌抗原(PSA)。随后他们M又报道了将ALP固定到TiOi层,催化AAP产生抗坏血酸盐,利用抗坏血酸盐与TiOi表面的缺陷形成配体金属电荷转移复合物,使得TiO2在可见光区域有了较强的吸收带,进而产生光电流响应,并在此基础上考察了2,4-二氯苯氧乙酸(2,4-D)对ALP酶活性的抑制作用。
此外在光电化学分析中应用到的酶还有肌氨酸氧化酶以及类酶M等,如利用FePt的类过氧化物酶活性检测%O2ai6,117];某些DNA酶也具有类过氧化物酶活性,可以通过BCP或基于%O2分解引起的信号产生用于光电化学分析49。除了直接对酶活性进行分析以外,也可以通过间接法进行分析,如Willner课题组_曾报道过间接法测定酪氨酸酶(Tyrosinase)活性的方法。
4.4贵金属纳米粒子的局域表面等离子体效应(LSPR)与激子等离子体激元反应(EPI)
贵金属(Au、Ag、Pt等)在分析化学中有着广泛的应用。LSPR是入射光的电磁场频率与金属自由电子的集体振荡频率发生共振时产生的一种物理光学现象,该现象与纳米粒子的形状、大小、间距、介电性能以及周围环境等有关M。利用LSPR的性质,目前已经发展了基于散射、消光等技术的LSPR光学传感器_。基于TiO2或ITO电极负载的Au、Ag等贵金属纳米粒子的LSPR光电化学性质,可以开发新的光电化学分析方法。在可见光的照射下,负载在电极表面的金属纳米粒子由于表面LSPR的存在而引起电荷分离,当电极基底材料的导带态密度比金属纳米粒子的更高时,就会有金属纳米粒子的光激发电子向电极转移12fl,氧化态的金属纳米粒子从溶液中捕获电子,从而产生光电流。Zhao等122以液相沉积TiOi为基底,以AuNPs为LSPR产生源,考察了%O2对AuNPs在TiOi表面的生长调控,并结合GOx催化氧化葡萄糖促进电荷转移,以信号增强的方式检测了葡萄糖。
陈洪渊课题组在研究了CdSQDs与贵金属纳米粒子(AuNPs、AgNPs)光电化学过程的基础上还提出了激子等离子体激元(EPI)相互作用的信号产生模式,并以此策略实现了对DNA的检测。以CdSQDs与AuNPs之间的作用为例,其作用原理如图2所示。在一定能量光子激发下(过程1),量子点价带上的电子发生跃迁至导带上(过程2),产生电子。如果电极处在合适的溶液中并且材料与电极能级合适,溶液中的电子供体就会捕获(过程3),导带上的电子也会向电极方向转移(过程4),就会有光电流的产生,这种情况和前面讨论的情况一致。但是激发产生的载流子难免会发生复合(过程5和6)。在复合过程中,经过弛豫之后的辐射跃迁会发射出荧光;如果所发射的荧光与AuNPs的吸收谱发生重叠,就可以引起AuNPs的LSPR,将这部分能量吸收(过程7)。同时,LSPR所产生的局域电场会反过来加强过程6的进行(过程8),从而建立起CdSQDs(激子)与AuNPs(等离子体)之间的能量传递(总和为过程9),使得光电材料的效率降低。将AuNPs换成AgNPs也有类似的过程。目前,基于这种策略的研究还比较少。
3.5其他传感模式
除了以上传感模式外,基于电极表面原位沉积导致的光电流变化策略、基于分子印迹识别的光电分析策略(MIP-PEC)、光电活性物质tlsDNA嵌合策略、化学发光激发的光电化学检测体系及某些signal-on策略也得到很多关注。
基于电极表面原位沉积导致的光电流变化策略主要用于某些金属离子和阴离子的检测。电极表面的原位沉积一般是指通过一定方法在修饰电极表面形成新光电活性中心的过程。新光电化学活性中心的生成主要是利用电极表面已有的光电材料与溶液中的某种待测离子发生离子交换,或是借助一定的辅助物与被测金属离子作用形成沉积。Shchukin等125首先将新制的CdO修饰电极放入含S2-的溶液中,在CdO表面形成CdS沉积;然后将CdO/CdS修饰电极在另一不含捕获剂的电解质中检测其光电流响应,来检测S2-。该检测策略用于检测的金属离子比较多的是Cu2+和Cd2+。由于CuS的溶度积常数比CdS的小,当把以CdS或其复合物作为光电层的修饰电极浸入含有Cu2+的溶液中,通过离子交换会在CdS的表面生成CwS。所生成的C^S在CdS表面相当于是一个激子阱(excitontrapping),由于它的形成使得载流子易于在激子阱中复合,从而导致光电流的降低,以此可以实现对Cu2+的定量分析a26?12a。对于Cd2+的检测一般是采用在电极表面沉积CdS或CdSe的方式来进行。田阳课题组&29]将TiO2NTs电极浸入含有%SO4和SeO2的体系中,随着Cd2+加入量的增多,在TiO2NTs上原位电沉积出CdSe纳米簇,对TiOi起到敏化作用,使光电流增加,以此实现对Cd2+的定量分析。基于类似的方法,该课题组㈣还在TiOiNTs和CdSO^溶液体系中,利用&S与Cd2+反应生成的CdS在TiO2NTs上沉积敏化来检测H2S。
对于某些非电活性的被测物,可以选择分子印迹(MIP)与光电化学分析相结合的方法来实现高选择性检测的目的。Shi等131首次在TiOiNTs负载吡咯基聚合物作为增强光电层和MIP识别单元,以信号增加的方式实现了对2,4~D的灵敏检测。同一课题组的Chen等_和Lu等_分别利用类似的方法实现了对微囊藻毒素(Microcystin~LR)和双酣A的检测。于京华课题组134,135先后报道了利用聚邻苯二胺分子印迹膜修饰TiOiNTs构建光电化学传感器,并用于毒死啤(Chlorpyrifos)和林丹(Lindane)的特异性识别和检测。
在与DNA分析有关的检测中,比较常用的方法是基于Ru联吡啶配合物与双链DNA的嵌合作用。郭良宏课题组在这方面做了很多工作。如果先将Ru联吡啶配合物固定在电极表面作为光电活性中心,当溶液中加入未损伤的双链DNA时,双链DNA就会键合在电极表面,使光电流降低136;而当DNA受到损伤后,损伤的DNA会将Ru联吡啶配合物暴露出来,使光电流响应增强。另一方面,如果先将双链DNA固定在电极表面,当DNA以双链完整形式存在时,具有光电化学活性的Ru联吡啶配合物就可以嵌入到DNA双螺旋结构的凹槽中,会产生较大的光电流;当DNA受到损伤后,Ru联吡啶配合物就会从DNA中脱离出来,光电流降低。通过对比前后的光电流变化就可以对双链DNA损伤进行检测。随后,该课题组将Ru-联吡啶配合物与双链DNA的嵌合作用推广到了Hg2+6141、DNA8~oxodGuo损伤_和DNA甲基化损伤检测等方面。
除了外加物理光源为激发源的检测过程外,以化学发光(CL)作为激发源,并与光电化学检测结合起来的方法也有报道。张书圣课题组143报道了以异鲁米诺4^O2~Co2+化学发光体系为光源,通过间接法检测了癌细胞中的巯基化合物。Willner课题组144以Hemin/G四联体4^O2化学发光共振能量转移(CRET)体系为激发源,实现了对GOx酶活性和DNA的分析。
此外,为了提高光电化学检测的灵敏度,通过其他途径实现signals检测的策略也引起了人们的研究兴趣。张书圣课题组先后报道了基于aptamer与目标分子的识别反应间接signals检测癌细胞中的三磷酸腺苷(ATP)a45和基于溶菌酶与aptamer之间识别反应的反位阻效应signals检测溶菌酶146。类似地,Zhang等M先将可以与双酣A特异识别的aptamer固定在光电层上,当在体系中加入双酣A后,双酣A与aptamer的识别反应使aptamer脱离光电层,实现了signal~on检测双酣A。
5光电化学传感器的发展前景